]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/kern/subr_taskqueue.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / kern / subr_taskqueue.c
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/interrupt.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/limits.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/sched.h>
42 #include <sys/taskqueue.h>
43 #include <sys/unistd.h>
44 #include <machine/stdarg.h>
45
46 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
47 static void     *taskqueue_giant_ih;
48 static void     *taskqueue_ih;
49
50 struct taskqueue_busy {
51         struct task     *tb_running;
52         TAILQ_ENTRY(taskqueue_busy) tb_link;
53 };
54
55 struct taskqueue {
56         STAILQ_HEAD(, task)     tq_queue;
57         taskqueue_enqueue_fn    tq_enqueue;
58         void                    *tq_context;
59         TAILQ_HEAD(, taskqueue_busy) tq_active;
60         struct mtx              tq_mutex;
61         struct thread           **tq_threads;
62         int                     tq_tcount;
63         int                     tq_spin;
64         int                     tq_flags;
65         int                     tq_callouts;
66         taskqueue_callback_fn   tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
67         void                    *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
68 };
69
70 #define TQ_FLAGS_ACTIVE         (1 << 0)
71 #define TQ_FLAGS_BLOCKED        (1 << 1)
72 #define TQ_FLAGS_PENDING        (1 << 2)
73
74 #define DT_CALLOUT_ARMED        (1 << 0)
75
76 #define TQ_LOCK(tq)                                                     \
77         do {                                                            \
78                 if ((tq)->tq_spin)                                      \
79                         mtx_lock_spin(&(tq)->tq_mutex);                 \
80                 else                                                    \
81                         mtx_lock(&(tq)->tq_mutex);                      \
82         } while (0)
83 #define TQ_ASSERT_LOCKED(tq)    mtx_assert(&(tq)->tq_mutex, MA_OWNED)
84
85 #define TQ_UNLOCK(tq)                                                   \
86         do {                                                            \
87                 if ((tq)->tq_spin)                                      \
88                         mtx_unlock_spin(&(tq)->tq_mutex);               \
89                 else                                                    \
90                         mtx_unlock(&(tq)->tq_mutex);                    \
91         } while (0)
92 #define TQ_ASSERT_UNLOCKED(tq)  mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
93
94 void
95 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
96     int priority, task_fn_t func, void *context)
97 {
98
99         TASK_INIT(&timeout_task->t, priority, func, context);
100         callout_init_mtx(&timeout_task->c, &queue->tq_mutex, 0);
101         timeout_task->q = queue;
102         timeout_task->f = 0;
103 }
104
105 static __inline int
106 TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
107     int t)
108 {
109         if (tq->tq_spin)
110                 return (msleep_spin(p, m, wm, t));
111         return (msleep(p, m, pri, wm, t));
112 }
113
114 static struct taskqueue *
115 _taskqueue_create(const char *name __unused, int mflags,
116                  taskqueue_enqueue_fn enqueue, void *context,
117                  int mtxflags, const char *mtxname)
118 {
119         struct taskqueue *queue;
120
121         queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
122         if (!queue)
123                 return NULL;
124
125         STAILQ_INIT(&queue->tq_queue);
126         TAILQ_INIT(&queue->tq_active);
127         queue->tq_enqueue = enqueue;
128         queue->tq_context = context;
129         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
130         queue->tq_flags |= TQ_FLAGS_ACTIVE;
131         mtx_init(&queue->tq_mutex, mtxname, NULL, mtxflags);
132
133         return queue;
134 }
135
136 struct taskqueue *
137 taskqueue_create(const char *name, int mflags,
138                  taskqueue_enqueue_fn enqueue, void *context)
139 {
140         return _taskqueue_create(name, mflags, enqueue, context,
141                         MTX_DEF, "taskqueue");
142 }
143
144 void
145 taskqueue_set_callback(struct taskqueue *queue,
146     enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
147     void *context)
148 {
149
150         KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
151             (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
152             ("Callback type %d not valid, must be %d-%d", cb_type,
153             TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
154         KASSERT((queue->tq_callbacks[cb_type] == NULL),
155             ("Re-initialization of taskqueue callback?"));
156
157         queue->tq_callbacks[cb_type] = callback;
158         queue->tq_cb_contexts[cb_type] = context;
159 }
160
161 /*
162  * Signal a taskqueue thread to terminate.
163  */
164 static void
165 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
166 {
167
168         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
169                 wakeup(tq);
170                 TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
171         }
172 }
173
174 void
175 taskqueue_free(struct taskqueue *queue)
176 {
177
178         TQ_LOCK(queue);
179         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
180         taskqueue_terminate(queue->tq_threads, queue);
181         KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
182         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
183         mtx_destroy(&queue->tq_mutex);
184         free(queue->tq_threads, M_TASKQUEUE);
185         free(queue, M_TASKQUEUE);
186 }
187
188 static int
189 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task)
190 {
191         struct task *ins;
192         struct task *prev;
193
194         /*
195          * Count multiple enqueues.
196          */
197         if (task->ta_pending) {
198                 if (task->ta_pending < USHRT_MAX)
199                         task->ta_pending++;
200                 return (0);
201         }
202
203         /*
204          * Optimise the case when all tasks have the same priority.
205          */
206         prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
207         if (!prev || prev->ta_priority >= task->ta_priority) {
208                 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
209         } else {
210                 prev = NULL;
211                 for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
212                      prev = ins, ins = STAILQ_NEXT(ins, ta_link))
213                         if (ins->ta_priority < task->ta_priority)
214                                 break;
215
216                 if (prev)
217                         STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
218                 else
219                         STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
220         }
221
222         task->ta_pending = 1;
223         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
224                 queue->tq_enqueue(queue->tq_context);
225         else
226                 queue->tq_flags |= TQ_FLAGS_PENDING;
227
228         return (0);
229 }
230 int
231 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
232 {
233         int res;
234
235         TQ_LOCK(queue);
236         res = taskqueue_enqueue_locked(queue, task);
237         TQ_UNLOCK(queue);
238
239         return (res);
240 }
241
242 static void
243 taskqueue_timeout_func(void *arg)
244 {
245         struct taskqueue *queue;
246         struct timeout_task *timeout_task;
247
248         timeout_task = arg;
249         queue = timeout_task->q;
250         KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
251         timeout_task->f &= ~DT_CALLOUT_ARMED;
252         queue->tq_callouts--;
253         taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t);
254 }
255
256 int
257 taskqueue_enqueue_timeout(struct taskqueue *queue,
258     struct timeout_task *timeout_task, int ticks)
259 {
260         int res;
261
262         TQ_LOCK(queue);
263         KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
264             ("Migrated queue"));
265         KASSERT(!queue->tq_spin, ("Timeout for spin-queue"));
266         timeout_task->q = queue;
267         res = timeout_task->t.ta_pending;
268         if (ticks == 0) {
269                 taskqueue_enqueue_locked(queue, &timeout_task->t);
270         } else {
271                 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
272                         res++;
273                 } else {
274                         queue->tq_callouts++;
275                         timeout_task->f |= DT_CALLOUT_ARMED;
276                         if (ticks < 0)
277                                 ticks = -ticks; /* Ignore overflow. */
278                 }
279                 if (ticks > 0) {
280                         callout_reset(&timeout_task->c, ticks,
281                             taskqueue_timeout_func, timeout_task);
282                 }
283         }
284         TQ_UNLOCK(queue);
285         return (res);
286 }
287
288 static void
289 taskqueue_drain_running(struct taskqueue *queue)
290 {
291
292         while (!TAILQ_EMPTY(&queue->tq_active))
293                 TQ_SLEEP(queue, &queue->tq_active, &queue->tq_mutex,
294                     PWAIT, "-", 0);
295 }
296
297 void
298 taskqueue_block(struct taskqueue *queue)
299 {
300
301         TQ_LOCK(queue);
302         queue->tq_flags |= TQ_FLAGS_BLOCKED;
303         TQ_UNLOCK(queue);
304 }
305
306 void
307 taskqueue_unblock(struct taskqueue *queue)
308 {
309
310         TQ_LOCK(queue);
311         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
312         if (queue->tq_flags & TQ_FLAGS_PENDING) {
313                 queue->tq_flags &= ~TQ_FLAGS_PENDING;
314                 queue->tq_enqueue(queue->tq_context);
315         }
316         TQ_UNLOCK(queue);
317 }
318
319 static void
320 taskqueue_run_locked(struct taskqueue *queue)
321 {
322         struct taskqueue_busy tb;
323         struct task *task;
324         int pending;
325
326         TQ_ASSERT_LOCKED(queue);
327         tb.tb_running = NULL;
328         TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
329
330         while (STAILQ_FIRST(&queue->tq_queue)) {
331                 /*
332                  * Carefully remove the first task from the queue and
333                  * zero its pending count.
334                  */
335                 task = STAILQ_FIRST(&queue->tq_queue);
336                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
337                 pending = task->ta_pending;
338                 task->ta_pending = 0;
339                 tb.tb_running = task;
340                 TQ_UNLOCK(queue);
341
342                 task->ta_func(task->ta_context, pending);
343
344                 TQ_LOCK(queue);
345                 tb.tb_running = NULL;
346                 wakeup(task);
347         }
348         TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
349         if (TAILQ_EMPTY(&queue->tq_active))
350                 wakeup(&queue->tq_active);
351 }
352
353 void
354 taskqueue_run(struct taskqueue *queue)
355 {
356
357         TQ_LOCK(queue);
358         taskqueue_run_locked(queue);
359         TQ_UNLOCK(queue);
360 }
361
362 static int
363 task_is_running(struct taskqueue *queue, struct task *task)
364 {
365         struct taskqueue_busy *tb;
366
367         TQ_ASSERT_LOCKED(queue);
368         TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
369                 if (tb->tb_running == task)
370                         return (1);
371         }
372         return (0);
373 }
374
375 static int
376 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
377     u_int *pendp)
378 {
379
380         if (task->ta_pending > 0)
381                 STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
382         if (pendp != NULL)
383                 *pendp = task->ta_pending;
384         task->ta_pending = 0;
385         return (task_is_running(queue, task) ? EBUSY : 0);
386 }
387
388 int
389 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
390 {
391         int error;
392
393         TQ_LOCK(queue);
394         error = taskqueue_cancel_locked(queue, task, pendp);
395         TQ_UNLOCK(queue);
396
397         return (error);
398 }
399
400 int
401 taskqueue_cancel_timeout(struct taskqueue *queue,
402     struct timeout_task *timeout_task, u_int *pendp)
403 {
404         u_int pending, pending1;
405         int error;
406
407         TQ_LOCK(queue);
408         pending = !!callout_stop(&timeout_task->c);
409         error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
410         if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
411                 timeout_task->f &= ~DT_CALLOUT_ARMED;
412                 queue->tq_callouts--;
413         }
414         TQ_UNLOCK(queue);
415
416         if (pendp != NULL)
417                 *pendp = pending + pending1;
418         return (error);
419 }
420
421 void
422 taskqueue_drain(struct taskqueue *queue, struct task *task)
423 {
424
425         if (!queue->tq_spin)
426                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
427
428         TQ_LOCK(queue);
429         while (task->ta_pending != 0 || task_is_running(queue, task))
430                 TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
431         TQ_UNLOCK(queue);
432 }
433
434 void
435 taskqueue_drain_all(struct taskqueue *queue)
436 {
437         struct task *task;
438
439         if (!queue->tq_spin)
440                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
441
442         TQ_LOCK(queue);
443         task = STAILQ_LAST(&queue->tq_queue, task, ta_link);
444         if (task != NULL)
445                 while (task->ta_pending != 0)
446                         TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
447         taskqueue_drain_running(queue);
448         KASSERT(STAILQ_EMPTY(&queue->tq_queue),
449             ("taskqueue queue is not empty after draining"));
450         TQ_UNLOCK(queue);
451 }
452
453 void
454 taskqueue_drain_timeout(struct taskqueue *queue,
455     struct timeout_task *timeout_task)
456 {
457
458         callout_drain(&timeout_task->c);
459         taskqueue_drain(queue, &timeout_task->t);
460 }
461
462 static void
463 taskqueue_swi_enqueue(void *context)
464 {
465         swi_sched(taskqueue_ih, 0);
466 }
467
468 static void
469 taskqueue_swi_run(void *dummy)
470 {
471         taskqueue_run(taskqueue_swi);
472 }
473
474 static void
475 taskqueue_swi_giant_enqueue(void *context)
476 {
477         swi_sched(taskqueue_giant_ih, 0);
478 }
479
480 static void
481 taskqueue_swi_giant_run(void *dummy)
482 {
483         taskqueue_run(taskqueue_swi_giant);
484 }
485
486 int
487 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
488                         const char *name, ...)
489 {
490         va_list ap;
491         struct thread *td;
492         struct taskqueue *tq;
493         int i, error;
494         char ktname[MAXCOMLEN + 1];
495
496         if (count <= 0)
497                 return (EINVAL);
498
499         tq = *tqp;
500
501         va_start(ap, name);
502         vsnprintf(ktname, sizeof(ktname), name, ap);
503         va_end(ap);
504
505         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
506             M_NOWAIT | M_ZERO);
507         if (tq->tq_threads == NULL) {
508                 printf("%s: no memory for %s threads\n", __func__, ktname);
509                 return (ENOMEM);
510         }
511
512         for (i = 0; i < count; i++) {
513                 if (count == 1)
514                         error = kthread_add(taskqueue_thread_loop, tqp, NULL,
515                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
516                 else
517                         error = kthread_add(taskqueue_thread_loop, tqp, NULL,
518                             &tq->tq_threads[i], RFSTOPPED, 0,
519                             "%s_%d", ktname, i);
520                 if (error) {
521                         /* should be ok to continue, taskqueue_free will dtrt */
522                         printf("%s: kthread_add(%s): error %d", __func__,
523                             ktname, error);
524                         tq->tq_threads[i] = NULL;               /* paranoid */
525                 } else
526                         tq->tq_tcount++;
527         }
528         for (i = 0; i < count; i++) {
529                 if (tq->tq_threads[i] == NULL)
530                         continue;
531                 td = tq->tq_threads[i];
532                 thread_lock(td);
533                 sched_prio(td, pri);
534                 sched_add(td, SRQ_BORING);
535                 thread_unlock(td);
536         }
537
538         return (0);
539 }
540
541 static inline void
542 taskqueue_run_callback(struct taskqueue *tq,
543     enum taskqueue_callback_type cb_type)
544 {
545         taskqueue_callback_fn tq_callback;
546
547         TQ_ASSERT_UNLOCKED(tq);
548         tq_callback = tq->tq_callbacks[cb_type];
549         if (tq_callback != NULL)
550                 tq_callback(tq->tq_cb_contexts[cb_type]);
551 }
552
553 void
554 taskqueue_thread_loop(void *arg)
555 {
556         struct taskqueue **tqp, *tq;
557
558         tqp = arg;
559         tq = *tqp;
560         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
561         TQ_LOCK(tq);
562         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
563                 taskqueue_run_locked(tq);
564                 /*
565                  * Because taskqueue_run() can drop tq_mutex, we need to
566                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
567                  * meantime, which means we missed a wakeup.
568                  */
569                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
570                         break;
571                 TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
572         }
573         taskqueue_run_locked(tq);
574
575         /*
576          * This thread is on its way out, so just drop the lock temporarily
577          * in order to call the shutdown callback.  This allows the callback
578          * to look at the taskqueue, even just before it dies.
579          */
580         TQ_UNLOCK(tq);
581         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
582         TQ_LOCK(tq);
583
584         /* rendezvous with thread that asked us to terminate */
585         tq->tq_tcount--;
586         wakeup_one(tq->tq_threads);
587         TQ_UNLOCK(tq);
588         kthread_exit();
589 }
590
591 void
592 taskqueue_thread_enqueue(void *context)
593 {
594         struct taskqueue **tqp, *tq;
595
596         tqp = context;
597         tq = *tqp;
598
599         TQ_ASSERT_LOCKED(tq);
600         wakeup_one(tq);
601 }
602
603 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
604                  swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
605                      INTR_MPSAFE, &taskqueue_ih)); 
606
607 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
608                  swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
609                      NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih)); 
610
611 TASKQUEUE_DEFINE_THREAD(thread);
612
613 struct taskqueue *
614 taskqueue_create_fast(const char *name, int mflags,
615                  taskqueue_enqueue_fn enqueue, void *context)
616 {
617         return _taskqueue_create(name, mflags, enqueue, context,
618                         MTX_SPIN, "fast_taskqueue");
619 }
620
621 /* NB: for backwards compatibility */
622 int
623 taskqueue_enqueue_fast(struct taskqueue *queue, struct task *task)
624 {
625         return taskqueue_enqueue(queue, task);
626 }
627
628 static void     *taskqueue_fast_ih;
629
630 static void
631 taskqueue_fast_enqueue(void *context)
632 {
633         swi_sched(taskqueue_fast_ih, 0);
634 }
635
636 static void
637 taskqueue_fast_run(void *dummy)
638 {
639         taskqueue_run(taskqueue_fast);
640 }
641
642 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
643         swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
644         SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
645
646 int
647 taskqueue_member(struct taskqueue *queue, struct thread *td)
648 {
649         int i, j, ret = 0;
650
651         for (i = 0, j = 0; ; i++) {
652                 if (queue->tq_threads[i] == NULL)
653                         continue;
654                 if (queue->tq_threads[i] == td) {
655                         ret = 1;
656                         break;
657                 }
658                 if (++j >= queue->tq_tcount)
659                         break;
660         }
661         return (ret);
662 }