]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/netpfil/ipfw/ip_fw_dynamic.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / netpfil / ipfw / ip_fw_dynamic.c
1 /*-
2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28
29 #define        DEB(x)
30 #define        DDB(x) x
31
32 /*
33  * Dynamic rule support for ipfw
34  */
35
36 #include "opt_ipfw.h"
37 #include "opt_inet.h"
38 #ifndef INET
39 #error IPFIREWALL requires INET.
40 #endif /* INET */
41 #include "opt_inet6.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/socket.h>
50 #include <sys/sysctl.h>
51 #include <sys/syslog.h>
52 #include <net/ethernet.h> /* for ETHERTYPE_IP */
53 #include <net/if.h>
54 #include <net/vnet.h>
55
56 #include <netinet/in.h>
57 #include <netinet/ip.h>
58 #include <netinet/ip_var.h>     /* ip_defttl */
59 #include <netinet/ip_fw.h>
60 #include <netinet/tcp_var.h>
61 #include <netinet/udp.h>
62
63 #include <netinet/ip6.h>        /* IN6_ARE_ADDR_EQUAL */
64 #ifdef INET6
65 #include <netinet6/in6_var.h>
66 #include <netinet6/ip6_var.h>
67 #endif
68
69 #include <netpfil/ipfw/ip_fw_private.h>
70
71 #include <machine/in_cksum.h>   /* XXX for in_cksum */
72
73 #ifdef MAC
74 #include <security/mac/mac_framework.h>
75 #endif
76
77 /*
78  * Description of dynamic rules.
79  *
80  * Dynamic rules are stored in lists accessed through a hash table
81  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
82  * be modified through the sysctl variable dyn_buckets which is
83  * updated when the table becomes empty.
84  *
85  * XXX currently there is only one list, ipfw_dyn.
86  *
87  * When a packet is received, its address fields are first masked
88  * with the mask defined for the rule, then hashed, then matched
89  * against the entries in the corresponding list.
90  * Dynamic rules can be used for different purposes:
91  *  + stateful rules;
92  *  + enforcing limits on the number of sessions;
93  *  + in-kernel NAT (not implemented yet)
94  *
95  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
96  * measured in seconds and depending on the flags.
97  *
98  * The total number of dynamic rules is equal to UMA zone items count.
99  * The max number of dynamic rules is dyn_max. When we reach
100  * the maximum number of rules we do not create anymore. This is
101  * done to avoid consuming too much memory, but also too much
102  * time when searching on each packet (ideally, we should try instead
103  * to put a limit on the length of the list on each bucket...).
104  *
105  * Each dynamic rule holds a pointer to the parent ipfw rule so
106  * we know what action to perform. Dynamic rules are removed when
107  * the parent rule is deleted. XXX we should make them survive.
108  *
109  * There are some limitations with dynamic rules -- we do not
110  * obey the 'randomized match', and we do not do multiple
111  * passes through the firewall. XXX check the latter!!!
112  */
113
114 struct ipfw_dyn_bucket {
115         struct mtx      mtx;            /* Bucket protecting lock */
116         ipfw_dyn_rule   *head;          /* Pointer to first rule */
117 };
118
119 /*
120  * Static variables followed by global ones
121  */
122 static VNET_DEFINE(struct ipfw_dyn_bucket *, ipfw_dyn_v);
123 static VNET_DEFINE(u_int32_t, dyn_buckets_max);
124 static VNET_DEFINE(u_int32_t, curr_dyn_buckets);
125 static VNET_DEFINE(struct callout, ipfw_timeout);
126 #define V_ipfw_dyn_v                    VNET(ipfw_dyn_v)
127 #define V_dyn_buckets_max               VNET(dyn_buckets_max)
128 #define V_curr_dyn_buckets              VNET(curr_dyn_buckets)
129 #define V_ipfw_timeout                  VNET(ipfw_timeout)
130
131 static VNET_DEFINE(uma_zone_t, ipfw_dyn_rule_zone);
132 #define V_ipfw_dyn_rule_zone            VNET(ipfw_dyn_rule_zone)
133
134 #define IPFW_BUCK_LOCK_INIT(b)  \
135         mtx_init(&(b)->mtx, "IPFW dynamic bucket", NULL, MTX_DEF)
136 #define IPFW_BUCK_LOCK_DESTROY(b)       \
137         mtx_destroy(&(b)->mtx)
138 #define IPFW_BUCK_LOCK(i)       mtx_lock(&V_ipfw_dyn_v[(i)].mtx)
139 #define IPFW_BUCK_UNLOCK(i)     mtx_unlock(&V_ipfw_dyn_v[(i)].mtx)
140 #define IPFW_BUCK_ASSERT(i)     mtx_assert(&V_ipfw_dyn_v[(i)].mtx, MA_OWNED)
141
142 /*
143  * Timeouts for various events in handing dynamic rules.
144  */
145 static VNET_DEFINE(u_int32_t, dyn_ack_lifetime);
146 static VNET_DEFINE(u_int32_t, dyn_syn_lifetime);
147 static VNET_DEFINE(u_int32_t, dyn_fin_lifetime);
148 static VNET_DEFINE(u_int32_t, dyn_rst_lifetime);
149 static VNET_DEFINE(u_int32_t, dyn_udp_lifetime);
150 static VNET_DEFINE(u_int32_t, dyn_short_lifetime);
151
152 #define V_dyn_ack_lifetime              VNET(dyn_ack_lifetime)
153 #define V_dyn_syn_lifetime              VNET(dyn_syn_lifetime)
154 #define V_dyn_fin_lifetime              VNET(dyn_fin_lifetime)
155 #define V_dyn_rst_lifetime              VNET(dyn_rst_lifetime)
156 #define V_dyn_udp_lifetime              VNET(dyn_udp_lifetime)
157 #define V_dyn_short_lifetime            VNET(dyn_short_lifetime)
158
159 /*
160  * Keepalives are sent if dyn_keepalive is set. They are sent every
161  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
162  * seconds of lifetime of a rule.
163  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
164  * than dyn_keepalive_period.
165  */
166
167 static VNET_DEFINE(u_int32_t, dyn_keepalive_interval);
168 static VNET_DEFINE(u_int32_t, dyn_keepalive_period);
169 static VNET_DEFINE(u_int32_t, dyn_keepalive);
170 static VNET_DEFINE(time_t, dyn_keepalive_last);
171
172 #define V_dyn_keepalive_interval        VNET(dyn_keepalive_interval)
173 #define V_dyn_keepalive_period          VNET(dyn_keepalive_period)
174 #define V_dyn_keepalive                 VNET(dyn_keepalive)
175 #define V_dyn_keepalive_last            VNET(dyn_keepalive_last)
176
177 static VNET_DEFINE(u_int32_t, dyn_max);         /* max # of dynamic rules */
178
179 #define DYN_COUNT                       uma_zone_get_cur(V_ipfw_dyn_rule_zone)
180 #define V_dyn_max                       VNET(dyn_max)
181
182 static int last_log;    /* Log ratelimiting */
183
184 static void ipfw_dyn_tick(void *vnetx);
185 static void check_dyn_rules(struct ip_fw_chain *, struct ip_fw *,
186     int, int, int);
187 #ifdef SYSCTL_NODE
188
189 static int sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS);
190 static int sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS);
191
192 SYSBEGIN(f2)
193
194 SYSCTL_DECL(_net_inet_ip_fw);
195 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
196     CTLFLAG_RW, &VNET_NAME(dyn_buckets_max), 0,
197     "Max number of dyn. buckets");
198 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
199     CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
200     "Current Number of dyn. buckets");
201 SYSCTL_VNET_PROC(_net_inet_ip_fw, OID_AUTO, dyn_count,
202     CTLTYPE_UINT|CTLFLAG_RD, 0, 0, sysctl_ipfw_dyn_count, "IU",
203     "Number of dyn. rules");
204 SYSCTL_VNET_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
205     CTLTYPE_UINT|CTLFLAG_RW, 0, 0, sysctl_ipfw_dyn_max, "IU",
206     "Max number of dyn. rules");
207 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
208     CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
209     "Lifetime of dyn. rules for acks");
210 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
211     CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
212     "Lifetime of dyn. rules for syn");
213 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
214     CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
215     "Lifetime of dyn. rules for fin");
216 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
217     CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
218     "Lifetime of dyn. rules for rst");
219 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
220     CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
221     "Lifetime of dyn. rules for UDP");
222 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
223     CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
224     "Lifetime of dyn. rules for other situations");
225 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
226     CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
227     "Enable keepalives for dyn. rules");
228
229 SYSEND
230
231 #endif /* SYSCTL_NODE */
232
233
234 #ifdef INET6
235 static __inline int
236 hash_packet6(struct ipfw_flow_id *id)
237 {
238         u_int32_t i;
239         i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
240             (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
241             (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
242             (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
243             (id->dst_port) ^ (id->src_port);
244         return i;
245 }
246 #endif
247
248 /*
249  * IMPORTANT: the hash function for dynamic rules must be commutative
250  * in source and destination (ip,port), because rules are bidirectional
251  * and we want to find both in the same bucket.
252  */
253 static __inline int
254 hash_packet(struct ipfw_flow_id *id, int buckets)
255 {
256         u_int32_t i;
257
258 #ifdef INET6
259         if (IS_IP6_FLOW_ID(id)) 
260                 i = hash_packet6(id);
261         else
262 #endif /* INET6 */
263         i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
264         i &= (buckets - 1);
265         return i;
266 }
267
268 /**
269  * Print customizable flow id description via log(9) facility.
270  */
271 static void
272 print_dyn_rule_flags(struct ipfw_flow_id *id, int dyn_type, int log_flags,
273     char *prefix, char *postfix)
274 {
275         struct in_addr da;
276 #ifdef INET6
277         char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
278 #else
279         char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
280 #endif
281
282 #ifdef INET6
283         if (IS_IP6_FLOW_ID(id)) {
284                 ip6_sprintf(src, &id->src_ip6);
285                 ip6_sprintf(dst, &id->dst_ip6);
286         } else
287 #endif
288         {
289                 da.s_addr = htonl(id->src_ip);
290                 inet_ntop(AF_INET, &da, src, sizeof(src));
291                 da.s_addr = htonl(id->dst_ip);
292                 inet_ntop(AF_INET, &da, dst, sizeof(dst));
293         }
294         log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
295             prefix, dyn_type, src, id->src_port, dst,
296             id->dst_port, DYN_COUNT, postfix);
297 }
298
299 #define print_dyn_rule(id, dtype, prefix, postfix)      \
300         print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
301
302 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
303
304 /*
305  * Lookup a dynamic rule, locked version.
306  */
307 static ipfw_dyn_rule *
308 lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int i, int *match_direction,
309     struct tcphdr *tcp)
310 {
311         /*
312          * Stateful ipfw extensions.
313          * Lookup into dynamic session queue.
314          */
315 #define MATCH_REVERSE   0
316 #define MATCH_FORWARD   1
317 #define MATCH_NONE      2
318 #define MATCH_UNKNOWN   3
319         int dir = MATCH_NONE;
320         ipfw_dyn_rule *prev, *q = NULL;
321
322         IPFW_BUCK_ASSERT(i);
323
324         for (prev = NULL, q = V_ipfw_dyn_v[i].head; q; prev = q, q = q->next) {
325                 if (q->dyn_type == O_LIMIT_PARENT && q->count)
326                         continue;
327
328                 if (pkt->proto != q->id.proto || q->dyn_type == O_LIMIT_PARENT)
329                         continue;
330
331                 if (IS_IP6_FLOW_ID(pkt)) {
332                         if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.src_ip6) &&
333                             IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.dst_ip6) &&
334                             pkt->src_port == q->id.src_port &&
335                             pkt->dst_port == q->id.dst_port) {
336                                 dir = MATCH_FORWARD;
337                                 break;
338                         }
339                         if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.dst_ip6) &&
340                             IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.src_ip6) &&
341                             pkt->src_port == q->id.dst_port &&
342                             pkt->dst_port == q->id.src_port) {
343                                 dir = MATCH_REVERSE;
344                                 break;
345                         }
346                 } else {
347                         if (pkt->src_ip == q->id.src_ip &&
348                             pkt->dst_ip == q->id.dst_ip &&
349                             pkt->src_port == q->id.src_port &&
350                             pkt->dst_port == q->id.dst_port) {
351                                 dir = MATCH_FORWARD;
352                                 break;
353                         }
354                         if (pkt->src_ip == q->id.dst_ip &&
355                             pkt->dst_ip == q->id.src_ip &&
356                             pkt->src_port == q->id.dst_port &&
357                             pkt->dst_port == q->id.src_port) {
358                                 dir = MATCH_REVERSE;
359                                 break;
360                         }
361                 }
362         }
363         if (q == NULL)
364                 goto done;      /* q = NULL, not found */
365
366         if (prev != NULL) {     /* found and not in front */
367                 prev->next = q->next;
368                 q->next = V_ipfw_dyn_v[i].head;
369                 V_ipfw_dyn_v[i].head = q;
370         }
371         if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
372                 uint32_t ack;
373                 u_char flags = pkt->_flags & (TH_FIN | TH_SYN | TH_RST);
374
375 #define BOTH_SYN        (TH_SYN | (TH_SYN << 8))
376 #define BOTH_FIN        (TH_FIN | (TH_FIN << 8))
377 #define TCP_FLAGS       (TH_FLAGS | (TH_FLAGS << 8))
378 #define ACK_FWD         0x10000                 /* fwd ack seen */
379 #define ACK_REV         0x20000                 /* rev ack seen */
380
381                 q->state |= (dir == MATCH_FORWARD) ? flags : (flags << 8);
382                 switch (q->state & TCP_FLAGS) {
383                 case TH_SYN:                    /* opening */
384                         q->expire = time_uptime + V_dyn_syn_lifetime;
385                         break;
386
387                 case BOTH_SYN:                  /* move to established */
388                 case BOTH_SYN | TH_FIN:         /* one side tries to close */
389                 case BOTH_SYN | (TH_FIN << 8):
390 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
391                         if (tcp == NULL)
392                                 break;
393
394                         ack = ntohl(tcp->th_ack);
395                         if (dir == MATCH_FORWARD) {
396                                 if (q->ack_fwd == 0 ||
397                                     _SEQ_GE(ack, q->ack_fwd)) {
398                                         q->ack_fwd = ack;
399                                         q->state |= ACK_FWD;
400                                 }
401                         } else {
402                                 if (q->ack_rev == 0 ||
403                                     _SEQ_GE(ack, q->ack_rev)) {
404                                         q->ack_rev = ack;
405                                         q->state |= ACK_REV;
406                                 }
407                         }
408                         if ((q->state & (ACK_FWD | ACK_REV)) ==
409                             (ACK_FWD | ACK_REV)) {
410                                 q->expire = time_uptime + V_dyn_ack_lifetime;
411                                 q->state &= ~(ACK_FWD | ACK_REV);
412                         }
413                         break;
414
415                 case BOTH_SYN | BOTH_FIN:       /* both sides closed */
416                         if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
417                                 V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
418                         q->expire = time_uptime + V_dyn_fin_lifetime;
419                         break;
420
421                 default:
422 #if 0
423                         /*
424                          * reset or some invalid combination, but can also
425                          * occur if we use keep-state the wrong way.
426                          */
427                         if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
428                                 printf("invalid state: 0x%x\n", q->state);
429 #endif
430                         if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
431                                 V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
432                         q->expire = time_uptime + V_dyn_rst_lifetime;
433                         break;
434                 }
435         } else if (pkt->proto == IPPROTO_UDP) {
436                 q->expire = time_uptime + V_dyn_udp_lifetime;
437         } else {
438                 /* other protocols */
439                 q->expire = time_uptime + V_dyn_short_lifetime;
440         }
441 done:
442         if (match_direction != NULL)
443                 *match_direction = dir;
444         return (q);
445 }
446
447 ipfw_dyn_rule *
448 ipfw_lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
449     struct tcphdr *tcp)
450 {
451         ipfw_dyn_rule *q;
452         int i;
453
454         i = hash_packet(pkt, V_curr_dyn_buckets);
455
456         IPFW_BUCK_LOCK(i);
457         q = lookup_dyn_rule_locked(pkt, i, match_direction, tcp);
458         if (q == NULL)
459                 IPFW_BUCK_UNLOCK(i);
460         /* NB: return table locked when q is not NULL */
461         return q;
462 }
463
464 /*
465  * Unlock bucket mtx
466  * @p - pointer to dynamic rule
467  */
468 void
469 ipfw_dyn_unlock(ipfw_dyn_rule *q)
470 {
471
472         IPFW_BUCK_UNLOCK(q->bucket);
473 }
474
475 static int
476 resize_dynamic_table(struct ip_fw_chain *chain, int nbuckets)
477 {
478         int i, k, nbuckets_old;
479         ipfw_dyn_rule *q;
480         struct ipfw_dyn_bucket *dyn_v, *dyn_v_old;
481
482         /* Check if given number is power of 2 and less than 64k */
483         if ((nbuckets > 65536) || (!powerof2(nbuckets)))
484                 return 1;
485
486         CTR3(KTR_NET, "%s: resize dynamic hash: %d -> %d", __func__,
487             V_curr_dyn_buckets, nbuckets);
488
489         /* Allocate and initialize new hash */
490         dyn_v = malloc(nbuckets * sizeof(ipfw_dyn_rule), M_IPFW,
491             M_WAITOK | M_ZERO);
492
493         for (i = 0 ; i < nbuckets; i++)
494                 IPFW_BUCK_LOCK_INIT(&dyn_v[i]);
495
496         /*
497          * Call upper half lock, as get_map() do to ease
498          * read-only access to dynamic rules hash from sysctl
499          */
500         IPFW_UH_WLOCK(chain);
501
502         /*
503          * Acquire chain write lock to permit hash access
504          * for main traffic path without additional locks
505          */
506         IPFW_WLOCK(chain);
507
508         /* Save old values */
509         nbuckets_old = V_curr_dyn_buckets;
510         dyn_v_old = V_ipfw_dyn_v;
511
512         /* Skip relinking if array is not set up */
513         if (V_ipfw_dyn_v == NULL)
514                 V_curr_dyn_buckets = 0;
515
516         /* Re-link all dynamic states */
517         for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
518                 while (V_ipfw_dyn_v[i].head != NULL) {
519                         /* Remove from current chain */
520                         q = V_ipfw_dyn_v[i].head;
521                         V_ipfw_dyn_v[i].head = q->next;
522
523                         /* Get new hash value */
524                         k = hash_packet(&q->id, nbuckets);
525                         q->bucket = k;
526                         /* Add to the new head */
527                         q->next = dyn_v[k].head;
528                         dyn_v[k].head = q;
529              }
530         }
531
532         /* Update current pointers/buckets values */
533         V_curr_dyn_buckets = nbuckets;
534         V_ipfw_dyn_v = dyn_v;
535
536         IPFW_WUNLOCK(chain);
537
538         IPFW_UH_WUNLOCK(chain);
539
540         /* Start periodic callout on initial creation */
541         if (dyn_v_old == NULL) {
542                 callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, curvnet, 0);
543                 return (0);
544         }
545
546         /* Destroy all mutexes */
547         for (i = 0 ; i < nbuckets_old ; i++)
548                 IPFW_BUCK_LOCK_DESTROY(&dyn_v_old[i]);
549
550         /* Free old hash */
551         free(dyn_v_old, M_IPFW);
552
553         return 0;
554 }
555
556 /**
557  * Install state of type 'type' for a dynamic session.
558  * The hash table contains two type of rules:
559  * - regular rules (O_KEEP_STATE)
560  * - rules for sessions with limited number of sess per user
561  *   (O_LIMIT). When they are created, the parent is
562  *   increased by 1, and decreased on delete. In this case,
563  *   the third parameter is the parent rule and not the chain.
564  * - "parent" rules for the above (O_LIMIT_PARENT).
565  */
566 static ipfw_dyn_rule *
567 add_dyn_rule(struct ipfw_flow_id *id, int i, u_int8_t dyn_type, struct ip_fw *rule)
568 {
569         ipfw_dyn_rule *r;
570
571         IPFW_BUCK_ASSERT(i);
572
573         r = uma_zalloc(V_ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
574         if (r == NULL) {
575                 if (last_log != time_uptime) {
576                         last_log = time_uptime;
577                         log(LOG_DEBUG, "ipfw: %s: Cannot allocate rule\n",
578                             __func__);
579                 }
580                 return NULL;
581         }
582
583         /*
584          * refcount on parent is already incremented, so
585          * it is safe to use parent unlocked.
586          */
587         if (dyn_type == O_LIMIT) {
588                 ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
589                 if ( parent->dyn_type != O_LIMIT_PARENT)
590                         panic("invalid parent");
591                 r->parent = parent;
592                 rule = parent->rule;
593         }
594
595         r->id = *id;
596         r->expire = time_uptime + V_dyn_syn_lifetime;
597         r->rule = rule;
598         r->dyn_type = dyn_type;
599         IPFW_ZERO_DYN_COUNTER(r);
600         r->count = 0;
601
602         r->bucket = i;
603         r->next = V_ipfw_dyn_v[i].head;
604         V_ipfw_dyn_v[i].head = r;
605         DEB(print_dyn_rule(id, dyn_type, "add dyn entry", "total");)
606         return r;
607 }
608
609 /**
610  * lookup dynamic parent rule using pkt and rule as search keys.
611  * If the lookup fails, then install one.
612  */
613 static ipfw_dyn_rule *
614 lookup_dyn_parent(struct ipfw_flow_id *pkt, int *pindex, struct ip_fw *rule)
615 {
616         ipfw_dyn_rule *q;
617         int i, is_v6;
618
619         is_v6 = IS_IP6_FLOW_ID(pkt);
620         i = hash_packet( pkt, V_curr_dyn_buckets );
621         *pindex = i;
622         IPFW_BUCK_LOCK(i);
623         for (q = V_ipfw_dyn_v[i].head ; q != NULL ; q=q->next)
624                 if (q->dyn_type == O_LIMIT_PARENT &&
625                     rule== q->rule &&
626                     pkt->proto == q->id.proto &&
627                     pkt->src_port == q->id.src_port &&
628                     pkt->dst_port == q->id.dst_port &&
629                     (
630                         (is_v6 &&
631                          IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
632                                 &(q->id.src_ip6)) &&
633                          IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
634                                 &(q->id.dst_ip6))) ||
635                         (!is_v6 &&
636                          pkt->src_ip == q->id.src_ip &&
637                          pkt->dst_ip == q->id.dst_ip)
638                     )
639                 ) {
640                         q->expire = time_uptime + V_dyn_short_lifetime;
641                         DEB(print_dyn_rule(pkt, q->dyn_type,
642                             "lookup_dyn_parent found", "");)
643                         return q;
644                 }
645
646         /* Add virtual limiting rule */
647         return add_dyn_rule(pkt, i, O_LIMIT_PARENT, rule);
648 }
649
650 /**
651  * Install dynamic state for rule type cmd->o.opcode
652  *
653  * Returns 1 (failure) if state is not installed because of errors or because
654  * session limitations are enforced.
655  */
656 int
657 ipfw_install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
658     struct ip_fw_args *args, uint32_t tablearg)
659 {
660         ipfw_dyn_rule *q;
661         int i;
662
663         DEB(print_dyn_rule(&args->f_id, cmd->o.opcode, "install_state", "");)
664         
665         i = hash_packet(&args->f_id, V_curr_dyn_buckets);
666
667         IPFW_BUCK_LOCK(i);
668
669         q = lookup_dyn_rule_locked(&args->f_id, i, NULL, NULL);
670
671         if (q != NULL) {        /* should never occur */
672                 DEB(
673                 if (last_log != time_uptime) {
674                         last_log = time_uptime;
675                         printf("ipfw: %s: entry already present, done\n",
676                             __func__);
677                 })
678                 IPFW_BUCK_UNLOCK(i);
679                 return (0);
680         }
681
682         /*
683          * State limiting is done via uma(9) zone limiting.
684          * Save pointer to newly-installed rule and reject
685          * packet if add_dyn_rule() returned NULL.
686          * Note q is currently set to NULL.
687          */
688
689         switch (cmd->o.opcode) {
690         case O_KEEP_STATE:      /* bidir rule */
691                 q = add_dyn_rule(&args->f_id, i, O_KEEP_STATE, rule);
692                 break;
693
694         case O_LIMIT: {         /* limit number of sessions */
695                 struct ipfw_flow_id id;
696                 ipfw_dyn_rule *parent;
697                 uint32_t conn_limit;
698                 uint16_t limit_mask = cmd->limit_mask;
699                 int pindex;
700
701                 conn_limit = IP_FW_ARG_TABLEARG(cmd->conn_limit);
702                   
703                 DEB(
704                 if (cmd->conn_limit == IP_FW_TABLEARG)
705                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
706                             "(tablearg)\n", __func__, conn_limit);
707                 else
708                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
709                             __func__, conn_limit);
710                 )
711
712                 id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
713                 id.proto = args->f_id.proto;
714                 id.addr_type = args->f_id.addr_type;
715                 id.fib = M_GETFIB(args->m);
716
717                 if (IS_IP6_FLOW_ID (&(args->f_id))) {
718                         if (limit_mask & DYN_SRC_ADDR)
719                                 id.src_ip6 = args->f_id.src_ip6;
720                         if (limit_mask & DYN_DST_ADDR)
721                                 id.dst_ip6 = args->f_id.dst_ip6;
722                 } else {
723                         if (limit_mask & DYN_SRC_ADDR)
724                                 id.src_ip = args->f_id.src_ip;
725                         if (limit_mask & DYN_DST_ADDR)
726                                 id.dst_ip = args->f_id.dst_ip;
727                 }
728                 if (limit_mask & DYN_SRC_PORT)
729                         id.src_port = args->f_id.src_port;
730                 if (limit_mask & DYN_DST_PORT)
731                         id.dst_port = args->f_id.dst_port;
732
733                 /*
734                  * We have to release lock for previous bucket to
735                  * avoid possible deadlock
736                  */
737                 IPFW_BUCK_UNLOCK(i);
738
739                 if ((parent = lookup_dyn_parent(&id, &pindex, rule)) == NULL) {
740                         printf("ipfw: %s: add parent failed\n", __func__);
741                         IPFW_BUCK_UNLOCK(pindex);
742                         return (1);
743                 }
744
745                 if (parent->count >= conn_limit) {
746                         if (V_fw_verbose && last_log != time_uptime) {
747                                 last_log = time_uptime;
748                                 char sbuf[24];
749                                 last_log = time_uptime;
750                                 snprintf(sbuf, sizeof(sbuf),
751                                     "%d drop session",
752                                     parent->rule->rulenum);
753                                 print_dyn_rule_flags(&args->f_id,
754                                     cmd->o.opcode,
755                                     LOG_SECURITY | LOG_DEBUG,
756                                     sbuf, "too many entries");
757                         }
758                         IPFW_BUCK_UNLOCK(pindex);
759                         return (1);
760                 }
761                 /* Increment counter on parent */
762                 parent->count++;
763                 IPFW_BUCK_UNLOCK(pindex);
764
765                 IPFW_BUCK_LOCK(i);
766                 q = add_dyn_rule(&args->f_id, i, O_LIMIT, (struct ip_fw *)parent);
767                 if (q == NULL) {
768                         /* Decrement index and notify caller */
769                         IPFW_BUCK_UNLOCK(i);
770                         IPFW_BUCK_LOCK(pindex);
771                         parent->count--;
772                         IPFW_BUCK_UNLOCK(pindex);
773                         return (1);
774                 }
775                 break;
776         }
777         default:
778                 printf("ipfw: %s: unknown dynamic rule type %u\n",
779                     __func__, cmd->o.opcode);
780         }
781
782         if (q == NULL) {
783                 IPFW_BUCK_UNLOCK(i);
784                 return (1);     /* Notify caller about failure */
785         }
786
787         /* XXX just set lifetime */
788         lookup_dyn_rule_locked(&args->f_id, i, NULL, NULL);
789
790         IPFW_BUCK_UNLOCK(i);
791         return (0);
792 }
793
794 /*
795  * Generate a TCP packet, containing either a RST or a keepalive.
796  * When flags & TH_RST, we are sending a RST packet, because of a
797  * "reset" action matched the packet.
798  * Otherwise we are sending a keepalive, and flags & TH_
799  * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
800  * so that MAC can label the reply appropriately.
801  */
802 struct mbuf *
803 ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
804     u_int32_t ack, int flags)
805 {
806         struct mbuf *m = NULL;          /* stupid compiler */
807         int len, dir;
808         struct ip *h = NULL;            /* stupid compiler */
809 #ifdef INET6
810         struct ip6_hdr *h6 = NULL;
811 #endif
812         struct tcphdr *th = NULL;
813
814         MGETHDR(m, M_NOWAIT, MT_DATA);
815         if (m == NULL)
816                 return (NULL);
817
818         M_SETFIB(m, id->fib);
819 #ifdef MAC
820         if (replyto != NULL)
821                 mac_netinet_firewall_reply(replyto, m);
822         else
823                 mac_netinet_firewall_send(m);
824 #else
825         (void)replyto;          /* don't warn about unused arg */
826 #endif
827
828         switch (id->addr_type) {
829         case 4:
830                 len = sizeof(struct ip) + sizeof(struct tcphdr);
831                 break;
832 #ifdef INET6
833         case 6:
834                 len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
835                 break;
836 #endif
837         default:
838                 /* XXX: log me?!? */
839                 FREE_PKT(m);
840                 return (NULL);
841         }
842         dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN);
843
844         m->m_data += max_linkhdr;
845         m->m_flags |= M_SKIP_FIREWALL;
846         m->m_pkthdr.len = m->m_len = len;
847         m->m_pkthdr.rcvif = NULL;
848         bzero(m->m_data, len);
849
850         switch (id->addr_type) {
851         case 4:
852                 h = mtod(m, struct ip *);
853
854                 /* prepare for checksum */
855                 h->ip_p = IPPROTO_TCP;
856                 h->ip_len = htons(sizeof(struct tcphdr));
857                 if (dir) {
858                         h->ip_src.s_addr = htonl(id->src_ip);
859                         h->ip_dst.s_addr = htonl(id->dst_ip);
860                 } else {
861                         h->ip_src.s_addr = htonl(id->dst_ip);
862                         h->ip_dst.s_addr = htonl(id->src_ip);
863                 }
864
865                 th = (struct tcphdr *)(h + 1);
866                 break;
867 #ifdef INET6
868         case 6:
869                 h6 = mtod(m, struct ip6_hdr *);
870
871                 /* prepare for checksum */
872                 h6->ip6_nxt = IPPROTO_TCP;
873                 h6->ip6_plen = htons(sizeof(struct tcphdr));
874                 if (dir) {
875                         h6->ip6_src = id->src_ip6;
876                         h6->ip6_dst = id->dst_ip6;
877                 } else {
878                         h6->ip6_src = id->dst_ip6;
879                         h6->ip6_dst = id->src_ip6;
880                 }
881
882                 th = (struct tcphdr *)(h6 + 1);
883                 break;
884 #endif
885         }
886
887         if (dir) {
888                 th->th_sport = htons(id->src_port);
889                 th->th_dport = htons(id->dst_port);
890         } else {
891                 th->th_sport = htons(id->dst_port);
892                 th->th_dport = htons(id->src_port);
893         }
894         th->th_off = sizeof(struct tcphdr) >> 2;
895
896         if (flags & TH_RST) {
897                 if (flags & TH_ACK) {
898                         th->th_seq = htonl(ack);
899                         th->th_flags = TH_RST;
900                 } else {
901                         if (flags & TH_SYN)
902                                 seq++;
903                         th->th_ack = htonl(seq);
904                         th->th_flags = TH_RST | TH_ACK;
905                 }
906         } else {
907                 /*
908                  * Keepalive - use caller provided sequence numbers
909                  */
910                 th->th_seq = htonl(seq);
911                 th->th_ack = htonl(ack);
912                 th->th_flags = TH_ACK;
913         }
914
915         switch (id->addr_type) {
916         case 4:
917                 th->th_sum = in_cksum(m, len);
918
919                 /* finish the ip header */
920                 h->ip_v = 4;
921                 h->ip_hl = sizeof(*h) >> 2;
922                 h->ip_tos = IPTOS_LOWDELAY;
923                 h->ip_off = htons(0);
924                 h->ip_len = htons(len);
925                 h->ip_ttl = V_ip_defttl;
926                 h->ip_sum = 0;
927                 break;
928 #ifdef INET6
929         case 6:
930                 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6),
931                     sizeof(struct tcphdr));
932
933                 /* finish the ip6 header */
934                 h6->ip6_vfc |= IPV6_VERSION;
935                 h6->ip6_hlim = IPV6_DEFHLIM;
936                 break;
937 #endif
938         }
939
940         return (m);
941 }
942
943 /*
944  * Queue keepalive packets for given dynamic rule
945  */
946 static struct mbuf **
947 ipfw_dyn_send_ka(struct mbuf **mtailp, ipfw_dyn_rule *q)
948 {
949         struct mbuf *m_rev, *m_fwd;
950
951         m_rev = (q->state & ACK_REV) ? NULL :
952             ipfw_send_pkt(NULL, &(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN);
953         m_fwd = (q->state & ACK_FWD) ? NULL :
954             ipfw_send_pkt(NULL, &(q->id), q->ack_fwd - 1, q->ack_rev, 0);
955
956         if (m_rev != NULL) {
957                 *mtailp = m_rev;
958                 mtailp = &(*mtailp)->m_nextpkt;
959         }
960         if (m_fwd != NULL) {
961                 *mtailp = m_fwd;
962                 mtailp = &(*mtailp)->m_nextpkt;
963         }
964
965         return (mtailp);
966 }
967
968 /*
969  * This procedure is used to perform various maintance
970  * on dynamic hash list. Currently it is called every second.
971  */
972 static void
973 ipfw_dyn_tick(void * vnetx) 
974 {
975         struct ip_fw_chain *chain;
976         int check_ka = 0;
977 #ifdef VIMAGE
978         struct vnet *vp = vnetx;
979 #endif
980
981         CURVNET_SET(vp);
982
983         chain = &V_layer3_chain;
984
985         /* Run keepalive checks every keepalive_period iff ka is enabled */
986         if ((V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) &&
987             (V_dyn_keepalive != 0)) {
988                 V_dyn_keepalive_last = time_uptime;
989                 check_ka = 1;
990         }
991
992         check_dyn_rules(chain, NULL, RESVD_SET, check_ka, 1);
993
994         callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, vnetx, 0);
995
996         CURVNET_RESTORE();
997 }
998
999
1000 /*
1001  * Walk thru all dynamic states doing generic maintance:
1002  * 1) free expired states
1003  * 2) free all states based on deleted rule / set
1004  * 3) send keepalives for states if needed
1005  *
1006  * @chain - pointer to current ipfw rules chain
1007  * @rule - delete all states originated by given rule if != NULL
1008  * @set - delete all states originated by any rule in set @set if != RESVD_SET
1009  * @check_ka - perform checking/sending keepalives
1010  * @timer - indicate call from timer routine.
1011  *
1012  * Timer routine must call this function unlocked to permit
1013  * sending keepalives/resizing table.
1014  *
1015  * Others has to call function with IPFW_UH_WLOCK held.
1016  * Additionally, function assume that dynamic rule/set is
1017  * ALREADY deleted so no new states can be generated by
1018  * 'deleted' rules.
1019  *
1020  * Write lock is needed to ensure that unused parent rules
1021  * are not freed by other instance (see stage 2, 3)
1022  */
1023 static void
1024 check_dyn_rules(struct ip_fw_chain *chain, struct ip_fw *rule,
1025     int set, int check_ka, int timer)
1026 {
1027         struct mbuf *m0, *m, *mnext, **mtailp;
1028         struct ip *h;
1029         int i, dyn_count, new_buckets = 0, max_buckets;
1030         int expired = 0, expired_limits = 0, parents = 0, total = 0;
1031         ipfw_dyn_rule *q, *q_prev, *q_next;
1032         ipfw_dyn_rule *exp_head, **exptailp;
1033         ipfw_dyn_rule *exp_lhead, **expltailp;
1034
1035         KASSERT(V_ipfw_dyn_v != NULL, ("%s: dynamic table not allocated",
1036             __func__));
1037
1038         /* Avoid possible LOR */
1039         KASSERT(!check_ka || timer, ("%s: keepalive check with lock held",
1040             __func__));
1041
1042         /*
1043          * Do not perform any checks if we currently have no dynamic states
1044          */
1045         if (DYN_COUNT == 0)
1046                 return;
1047
1048         /* Expired states */
1049         exp_head = NULL;
1050         exptailp = &exp_head;
1051
1052         /* Expired limit states */
1053         exp_lhead = NULL;
1054         expltailp = &exp_lhead;
1055
1056         /*
1057          * We make a chain of packets to go out here -- not deferring
1058          * until after we drop the IPFW dynamic rule lock would result
1059          * in a lock order reversal with the normal packet input -> ipfw
1060          * call stack.
1061          */
1062         m0 = NULL;
1063         mtailp = &m0;
1064
1065         /* Protect from hash resizing */
1066         if (timer != 0)
1067                 IPFW_UH_WLOCK(chain);
1068         else
1069                 IPFW_UH_WLOCK_ASSERT(chain);
1070
1071 #define NEXT_RULE()     { q_prev = q; q = q->next ; continue; }
1072
1073         /* Stage 1: perform requested deletion */
1074         for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1075                 IPFW_BUCK_LOCK(i);
1076                 for (q = V_ipfw_dyn_v[i].head, q_prev = q; q ; ) {
1077                         /* account every rule */
1078                         total++;
1079
1080                         /* Skip parent rules at all */
1081                         if (q->dyn_type == O_LIMIT_PARENT) {
1082                                 parents++;
1083                                 NEXT_RULE();
1084                         }
1085
1086                         /*
1087                          * Remove rules which are:
1088                          * 1) expired
1089                          * 2) created by given rule
1090                          * 3) created by any rule in given set
1091                          */
1092                         if ((TIME_LEQ(q->expire, time_uptime)) ||
1093                             ((rule != NULL) && (q->rule == rule)) ||
1094                             ((set != RESVD_SET) && (q->rule->set == set))) {
1095                                 /* Unlink q from current list */
1096                                 q_next = q->next;
1097                                 if (q == V_ipfw_dyn_v[i].head)
1098                                         V_ipfw_dyn_v[i].head = q_next;
1099                                 else
1100                                         q_prev->next = q_next;
1101
1102                                 q->next = NULL;
1103
1104                                 /* queue q to expire list */
1105                                 if (q->dyn_type != O_LIMIT) {
1106                                         *exptailp = q;
1107                                         exptailp = &(*exptailp)->next;
1108                                         DEB(print_dyn_rule(&q->id, q->dyn_type,
1109                                             "unlink entry", "left");
1110                                         )
1111                                 } else {
1112                                         /* Separate list for limit rules */
1113                                         *expltailp = q;
1114                                         expltailp = &(*expltailp)->next;
1115                                         expired_limits++;
1116                                         DEB(print_dyn_rule(&q->id, q->dyn_type,
1117                                             "unlink limit entry", "left");
1118                                         )
1119                                 }
1120
1121                                 q = q_next;
1122                                 expired++;
1123                                 continue;
1124                         }
1125
1126                         /*
1127                          * Check if we need to send keepalive:
1128                          * we need to ensure if is time to do KA,
1129                          * this is established TCP session, and
1130                          * expire time is within keepalive interval
1131                          */
1132                         if ((check_ka != 0) && (q->id.proto == IPPROTO_TCP) &&
1133                             ((q->state & BOTH_SYN) == BOTH_SYN) &&
1134                             (TIME_LEQ(q->expire, time_uptime +
1135                               V_dyn_keepalive_interval)))
1136                                 mtailp = ipfw_dyn_send_ka(mtailp, q);
1137
1138                         NEXT_RULE();
1139                 }
1140                 IPFW_BUCK_UNLOCK(i);
1141         }
1142
1143         /* Stage 2: decrement counters from O_LIMIT parents */
1144         if (expired_limits != 0) {
1145                 /*
1146                  * XXX: Note that deleting set with more than one
1147                  * heavily-used LIMIT rules can result in overwhelming
1148                  * locking due to lack of per-hash value sorting
1149                  *
1150                  * We should probably think about:
1151                  * 1) pre-allocating hash of size, say,
1152                  * MAX(16, V_curr_dyn_buckets / 1024)
1153                  * 2) checking if expired_limits is large enough
1154                  * 3) If yes, init hash (or its part), re-link
1155                  * current list and start decrementing procedure in
1156                  * each bucket separately
1157                  */
1158
1159                 /*
1160                  * Small optimization: do not unlock bucket until
1161                  * we see the next item resides in different bucket
1162                  */
1163                 if (exp_lhead != NULL) {
1164                         i = exp_lhead->parent->bucket;
1165                         IPFW_BUCK_LOCK(i);
1166                 }
1167                 for (q = exp_lhead; q != NULL; q = q->next) {
1168                         if (i != q->parent->bucket) {
1169                                 IPFW_BUCK_UNLOCK(i);
1170                                 i = q->parent->bucket;
1171                                 IPFW_BUCK_LOCK(i);
1172                         }
1173
1174                         /* Decrease parent refcount */
1175                         q->parent->count--;
1176                 }
1177                 if (exp_lhead != NULL)
1178                         IPFW_BUCK_UNLOCK(i);
1179         }
1180
1181         /*
1182          * We protectet ourselves from unused parent deletion
1183          * (from the timer function) by holding UH write lock.
1184          */
1185
1186         /* Stage 3: remove unused parent rules */
1187         if ((parents != 0) && (expired != 0)) {
1188                 for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1189                         IPFW_BUCK_LOCK(i);
1190                         for (q = V_ipfw_dyn_v[i].head, q_prev = q ; q ; ) {
1191                                 if (q->dyn_type != O_LIMIT_PARENT)
1192                                         NEXT_RULE();
1193
1194                                 if (q->count != 0)
1195                                         NEXT_RULE();
1196
1197                                 /* Parent rule without consumers */
1198
1199                                 /* Unlink q from current list */
1200                                 q_next = q->next;
1201                                 if (q == V_ipfw_dyn_v[i].head)
1202                                         V_ipfw_dyn_v[i].head = q_next;
1203                                 else
1204                                         q_prev->next = q_next;
1205
1206                                 q->next = NULL;
1207
1208                                 /* Add to expired list */
1209                                 *exptailp = q;
1210                                 exptailp = &(*exptailp)->next;
1211
1212                                 DEB(print_dyn_rule(&q->id, q->dyn_type,
1213                                     "unlink parent entry", "left");
1214                                 )
1215
1216                                 expired++;
1217
1218                                 q = q_next;
1219                         }
1220                         IPFW_BUCK_UNLOCK(i);
1221                 }
1222         }
1223
1224 #undef NEXT_RULE
1225
1226         if (timer != 0) {
1227                 /*
1228                  * Check if we need to resize hash:
1229                  * if current number of states exceeds number of buckes in hash,
1230                  * grow hash size to the minimum power of 2 which is bigger than
1231                  * current states count. Limit hash size by 64k.
1232                  */
1233                 max_buckets = (V_dyn_buckets_max > 65536) ?
1234                     65536 : V_dyn_buckets_max;
1235         
1236                 dyn_count = DYN_COUNT;
1237         
1238                 if ((dyn_count > V_curr_dyn_buckets * 2) &&
1239                     (dyn_count < max_buckets)) {
1240                         new_buckets = V_curr_dyn_buckets;
1241                         while (new_buckets < dyn_count) {
1242                                 new_buckets *= 2;
1243         
1244                                 if (new_buckets >= max_buckets)
1245                                         break;
1246                         }
1247                 }
1248
1249                 IPFW_UH_WUNLOCK(chain);
1250         }
1251
1252         /* Finally delete old states ad limits if any */
1253         for (q = exp_head; q != NULL; q = q_next) {
1254                 q_next = q->next;
1255                 uma_zfree(V_ipfw_dyn_rule_zone, q);
1256         }
1257
1258         for (q = exp_lhead; q != NULL; q = q_next) {
1259                 q_next = q->next;
1260                 uma_zfree(V_ipfw_dyn_rule_zone, q);
1261         }
1262
1263         /*
1264          * The rest code MUST be called from timer routine only
1265          * without holding any locks
1266          */
1267         if (timer == 0)
1268                 return;
1269
1270         /* Send keepalive packets if any */
1271         for (m = m0; m != NULL; m = mnext) {
1272                 mnext = m->m_nextpkt;
1273                 m->m_nextpkt = NULL;
1274                 h = mtod(m, struct ip *);
1275                 if (h->ip_v == 4)
1276                         ip_output(m, NULL, NULL, 0, NULL, NULL);
1277 #ifdef INET6
1278                 else
1279                         ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1280 #endif
1281         }
1282
1283         /* Run table resize without holding any locks */
1284         if (new_buckets != 0)
1285                 resize_dynamic_table(chain, new_buckets);
1286 }
1287
1288 /*
1289  * Deletes all dynamic rules originated by given rule or all rules in
1290  * given set. Specify RESVD_SET to indicate set should not be used.
1291  * @chain - pointer to current ipfw rules chain
1292  * @rule - delete all states originated by given rule if != NULL
1293  * @set - delete all states originated by any rule in set @set if != RESVD_SET
1294  *
1295  * Function has to be called with IPFW_UH_WLOCK held.
1296  * Additionally, function assume that dynamic rule/set is
1297  * ALREADY deleted so no new states can be generated by
1298  * 'deleted' rules.
1299  */
1300 void
1301 ipfw_expire_dyn_rules(struct ip_fw_chain *chain, struct ip_fw *rule, int set)
1302 {
1303
1304         check_dyn_rules(chain, rule, set, 0, 0);
1305 }
1306
1307 void
1308 ipfw_dyn_init(struct ip_fw_chain *chain)
1309 {
1310
1311         V_ipfw_dyn_v = NULL;
1312         V_dyn_buckets_max = 256; /* must be power of 2 */
1313         V_curr_dyn_buckets = 256; /* must be power of 2 */
1314  
1315         V_dyn_ack_lifetime = 300;
1316         V_dyn_syn_lifetime = 20;
1317         V_dyn_fin_lifetime = 1;
1318         V_dyn_rst_lifetime = 1;
1319         V_dyn_udp_lifetime = 10;
1320         V_dyn_short_lifetime = 5;
1321
1322         V_dyn_keepalive_interval = 20;
1323         V_dyn_keepalive_period = 5;
1324         V_dyn_keepalive = 1;    /* do send keepalives */
1325         V_dyn_keepalive_last = time_uptime;
1326         
1327         V_dyn_max = 4096;       /* max # of dynamic rules */
1328
1329         V_ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
1330             sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
1331             UMA_ALIGN_PTR, 0);
1332
1333         /* Enforce limit on dynamic rules */
1334         uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max);
1335
1336         callout_init(&V_ipfw_timeout, CALLOUT_MPSAFE);
1337
1338         /*
1339          * This can potentially be done on first dynamic rule
1340          * being added to chain.
1341          */
1342         resize_dynamic_table(chain, V_curr_dyn_buckets);
1343 }
1344
1345 void
1346 ipfw_dyn_uninit(int pass)
1347 {
1348         int i;
1349
1350         if (pass == 0) {
1351                 callout_drain(&V_ipfw_timeout);
1352                 return;
1353         }
1354
1355         if (V_ipfw_dyn_v != NULL) {
1356                 /*
1357                  * Skip deleting all dynamic states -
1358                  * uma_zdestroy() does this more efficiently;
1359                  */
1360
1361                 /* Destroy all mutexes */
1362                 for (i = 0 ; i < V_curr_dyn_buckets ; i++)
1363                         IPFW_BUCK_LOCK_DESTROY(&V_ipfw_dyn_v[i]);
1364                 free(V_ipfw_dyn_v, M_IPFW);
1365                 V_ipfw_dyn_v = NULL;
1366         }
1367
1368         uma_zdestroy(V_ipfw_dyn_rule_zone);
1369 }
1370
1371 #ifdef SYSCTL_NODE
1372 /*
1373  * Get/set maximum number of dynamic states in given VNET instance.
1374  */
1375 static int
1376 sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS)
1377 {
1378         int error;
1379         unsigned int nstates;
1380
1381         nstates = V_dyn_max;
1382
1383         error = sysctl_handle_int(oidp, &nstates, 0, req);
1384         /* Read operation or some error */
1385         if ((error != 0) || (req->newptr == NULL))
1386                 return (error);
1387
1388         V_dyn_max = nstates;
1389         uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max);
1390
1391         return (0);
1392 }
1393
1394 /*
1395  * Get current number of dynamic states in given VNET instance.
1396  */
1397 static int
1398 sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS)
1399 {
1400         int error;
1401         unsigned int nstates;
1402
1403         nstates = DYN_COUNT;
1404
1405         error = sysctl_handle_int(oidp, &nstates, 0, req);
1406
1407         return (error);
1408 }
1409 #endif
1410
1411 /*
1412  * Returns number of dynamic rules.
1413  */
1414 int
1415 ipfw_dyn_len(void)
1416 {
1417
1418         return (V_ipfw_dyn_v == NULL) ? 0 :
1419                 (DYN_COUNT * sizeof(ipfw_dyn_rule));
1420 }
1421
1422 /*
1423  * Fill given buffer with dynamic states.
1424  * IPFW_UH_RLOCK has to be held while calling.
1425  */
1426 void
1427 ipfw_get_dynamic(struct ip_fw_chain *chain, char **pbp, const char *ep)
1428 {
1429         ipfw_dyn_rule *p, *last = NULL;
1430         char *bp;
1431         int i;
1432
1433         if (V_ipfw_dyn_v == NULL)
1434                 return;
1435         bp = *pbp;
1436
1437         IPFW_UH_RLOCK_ASSERT(chain);
1438
1439         for (i = 0 ; i < V_curr_dyn_buckets; i++) {
1440                 IPFW_BUCK_LOCK(i);
1441                 for (p = V_ipfw_dyn_v[i].head ; p != NULL; p = p->next) {
1442                         if (bp + sizeof *p <= ep) {
1443                                 ipfw_dyn_rule *dst =
1444                                         (ipfw_dyn_rule *)bp;
1445                                 bcopy(p, dst, sizeof *p);
1446                                 bcopy(&(p->rule->rulenum), &(dst->rule),
1447                                     sizeof(p->rule->rulenum));
1448                                 /*
1449                                  * store set number into high word of
1450                                  * dst->rule pointer.
1451                                  */
1452                                 bcopy(&(p->rule->set),
1453                                     (char *)&dst->rule +
1454                                     sizeof(p->rule->rulenum),
1455                                     sizeof(p->rule->set));
1456                                 /*
1457                                  * store a non-null value in "next".
1458                                  * The userland code will interpret a
1459                                  * NULL here as a marker
1460                                  * for the last dynamic rule.
1461                                  */
1462                                 bcopy(&dst, &dst->next, sizeof(dst));
1463                                 last = dst;
1464                                 dst->expire =
1465                                     TIME_LEQ(dst->expire, time_uptime) ?
1466                                         0 : dst->expire - time_uptime ;
1467                                 bp += sizeof(ipfw_dyn_rule);
1468                         }
1469                 }
1470                 IPFW_BUCK_UNLOCK(i);
1471         }
1472
1473         if (last != NULL) /* mark last dynamic rule */
1474                 bzero(&last->next, sizeof(last));
1475         *pbp = bp;
1476 }
1477 /* end of file */