]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/netinet/tcp_syncache.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / netinet / tcp_syncache.c
1 /*-
2  * Copyright (c) 2001 McAfee, Inc.
3  * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Jonathan Lemon
7  * and McAfee Research, the Security Research Division of McAfee, Inc. under
8  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9  * DARPA CHATS research program. [2001 McAfee, Inc.]
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_pcbgroup.h"
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/sysctl.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/proc.h>           /* for proc0 declaration */
51 #include <sys/random.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/syslog.h>
55 #include <sys/ucred.h>
56
57 #include <sys/md5.h>
58 #include <crypto/siphash/siphash.h>
59
60 #include <vm/uma.h>
61
62 #include <net/if.h>
63 #include <net/route.h>
64 #include <net/vnet.h>
65
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <netinet/in_var.h>
70 #include <netinet/in_pcb.h>
71 #include <netinet/ip_var.h>
72 #include <netinet/ip_options.h>
73 #ifdef INET6
74 #include <netinet/ip6.h>
75 #include <netinet/icmp6.h>
76 #include <netinet6/nd6.h>
77 #include <netinet6/ip6_var.h>
78 #include <netinet6/in6_pcb.h>
79 #endif
80 #include <netinet/tcp.h>
81 #include <netinet/tcp_fsm.h>
82 #include <netinet/tcp_seq.h>
83 #include <netinet/tcp_timer.h>
84 #include <netinet/tcp_var.h>
85 #include <netinet/tcp_syncache.h>
86 #ifdef INET6
87 #include <netinet6/tcp6_var.h>
88 #endif
89 #ifdef TCP_OFFLOAD
90 #include <netinet/toecore.h>
91 #endif
92
93 #ifdef IPSEC
94 #include <netipsec/ipsec.h>
95 #ifdef INET6
96 #include <netipsec/ipsec6.h>
97 #endif
98 #include <netipsec/key.h>
99 #endif /*IPSEC*/
100
101 #include <machine/in_cksum.h>
102
103 #include <security/mac/mac_framework.h>
104
105 static VNET_DEFINE(int, tcp_syncookies) = 1;
106 #define V_tcp_syncookies                VNET(tcp_syncookies)
107 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
108     &VNET_NAME(tcp_syncookies), 0,
109     "Use TCP SYN cookies if the syncache overflows");
110
111 static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
112 #define V_tcp_syncookiesonly            VNET(tcp_syncookiesonly)
113 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
114     &VNET_NAME(tcp_syncookiesonly), 0,
115     "Use only TCP SYN cookies");
116
117 #ifdef TCP_OFFLOAD
118 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
119 #endif
120
121 static void      syncache_drop(struct syncache *, struct syncache_head *);
122 static void      syncache_free(struct syncache *);
123 static void      syncache_insert(struct syncache *, struct syncache_head *);
124 static int       syncache_respond(struct syncache *);
125 static struct    socket *syncache_socket(struct syncache *, struct socket *,
126                     struct mbuf *m);
127 static int       syncache_sysctl_count(SYSCTL_HANDLER_ARGS);
128 static void      syncache_timeout(struct syncache *sc, struct syncache_head *sch,
129                     int docallout);
130 static void      syncache_timer(void *);
131
132 static uint32_t  syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
133                     uint8_t *, uintptr_t);
134 static tcp_seq   syncookie_generate(struct syncache_head *, struct syncache *);
135 static struct syncache
136                 *syncookie_lookup(struct in_conninfo *, struct syncache_head *,
137                     struct syncache *, struct tcphdr *, struct tcpopt *,
138                     struct socket *);
139 static void      syncookie_reseed(void *);
140 #ifdef INVARIANTS
141 static int       syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
142                     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
143                     struct socket *lso);
144 #endif
145
146 /*
147  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
148  * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
149  * the odds are that the user has given up attempting to connect by then.
150  */
151 #define SYNCACHE_MAXREXMTS              3
152
153 /* Arbitrary values */
154 #define TCP_SYNCACHE_HASHSIZE           512
155 #define TCP_SYNCACHE_BUCKETLIMIT        30
156
157 static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
158 #define V_tcp_syncache                  VNET(tcp_syncache)
159
160 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
161     "TCP SYN cache");
162
163 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
164     &VNET_NAME(tcp_syncache.bucket_limit), 0,
165     "Per-bucket hash limit for syncache");
166
167 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
168     &VNET_NAME(tcp_syncache.cache_limit), 0,
169     "Overall entry limit for syncache");
170
171 SYSCTL_VNET_PROC(_net_inet_tcp_syncache, OID_AUTO, count, (CTLTYPE_UINT|CTLFLAG_RD),
172     NULL, 0, &syncache_sysctl_count, "IU",
173     "Current number of entries in syncache");
174
175 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
176     &VNET_NAME(tcp_syncache.hashsize), 0,
177     "Size of TCP syncache hashtable");
178
179 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
180     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
181     "Limit on SYN/ACK retransmissions");
182
183 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
184 SYSCTL_VNET_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
185     CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
186     "Send reset on socket allocation failure");
187
188 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
189
190 #define SYNCACHE_HASH(inc, mask)                                        \
191         ((V_tcp_syncache.hash_secret ^                                  \
192           (inc)->inc_faddr.s_addr ^                                     \
193           ((inc)->inc_faddr.s_addr >> 16) ^                             \
194           (inc)->inc_fport ^ (inc)->inc_lport) & mask)
195
196 #define SYNCACHE_HASH6(inc, mask)                                       \
197         ((V_tcp_syncache.hash_secret ^                                  \
198           (inc)->inc6_faddr.s6_addr32[0] ^                              \
199           (inc)->inc6_faddr.s6_addr32[3] ^                              \
200           (inc)->inc_fport ^ (inc)->inc_lport) & mask)
201
202 #define ENDPTS_EQ(a, b) (                                               \
203         (a)->ie_fport == (b)->ie_fport &&                               \
204         (a)->ie_lport == (b)->ie_lport &&                               \
205         (a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&                 \
206         (a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr                    \
207 )
208
209 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
210
211 #define SCH_LOCK(sch)           mtx_lock(&(sch)->sch_mtx)
212 #define SCH_UNLOCK(sch)         mtx_unlock(&(sch)->sch_mtx)
213 #define SCH_LOCK_ASSERT(sch)    mtx_assert(&(sch)->sch_mtx, MA_OWNED)
214
215 /*
216  * Requires the syncache entry to be already removed from the bucket list.
217  */
218 static void
219 syncache_free(struct syncache *sc)
220 {
221
222         if (sc->sc_ipopts)
223                 (void) m_free(sc->sc_ipopts);
224         if (sc->sc_cred)
225                 crfree(sc->sc_cred);
226 #ifdef MAC
227         mac_syncache_destroy(&sc->sc_label);
228 #endif
229
230         uma_zfree(V_tcp_syncache.zone, sc);
231 }
232
233 void
234 syncache_init(void)
235 {
236         int i;
237
238         V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
239         V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
240         V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
241         V_tcp_syncache.hash_secret = arc4random();
242
243         TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
244             &V_tcp_syncache.hashsize);
245         TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
246             &V_tcp_syncache.bucket_limit);
247         if (!powerof2(V_tcp_syncache.hashsize) ||
248             V_tcp_syncache.hashsize == 0) {
249                 printf("WARNING: syncache hash size is not a power of 2.\n");
250                 V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
251         }
252         V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
253
254         /* Set limits. */
255         V_tcp_syncache.cache_limit =
256             V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
257         TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
258             &V_tcp_syncache.cache_limit);
259
260         /* Allocate the hash table. */
261         V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
262             sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
263
264 #ifdef VIMAGE
265         V_tcp_syncache.vnet = curvnet;
266 #endif
267
268         /* Initialize the hash buckets. */
269         for (i = 0; i < V_tcp_syncache.hashsize; i++) {
270                 TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
271                 mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
272                          NULL, MTX_DEF);
273                 callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
274                          &V_tcp_syncache.hashbase[i].sch_mtx, 0);
275                 V_tcp_syncache.hashbase[i].sch_length = 0;
276                 V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
277         }
278
279         /* Create the syncache entry zone. */
280         V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
281             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
282         V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
283             V_tcp_syncache.cache_limit);
284
285         /* Start the SYN cookie reseeder callout. */
286         callout_init(&V_tcp_syncache.secret.reseed, 1);
287         arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
288         arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
289         callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
290             syncookie_reseed, &V_tcp_syncache);
291 }
292
293 #ifdef VIMAGE
294 void
295 syncache_destroy(void)
296 {
297         struct syncache_head *sch;
298         struct syncache *sc, *nsc;
299         int i;
300
301         /* Cleanup hash buckets: stop timers, free entries, destroy locks. */
302         for (i = 0; i < V_tcp_syncache.hashsize; i++) {
303
304                 sch = &V_tcp_syncache.hashbase[i];
305                 callout_drain(&sch->sch_timer);
306
307                 SCH_LOCK(sch);
308                 TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
309                         syncache_drop(sc, sch);
310                 SCH_UNLOCK(sch);
311                 KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
312                     ("%s: sch->sch_bucket not empty", __func__));
313                 KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
314                     __func__, sch->sch_length));
315                 mtx_destroy(&sch->sch_mtx);
316         }
317
318         KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
319             ("%s: cache_count not 0", __func__));
320
321         /* Free the allocated global resources. */
322         uma_zdestroy(V_tcp_syncache.zone);
323         free(V_tcp_syncache.hashbase, M_SYNCACHE);
324
325         callout_drain(&V_tcp_syncache.secret.reseed);
326 }
327 #endif
328
329 static int
330 syncache_sysctl_count(SYSCTL_HANDLER_ARGS)
331 {
332         int count;
333
334         count = uma_zone_get_cur(V_tcp_syncache.zone);
335         return (sysctl_handle_int(oidp, &count, 0, req));
336 }
337
338 /*
339  * Inserts a syncache entry into the specified bucket row.
340  * Locks and unlocks the syncache_head autonomously.
341  */
342 static void
343 syncache_insert(struct syncache *sc, struct syncache_head *sch)
344 {
345         struct syncache *sc2;
346
347         SCH_LOCK(sch);
348
349         /*
350          * Make sure that we don't overflow the per-bucket limit.
351          * If the bucket is full, toss the oldest element.
352          */
353         if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
354                 KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
355                         ("sch->sch_length incorrect"));
356                 sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
357                 syncache_drop(sc2, sch);
358                 TCPSTAT_INC(tcps_sc_bucketoverflow);
359         }
360
361         /* Put it into the bucket. */
362         TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
363         sch->sch_length++;
364
365 #ifdef TCP_OFFLOAD
366         if (ADDED_BY_TOE(sc)) {
367                 struct toedev *tod = sc->sc_tod;
368
369                 tod->tod_syncache_added(tod, sc->sc_todctx);
370         }
371 #endif
372
373         /* Reinitialize the bucket row's timer. */
374         if (sch->sch_length == 1)
375                 sch->sch_nextc = ticks + INT_MAX;
376         syncache_timeout(sc, sch, 1);
377
378         SCH_UNLOCK(sch);
379
380         TCPSTAT_INC(tcps_sc_added);
381 }
382
383 /*
384  * Remove and free entry from syncache bucket row.
385  * Expects locked syncache head.
386  */
387 static void
388 syncache_drop(struct syncache *sc, struct syncache_head *sch)
389 {
390
391         SCH_LOCK_ASSERT(sch);
392
393         TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
394         sch->sch_length--;
395
396 #ifdef TCP_OFFLOAD
397         if (ADDED_BY_TOE(sc)) {
398                 struct toedev *tod = sc->sc_tod;
399
400                 tod->tod_syncache_removed(tod, sc->sc_todctx);
401         }
402 #endif
403
404         syncache_free(sc);
405 }
406
407 /*
408  * Engage/reengage time on bucket row.
409  */
410 static void
411 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
412 {
413         sc->sc_rxttime = ticks +
414                 TCPTV_RTOBASE * (tcp_syn_backoff[sc->sc_rxmits]);
415         sc->sc_rxmits++;
416         if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
417                 sch->sch_nextc = sc->sc_rxttime;
418                 if (docallout)
419                         callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
420                             syncache_timer, (void *)sch);
421         }
422 }
423
424 /*
425  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
426  * If we have retransmitted an entry the maximum number of times, expire it.
427  * One separate timer for each bucket row.
428  */
429 static void
430 syncache_timer(void *xsch)
431 {
432         struct syncache_head *sch = (struct syncache_head *)xsch;
433         struct syncache *sc, *nsc;
434         int tick = ticks;
435         char *s;
436
437         CURVNET_SET(sch->sch_sc->vnet);
438
439         /* NB: syncache_head has already been locked by the callout. */
440         SCH_LOCK_ASSERT(sch);
441
442         /*
443          * In the following cycle we may remove some entries and/or
444          * advance some timeouts, so re-initialize the bucket timer.
445          */
446         sch->sch_nextc = tick + INT_MAX;
447
448         TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
449                 /*
450                  * We do not check if the listen socket still exists
451                  * and accept the case where the listen socket may be
452                  * gone by the time we resend the SYN/ACK.  We do
453                  * not expect this to happens often. If it does,
454                  * then the RST will be sent by the time the remote
455                  * host does the SYN/ACK->ACK.
456                  */
457                 if (TSTMP_GT(sc->sc_rxttime, tick)) {
458                         if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
459                                 sch->sch_nextc = sc->sc_rxttime;
460                         continue;
461                 }
462                 if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
463                         if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
464                                 log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
465                                     "giving up and removing syncache entry\n",
466                                     s, __func__);
467                                 free(s, M_TCPLOG);
468                         }
469                         syncache_drop(sc, sch);
470                         TCPSTAT_INC(tcps_sc_stale);
471                         continue;
472                 }
473                 if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
474                         log(LOG_DEBUG, "%s; %s: Response timeout, "
475                             "retransmitting (%u) SYN|ACK\n",
476                             s, __func__, sc->sc_rxmits);
477                         free(s, M_TCPLOG);
478                 }
479
480                 (void) syncache_respond(sc);
481                 TCPSTAT_INC(tcps_sc_retransmitted);
482                 syncache_timeout(sc, sch, 0);
483         }
484         if (!TAILQ_EMPTY(&(sch)->sch_bucket))
485                 callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
486                         syncache_timer, (void *)(sch));
487         CURVNET_RESTORE();
488 }
489
490 /*
491  * Find an entry in the syncache.
492  * Returns always with locked syncache_head plus a matching entry or NULL.
493  */
494 static struct syncache *
495 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
496 {
497         struct syncache *sc;
498         struct syncache_head *sch;
499
500 #ifdef INET6
501         if (inc->inc_flags & INC_ISIPV6) {
502                 sch = &V_tcp_syncache.hashbase[
503                     SYNCACHE_HASH6(inc, V_tcp_syncache.hashmask)];
504                 *schp = sch;
505
506                 SCH_LOCK(sch);
507
508                 /* Circle through bucket row to find matching entry. */
509                 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
510                         if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
511                                 return (sc);
512                 }
513         } else
514 #endif
515         {
516                 sch = &V_tcp_syncache.hashbase[
517                     SYNCACHE_HASH(inc, V_tcp_syncache.hashmask)];
518                 *schp = sch;
519
520                 SCH_LOCK(sch);
521
522                 /* Circle through bucket row to find matching entry. */
523                 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
524 #ifdef INET6
525                         if (sc->sc_inc.inc_flags & INC_ISIPV6)
526                                 continue;
527 #endif
528                         if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
529                                 return (sc);
530                 }
531         }
532         SCH_LOCK_ASSERT(*schp);
533         return (NULL);                  /* always returns with locked sch */
534 }
535
536 /*
537  * This function is called when we get a RST for a
538  * non-existent connection, so that we can see if the
539  * connection is in the syn cache.  If it is, zap it.
540  */
541 void
542 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
543 {
544         struct syncache *sc;
545         struct syncache_head *sch;
546         char *s = NULL;
547
548         sc = syncache_lookup(inc, &sch);        /* returns locked sch */
549         SCH_LOCK_ASSERT(sch);
550
551         /*
552          * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
553          * See RFC 793 page 65, section SEGMENT ARRIVES.
554          */
555         if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
556                 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
557                         log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
558                             "FIN flag set, segment ignored\n", s, __func__);
559                 TCPSTAT_INC(tcps_badrst);
560                 goto done;
561         }
562
563         /*
564          * No corresponding connection was found in syncache.
565          * If syncookies are enabled and possibly exclusively
566          * used, or we are under memory pressure, a valid RST
567          * may not find a syncache entry.  In that case we're
568          * done and no SYN|ACK retransmissions will happen.
569          * Otherwise the RST was misdirected or spoofed.
570          */
571         if (sc == NULL) {
572                 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
573                         log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
574                             "syncache entry (possibly syncookie only), "
575                             "segment ignored\n", s, __func__);
576                 TCPSTAT_INC(tcps_badrst);
577                 goto done;
578         }
579
580         /*
581          * If the RST bit is set, check the sequence number to see
582          * if this is a valid reset segment.
583          * RFC 793 page 37:
584          *   In all states except SYN-SENT, all reset (RST) segments
585          *   are validated by checking their SEQ-fields.  A reset is
586          *   valid if its sequence number is in the window.
587          *
588          *   The sequence number in the reset segment is normally an
589          *   echo of our outgoing acknowlegement numbers, but some hosts
590          *   send a reset with the sequence number at the rightmost edge
591          *   of our receive window, and we have to handle this case.
592          */
593         if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
594             SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
595                 syncache_drop(sc, sch);
596                 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
597                         log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
598                             "connection attempt aborted by remote endpoint\n",
599                             s, __func__);
600                 TCPSTAT_INC(tcps_sc_reset);
601         } else {
602                 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
603                         log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
604                             "IRS %u (+WND %u), segment ignored\n",
605                             s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
606                 TCPSTAT_INC(tcps_badrst);
607         }
608
609 done:
610         if (s != NULL)
611                 free(s, M_TCPLOG);
612         SCH_UNLOCK(sch);
613 }
614
615 void
616 syncache_badack(struct in_conninfo *inc)
617 {
618         struct syncache *sc;
619         struct syncache_head *sch;
620
621         sc = syncache_lookup(inc, &sch);        /* returns locked sch */
622         SCH_LOCK_ASSERT(sch);
623         if (sc != NULL) {
624                 syncache_drop(sc, sch);
625                 TCPSTAT_INC(tcps_sc_badack);
626         }
627         SCH_UNLOCK(sch);
628 }
629
630 void
631 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
632 {
633         struct syncache *sc;
634         struct syncache_head *sch;
635
636         sc = syncache_lookup(inc, &sch);        /* returns locked sch */
637         SCH_LOCK_ASSERT(sch);
638         if (sc == NULL)
639                 goto done;
640
641         /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
642         if (ntohl(th->th_seq) != sc->sc_iss)
643                 goto done;
644
645         /*
646          * If we've rertransmitted 3 times and this is our second error,
647          * we remove the entry.  Otherwise, we allow it to continue on.
648          * This prevents us from incorrectly nuking an entry during a
649          * spurious network outage.
650          *
651          * See tcp_notify().
652          */
653         if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
654                 sc->sc_flags |= SCF_UNREACH;
655                 goto done;
656         }
657         syncache_drop(sc, sch);
658         TCPSTAT_INC(tcps_sc_unreach);
659 done:
660         SCH_UNLOCK(sch);
661 }
662
663 /*
664  * Build a new TCP socket structure from a syncache entry.
665  */
666 static struct socket *
667 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
668 {
669         struct inpcb *inp = NULL;
670         struct socket *so;
671         struct tcpcb *tp;
672         int error;
673         char *s;
674
675         INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
676
677         /*
678          * Ok, create the full blown connection, and set things up
679          * as they would have been set up if we had created the
680          * connection when the SYN arrived.  If we can't create
681          * the connection, abort it.
682          */
683         so = sonewconn(lso, SS_ISCONNECTED);
684         if (so == NULL) {
685                 /*
686                  * Drop the connection; we will either send a RST or
687                  * have the peer retransmit its SYN again after its
688                  * RTO and try again.
689                  */
690                 TCPSTAT_INC(tcps_listendrop);
691                 if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
692                         log(LOG_DEBUG, "%s; %s: Socket create failed "
693                             "due to limits or memory shortage\n",
694                             s, __func__);
695                         free(s, M_TCPLOG);
696                 }
697                 goto abort2;
698         }
699 #ifdef MAC
700         mac_socketpeer_set_from_mbuf(m, so);
701 #endif
702
703         inp = sotoinpcb(so);
704         inp->inp_inc.inc_fibnum = so->so_fibnum;
705         INP_WLOCK(inp);
706         INP_HASH_WLOCK(&V_tcbinfo);
707
708         /* Insert new socket into PCB hash list. */
709         inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
710 #ifdef INET6
711         if (sc->sc_inc.inc_flags & INC_ISIPV6) {
712                 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
713         } else {
714                 inp->inp_vflag &= ~INP_IPV6;
715                 inp->inp_vflag |= INP_IPV4;
716 #endif
717                 inp->inp_laddr = sc->sc_inc.inc_laddr;
718 #ifdef INET6
719         }
720 #endif
721
722         /*
723          * If there's an mbuf and it has a flowid, then let's initialise the
724          * inp with that particular flowid.
725          */
726         if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
727                 inp->inp_flowid = m->m_pkthdr.flowid;
728                 inp->inp_flowtype = M_HASHTYPE_GET(m);
729         }
730
731         /*
732          * Install in the reservation hash table for now, but don't yet
733          * install a connection group since the full 4-tuple isn't yet
734          * configured.
735          */
736         inp->inp_lport = sc->sc_inc.inc_lport;
737         if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
738                 /*
739                  * Undo the assignments above if we failed to
740                  * put the PCB on the hash lists.
741                  */
742 #ifdef INET6
743                 if (sc->sc_inc.inc_flags & INC_ISIPV6)
744                         inp->in6p_laddr = in6addr_any;
745                 else
746 #endif
747                         inp->inp_laddr.s_addr = INADDR_ANY;
748                 inp->inp_lport = 0;
749                 if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
750                         log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
751                             "with error %i\n",
752                             s, __func__, error);
753                         free(s, M_TCPLOG);
754                 }
755                 INP_HASH_WUNLOCK(&V_tcbinfo);
756                 goto abort;
757         }
758 #ifdef IPSEC
759         /* Copy old policy into new socket's. */
760         if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
761                 printf("syncache_socket: could not copy policy\n");
762 #endif
763 #ifdef INET6
764         if (sc->sc_inc.inc_flags & INC_ISIPV6) {
765                 struct inpcb *oinp = sotoinpcb(lso);
766                 struct in6_addr laddr6;
767                 struct sockaddr_in6 sin6;
768                 /*
769                  * Inherit socket options from the listening socket.
770                  * Note that in6p_inputopts are not (and should not be)
771                  * copied, since it stores previously received options and is
772                  * used to detect if each new option is different than the
773                  * previous one and hence should be passed to a user.
774                  * If we copied in6p_inputopts, a user would not be able to
775                  * receive options just after calling the accept system call.
776                  */
777                 inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
778                 if (oinp->in6p_outputopts)
779                         inp->in6p_outputopts =
780                             ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
781
782                 sin6.sin6_family = AF_INET6;
783                 sin6.sin6_len = sizeof(sin6);
784                 sin6.sin6_addr = sc->sc_inc.inc6_faddr;
785                 sin6.sin6_port = sc->sc_inc.inc_fport;
786                 sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
787                 laddr6 = inp->in6p_laddr;
788                 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
789                         inp->in6p_laddr = sc->sc_inc.inc6_laddr;
790                 if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
791                     thread0.td_ucred, m)) != 0) {
792                         inp->in6p_laddr = laddr6;
793                         if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
794                                 log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
795                                     "with error %i\n",
796                                     s, __func__, error);
797                                 free(s, M_TCPLOG);
798                         }
799                         INP_HASH_WUNLOCK(&V_tcbinfo);
800                         goto abort;
801                 }
802                 /* Override flowlabel from in6_pcbconnect. */
803                 inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
804                 inp->inp_flow |= sc->sc_flowlabel;
805         }
806 #endif /* INET6 */
807 #if defined(INET) && defined(INET6)
808         else
809 #endif
810 #ifdef INET
811         {
812                 struct in_addr laddr;
813                 struct sockaddr_in sin;
814
815                 inp->inp_options = (m) ? ip_srcroute(m) : NULL;
816                 
817                 if (inp->inp_options == NULL) {
818                         inp->inp_options = sc->sc_ipopts;
819                         sc->sc_ipopts = NULL;
820                 }
821
822                 sin.sin_family = AF_INET;
823                 sin.sin_len = sizeof(sin);
824                 sin.sin_addr = sc->sc_inc.inc_faddr;
825                 sin.sin_port = sc->sc_inc.inc_fport;
826                 bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
827                 laddr = inp->inp_laddr;
828                 if (inp->inp_laddr.s_addr == INADDR_ANY)
829                         inp->inp_laddr = sc->sc_inc.inc_laddr;
830                 if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
831                     thread0.td_ucred, m)) != 0) {
832                         inp->inp_laddr = laddr;
833                         if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
834                                 log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
835                                     "with error %i\n",
836                                     s, __func__, error);
837                                 free(s, M_TCPLOG);
838                         }
839                         INP_HASH_WUNLOCK(&V_tcbinfo);
840                         goto abort;
841                 }
842         }
843 #endif /* INET */
844         INP_HASH_WUNLOCK(&V_tcbinfo);
845         tp = intotcpcb(inp);
846         tcp_state_change(tp, TCPS_SYN_RECEIVED);
847         tp->iss = sc->sc_iss;
848         tp->irs = sc->sc_irs;
849         tcp_rcvseqinit(tp);
850         tcp_sendseqinit(tp);
851         tp->snd_wl1 = sc->sc_irs;
852         tp->snd_max = tp->iss + 1;
853         tp->snd_nxt = tp->iss + 1;
854         tp->rcv_up = sc->sc_irs + 1;
855         tp->rcv_wnd = sc->sc_wnd;
856         tp->rcv_adv += tp->rcv_wnd;
857         tp->last_ack_sent = tp->rcv_nxt;
858
859         tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
860         if (sc->sc_flags & SCF_NOOPT)
861                 tp->t_flags |= TF_NOOPT;
862         else {
863                 if (sc->sc_flags & SCF_WINSCALE) {
864                         tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
865                         tp->snd_scale = sc->sc_requested_s_scale;
866                         tp->request_r_scale = sc->sc_requested_r_scale;
867                 }
868                 if (sc->sc_flags & SCF_TIMESTAMP) {
869                         tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
870                         tp->ts_recent = sc->sc_tsreflect;
871                         tp->ts_recent_age = tcp_ts_getticks();
872                         tp->ts_offset = sc->sc_tsoff;
873                 }
874 #ifdef TCP_SIGNATURE
875                 if (sc->sc_flags & SCF_SIGNATURE)
876                         tp->t_flags |= TF_SIGNATURE;
877 #endif
878                 if (sc->sc_flags & SCF_SACK)
879                         tp->t_flags |= TF_SACK_PERMIT;
880         }
881
882         if (sc->sc_flags & SCF_ECN)
883                 tp->t_flags |= TF_ECN_PERMIT;
884
885         /*
886          * Set up MSS and get cached values from tcp_hostcache.
887          * This might overwrite some of the defaults we just set.
888          */
889         tcp_mss(tp, sc->sc_peer_mss);
890
891         /*
892          * If the SYN,ACK was retransmitted, indicate that CWND to be
893          * limited to one segment in cc_conn_init().
894          * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
895          */
896         if (sc->sc_rxmits > 1)
897                 tp->snd_cwnd = 1;
898
899 #ifdef TCP_OFFLOAD
900         /*
901          * Allow a TOE driver to install its hooks.  Note that we hold the
902          * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
903          * new connection before the TOE driver has done its thing.
904          */
905         if (ADDED_BY_TOE(sc)) {
906                 struct toedev *tod = sc->sc_tod;
907
908                 tod->tod_offload_socket(tod, sc->sc_todctx, so);
909         }
910 #endif
911         /*
912          * Copy and activate timers.
913          */
914         tp->t_keepinit = sototcpcb(lso)->t_keepinit;
915         tp->t_keepidle = sototcpcb(lso)->t_keepidle;
916         tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
917         tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
918         tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
919
920         INP_WUNLOCK(inp);
921
922         TCPSTAT_INC(tcps_accepts);
923         return (so);
924
925 abort:
926         INP_WUNLOCK(inp);
927 abort2:
928         if (so != NULL)
929                 soabort(so);
930         return (NULL);
931 }
932
933 /*
934  * This function gets called when we receive an ACK for a
935  * socket in the LISTEN state.  We look up the connection
936  * in the syncache, and if its there, we pull it out of
937  * the cache and turn it into a full-blown connection in
938  * the SYN-RECEIVED state.
939  */
940 int
941 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
942     struct socket **lsop, struct mbuf *m)
943 {
944         struct syncache *sc;
945         struct syncache_head *sch;
946         struct syncache scs;
947         char *s;
948
949         /*
950          * Global TCP locks are held because we manipulate the PCB lists
951          * and create a new socket.
952          */
953         INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
954         KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
955             ("%s: can handle only ACK", __func__));
956
957         sc = syncache_lookup(inc, &sch);        /* returns locked sch */
958         SCH_LOCK_ASSERT(sch);
959
960 #ifdef INVARIANTS
961         /*
962          * Test code for syncookies comparing the syncache stored
963          * values with the reconstructed values from the cookie.
964          */
965         if (sc != NULL)
966                 syncookie_cmp(inc, sch, sc, th, to, *lsop);
967 #endif
968
969         if (sc == NULL) {
970                 /*
971                  * There is no syncache entry, so see if this ACK is
972                  * a returning syncookie.  To do this, first:
973                  *  A. See if this socket has had a syncache entry dropped in
974                  *     the past.  We don't want to accept a bogus syncookie
975                  *     if we've never received a SYN.
976                  *  B. check that the syncookie is valid.  If it is, then
977                  *     cobble up a fake syncache entry, and return.
978                  */
979                 if (!V_tcp_syncookies) {
980                         SCH_UNLOCK(sch);
981                         if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
982                                 log(LOG_DEBUG, "%s; %s: Spurious ACK, "
983                                     "segment rejected (syncookies disabled)\n",
984                                     s, __func__);
985                         goto failed;
986                 }
987                 bzero(&scs, sizeof(scs));
988                 sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
989                 SCH_UNLOCK(sch);
990                 if (sc == NULL) {
991                         if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
992                                 log(LOG_DEBUG, "%s; %s: Segment failed "
993                                     "SYNCOOKIE authentication, segment rejected "
994                                     "(probably spoofed)\n", s, __func__);
995                         goto failed;
996                 }
997         } else {
998                 /* Pull out the entry to unlock the bucket row. */
999                 TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1000                 sch->sch_length--;
1001 #ifdef TCP_OFFLOAD
1002                 if (ADDED_BY_TOE(sc)) {
1003                         struct toedev *tod = sc->sc_tod;
1004
1005                         tod->tod_syncache_removed(tod, sc->sc_todctx);
1006                 }
1007 #endif
1008                 SCH_UNLOCK(sch);
1009         }
1010
1011         /*
1012          * Segment validation:
1013          * ACK must match our initial sequence number + 1 (the SYN|ACK).
1014          */
1015         if (th->th_ack != sc->sc_iss + 1) {
1016                 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1017                         log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1018                             "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1019                 goto failed;
1020         }
1021
1022         /*
1023          * The SEQ must fall in the window starting at the received
1024          * initial receive sequence number + 1 (the SYN).
1025          */
1026         if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1027             SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1028                 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1029                         log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1030                             "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1031                 goto failed;
1032         }
1033
1034         /*
1035          * If timestamps were not negotiated during SYN/ACK they
1036          * must not appear on any segment during this session.
1037          */
1038         if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1039                 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1040                         log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1041                             "segment rejected\n", s, __func__);
1042                 goto failed;
1043         }
1044
1045         /*
1046          * If timestamps were negotiated during SYN/ACK they should
1047          * appear on every segment during this session.
1048          * XXXAO: This is only informal as there have been unverified
1049          * reports of non-compliants stacks.
1050          */
1051         if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1052                 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1053                         log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1054                             "no action\n", s, __func__);
1055                         free(s, M_TCPLOG);
1056                         s = NULL;
1057                 }
1058         }
1059
1060         /*
1061          * If timestamps were negotiated the reflected timestamp
1062          * must be equal to what we actually sent in the SYN|ACK.
1063          */
1064         if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts) {
1065                 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1066                         log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
1067                             "segment rejected\n",
1068                             s, __func__, to->to_tsecr, sc->sc_ts);
1069                 goto failed;
1070         }
1071
1072         *lsop = syncache_socket(sc, *lsop, m);
1073
1074         if (*lsop == NULL)
1075                 TCPSTAT_INC(tcps_sc_aborted);
1076         else
1077                 TCPSTAT_INC(tcps_sc_completed);
1078
1079 /* how do we find the inp for the new socket? */
1080         if (sc != &scs)
1081                 syncache_free(sc);
1082         return (1);
1083 failed:
1084         if (sc != NULL && sc != &scs)
1085                 syncache_free(sc);
1086         if (s != NULL)
1087                 free(s, M_TCPLOG);
1088         *lsop = NULL;
1089         return (0);
1090 }
1091
1092 /*
1093  * Given a LISTEN socket and an inbound SYN request, add
1094  * this to the syn cache, and send back a segment:
1095  *      <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1096  * to the source.
1097  *
1098  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1099  * Doing so would require that we hold onto the data and deliver it
1100  * to the application.  However, if we are the target of a SYN-flood
1101  * DoS attack, an attacker could send data which would eventually
1102  * consume all available buffer space if it were ACKed.  By not ACKing
1103  * the data, we avoid this DoS scenario.
1104  */
1105 void
1106 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1107     struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1108     void *todctx)
1109 {
1110         struct tcpcb *tp;
1111         struct socket *so;
1112         struct syncache *sc = NULL;
1113         struct syncache_head *sch;
1114         struct mbuf *ipopts = NULL;
1115         u_int ltflags;
1116         int win, sb_hiwat, ip_ttl, ip_tos;
1117         char *s;
1118 #ifdef INET6
1119         int autoflowlabel = 0;
1120 #endif
1121 #ifdef MAC
1122         struct label *maclabel;
1123 #endif
1124         struct syncache scs;
1125         struct ucred *cred;
1126
1127         INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1128         INP_WLOCK_ASSERT(inp);                  /* listen socket */
1129         KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1130             ("%s: unexpected tcp flags", __func__));
1131
1132         /*
1133          * Combine all so/tp operations very early to drop the INP lock as
1134          * soon as possible.
1135          */
1136         so = *lsop;
1137         tp = sototcpcb(so);
1138         cred = crhold(so->so_cred);
1139
1140 #ifdef INET6
1141         if ((inc->inc_flags & INC_ISIPV6) &&
1142             (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1143                 autoflowlabel = 1;
1144 #endif
1145         ip_ttl = inp->inp_ip_ttl;
1146         ip_tos = inp->inp_ip_tos;
1147         win = sbspace(&so->so_rcv);
1148         sb_hiwat = so->so_rcv.sb_hiwat;
1149         ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1150
1151         /* By the time we drop the lock these should no longer be used. */
1152         so = NULL;
1153         tp = NULL;
1154
1155 #ifdef MAC
1156         if (mac_syncache_init(&maclabel) != 0) {
1157                 INP_WUNLOCK(inp);
1158                 INP_INFO_WUNLOCK(&V_tcbinfo);
1159                 goto done;
1160         } else
1161                 mac_syncache_create(maclabel, inp);
1162 #endif
1163         INP_WUNLOCK(inp);
1164         INP_INFO_WUNLOCK(&V_tcbinfo);
1165
1166         /*
1167          * Remember the IP options, if any.
1168          */
1169 #ifdef INET6
1170         if (!(inc->inc_flags & INC_ISIPV6))
1171 #endif
1172 #ifdef INET
1173                 ipopts = (m) ? ip_srcroute(m) : NULL;
1174 #else
1175                 ipopts = NULL;
1176 #endif
1177
1178         /*
1179          * See if we already have an entry for this connection.
1180          * If we do, resend the SYN,ACK, and reset the retransmit timer.
1181          *
1182          * XXX: should the syncache be re-initialized with the contents
1183          * of the new SYN here (which may have different options?)
1184          *
1185          * XXX: We do not check the sequence number to see if this is a
1186          * real retransmit or a new connection attempt.  The question is
1187          * how to handle such a case; either ignore it as spoofed, or
1188          * drop the current entry and create a new one?
1189          */
1190         sc = syncache_lookup(inc, &sch);        /* returns locked entry */
1191         SCH_LOCK_ASSERT(sch);
1192         if (sc != NULL) {
1193                 TCPSTAT_INC(tcps_sc_dupsyn);
1194                 if (ipopts) {
1195                         /*
1196                          * If we were remembering a previous source route,
1197                          * forget it and use the new one we've been given.
1198                          */
1199                         if (sc->sc_ipopts)
1200                                 (void) m_free(sc->sc_ipopts);
1201                         sc->sc_ipopts = ipopts;
1202                 }
1203                 /*
1204                  * Update timestamp if present.
1205                  */
1206                 if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1207                         sc->sc_tsreflect = to->to_tsval;
1208                 else
1209                         sc->sc_flags &= ~SCF_TIMESTAMP;
1210 #ifdef MAC
1211                 /*
1212                  * Since we have already unconditionally allocated label
1213                  * storage, free it up.  The syncache entry will already
1214                  * have an initialized label we can use.
1215                  */
1216                 mac_syncache_destroy(&maclabel);
1217 #endif
1218                 /* Retransmit SYN|ACK and reset retransmit count. */
1219                 if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1220                         log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1221                             "resetting timer and retransmitting SYN|ACK\n",
1222                             s, __func__);
1223                         free(s, M_TCPLOG);
1224                 }
1225                 if (syncache_respond(sc) == 0) {
1226                         sc->sc_rxmits = 0;
1227                         syncache_timeout(sc, sch, 1);
1228                         TCPSTAT_INC(tcps_sndacks);
1229                         TCPSTAT_INC(tcps_sndtotal);
1230                 }
1231                 SCH_UNLOCK(sch);
1232                 goto done;
1233         }
1234
1235         sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1236         if (sc == NULL) {
1237                 /*
1238                  * The zone allocator couldn't provide more entries.
1239                  * Treat this as if the cache was full; drop the oldest
1240                  * entry and insert the new one.
1241                  */
1242                 TCPSTAT_INC(tcps_sc_zonefail);
1243                 if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1244                         syncache_drop(sc, sch);
1245                 sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1246                 if (sc == NULL) {
1247                         if (V_tcp_syncookies) {
1248                                 bzero(&scs, sizeof(scs));
1249                                 sc = &scs;
1250                         } else {
1251                                 SCH_UNLOCK(sch);
1252                                 if (ipopts)
1253                                         (void) m_free(ipopts);
1254                                 goto done;
1255                         }
1256                 }
1257         }
1258         
1259         /*
1260          * Fill in the syncache values.
1261          */
1262 #ifdef MAC
1263         sc->sc_label = maclabel;
1264 #endif
1265         sc->sc_cred = cred;
1266         cred = NULL;
1267         sc->sc_ipopts = ipopts;
1268         bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1269 #ifdef INET6
1270         if (!(inc->inc_flags & INC_ISIPV6))
1271 #endif
1272         {
1273                 sc->sc_ip_tos = ip_tos;
1274                 sc->sc_ip_ttl = ip_ttl;
1275         }
1276 #ifdef TCP_OFFLOAD
1277         sc->sc_tod = tod;
1278         sc->sc_todctx = todctx;
1279 #endif
1280         sc->sc_irs = th->th_seq;
1281         sc->sc_iss = arc4random();
1282         sc->sc_flags = 0;
1283         sc->sc_flowlabel = 0;
1284
1285         /*
1286          * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1287          * win was derived from socket earlier in the function.
1288          */
1289         win = imax(win, 0);
1290         win = imin(win, TCP_MAXWIN);
1291         sc->sc_wnd = win;
1292
1293         if (V_tcp_do_rfc1323) {
1294                 /*
1295                  * A timestamp received in a SYN makes
1296                  * it ok to send timestamp requests and replies.
1297                  */
1298                 if (to->to_flags & TOF_TS) {
1299                         sc->sc_tsreflect = to->to_tsval;
1300                         sc->sc_ts = tcp_ts_getticks();
1301                         sc->sc_flags |= SCF_TIMESTAMP;
1302                 }
1303                 if (to->to_flags & TOF_SCALE) {
1304                         int wscale = 0;
1305
1306                         /*
1307                          * Pick the smallest possible scaling factor that
1308                          * will still allow us to scale up to sb_max, aka
1309                          * kern.ipc.maxsockbuf.
1310                          *
1311                          * We do this because there are broken firewalls that
1312                          * will corrupt the window scale option, leading to
1313                          * the other endpoint believing that our advertised
1314                          * window is unscaled.  At scale factors larger than
1315                          * 5 the unscaled window will drop below 1500 bytes,
1316                          * leading to serious problems when traversing these
1317                          * broken firewalls.
1318                          *
1319                          * With the default maxsockbuf of 256K, a scale factor
1320                          * of 3 will be chosen by this algorithm.  Those who
1321                          * choose a larger maxsockbuf should watch out
1322                          * for the compatiblity problems mentioned above.
1323                          *
1324                          * RFC1323: The Window field in a SYN (i.e., a <SYN>
1325                          * or <SYN,ACK>) segment itself is never scaled.
1326                          */
1327                         while (wscale < TCP_MAX_WINSHIFT &&
1328                             (TCP_MAXWIN << wscale) < sb_max)
1329                                 wscale++;
1330                         sc->sc_requested_r_scale = wscale;
1331                         sc->sc_requested_s_scale = to->to_wscale;
1332                         sc->sc_flags |= SCF_WINSCALE;
1333                 }
1334         }
1335 #ifdef TCP_SIGNATURE
1336         /*
1337          * If listening socket requested TCP digests, and received SYN
1338          * contains the option, flag this in the syncache so that
1339          * syncache_respond() will do the right thing with the SYN+ACK.
1340          * XXX: Currently we always record the option by default and will
1341          * attempt to use it in syncache_respond().
1342          */
1343         if (to->to_flags & TOF_SIGNATURE || ltflags & TF_SIGNATURE)
1344                 sc->sc_flags |= SCF_SIGNATURE;
1345 #endif
1346         if (to->to_flags & TOF_SACKPERM)
1347                 sc->sc_flags |= SCF_SACK;
1348         if (to->to_flags & TOF_MSS)
1349                 sc->sc_peer_mss = to->to_mss;   /* peer mss may be zero */
1350         if (ltflags & TF_NOOPT)
1351                 sc->sc_flags |= SCF_NOOPT;
1352         if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1353                 sc->sc_flags |= SCF_ECN;
1354
1355         if (V_tcp_syncookies)
1356                 sc->sc_iss = syncookie_generate(sch, sc);
1357 #ifdef INET6
1358         if (autoflowlabel) {
1359                 if (V_tcp_syncookies)
1360                         sc->sc_flowlabel = sc->sc_iss;
1361                 else
1362                         sc->sc_flowlabel = ip6_randomflowlabel();
1363                 sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1364         }
1365 #endif
1366         SCH_UNLOCK(sch);
1367
1368         /*
1369          * Do a standard 3-way handshake.
1370          */
1371         if (syncache_respond(sc) == 0) {
1372                 if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1373                         syncache_free(sc);
1374                 else if (sc != &scs)
1375                         syncache_insert(sc, sch);   /* locks and unlocks sch */
1376                 TCPSTAT_INC(tcps_sndacks);
1377                 TCPSTAT_INC(tcps_sndtotal);
1378         } else {
1379                 if (sc != &scs)
1380                         syncache_free(sc);
1381                 TCPSTAT_INC(tcps_sc_dropped);
1382         }
1383
1384 done:
1385         if (cred != NULL)
1386                 crfree(cred);
1387 #ifdef MAC
1388         if (sc == &scs)
1389                 mac_syncache_destroy(&maclabel);
1390 #endif
1391         if (m) {
1392                 
1393                 *lsop = NULL;
1394                 m_freem(m);
1395         }
1396 }
1397
1398 static int
1399 syncache_respond(struct syncache *sc)
1400 {
1401         struct ip *ip = NULL;
1402         struct mbuf *m;
1403         struct tcphdr *th = NULL;
1404         int optlen, error = 0;  /* Make compiler happy */
1405         u_int16_t hlen, tlen, mssopt;
1406         struct tcpopt to;
1407 #ifdef INET6
1408         struct ip6_hdr *ip6 = NULL;
1409 #endif
1410
1411         hlen =
1412 #ifdef INET6
1413                (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1414 #endif
1415                 sizeof(struct ip);
1416         tlen = hlen + sizeof(struct tcphdr);
1417
1418         /* Determine MSS we advertize to other end of connection. */
1419         mssopt = tcp_mssopt(&sc->sc_inc);
1420         if (sc->sc_peer_mss)
1421                 mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1422
1423         /* XXX: Assume that the entire packet will fit in a header mbuf. */
1424         KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1425             ("syncache: mbuf too small"));
1426
1427         /* Create the IP+TCP header from scratch. */
1428         m = m_gethdr(M_NOWAIT, MT_DATA);
1429         if (m == NULL)
1430                 return (ENOBUFS);
1431 #ifdef MAC
1432         mac_syncache_create_mbuf(sc->sc_label, m);
1433 #endif
1434         m->m_data += max_linkhdr;
1435         m->m_len = tlen;
1436         m->m_pkthdr.len = tlen;
1437         m->m_pkthdr.rcvif = NULL;
1438
1439 #ifdef INET6
1440         if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1441                 ip6 = mtod(m, struct ip6_hdr *);
1442                 ip6->ip6_vfc = IPV6_VERSION;
1443                 ip6->ip6_nxt = IPPROTO_TCP;
1444                 ip6->ip6_src = sc->sc_inc.inc6_laddr;
1445                 ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1446                 ip6->ip6_plen = htons(tlen - hlen);
1447                 /* ip6_hlim is set after checksum */
1448                 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1449                 ip6->ip6_flow |= sc->sc_flowlabel;
1450
1451                 th = (struct tcphdr *)(ip6 + 1);
1452         }
1453 #endif
1454 #if defined(INET6) && defined(INET)
1455         else
1456 #endif
1457 #ifdef INET
1458         {
1459                 ip = mtod(m, struct ip *);
1460                 ip->ip_v = IPVERSION;
1461                 ip->ip_hl = sizeof(struct ip) >> 2;
1462                 ip->ip_len = htons(tlen);
1463                 ip->ip_id = 0;
1464                 ip->ip_off = 0;
1465                 ip->ip_sum = 0;
1466                 ip->ip_p = IPPROTO_TCP;
1467                 ip->ip_src = sc->sc_inc.inc_laddr;
1468                 ip->ip_dst = sc->sc_inc.inc_faddr;
1469                 ip->ip_ttl = sc->sc_ip_ttl;
1470                 ip->ip_tos = sc->sc_ip_tos;
1471
1472                 /*
1473                  * See if we should do MTU discovery.  Route lookups are
1474                  * expensive, so we will only unset the DF bit if:
1475                  *
1476                  *      1) path_mtu_discovery is disabled
1477                  *      2) the SCF_UNREACH flag has been set
1478                  */
1479                 if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1480                        ip->ip_off |= htons(IP_DF);
1481
1482                 th = (struct tcphdr *)(ip + 1);
1483         }
1484 #endif /* INET */
1485         th->th_sport = sc->sc_inc.inc_lport;
1486         th->th_dport = sc->sc_inc.inc_fport;
1487
1488         th->th_seq = htonl(sc->sc_iss);
1489         th->th_ack = htonl(sc->sc_irs + 1);
1490         th->th_off = sizeof(struct tcphdr) >> 2;
1491         th->th_x2 = 0;
1492         th->th_flags = TH_SYN|TH_ACK;
1493         th->th_win = htons(sc->sc_wnd);
1494         th->th_urp = 0;
1495
1496         if (sc->sc_flags & SCF_ECN) {
1497                 th->th_flags |= TH_ECE;
1498                 TCPSTAT_INC(tcps_ecn_shs);
1499         }
1500
1501         /* Tack on the TCP options. */
1502         if ((sc->sc_flags & SCF_NOOPT) == 0) {
1503                 to.to_flags = 0;
1504
1505                 to.to_mss = mssopt;
1506                 to.to_flags = TOF_MSS;
1507                 if (sc->sc_flags & SCF_WINSCALE) {
1508                         to.to_wscale = sc->sc_requested_r_scale;
1509                         to.to_flags |= TOF_SCALE;
1510                 }
1511                 if (sc->sc_flags & SCF_TIMESTAMP) {
1512                         /* Virgin timestamp or TCP cookie enhanced one. */
1513                         to.to_tsval = sc->sc_ts;
1514                         to.to_tsecr = sc->sc_tsreflect;
1515                         to.to_flags |= TOF_TS;
1516                 }
1517                 if (sc->sc_flags & SCF_SACK)
1518                         to.to_flags |= TOF_SACKPERM;
1519 #ifdef TCP_SIGNATURE
1520                 if (sc->sc_flags & SCF_SIGNATURE)
1521                         to.to_flags |= TOF_SIGNATURE;
1522 #endif
1523                 optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1524
1525                 /* Adjust headers by option size. */
1526                 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1527                 m->m_len += optlen;
1528                 m->m_pkthdr.len += optlen;
1529
1530 #ifdef TCP_SIGNATURE
1531                 if (sc->sc_flags & SCF_SIGNATURE)
1532                         tcp_signature_compute(m, 0, 0, optlen,
1533                             to.to_signature, IPSEC_DIR_OUTBOUND);
1534 #endif
1535 #ifdef INET6
1536                 if (sc->sc_inc.inc_flags & INC_ISIPV6)
1537                         ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1538                 else
1539 #endif
1540                         ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1541         } else
1542                 optlen = 0;
1543
1544         M_SETFIB(m, sc->sc_inc.inc_fibnum);
1545         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1546 #ifdef INET6
1547         if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1548                 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1549                 th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1550                     IPPROTO_TCP, 0);
1551                 ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1552 #ifdef TCP_OFFLOAD
1553                 if (ADDED_BY_TOE(sc)) {
1554                         struct toedev *tod = sc->sc_tod;
1555
1556                         error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1557
1558                         return (error);
1559                 }
1560 #endif
1561                 error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1562         }
1563 #endif
1564 #if defined(INET6) && defined(INET)
1565         else
1566 #endif
1567 #ifdef INET
1568         {
1569                 m->m_pkthdr.csum_flags = CSUM_TCP;
1570                 th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1571                     htons(tlen + optlen - hlen + IPPROTO_TCP));
1572 #ifdef TCP_OFFLOAD
1573                 if (ADDED_BY_TOE(sc)) {
1574                         struct toedev *tod = sc->sc_tod;
1575
1576                         error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1577
1578                         return (error);
1579                 }
1580 #endif
1581                 error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1582         }
1583 #endif
1584         return (error);
1585 }
1586
1587 /*
1588  * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1589  * that exceed the capacity of the syncache by avoiding the storage of any
1590  * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1591  * attacks where the attacker does not have access to our responses.
1592  *
1593  * Syncookies encode and include all necessary information about the
1594  * connection setup within the SYN|ACK that we send back.  That way we
1595  * can avoid keeping any local state until the ACK to our SYN|ACK returns
1596  * (if ever).  Normally the syncache and syncookies are running in parallel
1597  * with the latter taking over when the former is exhausted.  When matching
1598  * syncache entry is found the syncookie is ignored.
1599  *
1600  * The only reliable information persisting the 3WHS is our inital sequence
1601  * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1602  * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1603  * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1604  * returns and signifies a legitimate connection if it matches the ACK.
1605  *
1606  * The available space of 32 bits to store the hash and to encode the SYN
1607  * option information is very tight and we should have at least 24 bits for
1608  * the MAC to keep the number of guesses by blind spoofing reasonably high.
1609  *
1610  * SYN option information we have to encode to fully restore a connection:
1611  * MSS: is imporant to chose an optimal segment size to avoid IP level
1612  *   fragmentation along the path.  The common MSS values can be encoded
1613  *   in a 3-bit table.  Uncommon values are captured by the next lower value
1614  *   in the table leading to a slight increase in packetization overhead.
1615  * WSCALE: is necessary to allow large windows to be used for high delay-
1616  *   bandwidth product links.  Not scaling the window when it was initially
1617  *   negotiated is bad for performance as lack of scaling further decreases
1618  *   the apparent available send window.  We only need to encode the WSCALE
1619  *   we received from the remote end.  Our end can be recalculated at any
1620  *   time.  The common WSCALE values can be encoded in a 3-bit table.
1621  *   Uncommon values are captured by the next lower value in the table
1622  *   making us under-estimate the available window size halving our
1623  *   theoretically possible maximum throughput for that connection.
1624  * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1625  * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1626  *   that are included in all segments on a connection.  We enable them when
1627  *   the ACK has them.
1628  *
1629  * Security of syncookies and attack vectors:
1630  *
1631  * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1632  * together with the gloabl secret to make it unique per connection attempt.
1633  * Thus any change of any of those parameters results in a different MAC output
1634  * in an unpredictable way unless a collision is encountered.  24 bits of the
1635  * MAC are embedded into the ISS.
1636  *
1637  * To prevent replay attacks two rotating global secrets are updated with a
1638  * new random value every 15 seconds.  The life-time of a syncookie is thus
1639  * 15-30 seconds.
1640  *
1641  * Vector 1: Attacking the secret.  This requires finding a weakness in the
1642  * MAC itself or the way it is used here.  The attacker can do a chosen plain
1643  * text attack by varying and testing the all parameters under his control.
1644  * The strength depends on the size and randomness of the secret, and the
1645  * cryptographic security of the MAC function.  Due to the constant updating
1646  * of the secret the attacker has at most 29.999 seconds to find the secret
1647  * and launch spoofed connections.  After that he has to start all over again.
1648  *
1649  * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1650  * size an average of 4,823 attempts are required for a 50% chance of success
1651  * to spoof a single syncookie (birthday collision paradox).  However the
1652  * attacker is blind and doesn't know if one of his attempts succeeded unless
1653  * he has a side channel to interfere success from.  A single connection setup
1654  * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1655  * This many attempts are required for each one blind spoofed connection.  For
1656  * every additional spoofed connection he has to launch another N attempts.
1657  * Thus for a sustained rate 100 spoofed connections per second approximately
1658  * 1,800,000 packets per second would have to be sent.
1659  *
1660  * NB: The MAC function should be fast so that it doesn't become a CPU
1661  * exhaustion attack vector itself.
1662  *
1663  * References:
1664  *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1665  *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1666  *   http://cr.yp.to/syncookies.html    (overview)
1667  *   http://cr.yp.to/syncookies/archive (details)
1668  *
1669  *
1670  * Schematic construction of a syncookie enabled Initial Sequence Number:
1671  *  0        1         2         3
1672  *  12345678901234567890123456789012
1673  * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
1674  *
1675  *  x 24 MAC (truncated)
1676  *  W  3 Send Window Scale index
1677  *  M  3 MSS index
1678  *  S  1 SACK permitted
1679  *  P  1 Odd/even secret
1680  */
1681
1682 /*
1683  * Distribution and probability of certain MSS values.  Those in between are
1684  * rounded down to the next lower one.
1685  * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
1686  *                            .2%  .3%   5%    7%    7%    20%   15%   45%
1687  */
1688 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
1689
1690 /*
1691  * Distribution and probability of certain WSCALE values.  We have to map the
1692  * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
1693  * bits based on prevalence of certain values.  Where we don't have an exact
1694  * match for are rounded down to the next lower one letting us under-estimate
1695  * the true available window.  At the moment this would happen only for the
1696  * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
1697  * and window size).  The absence of the WSCALE option (no scaling in either
1698  * direction) is encoded with index zero.
1699  * [WSCALE values histograms, Allman, 2012]
1700  *                            X 10 10 35  5  6 14 10%   by host
1701  *                            X 11  4  5  5 18 49  3%   by connections
1702  */
1703 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
1704
1705 /*
1706  * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
1707  * and good cryptographic properties.
1708  */
1709 static uint32_t
1710 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
1711     uint8_t *secbits, uintptr_t secmod)
1712 {
1713         SIPHASH_CTX ctx;
1714         uint32_t siphash[2];
1715
1716         SipHash24_Init(&ctx);
1717         SipHash_SetKey(&ctx, secbits);
1718         switch (inc->inc_flags & INC_ISIPV6) {
1719 #ifdef INET
1720         case 0:
1721                 SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
1722                 SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
1723                 break;
1724 #endif
1725 #ifdef INET6
1726         case INC_ISIPV6:
1727                 SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
1728                 SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
1729                 break;
1730 #endif
1731         }
1732         SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
1733         SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
1734         SipHash_Update(&ctx, &flags, sizeof(flags));
1735         SipHash_Update(&ctx, &secmod, sizeof(secmod));
1736         SipHash_Final((u_int8_t *)&siphash, &ctx);
1737
1738         return (siphash[0] ^ siphash[1]);
1739 }
1740
1741 static tcp_seq
1742 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
1743 {
1744         u_int i, mss, secbit, wscale;
1745         uint32_t iss, hash;
1746         uint8_t *secbits;
1747         union syncookie cookie;
1748
1749         SCH_LOCK_ASSERT(sch);
1750
1751         cookie.cookie = 0;
1752
1753         /* Map our computed MSS into the 3-bit index. */
1754         mss = min(tcp_mssopt(&sc->sc_inc), max(sc->sc_peer_mss, V_tcp_minmss));
1755         for (i = sizeof(tcp_sc_msstab) / sizeof(*tcp_sc_msstab) - 1;
1756              tcp_sc_msstab[i] > mss && i > 0;
1757              i--)
1758                 ;
1759         cookie.flags.mss_idx = i;
1760
1761         /*
1762          * Map the send window scale into the 3-bit index but only if
1763          * the wscale option was received.
1764          */
1765         if (sc->sc_flags & SCF_WINSCALE) {
1766                 wscale = sc->sc_requested_s_scale;
1767                 for (i = sizeof(tcp_sc_wstab) / sizeof(*tcp_sc_wstab) - 1;
1768                      tcp_sc_wstab[i] > wscale && i > 0;
1769                      i--)
1770                         ;
1771                 cookie.flags.wscale_idx = i;
1772         }
1773
1774         /* Can we do SACK? */
1775         if (sc->sc_flags & SCF_SACK)
1776                 cookie.flags.sack_ok = 1;
1777
1778         /* Which of the two secrets to use. */
1779         secbit = sch->sch_sc->secret.oddeven & 0x1;
1780         cookie.flags.odd_even = secbit;
1781
1782         secbits = sch->sch_sc->secret.key[secbit];
1783         hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
1784             (uintptr_t)sch);
1785
1786         /*
1787          * Put the flags into the hash and XOR them to get better ISS number
1788          * variance.  This doesn't enhance the cryptographic strength and is
1789          * done to prevent the 8 cookie bits from showing up directly on the
1790          * wire.
1791          */
1792         iss = hash & ~0xff;
1793         iss |= cookie.cookie ^ (hash >> 24);
1794
1795         /* Randomize the timestamp. */
1796         if (sc->sc_flags & SCF_TIMESTAMP) {
1797                 sc->sc_ts = arc4random();
1798                 sc->sc_tsoff = sc->sc_ts - tcp_ts_getticks();
1799         }
1800
1801         TCPSTAT_INC(tcps_sc_sendcookie);
1802         return (iss);
1803 }
1804
1805 static struct syncache *
1806 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch, 
1807     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
1808     struct socket *lso)
1809 {
1810         uint32_t hash;
1811         uint8_t *secbits;
1812         tcp_seq ack, seq;
1813         int wnd, wscale = 0;
1814         union syncookie cookie;
1815
1816         SCH_LOCK_ASSERT(sch);
1817
1818         /*
1819          * Pull information out of SYN-ACK/ACK and revert sequence number
1820          * advances.
1821          */
1822         ack = th->th_ack - 1;
1823         seq = th->th_seq - 1;
1824
1825         /*
1826          * Unpack the flags containing enough information to restore the
1827          * connection.
1828          */
1829         cookie.cookie = (ack & 0xff) ^ (ack >> 24);
1830
1831         /* Which of the two secrets to use. */
1832         secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
1833
1834         hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
1835
1836         /* The recomputed hash matches the ACK if this was a genuine cookie. */
1837         if ((ack & ~0xff) != (hash & ~0xff))
1838                 return (NULL);
1839
1840         /* Fill in the syncache values. */
1841         sc->sc_flags = 0;
1842         bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1843         sc->sc_ipopts = NULL;
1844         
1845         sc->sc_irs = seq;
1846         sc->sc_iss = ack;
1847
1848         switch (inc->inc_flags & INC_ISIPV6) {
1849 #ifdef INET
1850         case 0:
1851                 sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
1852                 sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
1853                 break;
1854 #endif
1855 #ifdef INET6
1856         case INC_ISIPV6:
1857                 if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
1858                         sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
1859                 break;
1860 #endif
1861         }
1862
1863         sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
1864
1865         /* We can simply recompute receive window scale we sent earlier. */
1866         while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
1867                 wscale++;
1868
1869         /* Only use wscale if it was enabled in the orignal SYN. */
1870         if (cookie.flags.wscale_idx > 0) {
1871                 sc->sc_requested_r_scale = wscale;
1872                 sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
1873                 sc->sc_flags |= SCF_WINSCALE;
1874         }
1875
1876         wnd = sbspace(&lso->so_rcv);
1877         wnd = imax(wnd, 0);
1878         wnd = imin(wnd, TCP_MAXWIN);
1879         sc->sc_wnd = wnd;
1880
1881         if (cookie.flags.sack_ok)
1882                 sc->sc_flags |= SCF_SACK;
1883
1884         if (to->to_flags & TOF_TS) {
1885                 sc->sc_flags |= SCF_TIMESTAMP;
1886                 sc->sc_tsreflect = to->to_tsval;
1887                 sc->sc_ts = to->to_tsecr;
1888                 sc->sc_tsoff = to->to_tsecr - tcp_ts_getticks();
1889         }
1890
1891         if (to->to_flags & TOF_SIGNATURE)
1892                 sc->sc_flags |= SCF_SIGNATURE;
1893
1894         sc->sc_rxmits = 0;
1895
1896         TCPSTAT_INC(tcps_sc_recvcookie);
1897         return (sc);
1898 }
1899
1900 #ifdef INVARIANTS
1901 static int
1902 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
1903     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
1904     struct socket *lso)
1905 {
1906         struct syncache scs, *scx;
1907         char *s;
1908
1909         bzero(&scs, sizeof(scs));
1910         scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
1911
1912         if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
1913                 return (0);
1914
1915         if (scx != NULL) {
1916                 if (sc->sc_peer_mss != scx->sc_peer_mss)
1917                         log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
1918                             s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
1919
1920                 if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
1921                         log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
1922                             s, __func__, sc->sc_requested_r_scale,
1923                             scx->sc_requested_r_scale);
1924
1925                 if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
1926                         log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
1927                             s, __func__, sc->sc_requested_s_scale,
1928                             scx->sc_requested_s_scale);
1929
1930                 if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
1931                         log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
1932         }
1933
1934         if (s != NULL)
1935                 free(s, M_TCPLOG);
1936         return (0);
1937 }
1938 #endif /* INVARIANTS */
1939
1940 static void
1941 syncookie_reseed(void *arg)
1942 {
1943         struct tcp_syncache *sc = arg;
1944         uint8_t *secbits;
1945         int secbit;
1946
1947         /*
1948          * Reseeding the secret doesn't have to be protected by a lock.
1949          * It only must be ensured that the new random values are visible
1950          * to all CPUs in a SMP environment.  The atomic with release
1951          * semantics ensures that.
1952          */
1953         secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
1954         secbits = sc->secret.key[secbit];
1955         arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
1956         atomic_add_rel_int(&sc->secret.oddeven, 1);
1957
1958         /* Reschedule ourself. */
1959         callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
1960 }
1961
1962 /*
1963  * Returns the current number of syncache entries.  This number
1964  * will probably change before you get around to calling 
1965  * syncache_pcblist.
1966  */
1967 int
1968 syncache_pcbcount(void)
1969 {
1970         struct syncache_head *sch;
1971         int count, i;
1972
1973         for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1974                 /* No need to lock for a read. */
1975                 sch = &V_tcp_syncache.hashbase[i];
1976                 count += sch->sch_length;
1977         }
1978         return count;
1979 }
1980
1981 /*
1982  * Exports the syncache entries to userland so that netstat can display
1983  * them alongside the other sockets.  This function is intended to be
1984  * called only from tcp_pcblist.
1985  *
1986  * Due to concurrency on an active system, the number of pcbs exported
1987  * may have no relation to max_pcbs.  max_pcbs merely indicates the
1988  * amount of space the caller allocated for this function to use.
1989  */
1990 int
1991 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
1992 {
1993         struct xtcpcb xt;
1994         struct syncache *sc;
1995         struct syncache_head *sch;
1996         int count, error, i;
1997
1998         for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1999                 sch = &V_tcp_syncache.hashbase[i];
2000                 SCH_LOCK(sch);
2001                 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2002                         if (count >= max_pcbs) {
2003                                 SCH_UNLOCK(sch);
2004                                 goto exit;
2005                         }
2006                         if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2007                                 continue;
2008                         bzero(&xt, sizeof(xt));
2009                         xt.xt_len = sizeof(xt);
2010                         if (sc->sc_inc.inc_flags & INC_ISIPV6)
2011                                 xt.xt_inp.inp_vflag = INP_IPV6;
2012                         else
2013                                 xt.xt_inp.inp_vflag = INP_IPV4;
2014                         bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
2015                         xt.xt_tp.t_inpcb = &xt.xt_inp;
2016                         xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
2017                         xt.xt_socket.xso_protocol = IPPROTO_TCP;
2018                         xt.xt_socket.xso_len = sizeof (struct xsocket);
2019                         xt.xt_socket.so_type = SOCK_STREAM;
2020                         xt.xt_socket.so_state = SS_ISCONNECTING;
2021                         error = SYSCTL_OUT(req, &xt, sizeof xt);
2022                         if (error) {
2023                                 SCH_UNLOCK(sch);
2024                                 goto exit;
2025                         }
2026                         count++;
2027                 }
2028                 SCH_UNLOCK(sch);
2029         }
2030 exit:
2031         *pcbs_exported = count;
2032         return error;
2033 }