]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/kern/subr_witness.c
MFC: r285839 (r286055 in stable/10)
[FreeBSD/releng/10.2.git] / sys / kern / subr_witness.c
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40
41 /*
42  *      Main Entry: witness
43  *      Pronunciation: 'wit-n&s
44  *      Function: noun
45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *          testimony, witness, from 2wit
47  *      Date: before 12th century
48  *      1 : attestation of a fact or event : TESTIMONY
49  *      2 : one that gives evidence; specifically : one who testifies in
50  *          a cause or before a judicial tribunal
51  *      3 : one asked to be present at a transaction so as to be able to
52  *          testify to its having taken place
53  *      4 : one who has personal knowledge of something
54  *      5 a : something serving as evidence or proof : SIGN
55  *        b : public affirmation by word or example of usually
56  *            religious faith or conviction <the heroic witness to divine
57  *            life -- Pilot>
58  *      6 capitalized : a member of the Jehovah's Witnesses 
59  */
60
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/systm.h>
110
111 #ifdef DDB
112 #include <ddb/ddb.h>
113 #endif
114
115 #include <machine/stdarg.h>
116
117 #if !defined(DDB) && !defined(STACK)
118 #error "DDB or STACK options are required for WITNESS"
119 #endif
120
121 /* Note that these traces do not work with KTR_ALQ. */
122 #if 0
123 #define KTR_WITNESS     KTR_SUBSYS
124 #else
125 #define KTR_WITNESS     0
126 #endif
127
128 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
129 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
130 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
131
132 /* Define this to check for blessed mutexes */
133 #undef BLESSING
134
135 #define WITNESS_COUNT           1024
136 #define WITNESS_CHILDCOUNT      (WITNESS_COUNT * 4)
137 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
138 #define WITNESS_PENDLIST        (1024 + MAXCPU)
139
140 /* Allocate 256 KB of stack data space */
141 #define WITNESS_LO_DATA_COUNT   2048
142
143 /* Prime, gives load factor of ~2 at full load */
144 #define WITNESS_LO_HASH_SIZE    1021
145
146 /*
147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149  * probably be safe for the most part, but it's still a SWAG.
150  */
151 #define LOCK_NCHILDREN  5
152 #define LOCK_CHILDCOUNT 2048
153
154 #define MAX_W_NAME      64
155
156 #define BADSTACK_SBUF_SIZE      (256 * WITNESS_COUNT)
157 #define FULLGRAPH_SBUF_SIZE     512
158
159 /*
160  * These flags go in the witness relationship matrix and describe the
161  * relationship between any two struct witness objects.
162  */
163 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
164 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
165 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
166 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
167 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
168 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
169 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
170 #define WITNESS_RELATED_MASK                                            \
171         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
172 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
173                                           * observed. */
174 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
175 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
176 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
177
178 /* Descendant to ancestor flags */
179 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
180
181 /* Ancestor to descendant flags */
182 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
183
184 #define WITNESS_INDEX_ASSERT(i)                                         \
185         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
186
187 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
188
189 /*
190  * Lock instances.  A lock instance is the data associated with a lock while
191  * it is held by witness.  For example, a lock instance will hold the
192  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
193  * are held in a per-cpu list while sleep locks are held in per-thread list.
194  */
195 struct lock_instance {
196         struct lock_object      *li_lock;
197         const char              *li_file;
198         int                     li_line;
199         u_int                   li_flags;
200 };
201
202 /*
203  * A simple list type used to build the list of locks held by a thread
204  * or CPU.  We can't simply embed the list in struct lock_object since a
205  * lock may be held by more than one thread if it is a shared lock.  Locks
206  * are added to the head of the list, so we fill up each list entry from
207  * "the back" logically.  To ease some of the arithmetic, we actually fill
208  * in each list entry the normal way (children[0] then children[1], etc.) but
209  * when we traverse the list we read children[count-1] as the first entry
210  * down to children[0] as the final entry.
211  */
212 struct lock_list_entry {
213         struct lock_list_entry  *ll_next;
214         struct lock_instance    ll_children[LOCK_NCHILDREN];
215         u_int                   ll_count;
216 };
217
218 /*
219  * The main witness structure. One of these per named lock type in the system
220  * (for example, "vnode interlock").
221  */
222 struct witness {
223         char                    w_name[MAX_W_NAME];
224         uint32_t                w_index;  /* Index in the relationship matrix */
225         struct lock_class       *w_class;
226         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
227         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
228         struct witness          *w_hash_next; /* Linked list in hash buckets. */
229         const char              *w_file; /* File where last acquired */
230         uint32_t                w_line; /* Line where last acquired */
231         uint32_t                w_refcount;
232         uint16_t                w_num_ancestors; /* direct/indirect
233                                                   * ancestor count */
234         uint16_t                w_num_descendants; /* direct/indirect
235                                                     * descendant count */
236         int16_t                 w_ddb_level;
237         unsigned                w_displayed:1;
238         unsigned                w_reversed:1;
239 };
240
241 STAILQ_HEAD(witness_list, witness);
242
243 /*
244  * The witness hash table. Keys are witness names (const char *), elements are
245  * witness objects (struct witness *).
246  */
247 struct witness_hash {
248         struct witness  *wh_array[WITNESS_HASH_SIZE];
249         uint32_t        wh_size;
250         uint32_t        wh_count;
251 };
252
253 /*
254  * Key type for the lock order data hash table.
255  */
256 struct witness_lock_order_key {
257         uint16_t        from;
258         uint16_t        to;
259 };
260
261 struct witness_lock_order_data {
262         struct stack                    wlod_stack;
263         struct witness_lock_order_key   wlod_key;
264         struct witness_lock_order_data  *wlod_next;
265 };
266
267 /*
268  * The witness lock order data hash table. Keys are witness index tuples
269  * (struct witness_lock_order_key), elements are lock order data objects
270  * (struct witness_lock_order_data). 
271  */
272 struct witness_lock_order_hash {
273         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
274         u_int   wloh_size;
275         u_int   wloh_count;
276 };
277
278 #ifdef BLESSING
279 struct witness_blessed {
280         const char      *b_lock1;
281         const char      *b_lock2;
282 };
283 #endif
284
285 struct witness_pendhelp {
286         const char              *wh_type;
287         struct lock_object      *wh_lock;
288 };
289
290 struct witness_order_list_entry {
291         const char              *w_name;
292         struct lock_class       *w_class;
293 };
294
295 /*
296  * Returns 0 if one of the locks is a spin lock and the other is not.
297  * Returns 1 otherwise.
298  */
299 static __inline int
300 witness_lock_type_equal(struct witness *w1, struct witness *w2)
301 {
302
303         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
304                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
305 }
306
307 static __inline int
308 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
309     const struct witness_lock_order_key *b)
310 {
311
312         return (a->from == b->from && a->to == b->to);
313 }
314
315 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
316                     const char *fname);
317 #ifdef KDB
318 static void     _witness_debugger(int cond, const char *msg);
319 #endif
320 static void     adopt(struct witness *parent, struct witness *child);
321 #ifdef BLESSING
322 static int      blessed(struct witness *, struct witness *);
323 #endif
324 static void     depart(struct witness *w);
325 static struct witness   *enroll(const char *description,
326                             struct lock_class *lock_class);
327 static struct lock_instance     *find_instance(struct lock_list_entry *list,
328                                     const struct lock_object *lock);
329 static int      isitmychild(struct witness *parent, struct witness *child);
330 static int      isitmydescendant(struct witness *parent, struct witness *child);
331 static void     itismychild(struct witness *parent, struct witness *child);
332 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
333 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
334 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
335 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
336 #ifdef DDB
337 static void     witness_ddb_compute_levels(void);
338 static void     witness_ddb_display(int(*)(const char *fmt, ...));
339 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
340                     struct witness *, int indent);
341 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
342                     struct witness_list *list);
343 static void     witness_ddb_level_descendants(struct witness *parent, int l);
344 static void     witness_ddb_list(struct thread *td);
345 #endif
346 static void     witness_free(struct witness *m);
347 static struct witness   *witness_get(void);
348 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
349 static struct witness   *witness_hash_get(const char *key);
350 static void     witness_hash_put(struct witness *w);
351 static void     witness_init_hash_tables(void);
352 static void     witness_increment_graph_generation(void);
353 static void     witness_lock_list_free(struct lock_list_entry *lle);
354 static struct lock_list_entry   *witness_lock_list_get(void);
355 static int      witness_lock_order_add(struct witness *parent,
356                     struct witness *child);
357 static int      witness_lock_order_check(struct witness *parent,
358                     struct witness *child);
359 static struct witness_lock_order_data   *witness_lock_order_get(
360                                             struct witness *parent,
361                                             struct witness *child);
362 static void     witness_list_lock(struct lock_instance *instance,
363                     int (*prnt)(const char *fmt, ...));
364 static void     witness_setflag(struct lock_object *lock, int flag, int set);
365
366 #ifdef KDB
367 #define witness_debugger(c)     _witness_debugger(c, __func__)
368 #else
369 #define witness_debugger(c)
370 #endif
371
372 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
373     "Witness Locking");
374
375 /*
376  * If set to 0, lock order checking is disabled.  If set to -1,
377  * witness is completely disabled.  Otherwise witness performs full
378  * lock order checking for all locks.  At runtime, lock order checking
379  * may be toggled.  However, witness cannot be reenabled once it is
380  * completely disabled.
381  */
382 static int witness_watch = 1;
383 TUNABLE_INT("debug.witness.watch", &witness_watch);
384 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
385     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
386
387 #ifdef KDB
388 /*
389  * When KDB is enabled and witness_kdb is 1, it will cause the system
390  * to drop into kdebug() when:
391  *      - a lock hierarchy violation occurs
392  *      - locks are held when going to sleep.
393  */
394 #ifdef WITNESS_KDB
395 int     witness_kdb = 1;
396 #else
397 int     witness_kdb = 0;
398 #endif
399 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
400 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
401
402 /*
403  * When KDB is enabled and witness_trace is 1, it will cause the system
404  * to print a stack trace:
405  *      - a lock hierarchy violation occurs
406  *      - locks are held when going to sleep.
407  */
408 int     witness_trace = 1;
409 TUNABLE_INT("debug.witness.trace", &witness_trace);
410 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
411 #endif /* KDB */
412
413 #ifdef WITNESS_SKIPSPIN
414 int     witness_skipspin = 1;
415 #else
416 int     witness_skipspin = 0;
417 #endif
418 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
419 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
420     0, "");
421
422 /*
423  * Call this to print out the relations between locks.
424  */
425 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
426     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
427
428 /*
429  * Call this to print out the witness faulty stacks.
430  */
431 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
432     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
433
434 static struct mtx w_mtx;
435
436 /* w_list */
437 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
438 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
439
440 /* w_typelist */
441 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
442 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
443
444 /* lock list */
445 static struct lock_list_entry *w_lock_list_free = NULL;
446 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
447 static u_int pending_cnt;
448
449 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
450 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
451 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
452 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
453     "");
454
455 static struct witness *w_data;
456 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
457 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
458 static struct witness_hash w_hash;      /* The witness hash table. */
459
460 /* The lock order data hash */
461 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
462 static struct witness_lock_order_data *w_lofree = NULL;
463 static struct witness_lock_order_hash w_lohash;
464 static int w_max_used_index = 0;
465 static unsigned int w_generation = 0;
466 static const char w_notrunning[] = "Witness not running\n";
467 static const char w_stillcold[] = "Witness is still cold\n";
468
469
470 static struct witness_order_list_entry order_lists[] = {
471         /*
472          * sx locks
473          */
474         { "proctree", &lock_class_sx },
475         { "allproc", &lock_class_sx },
476         { "allprison", &lock_class_sx },
477         { NULL, NULL },
478         /*
479          * Various mutexes
480          */
481         { "Giant", &lock_class_mtx_sleep },
482         { "pipe mutex", &lock_class_mtx_sleep },
483         { "sigio lock", &lock_class_mtx_sleep },
484         { "process group", &lock_class_mtx_sleep },
485         { "process lock", &lock_class_mtx_sleep },
486         { "session", &lock_class_mtx_sleep },
487         { "uidinfo hash", &lock_class_rw },
488 #ifdef  HWPMC_HOOKS
489         { "pmc-sleep", &lock_class_mtx_sleep },
490 #endif
491         { "time lock", &lock_class_mtx_sleep },
492         { NULL, NULL },
493         /*
494          * umtx
495          */
496         { "umtx lock", &lock_class_mtx_sleep },
497         { NULL, NULL },
498         /*
499          * Sockets
500          */
501         { "accept", &lock_class_mtx_sleep },
502         { "so_snd", &lock_class_mtx_sleep },
503         { "so_rcv", &lock_class_mtx_sleep },
504         { "sellck", &lock_class_mtx_sleep },
505         { NULL, NULL },
506         /*
507          * Routing
508          */
509         { "so_rcv", &lock_class_mtx_sleep },
510         { "radix node head", &lock_class_rw },
511         { "rtentry", &lock_class_mtx_sleep },
512         { "ifaddr", &lock_class_mtx_sleep },
513         { NULL, NULL },
514         /*
515          * IPv4 multicast:
516          * protocol locks before interface locks, after UDP locks.
517          */
518         { "udpinp", &lock_class_rw },
519         { "in_multi_mtx", &lock_class_mtx_sleep },
520         { "igmp_mtx", &lock_class_mtx_sleep },
521         { "if_addr_lock", &lock_class_rw },
522         { NULL, NULL },
523         /*
524          * IPv6 multicast:
525          * protocol locks before interface locks, after UDP locks.
526          */
527         { "udpinp", &lock_class_rw },
528         { "in6_multi_mtx", &lock_class_mtx_sleep },
529         { "mld_mtx", &lock_class_mtx_sleep },
530         { "if_addr_lock", &lock_class_rw },
531         { NULL, NULL },
532         /*
533          * UNIX Domain Sockets
534          */
535         { "unp_link_rwlock", &lock_class_rw },
536         { "unp_list_lock", &lock_class_mtx_sleep },
537         { "unp", &lock_class_mtx_sleep },
538         { "so_snd", &lock_class_mtx_sleep },
539         { NULL, NULL },
540         /*
541          * UDP/IP
542          */
543         { "udp", &lock_class_rw },
544         { "udpinp", &lock_class_rw },
545         { "so_snd", &lock_class_mtx_sleep },
546         { NULL, NULL },
547         /*
548          * TCP/IP
549          */
550         { "tcp", &lock_class_rw },
551         { "tcpinp", &lock_class_rw },
552         { "so_snd", &lock_class_mtx_sleep },
553         { NULL, NULL },
554         /*
555          * netatalk
556          */
557         { "ddp_list_mtx", &lock_class_mtx_sleep },
558         { "ddp_mtx", &lock_class_mtx_sleep },
559         { NULL, NULL },
560         /*
561          * BPF
562          */
563         { "bpf global lock", &lock_class_mtx_sleep },
564         { "bpf interface lock", &lock_class_rw },
565         { "bpf cdev lock", &lock_class_mtx_sleep },
566         { NULL, NULL },
567         /*
568          * NFS server
569          */
570         { "nfsd_mtx", &lock_class_mtx_sleep },
571         { "so_snd", &lock_class_mtx_sleep },
572         { NULL, NULL },
573
574         /*
575          * IEEE 802.11
576          */
577         { "802.11 com lock", &lock_class_mtx_sleep},
578         { NULL, NULL },
579         /*
580          * Network drivers
581          */
582         { "network driver", &lock_class_mtx_sleep},
583         { NULL, NULL },
584
585         /*
586          * Netgraph
587          */
588         { "ng_node", &lock_class_mtx_sleep },
589         { "ng_worklist", &lock_class_mtx_sleep },
590         { NULL, NULL },
591         /*
592          * CDEV
593          */
594         { "vm map (system)", &lock_class_mtx_sleep },
595         { "vm page queue", &lock_class_mtx_sleep },
596         { "vnode interlock", &lock_class_mtx_sleep },
597         { "cdev", &lock_class_mtx_sleep },
598         { NULL, NULL },
599         /*
600          * VM
601          */
602         { "vm map (user)", &lock_class_sx },
603         { "vm object", &lock_class_rw },
604         { "vm page", &lock_class_mtx_sleep },
605         { "vm page queue", &lock_class_mtx_sleep },
606         { "pmap pv global", &lock_class_rw },
607         { "pmap", &lock_class_mtx_sleep },
608         { "pmap pv list", &lock_class_rw },
609         { "vm page free queue", &lock_class_mtx_sleep },
610         { NULL, NULL },
611         /*
612          * kqueue/VFS interaction
613          */
614         { "kqueue", &lock_class_mtx_sleep },
615         { "struct mount mtx", &lock_class_mtx_sleep },
616         { "vnode interlock", &lock_class_mtx_sleep },
617         { NULL, NULL },
618         /*
619          * ZFS locking
620          */
621         { "dn->dn_mtx", &lock_class_sx },
622         { "dr->dt.di.dr_mtx", &lock_class_sx },
623         { "db->db_mtx", &lock_class_sx },
624         { NULL, NULL },
625         /*
626          * spin locks
627          */
628 #ifdef SMP
629         { "ap boot", &lock_class_mtx_spin },
630 #endif
631         { "rm.mutex_mtx", &lock_class_mtx_spin },
632         { "sio", &lock_class_mtx_spin },
633         { "scrlock", &lock_class_mtx_spin },
634 #ifdef __i386__
635         { "cy", &lock_class_mtx_spin },
636 #endif
637 #ifdef __sparc64__
638         { "pcib_mtx", &lock_class_mtx_spin },
639         { "rtc_mtx", &lock_class_mtx_spin },
640 #endif
641         { "scc_hwmtx", &lock_class_mtx_spin },
642         { "uart_hwmtx", &lock_class_mtx_spin },
643         { "fast_taskqueue", &lock_class_mtx_spin },
644         { "intr table", &lock_class_mtx_spin },
645 #ifdef  HWPMC_HOOKS
646         { "pmc-per-proc", &lock_class_mtx_spin },
647 #endif
648         { "process slock", &lock_class_mtx_spin },
649         { "sleepq chain", &lock_class_mtx_spin },
650         { "rm_spinlock", &lock_class_mtx_spin },
651         { "turnstile chain", &lock_class_mtx_spin },
652         { "turnstile lock", &lock_class_mtx_spin },
653         { "sched lock", &lock_class_mtx_spin },
654         { "td_contested", &lock_class_mtx_spin },
655         { "callout", &lock_class_mtx_spin },
656         { "entropy harvest mutex", &lock_class_mtx_spin },
657         { "syscons video lock", &lock_class_mtx_spin },
658 #ifdef SMP
659         { "smp rendezvous", &lock_class_mtx_spin },
660 #endif
661 #ifdef __powerpc__
662         { "tlb0", &lock_class_mtx_spin },
663 #endif
664         /*
665          * leaf locks
666          */
667         { "intrcnt", &lock_class_mtx_spin },
668         { "icu", &lock_class_mtx_spin },
669 #if defined(SMP) && defined(__sparc64__)
670         { "ipi", &lock_class_mtx_spin },
671 #endif
672 #ifdef __i386__
673         { "allpmaps", &lock_class_mtx_spin },
674         { "descriptor tables", &lock_class_mtx_spin },
675 #endif
676         { "clk", &lock_class_mtx_spin },
677         { "cpuset", &lock_class_mtx_spin },
678         { "mprof lock", &lock_class_mtx_spin },
679         { "zombie lock", &lock_class_mtx_spin },
680         { "ALD Queue", &lock_class_mtx_spin },
681 #ifdef __ia64__
682         { "MCA spin lock", &lock_class_mtx_spin },
683 #endif
684 #if defined(__i386__) || defined(__amd64__)
685         { "pcicfg", &lock_class_mtx_spin },
686         { "NDIS thread lock", &lock_class_mtx_spin },
687 #endif
688         { "tw_osl_io_lock", &lock_class_mtx_spin },
689         { "tw_osl_q_lock", &lock_class_mtx_spin },
690         { "tw_cl_io_lock", &lock_class_mtx_spin },
691         { "tw_cl_intr_lock", &lock_class_mtx_spin },
692         { "tw_cl_gen_lock", &lock_class_mtx_spin },
693 #ifdef  HWPMC_HOOKS
694         { "pmc-leaf", &lock_class_mtx_spin },
695 #endif
696         { "blocked lock", &lock_class_mtx_spin },
697         { NULL, NULL },
698         { NULL, NULL }
699 };
700
701 #ifdef BLESSING
702 /*
703  * Pairs of locks which have been blessed
704  * Don't complain about order problems with blessed locks
705  */
706 static struct witness_blessed blessed_list[] = {
707 };
708 static int blessed_count =
709         sizeof(blessed_list) / sizeof(struct witness_blessed);
710 #endif
711
712 /*
713  * This global is set to 0 once it becomes safe to use the witness code.
714  */
715 static int witness_cold = 1;
716
717 /*
718  * This global is set to 1 once the static lock orders have been enrolled
719  * so that a warning can be issued for any spin locks enrolled later.
720  */
721 static int witness_spin_warn = 0;
722
723 /* Trim useless garbage from filenames. */
724 static const char *
725 fixup_filename(const char *file)
726 {
727
728         if (file == NULL)
729                 return (NULL);
730         while (strncmp(file, "../", 3) == 0)
731                 file += 3;
732         return (file);
733 }
734
735 /*
736  * The WITNESS-enabled diagnostic code.  Note that the witness code does
737  * assume that the early boot is single-threaded at least until after this
738  * routine is completed.
739  */
740 static void
741 witness_initialize(void *dummy __unused)
742 {
743         struct lock_object *lock;
744         struct witness_order_list_entry *order;
745         struct witness *w, *w1;
746         int i;
747
748         w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
749             M_NOWAIT | M_ZERO);
750
751         /*
752          * We have to release Giant before initializing its witness
753          * structure so that WITNESS doesn't get confused.
754          */
755         mtx_unlock(&Giant);
756         mtx_assert(&Giant, MA_NOTOWNED);
757
758         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
759         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
760             MTX_NOWITNESS | MTX_NOPROFILE);
761         for (i = WITNESS_COUNT - 1; i >= 0; i--) {
762                 w = &w_data[i];
763                 memset(w, 0, sizeof(*w));
764                 w_data[i].w_index = i;  /* Witness index never changes. */
765                 witness_free(w);
766         }
767         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
768             ("%s: Invalid list of free witness objects", __func__));
769
770         /* Witness with index 0 is not used to aid in debugging. */
771         STAILQ_REMOVE_HEAD(&w_free, w_list);
772         w_free_cnt--;
773
774         memset(w_rmatrix, 0,
775             (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
776
777         for (i = 0; i < LOCK_CHILDCOUNT; i++)
778                 witness_lock_list_free(&w_locklistdata[i]);
779         witness_init_hash_tables();
780
781         /* First add in all the specified order lists. */
782         for (order = order_lists; order->w_name != NULL; order++) {
783                 w = enroll(order->w_name, order->w_class);
784                 if (w == NULL)
785                         continue;
786                 w->w_file = "order list";
787                 for (order++; order->w_name != NULL; order++) {
788                         w1 = enroll(order->w_name, order->w_class);
789                         if (w1 == NULL)
790                                 continue;
791                         w1->w_file = "order list";
792                         itismychild(w, w1);
793                         w = w1;
794                 }
795         }
796         witness_spin_warn = 1;
797
798         /* Iterate through all locks and add them to witness. */
799         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
800                 lock = pending_locks[i].wh_lock;
801                 KASSERT(lock->lo_flags & LO_WITNESS,
802                     ("%s: lock %s is on pending list but not LO_WITNESS",
803                     __func__, lock->lo_name));
804                 lock->lo_witness = enroll(pending_locks[i].wh_type,
805                     LOCK_CLASS(lock));
806         }
807
808         /* Mark the witness code as being ready for use. */
809         witness_cold = 0;
810
811         mtx_lock(&Giant);
812 }
813 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
814     NULL);
815
816 void
817 witness_init(struct lock_object *lock, const char *type)
818 {
819         struct lock_class *class;
820
821         /* Various sanity checks. */
822         class = LOCK_CLASS(lock);
823         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
824             (class->lc_flags & LC_RECURSABLE) == 0)
825                 kassert_panic("%s: lock (%s) %s can not be recursable",
826                     __func__, class->lc_name, lock->lo_name);
827         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
828             (class->lc_flags & LC_SLEEPABLE) == 0)
829                 kassert_panic("%s: lock (%s) %s can not be sleepable",
830                     __func__, class->lc_name, lock->lo_name);
831         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
832             (class->lc_flags & LC_UPGRADABLE) == 0)
833                 kassert_panic("%s: lock (%s) %s can not be upgradable",
834                     __func__, class->lc_name, lock->lo_name);
835
836         /*
837          * If we shouldn't watch this lock, then just clear lo_witness.
838          * Otherwise, if witness_cold is set, then it is too early to
839          * enroll this lock, so defer it to witness_initialize() by adding
840          * it to the pending_locks list.  If it is not too early, then enroll
841          * the lock now.
842          */
843         if (witness_watch < 1 || panicstr != NULL ||
844             (lock->lo_flags & LO_WITNESS) == 0)
845                 lock->lo_witness = NULL;
846         else if (witness_cold) {
847                 pending_locks[pending_cnt].wh_lock = lock;
848                 pending_locks[pending_cnt++].wh_type = type;
849                 if (pending_cnt > WITNESS_PENDLIST)
850                         panic("%s: pending locks list is too small, "
851                             "increase WITNESS_PENDLIST\n",
852                             __func__);
853         } else
854                 lock->lo_witness = enroll(type, class);
855 }
856
857 void
858 witness_destroy(struct lock_object *lock)
859 {
860         struct lock_class *class;
861         struct witness *w;
862
863         class = LOCK_CLASS(lock);
864
865         if (witness_cold)
866                 panic("lock (%s) %s destroyed while witness_cold",
867                     class->lc_name, lock->lo_name);
868
869         /* XXX: need to verify that no one holds the lock */
870         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
871                 return;
872         w = lock->lo_witness;
873
874         mtx_lock_spin(&w_mtx);
875         MPASS(w->w_refcount > 0);
876         w->w_refcount--;
877
878         if (w->w_refcount == 0)
879                 depart(w);
880         mtx_unlock_spin(&w_mtx);
881 }
882
883 #ifdef DDB
884 static void
885 witness_ddb_compute_levels(void)
886 {
887         struct witness *w;
888
889         /*
890          * First clear all levels.
891          */
892         STAILQ_FOREACH(w, &w_all, w_list)
893                 w->w_ddb_level = -1;
894
895         /*
896          * Look for locks with no parents and level all their descendants.
897          */
898         STAILQ_FOREACH(w, &w_all, w_list) {
899
900                 /* If the witness has ancestors (is not a root), skip it. */
901                 if (w->w_num_ancestors > 0)
902                         continue;
903                 witness_ddb_level_descendants(w, 0);
904         }
905 }
906
907 static void
908 witness_ddb_level_descendants(struct witness *w, int l)
909 {
910         int i;
911
912         if (w->w_ddb_level >= l)
913                 return;
914
915         w->w_ddb_level = l;
916         l++;
917
918         for (i = 1; i <= w_max_used_index; i++) {
919                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
920                         witness_ddb_level_descendants(&w_data[i], l);
921         }
922 }
923
924 static void
925 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
926     struct witness *w, int indent)
927 {
928         int i;
929
930         for (i = 0; i < indent; i++)
931                 prnt(" ");
932         prnt("%s (type: %s, depth: %d, active refs: %d)",
933              w->w_name, w->w_class->lc_name,
934              w->w_ddb_level, w->w_refcount);
935         if (w->w_displayed) {
936                 prnt(" -- (already displayed)\n");
937                 return;
938         }
939         w->w_displayed = 1;
940         if (w->w_file != NULL && w->w_line != 0)
941                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
942                     w->w_line);
943         else
944                 prnt(" -- never acquired\n");
945         indent++;
946         WITNESS_INDEX_ASSERT(w->w_index);
947         for (i = 1; i <= w_max_used_index; i++) {
948                 if (db_pager_quit)
949                         return;
950                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
951                         witness_ddb_display_descendants(prnt, &w_data[i],
952                             indent);
953         }
954 }
955
956 static void
957 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
958     struct witness_list *list)
959 {
960         struct witness *w;
961
962         STAILQ_FOREACH(w, list, w_typelist) {
963                 if (w->w_file == NULL || w->w_ddb_level > 0)
964                         continue;
965
966                 /* This lock has no anscestors - display its descendants. */
967                 witness_ddb_display_descendants(prnt, w, 0);
968                 if (db_pager_quit)
969                         return;
970         }
971 }
972         
973 static void
974 witness_ddb_display(int(*prnt)(const char *fmt, ...))
975 {
976         struct witness *w;
977
978         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
979         witness_ddb_compute_levels();
980
981         /* Clear all the displayed flags. */
982         STAILQ_FOREACH(w, &w_all, w_list)
983                 w->w_displayed = 0;
984
985         /*
986          * First, handle sleep locks which have been acquired at least
987          * once.
988          */
989         prnt("Sleep locks:\n");
990         witness_ddb_display_list(prnt, &w_sleep);
991         if (db_pager_quit)
992                 return;
993         
994         /*
995          * Now do spin locks which have been acquired at least once.
996          */
997         prnt("\nSpin locks:\n");
998         witness_ddb_display_list(prnt, &w_spin);
999         if (db_pager_quit)
1000                 return;
1001         
1002         /*
1003          * Finally, any locks which have not been acquired yet.
1004          */
1005         prnt("\nLocks which were never acquired:\n");
1006         STAILQ_FOREACH(w, &w_all, w_list) {
1007                 if (w->w_file != NULL || w->w_refcount == 0)
1008                         continue;
1009                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
1010                     w->w_class->lc_name, w->w_ddb_level);
1011                 if (db_pager_quit)
1012                         return;
1013         }
1014 }
1015 #endif /* DDB */
1016
1017 int
1018 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1019 {
1020
1021         if (witness_watch == -1 || panicstr != NULL)
1022                 return (0);
1023
1024         /* Require locks that witness knows about. */
1025         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1026             lock2->lo_witness == NULL)
1027                 return (EINVAL);
1028
1029         mtx_assert(&w_mtx, MA_NOTOWNED);
1030         mtx_lock_spin(&w_mtx);
1031
1032         /*
1033          * If we already have either an explicit or implied lock order that
1034          * is the other way around, then return an error.
1035          */
1036         if (witness_watch &&
1037             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1038                 mtx_unlock_spin(&w_mtx);
1039                 return (EDOOFUS);
1040         }
1041         
1042         /* Try to add the new order. */
1043         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1044             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1045         itismychild(lock1->lo_witness, lock2->lo_witness);
1046         mtx_unlock_spin(&w_mtx);
1047         return (0);
1048 }
1049
1050 void
1051 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1052     int line, struct lock_object *interlock)
1053 {
1054         struct lock_list_entry *lock_list, *lle;
1055         struct lock_instance *lock1, *lock2, *plock;
1056         struct lock_class *class, *iclass;
1057         struct witness *w, *w1;
1058         struct thread *td;
1059         int i, j;
1060
1061         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1062             panicstr != NULL)
1063                 return;
1064
1065         w = lock->lo_witness;
1066         class = LOCK_CLASS(lock);
1067         td = curthread;
1068
1069         if (class->lc_flags & LC_SLEEPLOCK) {
1070
1071                 /*
1072                  * Since spin locks include a critical section, this check
1073                  * implicitly enforces a lock order of all sleep locks before
1074                  * all spin locks.
1075                  */
1076                 if (td->td_critnest != 0 && !kdb_active)
1077                         kassert_panic("acquiring blockable sleep lock with "
1078                             "spinlock or critical section held (%s) %s @ %s:%d",
1079                             class->lc_name, lock->lo_name,
1080                             fixup_filename(file), line);
1081
1082                 /*
1083                  * If this is the first lock acquired then just return as
1084                  * no order checking is needed.
1085                  */
1086                 lock_list = td->td_sleeplocks;
1087                 if (lock_list == NULL || lock_list->ll_count == 0)
1088                         return;
1089         } else {
1090
1091                 /*
1092                  * If this is the first lock, just return as no order
1093                  * checking is needed.  Avoid problems with thread
1094                  * migration pinning the thread while checking if
1095                  * spinlocks are held.  If at least one spinlock is held
1096                  * the thread is in a safe path and it is allowed to
1097                  * unpin it.
1098                  */
1099                 sched_pin();
1100                 lock_list = PCPU_GET(spinlocks);
1101                 if (lock_list == NULL || lock_list->ll_count == 0) {
1102                         sched_unpin();
1103                         return;
1104                 }
1105                 sched_unpin();
1106         }
1107
1108         /*
1109          * Check to see if we are recursing on a lock we already own.  If
1110          * so, make sure that we don't mismatch exclusive and shared lock
1111          * acquires.
1112          */
1113         lock1 = find_instance(lock_list, lock);
1114         if (lock1 != NULL) {
1115                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1116                     (flags & LOP_EXCLUSIVE) == 0) {
1117                         printf("shared lock of (%s) %s @ %s:%d\n",
1118                             class->lc_name, lock->lo_name,
1119                             fixup_filename(file), line);
1120                         printf("while exclusively locked from %s:%d\n",
1121                             fixup_filename(lock1->li_file), lock1->li_line);
1122                         kassert_panic("excl->share");
1123                 }
1124                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1125                     (flags & LOP_EXCLUSIVE) != 0) {
1126                         printf("exclusive lock of (%s) %s @ %s:%d\n",
1127                             class->lc_name, lock->lo_name,
1128                             fixup_filename(file), line);
1129                         printf("while share locked from %s:%d\n",
1130                             fixup_filename(lock1->li_file), lock1->li_line);
1131                         kassert_panic("share->excl");
1132                 }
1133                 return;
1134         }
1135
1136         /* Warn if the interlock is not locked exactly once. */
1137         if (interlock != NULL) {
1138                 iclass = LOCK_CLASS(interlock);
1139                 lock1 = find_instance(lock_list, interlock);
1140                 if (lock1 == NULL)
1141                         kassert_panic("interlock (%s) %s not locked @ %s:%d",
1142                             iclass->lc_name, interlock->lo_name,
1143                             fixup_filename(file), line);
1144                 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1145                         kassert_panic("interlock (%s) %s recursed @ %s:%d",
1146                             iclass->lc_name, interlock->lo_name,
1147                             fixup_filename(file), line);
1148         }
1149
1150         /*
1151          * Find the previously acquired lock, but ignore interlocks.
1152          */
1153         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1154         if (interlock != NULL && plock->li_lock == interlock) {
1155                 if (lock_list->ll_count > 1)
1156                         plock =
1157                             &lock_list->ll_children[lock_list->ll_count - 2];
1158                 else {
1159                         lle = lock_list->ll_next;
1160
1161                         /*
1162                          * The interlock is the only lock we hold, so
1163                          * simply return.
1164                          */
1165                         if (lle == NULL)
1166                                 return;
1167                         plock = &lle->ll_children[lle->ll_count - 1];
1168                 }
1169         }
1170         
1171         /*
1172          * Try to perform most checks without a lock.  If this succeeds we
1173          * can skip acquiring the lock and return success.  Otherwise we redo
1174          * the check with the lock held to handle races with concurrent updates.
1175          */
1176         w1 = plock->li_lock->lo_witness;
1177         if (witness_lock_order_check(w1, w))
1178                 return;
1179
1180         mtx_lock_spin(&w_mtx);
1181         if (witness_lock_order_check(w1, w)) {
1182                 mtx_unlock_spin(&w_mtx);
1183                 return;
1184         }
1185         witness_lock_order_add(w1, w);
1186
1187         /*
1188          * Check for duplicate locks of the same type.  Note that we only
1189          * have to check for this on the last lock we just acquired.  Any
1190          * other cases will be caught as lock order violations.
1191          */
1192         if (w1 == w) {
1193                 i = w->w_index;
1194                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1195                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1196                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1197                         w->w_reversed = 1;
1198                         mtx_unlock_spin(&w_mtx);
1199                         printf(
1200                             "acquiring duplicate lock of same type: \"%s\"\n", 
1201                             w->w_name);
1202                         printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1203                             fixup_filename(plock->li_file), plock->li_line);
1204                         printf(" 2nd %s @ %s:%d\n", lock->lo_name,
1205                             fixup_filename(file), line);
1206                         witness_debugger(1);
1207                 } else
1208                         mtx_unlock_spin(&w_mtx);
1209                 return;
1210         }
1211         mtx_assert(&w_mtx, MA_OWNED);
1212
1213         /*
1214          * If we know that the lock we are acquiring comes after
1215          * the lock we most recently acquired in the lock order tree,
1216          * then there is no need for any further checks.
1217          */
1218         if (isitmychild(w1, w))
1219                 goto out;
1220
1221         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1222                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1223
1224                         MPASS(j < WITNESS_COUNT);
1225                         lock1 = &lle->ll_children[i];
1226
1227                         /*
1228                          * Ignore the interlock.
1229                          */
1230                         if (interlock == lock1->li_lock)
1231                                 continue;
1232
1233                         /*
1234                          * If this lock doesn't undergo witness checking,
1235                          * then skip it.
1236                          */
1237                         w1 = lock1->li_lock->lo_witness;
1238                         if (w1 == NULL) {
1239                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1240                                     ("lock missing witness structure"));
1241                                 continue;
1242                         }
1243
1244                         /*
1245                          * If we are locking Giant and this is a sleepable
1246                          * lock, then skip it.
1247                          */
1248                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1249                             lock == &Giant.lock_object)
1250                                 continue;
1251
1252                         /*
1253                          * If we are locking a sleepable lock and this lock
1254                          * is Giant, then skip it.
1255                          */
1256                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1257                             lock1->li_lock == &Giant.lock_object)
1258                                 continue;
1259
1260                         /*
1261                          * If we are locking a sleepable lock and this lock
1262                          * isn't sleepable, we want to treat it as a lock
1263                          * order violation to enfore a general lock order of
1264                          * sleepable locks before non-sleepable locks.
1265                          */
1266                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1267                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1268                                 goto reversal;
1269
1270                         /*
1271                          * If we are locking Giant and this is a non-sleepable
1272                          * lock, then treat it as a reversal.
1273                          */
1274                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1275                             lock == &Giant.lock_object)
1276                                 goto reversal;
1277
1278                         /*
1279                          * Check the lock order hierarchy for a reveresal.
1280                          */
1281                         if (!isitmydescendant(w, w1))
1282                                 continue;
1283                 reversal:
1284
1285                         /*
1286                          * We have a lock order violation, check to see if it
1287                          * is allowed or has already been yelled about.
1288                          */
1289 #ifdef BLESSING
1290
1291                         /*
1292                          * If the lock order is blessed, just bail.  We don't
1293                          * look for other lock order violations though, which
1294                          * may be a bug.
1295                          */
1296                         if (blessed(w, w1))
1297                                 goto out;
1298 #endif
1299
1300                         /* Bail if this violation is known */
1301                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1302                                 goto out;
1303
1304                         /* Record this as a violation */
1305                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1306                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1307                         w->w_reversed = w1->w_reversed = 1;
1308                         witness_increment_graph_generation();
1309                         mtx_unlock_spin(&w_mtx);
1310
1311 #ifdef WITNESS_NO_VNODE
1312                         /*
1313                          * There are known LORs between VNODE locks. They are
1314                          * not an indication of a bug. VNODE locks are flagged
1315                          * as such (LO_IS_VNODE) and we don't yell if the LOR
1316                          * is between 2 VNODE locks.
1317                          */
1318                         if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1319                             (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1320                                 return;
1321 #endif
1322
1323                         /*
1324                          * Ok, yell about it.
1325                          */
1326                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1327                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1328                                 printf(
1329                 "lock order reversal: (sleepable after non-sleepable)\n");
1330                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1331                             && lock == &Giant.lock_object)
1332                                 printf(
1333                 "lock order reversal: (Giant after non-sleepable)\n");
1334                         else
1335                                 printf("lock order reversal:\n");
1336
1337                         /*
1338                          * Try to locate an earlier lock with
1339                          * witness w in our list.
1340                          */
1341                         do {
1342                                 lock2 = &lle->ll_children[i];
1343                                 MPASS(lock2->li_lock != NULL);
1344                                 if (lock2->li_lock->lo_witness == w)
1345                                         break;
1346                                 if (i == 0 && lle->ll_next != NULL) {
1347                                         lle = lle->ll_next;
1348                                         i = lle->ll_count - 1;
1349                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1350                                 } else
1351                                         i--;
1352                         } while (i >= 0);
1353                         if (i < 0) {
1354                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1355                                     lock1->li_lock, lock1->li_lock->lo_name,
1356                                     w1->w_name, fixup_filename(lock1->li_file),
1357                                     lock1->li_line);
1358                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1359                                     lock->lo_name, w->w_name,
1360                                     fixup_filename(file), line);
1361                         } else {
1362                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1363                                     lock2->li_lock, lock2->li_lock->lo_name,
1364                                     lock2->li_lock->lo_witness->w_name,
1365                                     fixup_filename(lock2->li_file),
1366                                     lock2->li_line);
1367                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
1368                                     lock1->li_lock, lock1->li_lock->lo_name,
1369                                     w1->w_name, fixup_filename(lock1->li_file),
1370                                     lock1->li_line);
1371                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1372                                     lock->lo_name, w->w_name,
1373                                     fixup_filename(file), line);
1374                         }
1375                         witness_debugger(1);
1376                         return;
1377                 }
1378         }
1379
1380         /*
1381          * If requested, build a new lock order.  However, don't build a new
1382          * relationship between a sleepable lock and Giant if it is in the
1383          * wrong direction.  The correct lock order is that sleepable locks
1384          * always come before Giant.
1385          */
1386         if (flags & LOP_NEWORDER &&
1387             !(plock->li_lock == &Giant.lock_object &&
1388             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1389                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1390                     w->w_name, plock->li_lock->lo_witness->w_name);
1391                 itismychild(plock->li_lock->lo_witness, w);
1392         }
1393 out:
1394         mtx_unlock_spin(&w_mtx);
1395 }
1396
1397 void
1398 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1399 {
1400         struct lock_list_entry **lock_list, *lle;
1401         struct lock_instance *instance;
1402         struct witness *w;
1403         struct thread *td;
1404
1405         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1406             panicstr != NULL)
1407                 return;
1408         w = lock->lo_witness;
1409         td = curthread;
1410
1411         /* Determine lock list for this lock. */
1412         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1413                 lock_list = &td->td_sleeplocks;
1414         else
1415                 lock_list = PCPU_PTR(spinlocks);
1416
1417         /* Check to see if we are recursing on a lock we already own. */
1418         instance = find_instance(*lock_list, lock);
1419         if (instance != NULL) {
1420                 instance->li_flags++;
1421                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1422                     td->td_proc->p_pid, lock->lo_name,
1423                     instance->li_flags & LI_RECURSEMASK);
1424                 instance->li_file = file;
1425                 instance->li_line = line;
1426                 return;
1427         }
1428
1429         /* Update per-witness last file and line acquire. */
1430         w->w_file = file;
1431         w->w_line = line;
1432
1433         /* Find the next open lock instance in the list and fill it. */
1434         lle = *lock_list;
1435         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1436                 lle = witness_lock_list_get();
1437                 if (lle == NULL)
1438                         return;
1439                 lle->ll_next = *lock_list;
1440                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1441                     td->td_proc->p_pid, lle);
1442                 *lock_list = lle;
1443         }
1444         instance = &lle->ll_children[lle->ll_count++];
1445         instance->li_lock = lock;
1446         instance->li_line = line;
1447         instance->li_file = file;
1448         if ((flags & LOP_EXCLUSIVE) != 0)
1449                 instance->li_flags = LI_EXCLUSIVE;
1450         else
1451                 instance->li_flags = 0;
1452         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1453             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1454 }
1455
1456 void
1457 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1458 {
1459         struct lock_instance *instance;
1460         struct lock_class *class;
1461
1462         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1463         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1464                 return;
1465         class = LOCK_CLASS(lock);
1466         if (witness_watch) {
1467                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1468                         kassert_panic(
1469                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1470                             class->lc_name, lock->lo_name,
1471                             fixup_filename(file), line);
1472                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1473                         kassert_panic(
1474                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
1475                             class->lc_name, lock->lo_name,
1476                             fixup_filename(file), line);
1477         }
1478         instance = find_instance(curthread->td_sleeplocks, lock);
1479         if (instance == NULL) {
1480                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1481                     class->lc_name, lock->lo_name,
1482                     fixup_filename(file), line);
1483                 return;
1484         }
1485         if (witness_watch) {
1486                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1487                         kassert_panic(
1488                             "upgrade of exclusive lock (%s) %s @ %s:%d",
1489                             class->lc_name, lock->lo_name,
1490                             fixup_filename(file), line);
1491                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1492                         kassert_panic(
1493                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1494                             class->lc_name, lock->lo_name,
1495                             instance->li_flags & LI_RECURSEMASK,
1496                             fixup_filename(file), line);
1497         }
1498         instance->li_flags |= LI_EXCLUSIVE;
1499 }
1500
1501 void
1502 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1503     int line)
1504 {
1505         struct lock_instance *instance;
1506         struct lock_class *class;
1507
1508         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1509         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1510                 return;
1511         class = LOCK_CLASS(lock);
1512         if (witness_watch) {
1513                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1514                         kassert_panic(
1515                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1516                             class->lc_name, lock->lo_name,
1517                             fixup_filename(file), line);
1518                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1519                         kassert_panic(
1520                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
1521                             class->lc_name, lock->lo_name,
1522                             fixup_filename(file), line);
1523         }
1524         instance = find_instance(curthread->td_sleeplocks, lock);
1525         if (instance == NULL) {
1526                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1527                     class->lc_name, lock->lo_name,
1528                     fixup_filename(file), line);
1529                 return;
1530         }
1531         if (witness_watch) {
1532                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1533                         kassert_panic(
1534                             "downgrade of shared lock (%s) %s @ %s:%d",
1535                             class->lc_name, lock->lo_name,
1536                             fixup_filename(file), line);
1537                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1538                         kassert_panic(
1539                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1540                             class->lc_name, lock->lo_name,
1541                             instance->li_flags & LI_RECURSEMASK,
1542                             fixup_filename(file), line);
1543         }
1544         instance->li_flags &= ~LI_EXCLUSIVE;
1545 }
1546
1547 void
1548 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1549 {
1550         struct lock_list_entry **lock_list, *lle;
1551         struct lock_instance *instance;
1552         struct lock_class *class;
1553         struct thread *td;
1554         register_t s;
1555         int i, j;
1556
1557         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1558                 return;
1559         td = curthread;
1560         class = LOCK_CLASS(lock);
1561
1562         /* Find lock instance associated with this lock. */
1563         if (class->lc_flags & LC_SLEEPLOCK)
1564                 lock_list = &td->td_sleeplocks;
1565         else
1566                 lock_list = PCPU_PTR(spinlocks);
1567         lle = *lock_list;
1568         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1569                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1570                         instance = &(*lock_list)->ll_children[i];
1571                         if (instance->li_lock == lock)
1572                                 goto found;
1573                 }
1574
1575         /*
1576          * When disabling WITNESS through witness_watch we could end up in
1577          * having registered locks in the td_sleeplocks queue.
1578          * We have to make sure we flush these queues, so just search for
1579          * eventual register locks and remove them.
1580          */
1581         if (witness_watch > 0) {
1582                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1583                     lock->lo_name, fixup_filename(file), line);
1584                 return;
1585         } else {
1586                 return;
1587         }
1588 found:
1589
1590         /* First, check for shared/exclusive mismatches. */
1591         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1592             (flags & LOP_EXCLUSIVE) == 0) {
1593                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1594                     lock->lo_name, fixup_filename(file), line);
1595                 printf("while exclusively locked from %s:%d\n",
1596                     fixup_filename(instance->li_file), instance->li_line);
1597                 kassert_panic("excl->ushare");
1598         }
1599         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1600             (flags & LOP_EXCLUSIVE) != 0) {
1601                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1602                     lock->lo_name, fixup_filename(file), line);
1603                 printf("while share locked from %s:%d\n",
1604                     fixup_filename(instance->li_file),
1605                     instance->li_line);
1606                 kassert_panic("share->uexcl");
1607         }
1608         /* If we are recursed, unrecurse. */
1609         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1610                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1611                     td->td_proc->p_pid, instance->li_lock->lo_name,
1612                     instance->li_flags);
1613                 instance->li_flags--;
1614                 return;
1615         }
1616         /* The lock is now being dropped, check for NORELEASE flag */
1617         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1618                 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1619                     lock->lo_name, fixup_filename(file), line);
1620                 kassert_panic("lock marked norelease");
1621         }
1622
1623         /* Otherwise, remove this item from the list. */
1624         s = intr_disable();
1625         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1626             td->td_proc->p_pid, instance->li_lock->lo_name,
1627             (*lock_list)->ll_count - 1);
1628         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1629                 (*lock_list)->ll_children[j] =
1630                     (*lock_list)->ll_children[j + 1];
1631         (*lock_list)->ll_count--;
1632         intr_restore(s);
1633
1634         /*
1635          * In order to reduce contention on w_mtx, we want to keep always an
1636          * head object into lists so that frequent allocation from the 
1637          * free witness pool (and subsequent locking) is avoided.
1638          * In order to maintain the current code simple, when the head
1639          * object is totally unloaded it means also that we do not have
1640          * further objects in the list, so the list ownership needs to be
1641          * hand over to another object if the current head needs to be freed.
1642          */
1643         if ((*lock_list)->ll_count == 0) {
1644                 if (*lock_list == lle) {
1645                         if (lle->ll_next == NULL)
1646                                 return;
1647                 } else
1648                         lle = *lock_list;
1649                 *lock_list = lle->ll_next;
1650                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1651                     td->td_proc->p_pid, lle);
1652                 witness_lock_list_free(lle);
1653         }
1654 }
1655
1656 void
1657 witness_thread_exit(struct thread *td)
1658 {
1659         struct lock_list_entry *lle;
1660         int i, n;
1661
1662         lle = td->td_sleeplocks;
1663         if (lle == NULL || panicstr != NULL)
1664                 return;
1665         if (lle->ll_count != 0) {
1666                 for (n = 0; lle != NULL; lle = lle->ll_next)
1667                         for (i = lle->ll_count - 1; i >= 0; i--) {
1668                                 if (n == 0)
1669                 printf("Thread %p exiting with the following locks held:\n",
1670                                             td);
1671                                 n++;
1672                                 witness_list_lock(&lle->ll_children[i], printf);
1673                                 
1674                         }
1675                 kassert_panic(
1676                     "Thread %p cannot exit while holding sleeplocks\n", td);
1677         }
1678         witness_lock_list_free(lle);
1679 }
1680
1681 /*
1682  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1683  * exempt Giant and sleepable locks from the checks as well.  If any
1684  * non-exempt locks are held, then a supplied message is printed to the
1685  * console along with a list of the offending locks.  If indicated in the
1686  * flags then a failure results in a panic as well.
1687  */
1688 int
1689 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1690 {
1691         struct lock_list_entry *lock_list, *lle;
1692         struct lock_instance *lock1;
1693         struct thread *td;
1694         va_list ap;
1695         int i, n;
1696
1697         if (witness_cold || witness_watch < 1 || panicstr != NULL)
1698                 return (0);
1699         n = 0;
1700         td = curthread;
1701         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1702                 for (i = lle->ll_count - 1; i >= 0; i--) {
1703                         lock1 = &lle->ll_children[i];
1704                         if (lock1->li_lock == lock)
1705                                 continue;
1706                         if (flags & WARN_GIANTOK &&
1707                             lock1->li_lock == &Giant.lock_object)
1708                                 continue;
1709                         if (flags & WARN_SLEEPOK &&
1710                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1711                                 continue;
1712                         if (n == 0) {
1713                                 va_start(ap, fmt);
1714                                 vprintf(fmt, ap);
1715                                 va_end(ap);
1716                                 printf(" with the following");
1717                                 if (flags & WARN_SLEEPOK)
1718                                         printf(" non-sleepable");
1719                                 printf(" locks held:\n");
1720                         }
1721                         n++;
1722                         witness_list_lock(lock1, printf);
1723                 }
1724
1725         /*
1726          * Pin the thread in order to avoid problems with thread migration.
1727          * Once that all verifies are passed about spinlocks ownership,
1728          * the thread is in a safe path and it can be unpinned.
1729          */
1730         sched_pin();
1731         lock_list = PCPU_GET(spinlocks);
1732         if (lock_list != NULL && lock_list->ll_count != 0) {
1733                 sched_unpin();
1734
1735                 /*
1736                  * We should only have one spinlock and as long as
1737                  * the flags cannot match for this locks class,
1738                  * check if the first spinlock is the one curthread
1739                  * should hold.
1740                  */
1741                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1742                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1743                     lock1->li_lock == lock && n == 0)
1744                         return (0);
1745
1746                 va_start(ap, fmt);
1747                 vprintf(fmt, ap);
1748                 va_end(ap);
1749                 printf(" with the following");
1750                 if (flags & WARN_SLEEPOK)
1751                         printf(" non-sleepable");
1752                 printf(" locks held:\n");
1753                 n += witness_list_locks(&lock_list, printf);
1754         } else
1755                 sched_unpin();
1756         if (flags & WARN_PANIC && n)
1757                 kassert_panic("%s", __func__);
1758         else
1759                 witness_debugger(n);
1760         return (n);
1761 }
1762
1763 const char *
1764 witness_file(struct lock_object *lock)
1765 {
1766         struct witness *w;
1767
1768         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1769                 return ("?");
1770         w = lock->lo_witness;
1771         return (w->w_file);
1772 }
1773
1774 int
1775 witness_line(struct lock_object *lock)
1776 {
1777         struct witness *w;
1778
1779         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1780                 return (0);
1781         w = lock->lo_witness;
1782         return (w->w_line);
1783 }
1784
1785 static struct witness *
1786 enroll(const char *description, struct lock_class *lock_class)
1787 {
1788         struct witness *w;
1789         struct witness_list *typelist;
1790
1791         MPASS(description != NULL);
1792
1793         if (witness_watch == -1 || panicstr != NULL)
1794                 return (NULL);
1795         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1796                 if (witness_skipspin)
1797                         return (NULL);
1798                 else
1799                         typelist = &w_spin;
1800         } else if ((lock_class->lc_flags & LC_SLEEPLOCK)) {
1801                 typelist = &w_sleep;
1802         } else {
1803                 kassert_panic("lock class %s is not sleep or spin",
1804                     lock_class->lc_name);
1805                 return (NULL);
1806         }
1807
1808         mtx_lock_spin(&w_mtx);
1809         w = witness_hash_get(description);
1810         if (w)
1811                 goto found;
1812         if ((w = witness_get()) == NULL)
1813                 return (NULL);
1814         MPASS(strlen(description) < MAX_W_NAME);
1815         strcpy(w->w_name, description);
1816         w->w_class = lock_class;
1817         w->w_refcount = 1;
1818         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1819         if (lock_class->lc_flags & LC_SPINLOCK) {
1820                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1821                 w_spin_cnt++;
1822         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1823                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1824                 w_sleep_cnt++;
1825         }
1826
1827         /* Insert new witness into the hash */
1828         witness_hash_put(w);
1829         witness_increment_graph_generation();
1830         mtx_unlock_spin(&w_mtx);
1831         return (w);
1832 found:
1833         w->w_refcount++;
1834         mtx_unlock_spin(&w_mtx);
1835         if (lock_class != w->w_class)
1836                 kassert_panic(
1837                         "lock (%s) %s does not match earlier (%s) lock",
1838                         description, lock_class->lc_name,
1839                         w->w_class->lc_name);
1840         return (w);
1841 }
1842
1843 static void
1844 depart(struct witness *w)
1845 {
1846         struct witness_list *list;
1847
1848         MPASS(w->w_refcount == 0);
1849         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1850                 list = &w_sleep;
1851                 w_sleep_cnt--;
1852         } else {
1853                 list = &w_spin;
1854                 w_spin_cnt--;
1855         }
1856         /*
1857          * Set file to NULL as it may point into a loadable module.
1858          */
1859         w->w_file = NULL;
1860         w->w_line = 0;
1861         witness_increment_graph_generation();
1862 }
1863
1864
1865 static void
1866 adopt(struct witness *parent, struct witness *child)
1867 {
1868         int pi, ci, i, j;
1869
1870         if (witness_cold == 0)
1871                 mtx_assert(&w_mtx, MA_OWNED);
1872
1873         /* If the relationship is already known, there's no work to be done. */
1874         if (isitmychild(parent, child))
1875                 return;
1876
1877         /* When the structure of the graph changes, bump up the generation. */
1878         witness_increment_graph_generation();
1879
1880         /*
1881          * The hard part ... create the direct relationship, then propagate all
1882          * indirect relationships.
1883          */
1884         pi = parent->w_index;
1885         ci = child->w_index;
1886         WITNESS_INDEX_ASSERT(pi);
1887         WITNESS_INDEX_ASSERT(ci);
1888         MPASS(pi != ci);
1889         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1890         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1891
1892         /*
1893          * If parent was not already an ancestor of child,
1894          * then we increment the descendant and ancestor counters.
1895          */
1896         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1897                 parent->w_num_descendants++;
1898                 child->w_num_ancestors++;
1899         }
1900
1901         /* 
1902          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
1903          * an ancestor of 'pi' during this loop.
1904          */
1905         for (i = 1; i <= w_max_used_index; i++) {
1906                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
1907                     (i != pi))
1908                         continue;
1909
1910                 /* Find each descendant of 'i' and mark it as a descendant. */
1911                 for (j = 1; j <= w_max_used_index; j++) {
1912
1913                         /* 
1914                          * Skip children that are already marked as
1915                          * descendants of 'i'.
1916                          */
1917                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1918                                 continue;
1919
1920                         /*
1921                          * We are only interested in descendants of 'ci'. Note
1922                          * that 'ci' itself is counted as a descendant of 'ci'.
1923                          */
1924                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
1925                             (j != ci))
1926                                 continue;
1927                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1928                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1929                         w_data[i].w_num_descendants++;
1930                         w_data[j].w_num_ancestors++;
1931
1932                         /* 
1933                          * Make sure we aren't marking a node as both an
1934                          * ancestor and descendant. We should have caught 
1935                          * this as a lock order reversal earlier.
1936                          */
1937                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1938                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1939                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1940                                     "both ancestor and descendant\n",
1941                                     i, j, w_rmatrix[i][j]); 
1942                                 kdb_backtrace();
1943                                 printf("Witness disabled.\n");
1944                                 witness_watch = -1;
1945                         }
1946                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1947                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1948                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1949                                     "both ancestor and descendant\n",
1950                                     j, i, w_rmatrix[j][i]); 
1951                                 kdb_backtrace();
1952                                 printf("Witness disabled.\n");
1953                                 witness_watch = -1;
1954                         }
1955                 }
1956         }
1957 }
1958
1959 static void
1960 itismychild(struct witness *parent, struct witness *child)
1961 {
1962         int unlocked;
1963
1964         MPASS(child != NULL && parent != NULL);
1965         if (witness_cold == 0)
1966                 mtx_assert(&w_mtx, MA_OWNED);
1967
1968         if (!witness_lock_type_equal(parent, child)) {
1969                 if (witness_cold == 0) {
1970                         unlocked = 1;
1971                         mtx_unlock_spin(&w_mtx);
1972                 } else {
1973                         unlocked = 0;
1974                 }
1975                 kassert_panic(
1976                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1977                     "the same lock type", __func__, parent->w_name,
1978                     parent->w_class->lc_name, child->w_name,
1979                     child->w_class->lc_name);
1980                 if (unlocked)
1981                         mtx_lock_spin(&w_mtx);
1982         }
1983         adopt(parent, child);
1984 }
1985
1986 /*
1987  * Generic code for the isitmy*() functions. The rmask parameter is the
1988  * expected relationship of w1 to w2.
1989  */
1990 static int
1991 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1992 {
1993         unsigned char r1, r2;
1994         int i1, i2;
1995
1996         i1 = w1->w_index;
1997         i2 = w2->w_index;
1998         WITNESS_INDEX_ASSERT(i1);
1999         WITNESS_INDEX_ASSERT(i2);
2000         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2001         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2002
2003         /* The flags on one better be the inverse of the flags on the other */
2004         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2005             (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2006                 /* Don't squawk if we're potentially racing with an update. */
2007                 if (!mtx_owned(&w_mtx))
2008                         return (0);
2009                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
2010                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
2011                     "w_rmatrix[%d][%d] == %hhx\n",
2012                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2013                     i2, i1, r2);
2014                 kdb_backtrace();
2015                 printf("Witness disabled.\n");
2016                 witness_watch = -1;
2017         }
2018         return (r1 & rmask);
2019 }
2020
2021 /*
2022  * Checks if @child is a direct child of @parent.
2023  */
2024 static int
2025 isitmychild(struct witness *parent, struct witness *child)
2026 {
2027
2028         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2029 }
2030
2031 /*
2032  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2033  */
2034 static int
2035 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2036 {
2037
2038         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2039             __func__));
2040 }
2041
2042 #ifdef BLESSING
2043 static int
2044 blessed(struct witness *w1, struct witness *w2)
2045 {
2046         int i;
2047         struct witness_blessed *b;
2048
2049         for (i = 0; i < blessed_count; i++) {
2050                 b = &blessed_list[i];
2051                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
2052                         if (strcmp(w2->w_name, b->b_lock2) == 0)
2053                                 return (1);
2054                         continue;
2055                 }
2056                 if (strcmp(w1->w_name, b->b_lock2) == 0)
2057                         if (strcmp(w2->w_name, b->b_lock1) == 0)
2058                                 return (1);
2059         }
2060         return (0);
2061 }
2062 #endif
2063
2064 static struct witness *
2065 witness_get(void)
2066 {
2067         struct witness *w;
2068         int index;
2069
2070         if (witness_cold == 0)
2071                 mtx_assert(&w_mtx, MA_OWNED);
2072
2073         if (witness_watch == -1) {
2074                 mtx_unlock_spin(&w_mtx);
2075                 return (NULL);
2076         }
2077         if (STAILQ_EMPTY(&w_free)) {
2078                 witness_watch = -1;
2079                 mtx_unlock_spin(&w_mtx);
2080                 printf("WITNESS: unable to allocate a new witness object\n");
2081                 return (NULL);
2082         }
2083         w = STAILQ_FIRST(&w_free);
2084         STAILQ_REMOVE_HEAD(&w_free, w_list);
2085         w_free_cnt--;
2086         index = w->w_index;
2087         MPASS(index > 0 && index == w_max_used_index+1 &&
2088             index < WITNESS_COUNT);
2089         bzero(w, sizeof(*w));
2090         w->w_index = index;
2091         if (index > w_max_used_index)
2092                 w_max_used_index = index;
2093         return (w);
2094 }
2095
2096 static void
2097 witness_free(struct witness *w)
2098 {
2099
2100         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2101         w_free_cnt++;
2102 }
2103
2104 static struct lock_list_entry *
2105 witness_lock_list_get(void)
2106 {
2107         struct lock_list_entry *lle;
2108
2109         if (witness_watch == -1)
2110                 return (NULL);
2111         mtx_lock_spin(&w_mtx);
2112         lle = w_lock_list_free;
2113         if (lle == NULL) {
2114                 witness_watch = -1;
2115                 mtx_unlock_spin(&w_mtx);
2116                 printf("%s: witness exhausted\n", __func__);
2117                 return (NULL);
2118         }
2119         w_lock_list_free = lle->ll_next;
2120         mtx_unlock_spin(&w_mtx);
2121         bzero(lle, sizeof(*lle));
2122         return (lle);
2123 }
2124                 
2125 static void
2126 witness_lock_list_free(struct lock_list_entry *lle)
2127 {
2128
2129         mtx_lock_spin(&w_mtx);
2130         lle->ll_next = w_lock_list_free;
2131         w_lock_list_free = lle;
2132         mtx_unlock_spin(&w_mtx);
2133 }
2134
2135 static struct lock_instance *
2136 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2137 {
2138         struct lock_list_entry *lle;
2139         struct lock_instance *instance;
2140         int i;
2141
2142         for (lle = list; lle != NULL; lle = lle->ll_next)
2143                 for (i = lle->ll_count - 1; i >= 0; i--) {
2144                         instance = &lle->ll_children[i];
2145                         if (instance->li_lock == lock)
2146                                 return (instance);
2147                 }
2148         return (NULL);
2149 }
2150
2151 static void
2152 witness_list_lock(struct lock_instance *instance,
2153     int (*prnt)(const char *fmt, ...))
2154 {
2155         struct lock_object *lock;
2156
2157         lock = instance->li_lock;
2158         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2159             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2160         if (lock->lo_witness->w_name != lock->lo_name)
2161                 prnt(" (%s)", lock->lo_witness->w_name);
2162         prnt(" r = %d (%p) locked @ %s:%d\n",
2163             instance->li_flags & LI_RECURSEMASK, lock,
2164             fixup_filename(instance->li_file), instance->li_line);
2165 }
2166
2167 #ifdef DDB
2168 static int
2169 witness_thread_has_locks(struct thread *td)
2170 {
2171
2172         if (td->td_sleeplocks == NULL)
2173                 return (0);
2174         return (td->td_sleeplocks->ll_count != 0);
2175 }
2176
2177 static int
2178 witness_proc_has_locks(struct proc *p)
2179 {
2180         struct thread *td;
2181
2182         FOREACH_THREAD_IN_PROC(p, td) {
2183                 if (witness_thread_has_locks(td))
2184                         return (1);
2185         }
2186         return (0);
2187 }
2188 #endif
2189
2190 int
2191 witness_list_locks(struct lock_list_entry **lock_list,
2192     int (*prnt)(const char *fmt, ...))
2193 {
2194         struct lock_list_entry *lle;
2195         int i, nheld;
2196
2197         nheld = 0;
2198         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2199                 for (i = lle->ll_count - 1; i >= 0; i--) {
2200                         witness_list_lock(&lle->ll_children[i], prnt);
2201                         nheld++;
2202                 }
2203         return (nheld);
2204 }
2205
2206 /*
2207  * This is a bit risky at best.  We call this function when we have timed
2208  * out acquiring a spin lock, and we assume that the other CPU is stuck
2209  * with this lock held.  So, we go groveling around in the other CPU's
2210  * per-cpu data to try to find the lock instance for this spin lock to
2211  * see when it was last acquired.
2212  */
2213 void
2214 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2215     int (*prnt)(const char *fmt, ...))
2216 {
2217         struct lock_instance *instance;
2218         struct pcpu *pc;
2219
2220         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2221                 return;
2222         pc = pcpu_find(owner->td_oncpu);
2223         instance = find_instance(pc->pc_spinlocks, lock);
2224         if (instance != NULL)
2225                 witness_list_lock(instance, prnt);
2226 }
2227
2228 void
2229 witness_save(struct lock_object *lock, const char **filep, int *linep)
2230 {
2231         struct lock_list_entry *lock_list;
2232         struct lock_instance *instance;
2233         struct lock_class *class;
2234
2235         /*
2236          * This function is used independently in locking code to deal with
2237          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2238          * is gone.
2239          */
2240         if (SCHEDULER_STOPPED())
2241                 return;
2242         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2243         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2244                 return;
2245         class = LOCK_CLASS(lock);
2246         if (class->lc_flags & LC_SLEEPLOCK)
2247                 lock_list = curthread->td_sleeplocks;
2248         else {
2249                 if (witness_skipspin)
2250                         return;
2251                 lock_list = PCPU_GET(spinlocks);
2252         }
2253         instance = find_instance(lock_list, lock);
2254         if (instance == NULL) {
2255                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2256                     class->lc_name, lock->lo_name);
2257                 return;
2258         }
2259         *filep = instance->li_file;
2260         *linep = instance->li_line;
2261 }
2262
2263 void
2264 witness_restore(struct lock_object *lock, const char *file, int line)
2265 {
2266         struct lock_list_entry *lock_list;
2267         struct lock_instance *instance;
2268         struct lock_class *class;
2269
2270         /*
2271          * This function is used independently in locking code to deal with
2272          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2273          * is gone.
2274          */
2275         if (SCHEDULER_STOPPED())
2276                 return;
2277         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2278         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2279                 return;
2280         class = LOCK_CLASS(lock);
2281         if (class->lc_flags & LC_SLEEPLOCK)
2282                 lock_list = curthread->td_sleeplocks;
2283         else {
2284                 if (witness_skipspin)
2285                         return;
2286                 lock_list = PCPU_GET(spinlocks);
2287         }
2288         instance = find_instance(lock_list, lock);
2289         if (instance == NULL)
2290                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2291                     class->lc_name, lock->lo_name);
2292         lock->lo_witness->w_file = file;
2293         lock->lo_witness->w_line = line;
2294         if (instance == NULL)
2295                 return;
2296         instance->li_file = file;
2297         instance->li_line = line;
2298 }
2299
2300 void
2301 witness_assert(const struct lock_object *lock, int flags, const char *file,
2302     int line)
2303 {
2304 #ifdef INVARIANT_SUPPORT
2305         struct lock_instance *instance;
2306         struct lock_class *class;
2307
2308         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2309                 return;
2310         class = LOCK_CLASS(lock);
2311         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2312                 instance = find_instance(curthread->td_sleeplocks, lock);
2313         else if ((class->lc_flags & LC_SPINLOCK) != 0)
2314                 instance = find_instance(PCPU_GET(spinlocks), lock);
2315         else {
2316                 kassert_panic("Lock (%s) %s is not sleep or spin!",
2317                     class->lc_name, lock->lo_name);
2318                 return;
2319         }
2320         switch (flags) {
2321         case LA_UNLOCKED:
2322                 if (instance != NULL)
2323                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
2324                             class->lc_name, lock->lo_name,
2325                             fixup_filename(file), line);
2326                 break;
2327         case LA_LOCKED:
2328         case LA_LOCKED | LA_RECURSED:
2329         case LA_LOCKED | LA_NOTRECURSED:
2330         case LA_SLOCKED:
2331         case LA_SLOCKED | LA_RECURSED:
2332         case LA_SLOCKED | LA_NOTRECURSED:
2333         case LA_XLOCKED:
2334         case LA_XLOCKED | LA_RECURSED:
2335         case LA_XLOCKED | LA_NOTRECURSED:
2336                 if (instance == NULL) {
2337                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2338                             class->lc_name, lock->lo_name,
2339                             fixup_filename(file), line);
2340                         break;
2341                 }
2342                 if ((flags & LA_XLOCKED) != 0 &&
2343                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2344                         kassert_panic(
2345                             "Lock (%s) %s not exclusively locked @ %s:%d.",
2346                             class->lc_name, lock->lo_name,
2347                             fixup_filename(file), line);
2348                 if ((flags & LA_SLOCKED) != 0 &&
2349                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2350                         kassert_panic(
2351                             "Lock (%s) %s exclusively locked @ %s:%d.",
2352                             class->lc_name, lock->lo_name,
2353                             fixup_filename(file), line);
2354                 if ((flags & LA_RECURSED) != 0 &&
2355                     (instance->li_flags & LI_RECURSEMASK) == 0)
2356                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2357                             class->lc_name, lock->lo_name,
2358                             fixup_filename(file), line);
2359                 if ((flags & LA_NOTRECURSED) != 0 &&
2360                     (instance->li_flags & LI_RECURSEMASK) != 0)
2361                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2362                             class->lc_name, lock->lo_name,
2363                             fixup_filename(file), line);
2364                 break;
2365         default:
2366                 kassert_panic("Invalid lock assertion at %s:%d.",
2367                     fixup_filename(file), line);
2368
2369         }
2370 #endif  /* INVARIANT_SUPPORT */
2371 }
2372
2373 static void
2374 witness_setflag(struct lock_object *lock, int flag, int set)
2375 {
2376         struct lock_list_entry *lock_list;
2377         struct lock_instance *instance;
2378         struct lock_class *class;
2379
2380         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2381                 return;
2382         class = LOCK_CLASS(lock);
2383         if (class->lc_flags & LC_SLEEPLOCK)
2384                 lock_list = curthread->td_sleeplocks;
2385         else {
2386                 if (witness_skipspin)
2387                         return;
2388                 lock_list = PCPU_GET(spinlocks);
2389         }
2390         instance = find_instance(lock_list, lock);
2391         if (instance == NULL) {
2392                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2393                     class->lc_name, lock->lo_name);
2394                 return;
2395         }
2396
2397         if (set)
2398                 instance->li_flags |= flag;
2399         else
2400                 instance->li_flags &= ~flag;
2401 }
2402
2403 void
2404 witness_norelease(struct lock_object *lock)
2405 {
2406
2407         witness_setflag(lock, LI_NORELEASE, 1);
2408 }
2409
2410 void
2411 witness_releaseok(struct lock_object *lock)
2412 {
2413
2414         witness_setflag(lock, LI_NORELEASE, 0);
2415 }
2416
2417 #ifdef DDB
2418 static void
2419 witness_ddb_list(struct thread *td)
2420 {
2421
2422         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2423         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2424
2425         if (witness_watch < 1)
2426                 return;
2427
2428         witness_list_locks(&td->td_sleeplocks, db_printf);
2429
2430         /*
2431          * We only handle spinlocks if td == curthread.  This is somewhat broken
2432          * if td is currently executing on some other CPU and holds spin locks
2433          * as we won't display those locks.  If we had a MI way of getting
2434          * the per-cpu data for a given cpu then we could use
2435          * td->td_oncpu to get the list of spinlocks for this thread
2436          * and "fix" this.
2437          *
2438          * That still wouldn't really fix this unless we locked the scheduler
2439          * lock or stopped the other CPU to make sure it wasn't changing the
2440          * list out from under us.  It is probably best to just not try to
2441          * handle threads on other CPU's for now.
2442          */
2443         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2444                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2445 }
2446
2447 DB_SHOW_COMMAND(locks, db_witness_list)
2448 {
2449         struct thread *td;
2450
2451         if (have_addr)
2452                 td = db_lookup_thread(addr, TRUE);
2453         else
2454                 td = kdb_thread;
2455         witness_ddb_list(td);
2456 }
2457
2458 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2459 {
2460         struct thread *td;
2461         struct proc *p;
2462
2463         /*
2464          * It would be nice to list only threads and processes that actually
2465          * held sleep locks, but that information is currently not exported
2466          * by WITNESS.
2467          */
2468         FOREACH_PROC_IN_SYSTEM(p) {
2469                 if (!witness_proc_has_locks(p))
2470                         continue;
2471                 FOREACH_THREAD_IN_PROC(p, td) {
2472                         if (!witness_thread_has_locks(td))
2473                                 continue;
2474                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2475                             p->p_comm, td, td->td_tid);
2476                         witness_ddb_list(td);
2477                         if (db_pager_quit)
2478                                 return;
2479                 }
2480         }
2481 }
2482 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2483
2484 DB_SHOW_COMMAND(witness, db_witness_display)
2485 {
2486
2487         witness_ddb_display(db_printf);
2488 }
2489 #endif
2490
2491 static int
2492 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2493 {
2494         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2495         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2496         struct sbuf *sb;
2497         u_int w_rmatrix1, w_rmatrix2;
2498         int error, generation, i, j;
2499
2500         tmp_data1 = NULL;
2501         tmp_data2 = NULL;
2502         tmp_w1 = NULL;
2503         tmp_w2 = NULL;
2504         if (witness_watch < 1) {
2505                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2506                 return (error);
2507         }
2508         if (witness_cold) {
2509                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2510                 return (error);
2511         }
2512         error = 0;
2513         sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2514         if (sb == NULL)
2515                 return (ENOMEM);
2516
2517         /* Allocate and init temporary storage space. */
2518         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2519         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2520         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2521             M_WAITOK | M_ZERO);
2522         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2523             M_WAITOK | M_ZERO);
2524         stack_zero(&tmp_data1->wlod_stack);
2525         stack_zero(&tmp_data2->wlod_stack);
2526
2527 restart:
2528         mtx_lock_spin(&w_mtx);
2529         generation = w_generation;
2530         mtx_unlock_spin(&w_mtx);
2531         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2532             w_lohash.wloh_count);
2533         for (i = 1; i < w_max_used_index; i++) {
2534                 mtx_lock_spin(&w_mtx);
2535                 if (generation != w_generation) {
2536                         mtx_unlock_spin(&w_mtx);
2537
2538                         /* The graph has changed, try again. */
2539                         req->oldidx = 0;
2540                         sbuf_clear(sb);
2541                         goto restart;
2542                 }
2543
2544                 w1 = &w_data[i];
2545                 if (w1->w_reversed == 0) {
2546                         mtx_unlock_spin(&w_mtx);
2547                         continue;
2548                 }
2549
2550                 /* Copy w1 locally so we can release the spin lock. */
2551                 *tmp_w1 = *w1;
2552                 mtx_unlock_spin(&w_mtx);
2553
2554                 if (tmp_w1->w_reversed == 0)
2555                         continue;
2556                 for (j = 1; j < w_max_used_index; j++) {
2557                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2558                                 continue;
2559
2560                         mtx_lock_spin(&w_mtx);
2561                         if (generation != w_generation) {
2562                                 mtx_unlock_spin(&w_mtx);
2563
2564                                 /* The graph has changed, try again. */
2565                                 req->oldidx = 0;
2566                                 sbuf_clear(sb);
2567                                 goto restart;
2568                         }
2569
2570                         w2 = &w_data[j];
2571                         data1 = witness_lock_order_get(w1, w2);
2572                         data2 = witness_lock_order_get(w2, w1);
2573
2574                         /*
2575                          * Copy information locally so we can release the
2576                          * spin lock.
2577                          */
2578                         *tmp_w2 = *w2;
2579                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2580                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2581
2582                         if (data1) {
2583                                 stack_zero(&tmp_data1->wlod_stack);
2584                                 stack_copy(&data1->wlod_stack,
2585                                     &tmp_data1->wlod_stack);
2586                         }
2587                         if (data2 && data2 != data1) {
2588                                 stack_zero(&tmp_data2->wlod_stack);
2589                                 stack_copy(&data2->wlod_stack,
2590                                     &tmp_data2->wlod_stack);
2591                         }
2592                         mtx_unlock_spin(&w_mtx);
2593
2594                         sbuf_printf(sb,
2595             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2596                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2597                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2598 #if 0
2599                         sbuf_printf(sb,
2600                         "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2601                             tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2602                             tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2603 #endif
2604                         if (data1) {
2605                                 sbuf_printf(sb,
2606                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2607                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2608                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2609                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2610                                 sbuf_printf(sb, "\n");
2611                         }
2612                         if (data2 && data2 != data1) {
2613                                 sbuf_printf(sb,
2614                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2615                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2616                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2617                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2618                                 sbuf_printf(sb, "\n");
2619                         }
2620                 }
2621         }
2622         mtx_lock_spin(&w_mtx);
2623         if (generation != w_generation) {
2624                 mtx_unlock_spin(&w_mtx);
2625
2626                 /*
2627                  * The graph changed while we were printing stack data,
2628                  * try again.
2629                  */
2630                 req->oldidx = 0;
2631                 sbuf_clear(sb);
2632                 goto restart;
2633         }
2634         mtx_unlock_spin(&w_mtx);
2635
2636         /* Free temporary storage space. */
2637         free(tmp_data1, M_TEMP);
2638         free(tmp_data2, M_TEMP);
2639         free(tmp_w1, M_TEMP);
2640         free(tmp_w2, M_TEMP);
2641
2642         sbuf_finish(sb);
2643         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2644         sbuf_delete(sb);
2645
2646         return (error);
2647 }
2648
2649 static int
2650 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2651 {
2652         struct witness *w;
2653         struct sbuf *sb;
2654         int error;
2655
2656         if (witness_watch < 1) {
2657                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2658                 return (error);
2659         }
2660         if (witness_cold) {
2661                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2662                 return (error);
2663         }
2664         error = 0;
2665
2666         error = sysctl_wire_old_buffer(req, 0);
2667         if (error != 0)
2668                 return (error);
2669         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2670         if (sb == NULL)
2671                 return (ENOMEM);
2672         sbuf_printf(sb, "\n");
2673
2674         mtx_lock_spin(&w_mtx);
2675         STAILQ_FOREACH(w, &w_all, w_list)
2676                 w->w_displayed = 0;
2677         STAILQ_FOREACH(w, &w_all, w_list)
2678                 witness_add_fullgraph(sb, w);
2679         mtx_unlock_spin(&w_mtx);
2680
2681         /*
2682          * Close the sbuf and return to userland.
2683          */
2684         error = sbuf_finish(sb);
2685         sbuf_delete(sb);
2686
2687         return (error);
2688 }
2689
2690 static int
2691 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2692 {
2693         int error, value;
2694
2695         value = witness_watch;
2696         error = sysctl_handle_int(oidp, &value, 0, req);
2697         if (error != 0 || req->newptr == NULL)
2698                 return (error);
2699         if (value > 1 || value < -1 ||
2700             (witness_watch == -1 && value != witness_watch))
2701                 return (EINVAL);
2702         witness_watch = value;
2703         return (0);
2704 }
2705
2706 static void
2707 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2708 {
2709         int i;
2710
2711         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2712                 return;
2713         w->w_displayed = 1;
2714
2715         WITNESS_INDEX_ASSERT(w->w_index);
2716         for (i = 1; i <= w_max_used_index; i++) {
2717                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2718                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2719                             w_data[i].w_name);
2720                         witness_add_fullgraph(sb, &w_data[i]);
2721                 }
2722         }
2723 }
2724
2725 /*
2726  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2727  * interprets the key as a string and reads until the null
2728  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2729  * hash value computed from the key.
2730  */
2731 static uint32_t
2732 witness_hash_djb2(const uint8_t *key, uint32_t size)
2733 {
2734         unsigned int hash = 5381;
2735         int i;
2736
2737         /* hash = hash * 33 + key[i] */
2738         if (size)
2739                 for (i = 0; i < size; i++)
2740                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2741         else
2742                 for (i = 0; key[i] != 0; i++)
2743                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2744
2745         return (hash);
2746 }
2747
2748
2749 /*
2750  * Initializes the two witness hash tables. Called exactly once from
2751  * witness_initialize().
2752  */
2753 static void
2754 witness_init_hash_tables(void)
2755 {
2756         int i;
2757
2758         MPASS(witness_cold);
2759
2760         /* Initialize the hash tables. */
2761         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2762                 w_hash.wh_array[i] = NULL;
2763
2764         w_hash.wh_size = WITNESS_HASH_SIZE;
2765         w_hash.wh_count = 0;
2766
2767         /* Initialize the lock order data hash. */
2768         w_lofree = NULL;
2769         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2770                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2771                 w_lodata[i].wlod_next = w_lofree;
2772                 w_lofree = &w_lodata[i];
2773         }
2774         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2775         w_lohash.wloh_count = 0;
2776         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2777                 w_lohash.wloh_array[i] = NULL;
2778 }
2779
2780 static struct witness *
2781 witness_hash_get(const char *key)
2782 {
2783         struct witness *w;
2784         uint32_t hash;
2785         
2786         MPASS(key != NULL);
2787         if (witness_cold == 0)
2788                 mtx_assert(&w_mtx, MA_OWNED);
2789         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2790         w = w_hash.wh_array[hash];
2791         while (w != NULL) {
2792                 if (strcmp(w->w_name, key) == 0)
2793                         goto out;
2794                 w = w->w_hash_next;
2795         }
2796
2797 out:
2798         return (w);
2799 }
2800
2801 static void
2802 witness_hash_put(struct witness *w)
2803 {
2804         uint32_t hash;
2805
2806         MPASS(w != NULL);
2807         MPASS(w->w_name != NULL);
2808         if (witness_cold == 0)
2809                 mtx_assert(&w_mtx, MA_OWNED);
2810         KASSERT(witness_hash_get(w->w_name) == NULL,
2811             ("%s: trying to add a hash entry that already exists!", __func__));
2812         KASSERT(w->w_hash_next == NULL,
2813             ("%s: w->w_hash_next != NULL", __func__));
2814
2815         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2816         w->w_hash_next = w_hash.wh_array[hash];
2817         w_hash.wh_array[hash] = w;
2818         w_hash.wh_count++;
2819 }
2820
2821
2822 static struct witness_lock_order_data *
2823 witness_lock_order_get(struct witness *parent, struct witness *child)
2824 {
2825         struct witness_lock_order_data *data = NULL;
2826         struct witness_lock_order_key key;
2827         unsigned int hash;
2828
2829         MPASS(parent != NULL && child != NULL);
2830         key.from = parent->w_index;
2831         key.to = child->w_index;
2832         WITNESS_INDEX_ASSERT(key.from);
2833         WITNESS_INDEX_ASSERT(key.to);
2834         if ((w_rmatrix[parent->w_index][child->w_index]
2835             & WITNESS_LOCK_ORDER_KNOWN) == 0)
2836                 goto out;
2837
2838         hash = witness_hash_djb2((const char*)&key,
2839             sizeof(key)) % w_lohash.wloh_size;
2840         data = w_lohash.wloh_array[hash];
2841         while (data != NULL) {
2842                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
2843                         break;
2844                 data = data->wlod_next;
2845         }
2846
2847 out:
2848         return (data);
2849 }
2850
2851 /*
2852  * Verify that parent and child have a known relationship, are not the same,
2853  * and child is actually a child of parent.  This is done without w_mtx
2854  * to avoid contention in the common case.
2855  */
2856 static int
2857 witness_lock_order_check(struct witness *parent, struct witness *child)
2858 {
2859
2860         if (parent != child &&
2861             w_rmatrix[parent->w_index][child->w_index]
2862             & WITNESS_LOCK_ORDER_KNOWN &&
2863             isitmychild(parent, child))
2864                 return (1);
2865
2866         return (0);
2867 }
2868
2869 static int
2870 witness_lock_order_add(struct witness *parent, struct witness *child)
2871 {
2872         struct witness_lock_order_data *data = NULL;
2873         struct witness_lock_order_key key;
2874         unsigned int hash;
2875         
2876         MPASS(parent != NULL && child != NULL);
2877         key.from = parent->w_index;
2878         key.to = child->w_index;
2879         WITNESS_INDEX_ASSERT(key.from);
2880         WITNESS_INDEX_ASSERT(key.to);
2881         if (w_rmatrix[parent->w_index][child->w_index]
2882             & WITNESS_LOCK_ORDER_KNOWN)
2883                 return (1);
2884
2885         hash = witness_hash_djb2((const char*)&key,
2886             sizeof(key)) % w_lohash.wloh_size;
2887         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2888         data = w_lofree;
2889         if (data == NULL)
2890                 return (0);
2891         w_lofree = data->wlod_next;
2892         data->wlod_next = w_lohash.wloh_array[hash];
2893         data->wlod_key = key;
2894         w_lohash.wloh_array[hash] = data;
2895         w_lohash.wloh_count++;
2896         stack_zero(&data->wlod_stack);
2897         stack_save(&data->wlod_stack);
2898         return (1);
2899 }
2900
2901 /* Call this whenver the structure of the witness graph changes. */
2902 static void
2903 witness_increment_graph_generation(void)
2904 {
2905
2906         if (witness_cold == 0)
2907                 mtx_assert(&w_mtx, MA_OWNED);
2908         w_generation++;
2909 }
2910
2911 #ifdef KDB
2912 static void
2913 _witness_debugger(int cond, const char *msg)
2914 {
2915
2916         if (witness_trace && cond)
2917                 kdb_backtrace();
2918         if (witness_kdb && cond)
2919                 kdb_enter(KDB_WHY_WITNESS, msg);
2920 }
2921 #endif