]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/vm/vm_object.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/vnode.h>
83 #include <sys/vmmeter.h>
84 #include <sys/sx.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vm_radix.h>
98 #include <vm/vm_reserv.h>
99 #include <vm/uma.h>
100
101 static int old_msync;
102 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
103     "Use old (insecure) msync behavior");
104
105 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
106                     int pagerflags, int flags, boolean_t *clearobjflags,
107                     boolean_t *eio);
108 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
109                     boolean_t *clearobjflags);
110 static void     vm_object_qcollapse(vm_object_t object);
111 static void     vm_object_vndeallocate(vm_object_t object);
112
113 /*
114  *      Virtual memory objects maintain the actual data
115  *      associated with allocated virtual memory.  A given
116  *      page of memory exists within exactly one object.
117  *
118  *      An object is only deallocated when all "references"
119  *      are given up.  Only one "reference" to a given
120  *      region of an object should be writeable.
121  *
122  *      Associated with each object is a list of all resident
123  *      memory pages belonging to that object; this list is
124  *      maintained by the "vm_page" module, and locked by the object's
125  *      lock.
126  *
127  *      Each object also records a "pager" routine which is
128  *      used to retrieve (and store) pages to the proper backing
129  *      storage.  In addition, objects may be backed by other
130  *      objects from which they were virtual-copied.
131  *
132  *      The only items within the object structure which are
133  *      modified after time of creation are:
134  *              reference count         locked by object's lock
135  *              pager routine           locked by object's lock
136  *
137  */
138
139 struct object_q vm_object_list;
140 struct mtx vm_object_list_mtx;  /* lock for object list and count */
141
142 struct vm_object kernel_object_store;
143 struct vm_object kmem_object_store;
144
145 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
146     "VM object stats");
147
148 static long object_collapses;
149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
150     &object_collapses, 0, "VM object collapses");
151
152 static long object_bypasses;
153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
154     &object_bypasses, 0, "VM object bypasses");
155
156 static uma_zone_t obj_zone;
157
158 static int vm_object_zinit(void *mem, int size, int flags);
159
160 #ifdef INVARIANTS
161 static void vm_object_zdtor(void *mem, int size, void *arg);
162
163 static void
164 vm_object_zdtor(void *mem, int size, void *arg)
165 {
166         vm_object_t object;
167
168         object = (vm_object_t)mem;
169         KASSERT(object->ref_count == 0,
170             ("object %p ref_count = %d", object, object->ref_count));
171         KASSERT(TAILQ_EMPTY(&object->memq),
172             ("object %p has resident pages in its memq", object));
173         KASSERT(vm_radix_is_empty(&object->rtree),
174             ("object %p has resident pages in its trie", object));
175 #if VM_NRESERVLEVEL > 0
176         KASSERT(LIST_EMPTY(&object->rvq),
177             ("object %p has reservations",
178             object));
179 #endif
180         KASSERT(vm_object_cache_is_empty(object),
181             ("object %p has cached pages",
182             object));
183         KASSERT(object->paging_in_progress == 0,
184             ("object %p paging_in_progress = %d",
185             object, object->paging_in_progress));
186         KASSERT(object->resident_page_count == 0,
187             ("object %p resident_page_count = %d",
188             object, object->resident_page_count));
189         KASSERT(object->shadow_count == 0,
190             ("object %p shadow_count = %d",
191             object, object->shadow_count));
192         KASSERT(object->type == OBJT_DEAD,
193             ("object %p has non-dead type %d",
194             object, object->type));
195 }
196 #endif
197
198 static int
199 vm_object_zinit(void *mem, int size, int flags)
200 {
201         vm_object_t object;
202
203         object = (vm_object_t)mem;
204         bzero(&object->lock, sizeof(object->lock));
205         rw_init_flags(&object->lock, "vm object", RW_DUPOK);
206
207         /* These are true for any object that has been freed */
208         object->type = OBJT_DEAD;
209         object->ref_count = 0;
210         object->rtree.rt_root = 0;
211         object->rtree.rt_flags = 0;
212         object->paging_in_progress = 0;
213         object->resident_page_count = 0;
214         object->shadow_count = 0;
215         object->cache.rt_root = 0;
216         object->cache.rt_flags = 0;
217
218         mtx_lock(&vm_object_list_mtx);
219         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
220         mtx_unlock(&vm_object_list_mtx);
221         return (0);
222 }
223
224 static void
225 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
226 {
227
228         TAILQ_INIT(&object->memq);
229         LIST_INIT(&object->shadow_head);
230
231         object->type = type;
232         switch (type) {
233         case OBJT_DEAD:
234                 panic("_vm_object_allocate: can't create OBJT_DEAD");
235         case OBJT_DEFAULT:
236         case OBJT_SWAP:
237                 object->flags = OBJ_ONEMAPPING;
238                 break;
239         case OBJT_DEVICE:
240         case OBJT_SG:
241                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
242                 break;
243         case OBJT_MGTDEVICE:
244                 object->flags = OBJ_FICTITIOUS;
245                 break;
246         case OBJT_PHYS:
247                 object->flags = OBJ_UNMANAGED;
248                 break;
249         case OBJT_VNODE:
250                 object->flags = 0;
251                 break;
252         default:
253                 panic("_vm_object_allocate: type %d is undefined", type);
254         }
255         object->size = size;
256         object->generation = 1;
257         object->ref_count = 1;
258         object->memattr = VM_MEMATTR_DEFAULT;
259         object->cred = NULL;
260         object->charge = 0;
261         object->handle = NULL;
262         object->backing_object = NULL;
263         object->backing_object_offset = (vm_ooffset_t) 0;
264 #if VM_NRESERVLEVEL > 0
265         LIST_INIT(&object->rvq);
266 #endif
267 }
268
269 /*
270  *      vm_object_init:
271  *
272  *      Initialize the VM objects module.
273  */
274 void
275 vm_object_init(void)
276 {
277         TAILQ_INIT(&vm_object_list);
278         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
279         
280         rw_init(&kernel_object->lock, "kernel vm object");
281         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
282             kernel_object);
283 #if VM_NRESERVLEVEL > 0
284         kernel_object->flags |= OBJ_COLORED;
285         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
286 #endif
287
288         rw_init(&kmem_object->lock, "kmem vm object");
289         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
290             kmem_object);
291 #if VM_NRESERVLEVEL > 0
292         kmem_object->flags |= OBJ_COLORED;
293         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
294 #endif
295
296         /*
297          * The lock portion of struct vm_object must be type stable due
298          * to vm_pageout_fallback_object_lock locking a vm object
299          * without holding any references to it.
300          */
301         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
302 #ifdef INVARIANTS
303             vm_object_zdtor,
304 #else
305             NULL,
306 #endif
307             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
308
309         vm_radix_init();
310 }
311
312 void
313 vm_object_clear_flag(vm_object_t object, u_short bits)
314 {
315
316         VM_OBJECT_ASSERT_WLOCKED(object);
317         object->flags &= ~bits;
318 }
319
320 /*
321  *      Sets the default memory attribute for the specified object.  Pages
322  *      that are allocated to this object are by default assigned this memory
323  *      attribute.
324  *
325  *      Presently, this function must be called before any pages are allocated
326  *      to the object.  In the future, this requirement may be relaxed for
327  *      "default" and "swap" objects.
328  */
329 int
330 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
331 {
332
333         VM_OBJECT_ASSERT_WLOCKED(object);
334         switch (object->type) {
335         case OBJT_DEFAULT:
336         case OBJT_DEVICE:
337         case OBJT_MGTDEVICE:
338         case OBJT_PHYS:
339         case OBJT_SG:
340         case OBJT_SWAP:
341         case OBJT_VNODE:
342                 if (!TAILQ_EMPTY(&object->memq))
343                         return (KERN_FAILURE);
344                 break;
345         case OBJT_DEAD:
346                 return (KERN_INVALID_ARGUMENT);
347         default:
348                 panic("vm_object_set_memattr: object %p is of undefined type",
349                     object);
350         }
351         object->memattr = memattr;
352         return (KERN_SUCCESS);
353 }
354
355 void
356 vm_object_pip_add(vm_object_t object, short i)
357 {
358
359         VM_OBJECT_ASSERT_WLOCKED(object);
360         object->paging_in_progress += i;
361 }
362
363 void
364 vm_object_pip_subtract(vm_object_t object, short i)
365 {
366
367         VM_OBJECT_ASSERT_WLOCKED(object);
368         object->paging_in_progress -= i;
369 }
370
371 void
372 vm_object_pip_wakeup(vm_object_t object)
373 {
374
375         VM_OBJECT_ASSERT_WLOCKED(object);
376         object->paging_in_progress--;
377         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
378                 vm_object_clear_flag(object, OBJ_PIPWNT);
379                 wakeup(object);
380         }
381 }
382
383 void
384 vm_object_pip_wakeupn(vm_object_t object, short i)
385 {
386
387         VM_OBJECT_ASSERT_WLOCKED(object);
388         if (i)
389                 object->paging_in_progress -= i;
390         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
391                 vm_object_clear_flag(object, OBJ_PIPWNT);
392                 wakeup(object);
393         }
394 }
395
396 void
397 vm_object_pip_wait(vm_object_t object, char *waitid)
398 {
399
400         VM_OBJECT_ASSERT_WLOCKED(object);
401         while (object->paging_in_progress) {
402                 object->flags |= OBJ_PIPWNT;
403                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
404         }
405 }
406
407 /*
408  *      vm_object_allocate:
409  *
410  *      Returns a new object with the given size.
411  */
412 vm_object_t
413 vm_object_allocate(objtype_t type, vm_pindex_t size)
414 {
415         vm_object_t object;
416
417         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
418         _vm_object_allocate(type, size, object);
419         return (object);
420 }
421
422
423 /*
424  *      vm_object_reference:
425  *
426  *      Gets another reference to the given object.  Note: OBJ_DEAD
427  *      objects can be referenced during final cleaning.
428  */
429 void
430 vm_object_reference(vm_object_t object)
431 {
432         if (object == NULL)
433                 return;
434         VM_OBJECT_WLOCK(object);
435         vm_object_reference_locked(object);
436         VM_OBJECT_WUNLOCK(object);
437 }
438
439 /*
440  *      vm_object_reference_locked:
441  *
442  *      Gets another reference to the given object.
443  *
444  *      The object must be locked.
445  */
446 void
447 vm_object_reference_locked(vm_object_t object)
448 {
449         struct vnode *vp;
450
451         VM_OBJECT_ASSERT_WLOCKED(object);
452         object->ref_count++;
453         if (object->type == OBJT_VNODE) {
454                 vp = object->handle;
455                 vref(vp);
456         }
457 }
458
459 /*
460  * Handle deallocating an object of type OBJT_VNODE.
461  */
462 static void
463 vm_object_vndeallocate(vm_object_t object)
464 {
465         struct vnode *vp = (struct vnode *) object->handle;
466
467         VM_OBJECT_ASSERT_WLOCKED(object);
468         KASSERT(object->type == OBJT_VNODE,
469             ("vm_object_vndeallocate: not a vnode object"));
470         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
471 #ifdef INVARIANTS
472         if (object->ref_count == 0) {
473                 vprint("vm_object_vndeallocate", vp);
474                 panic("vm_object_vndeallocate: bad object reference count");
475         }
476 #endif
477
478         /*
479          * The test for text of vp vnode does not need a bypass to
480          * reach right VV_TEXT there, since it is obtained from
481          * object->handle.
482          */
483         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
484                 object->ref_count--;
485                 VM_OBJECT_WUNLOCK(object);
486                 /* vrele may need the vnode lock. */
487                 vrele(vp);
488         } else {
489                 vhold(vp);
490                 VM_OBJECT_WUNLOCK(object);
491                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
492                 vdrop(vp);
493                 VM_OBJECT_WLOCK(object);
494                 object->ref_count--;
495                 if (object->type == OBJT_DEAD) {
496                         VM_OBJECT_WUNLOCK(object);
497                         VOP_UNLOCK(vp, 0);
498                 } else {
499                         if (object->ref_count == 0)
500                                 VOP_UNSET_TEXT(vp);
501                         VM_OBJECT_WUNLOCK(object);
502                         vput(vp);
503                 }
504         }
505 }
506
507 /*
508  *      vm_object_deallocate:
509  *
510  *      Release a reference to the specified object,
511  *      gained either through a vm_object_allocate
512  *      or a vm_object_reference call.  When all references
513  *      are gone, storage associated with this object
514  *      may be relinquished.
515  *
516  *      No object may be locked.
517  */
518 void
519 vm_object_deallocate(vm_object_t object)
520 {
521         vm_object_t temp;
522         struct vnode *vp;
523
524         while (object != NULL) {
525                 VM_OBJECT_WLOCK(object);
526                 if (object->type == OBJT_VNODE) {
527                         vm_object_vndeallocate(object);
528                         return;
529                 }
530
531                 KASSERT(object->ref_count != 0,
532                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
533
534                 /*
535                  * If the reference count goes to 0 we start calling
536                  * vm_object_terminate() on the object chain.
537                  * A ref count of 1 may be a special case depending on the
538                  * shadow count being 0 or 1.
539                  */
540                 object->ref_count--;
541                 if (object->ref_count > 1) {
542                         VM_OBJECT_WUNLOCK(object);
543                         return;
544                 } else if (object->ref_count == 1) {
545                         if (object->type == OBJT_SWAP &&
546                             (object->flags & OBJ_TMPFS) != 0) {
547                                 vp = object->un_pager.swp.swp_tmpfs;
548                                 vhold(vp);
549                                 VM_OBJECT_WUNLOCK(object);
550                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
551                                 VM_OBJECT_WLOCK(object);
552                                 if (object->type == OBJT_DEAD ||
553                                     object->ref_count != 1) {
554                                         VM_OBJECT_WUNLOCK(object);
555                                         VOP_UNLOCK(vp, 0);
556                                         vdrop(vp);
557                                         return;
558                                 }
559                                 if ((object->flags & OBJ_TMPFS) != 0)
560                                         VOP_UNSET_TEXT(vp);
561                                 VOP_UNLOCK(vp, 0);
562                                 vdrop(vp);
563                         }
564                         if (object->shadow_count == 0 &&
565                             object->handle == NULL &&
566                             (object->type == OBJT_DEFAULT ||
567                             (object->type == OBJT_SWAP &&
568                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
569                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
570                         } else if ((object->shadow_count == 1) &&
571                             (object->handle == NULL) &&
572                             (object->type == OBJT_DEFAULT ||
573                              object->type == OBJT_SWAP)) {
574                                 vm_object_t robject;
575
576                                 robject = LIST_FIRST(&object->shadow_head);
577                                 KASSERT(robject != NULL,
578                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
579                                          object->ref_count,
580                                          object->shadow_count));
581                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
582                                     ("shadowed tmpfs v_object %p", object));
583                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
584                                         /*
585                                          * Avoid a potential deadlock.
586                                          */
587                                         object->ref_count++;
588                                         VM_OBJECT_WUNLOCK(object);
589                                         /*
590                                          * More likely than not the thread
591                                          * holding robject's lock has lower
592                                          * priority than the current thread.
593                                          * Let the lower priority thread run.
594                                          */
595                                         pause("vmo_de", 1);
596                                         continue;
597                                 }
598                                 /*
599                                  * Collapse object into its shadow unless its
600                                  * shadow is dead.  In that case, object will
601                                  * be deallocated by the thread that is
602                                  * deallocating its shadow.
603                                  */
604                                 if ((robject->flags & OBJ_DEAD) == 0 &&
605                                     (robject->handle == NULL) &&
606                                     (robject->type == OBJT_DEFAULT ||
607                                      robject->type == OBJT_SWAP)) {
608
609                                         robject->ref_count++;
610 retry:
611                                         if (robject->paging_in_progress) {
612                                                 VM_OBJECT_WUNLOCK(object);
613                                                 vm_object_pip_wait(robject,
614                                                     "objde1");
615                                                 temp = robject->backing_object;
616                                                 if (object == temp) {
617                                                         VM_OBJECT_WLOCK(object);
618                                                         goto retry;
619                                                 }
620                                         } else if (object->paging_in_progress) {
621                                                 VM_OBJECT_WUNLOCK(robject);
622                                                 object->flags |= OBJ_PIPWNT;
623                                                 VM_OBJECT_SLEEP(object, object,
624                                                     PDROP | PVM, "objde2", 0);
625                                                 VM_OBJECT_WLOCK(robject);
626                                                 temp = robject->backing_object;
627                                                 if (object == temp) {
628                                                         VM_OBJECT_WLOCK(object);
629                                                         goto retry;
630                                                 }
631                                         } else
632                                                 VM_OBJECT_WUNLOCK(object);
633
634                                         if (robject->ref_count == 1) {
635                                                 robject->ref_count--;
636                                                 object = robject;
637                                                 goto doterm;
638                                         }
639                                         object = robject;
640                                         vm_object_collapse(object);
641                                         VM_OBJECT_WUNLOCK(object);
642                                         continue;
643                                 }
644                                 VM_OBJECT_WUNLOCK(robject);
645                         }
646                         VM_OBJECT_WUNLOCK(object);
647                         return;
648                 }
649 doterm:
650                 temp = object->backing_object;
651                 if (temp != NULL) {
652                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
653                             ("shadowed tmpfs v_object 2 %p", object));
654                         VM_OBJECT_WLOCK(temp);
655                         LIST_REMOVE(object, shadow_list);
656                         temp->shadow_count--;
657                         VM_OBJECT_WUNLOCK(temp);
658                         object->backing_object = NULL;
659                 }
660                 /*
661                  * Don't double-terminate, we could be in a termination
662                  * recursion due to the terminate having to sync data
663                  * to disk.
664                  */
665                 if ((object->flags & OBJ_DEAD) == 0)
666                         vm_object_terminate(object);
667                 else
668                         VM_OBJECT_WUNLOCK(object);
669                 object = temp;
670         }
671 }
672
673 /*
674  *      vm_object_destroy removes the object from the global object list
675  *      and frees the space for the object.
676  */
677 void
678 vm_object_destroy(vm_object_t object)
679 {
680
681         /*
682          * Release the allocation charge.
683          */
684         if (object->cred != NULL) {
685                 swap_release_by_cred(object->charge, object->cred);
686                 object->charge = 0;
687                 crfree(object->cred);
688                 object->cred = NULL;
689         }
690
691         /*
692          * Free the space for the object.
693          */
694         uma_zfree(obj_zone, object);
695 }
696
697 /*
698  *      vm_object_terminate actually destroys the specified object, freeing
699  *      up all previously used resources.
700  *
701  *      The object must be locked.
702  *      This routine may block.
703  */
704 void
705 vm_object_terminate(vm_object_t object)
706 {
707         vm_page_t p, p_next;
708
709         VM_OBJECT_ASSERT_WLOCKED(object);
710
711         /*
712          * Make sure no one uses us.
713          */
714         vm_object_set_flag(object, OBJ_DEAD);
715
716         /*
717          * wait for the pageout daemon to be done with the object
718          */
719         vm_object_pip_wait(object, "objtrm");
720
721         KASSERT(!object->paging_in_progress,
722                 ("vm_object_terminate: pageout in progress"));
723
724         /*
725          * Clean and free the pages, as appropriate. All references to the
726          * object are gone, so we don't need to lock it.
727          */
728         if (object->type == OBJT_VNODE) {
729                 struct vnode *vp = (struct vnode *)object->handle;
730
731                 /*
732                  * Clean pages and flush buffers.
733                  */
734                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
735                 VM_OBJECT_WUNLOCK(object);
736
737                 vinvalbuf(vp, V_SAVE, 0, 0);
738
739                 VM_OBJECT_WLOCK(object);
740         }
741
742         KASSERT(object->ref_count == 0, 
743                 ("vm_object_terminate: object with references, ref_count=%d",
744                 object->ref_count));
745
746         /*
747          * Free any remaining pageable pages.  This also removes them from the
748          * paging queues.  However, don't free wired pages, just remove them
749          * from the object.  Rather than incrementally removing each page from
750          * the object, the page and object are reset to any empty state. 
751          */
752         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
753                 vm_page_assert_unbusied(p);
754                 vm_page_lock(p);
755                 /*
756                  * Optimize the page's removal from the object by resetting
757                  * its "object" field.  Specifically, if the page is not
758                  * wired, then the effect of this assignment is that
759                  * vm_page_free()'s call to vm_page_remove() will return
760                  * immediately without modifying the page or the object.
761                  */ 
762                 p->object = NULL;
763                 if (p->wire_count == 0) {
764                         vm_page_free(p);
765                         PCPU_INC(cnt.v_pfree);
766                 }
767                 vm_page_unlock(p);
768         }
769         /*
770          * If the object contained any pages, then reset it to an empty state.
771          * None of the object's fields, including "resident_page_count", were
772          * modified by the preceding loop.
773          */
774         if (object->resident_page_count != 0) {
775                 vm_radix_reclaim_allnodes(&object->rtree);
776                 TAILQ_INIT(&object->memq);
777                 object->resident_page_count = 0;
778                 if (object->type == OBJT_VNODE)
779                         vdrop(object->handle);
780         }
781
782 #if VM_NRESERVLEVEL > 0
783         if (__predict_false(!LIST_EMPTY(&object->rvq)))
784                 vm_reserv_break_all(object);
785 #endif
786         if (__predict_false(!vm_object_cache_is_empty(object)))
787                 vm_page_cache_free(object, 0, 0);
788
789         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
790             object->type == OBJT_SWAP,
791             ("%s: non-swap obj %p has cred", __func__, object));
792
793         /*
794          * Let the pager know object is dead.
795          */
796         vm_pager_deallocate(object);
797         VM_OBJECT_WUNLOCK(object);
798
799         vm_object_destroy(object);
800 }
801
802 /*
803  * Make the page read-only so that we can clear the object flags.  However, if
804  * this is a nosync mmap then the object is likely to stay dirty so do not
805  * mess with the page and do not clear the object flags.  Returns TRUE if the
806  * page should be flushed, and FALSE otherwise.
807  */
808 static boolean_t
809 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
810 {
811
812         /*
813          * If we have been asked to skip nosync pages and this is a
814          * nosync page, skip it.  Note that the object flags were not
815          * cleared in this case so we do not have to set them.
816          */
817         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
818                 *clearobjflags = FALSE;
819                 return (FALSE);
820         } else {
821                 pmap_remove_write(p);
822                 return (p->dirty != 0);
823         }
824 }
825
826 /*
827  *      vm_object_page_clean
828  *
829  *      Clean all dirty pages in the specified range of object.  Leaves page 
830  *      on whatever queue it is currently on.   If NOSYNC is set then do not
831  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
832  *      leaving the object dirty.
833  *
834  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
835  *      synchronous clustering mode implementation.
836  *
837  *      Odd semantics: if start == end, we clean everything.
838  *
839  *      The object must be locked.
840  *
841  *      Returns FALSE if some page from the range was not written, as
842  *      reported by the pager, and TRUE otherwise.
843  */
844 boolean_t
845 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
846     int flags)
847 {
848         vm_page_t np, p;
849         vm_pindex_t pi, tend, tstart;
850         int curgeneration, n, pagerflags;
851         boolean_t clearobjflags, eio, res;
852
853         VM_OBJECT_ASSERT_WLOCKED(object);
854
855         /*
856          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
857          * objects.  The check below prevents the function from
858          * operating on non-vnode objects.
859          */
860         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
861             object->resident_page_count == 0)
862                 return (TRUE);
863
864         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
865             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
866         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
867
868         tstart = OFF_TO_IDX(start);
869         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
870         clearobjflags = tstart == 0 && tend >= object->size;
871         res = TRUE;
872
873 rescan:
874         curgeneration = object->generation;
875
876         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
877                 pi = p->pindex;
878                 if (pi >= tend)
879                         break;
880                 np = TAILQ_NEXT(p, listq);
881                 if (p->valid == 0)
882                         continue;
883                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
884                         if (object->generation != curgeneration) {
885                                 if ((flags & OBJPC_SYNC) != 0)
886                                         goto rescan;
887                                 else
888                                         clearobjflags = FALSE;
889                         }
890                         np = vm_page_find_least(object, pi);
891                         continue;
892                 }
893                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
894                         continue;
895
896                 n = vm_object_page_collect_flush(object, p, pagerflags,
897                     flags, &clearobjflags, &eio);
898                 if (eio) {
899                         res = FALSE;
900                         clearobjflags = FALSE;
901                 }
902                 if (object->generation != curgeneration) {
903                         if ((flags & OBJPC_SYNC) != 0)
904                                 goto rescan;
905                         else
906                                 clearobjflags = FALSE;
907                 }
908
909                 /*
910                  * If the VOP_PUTPAGES() did a truncated write, so
911                  * that even the first page of the run is not fully
912                  * written, vm_pageout_flush() returns 0 as the run
913                  * length.  Since the condition that caused truncated
914                  * write may be permanent, e.g. exhausted free space,
915                  * accepting n == 0 would cause an infinite loop.
916                  *
917                  * Forwarding the iterator leaves the unwritten page
918                  * behind, but there is not much we can do there if
919                  * filesystem refuses to write it.
920                  */
921                 if (n == 0) {
922                         n = 1;
923                         clearobjflags = FALSE;
924                 }
925                 np = vm_page_find_least(object, pi + n);
926         }
927 #if 0
928         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
929 #endif
930
931         if (clearobjflags)
932                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
933         return (res);
934 }
935
936 static int
937 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
938     int flags, boolean_t *clearobjflags, boolean_t *eio)
939 {
940         vm_page_t ma[vm_pageout_page_count], p_first, tp;
941         int count, i, mreq, runlen;
942
943         vm_page_lock_assert(p, MA_NOTOWNED);
944         VM_OBJECT_ASSERT_WLOCKED(object);
945
946         count = 1;
947         mreq = 0;
948
949         for (tp = p; count < vm_pageout_page_count; count++) {
950                 tp = vm_page_next(tp);
951                 if (tp == NULL || vm_page_busied(tp))
952                         break;
953                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
954                         break;
955         }
956
957         for (p_first = p; count < vm_pageout_page_count; count++) {
958                 tp = vm_page_prev(p_first);
959                 if (tp == NULL || vm_page_busied(tp))
960                         break;
961                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
962                         break;
963                 p_first = tp;
964                 mreq++;
965         }
966
967         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
968                 ma[i] = tp;
969
970         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
971         return (runlen);
972 }
973
974 /*
975  * Note that there is absolutely no sense in writing out
976  * anonymous objects, so we track down the vnode object
977  * to write out.
978  * We invalidate (remove) all pages from the address space
979  * for semantic correctness.
980  *
981  * If the backing object is a device object with unmanaged pages, then any
982  * mappings to the specified range of pages must be removed before this
983  * function is called.
984  *
985  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
986  * may start out with a NULL object.
987  */
988 boolean_t
989 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
990     boolean_t syncio, boolean_t invalidate)
991 {
992         vm_object_t backing_object;
993         struct vnode *vp;
994         struct mount *mp;
995         int error, flags, fsync_after;
996         boolean_t res;
997
998         if (object == NULL)
999                 return (TRUE);
1000         res = TRUE;
1001         error = 0;
1002         VM_OBJECT_WLOCK(object);
1003         while ((backing_object = object->backing_object) != NULL) {
1004                 VM_OBJECT_WLOCK(backing_object);
1005                 offset += object->backing_object_offset;
1006                 VM_OBJECT_WUNLOCK(object);
1007                 object = backing_object;
1008                 if (object->size < OFF_TO_IDX(offset + size))
1009                         size = IDX_TO_OFF(object->size) - offset;
1010         }
1011         /*
1012          * Flush pages if writing is allowed, invalidate them
1013          * if invalidation requested.  Pages undergoing I/O
1014          * will be ignored by vm_object_page_remove().
1015          *
1016          * We cannot lock the vnode and then wait for paging
1017          * to complete without deadlocking against vm_fault.
1018          * Instead we simply call vm_object_page_remove() and
1019          * allow it to block internally on a page-by-page
1020          * basis when it encounters pages undergoing async
1021          * I/O.
1022          */
1023         if (object->type == OBJT_VNODE &&
1024             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1025                 vp = object->handle;
1026                 VM_OBJECT_WUNLOCK(object);
1027                 (void) vn_start_write(vp, &mp, V_WAIT);
1028                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1029                 if (syncio && !invalidate && offset == 0 &&
1030                     OFF_TO_IDX(size) == object->size) {
1031                         /*
1032                          * If syncing the whole mapping of the file,
1033                          * it is faster to schedule all the writes in
1034                          * async mode, also allowing the clustering,
1035                          * and then wait for i/o to complete.
1036                          */
1037                         flags = 0;
1038                         fsync_after = TRUE;
1039                 } else {
1040                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1041                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1042                         fsync_after = FALSE;
1043                 }
1044                 VM_OBJECT_WLOCK(object);
1045                 res = vm_object_page_clean(object, offset, offset + size,
1046                     flags);
1047                 VM_OBJECT_WUNLOCK(object);
1048                 if (fsync_after)
1049                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1050                 VOP_UNLOCK(vp, 0);
1051                 vn_finished_write(mp);
1052                 if (error != 0)
1053                         res = FALSE;
1054                 VM_OBJECT_WLOCK(object);
1055         }
1056         if ((object->type == OBJT_VNODE ||
1057              object->type == OBJT_DEVICE) && invalidate) {
1058                 if (object->type == OBJT_DEVICE)
1059                         /*
1060                          * The option OBJPR_NOTMAPPED must be passed here
1061                          * because vm_object_page_remove() cannot remove
1062                          * unmanaged mappings.
1063                          */
1064                         flags = OBJPR_NOTMAPPED;
1065                 else if (old_msync)
1066                         flags = OBJPR_NOTWIRED;
1067                 else
1068                         flags = OBJPR_CLEANONLY | OBJPR_NOTWIRED;
1069                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1070                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1071         }
1072         VM_OBJECT_WUNLOCK(object);
1073         return (res);
1074 }
1075
1076 /*
1077  *      vm_object_madvise:
1078  *
1079  *      Implements the madvise function at the object/page level.
1080  *
1081  *      MADV_WILLNEED   (any object)
1082  *
1083  *          Activate the specified pages if they are resident.
1084  *
1085  *      MADV_DONTNEED   (any object)
1086  *
1087  *          Deactivate the specified pages if they are resident.
1088  *
1089  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1090  *                       OBJ_ONEMAPPING only)
1091  *
1092  *          Deactivate and clean the specified pages if they are
1093  *          resident.  This permits the process to reuse the pages
1094  *          without faulting or the kernel to reclaim the pages
1095  *          without I/O.
1096  */
1097 void
1098 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1099     int advise)
1100 {
1101         vm_pindex_t tpindex;
1102         vm_object_t backing_object, tobject;
1103         vm_page_t m;
1104
1105         if (object == NULL)
1106                 return;
1107         VM_OBJECT_WLOCK(object);
1108         /*
1109          * Locate and adjust resident pages
1110          */
1111         for (; pindex < end; pindex += 1) {
1112 relookup:
1113                 tobject = object;
1114                 tpindex = pindex;
1115 shadowlookup:
1116                 /*
1117                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1118                  * and those pages must be OBJ_ONEMAPPING.
1119                  */
1120                 if (advise == MADV_FREE) {
1121                         if ((tobject->type != OBJT_DEFAULT &&
1122                              tobject->type != OBJT_SWAP) ||
1123                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1124                                 goto unlock_tobject;
1125                         }
1126                 } else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1127                         goto unlock_tobject;
1128                 m = vm_page_lookup(tobject, tpindex);
1129                 if (m == NULL && advise == MADV_WILLNEED) {
1130                         /*
1131                          * If the page is cached, reactivate it.
1132                          */
1133                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1134                             VM_ALLOC_NOBUSY);
1135                 }
1136                 if (m == NULL) {
1137                         /*
1138                          * There may be swap even if there is no backing page
1139                          */
1140                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1141                                 swap_pager_freespace(tobject, tpindex, 1);
1142                         /*
1143                          * next object
1144                          */
1145                         backing_object = tobject->backing_object;
1146                         if (backing_object == NULL)
1147                                 goto unlock_tobject;
1148                         VM_OBJECT_WLOCK(backing_object);
1149                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1150                         if (tobject != object)
1151                                 VM_OBJECT_WUNLOCK(tobject);
1152                         tobject = backing_object;
1153                         goto shadowlookup;
1154                 } else if (m->valid != VM_PAGE_BITS_ALL)
1155                         goto unlock_tobject;
1156                 /*
1157                  * If the page is not in a normal state, skip it.
1158                  */
1159                 vm_page_lock(m);
1160                 if (m->hold_count != 0 || m->wire_count != 0) {
1161                         vm_page_unlock(m);
1162                         goto unlock_tobject;
1163                 }
1164                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1165                     ("vm_object_madvise: page %p is fictitious", m));
1166                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1167                     ("vm_object_madvise: page %p is not managed", m));
1168                 if (vm_page_busied(m)) {
1169                         if (advise == MADV_WILLNEED) {
1170                                 /*
1171                                  * Reference the page before unlocking and
1172                                  * sleeping so that the page daemon is less
1173                                  * likely to reclaim it. 
1174                                  */
1175                                 vm_page_aflag_set(m, PGA_REFERENCED);
1176                         }
1177                         if (object != tobject)
1178                                 VM_OBJECT_WUNLOCK(object);
1179                         VM_OBJECT_WUNLOCK(tobject);
1180                         vm_page_busy_sleep(m, "madvpo");
1181                         VM_OBJECT_WLOCK(object);
1182                         goto relookup;
1183                 }
1184                 if (advise == MADV_WILLNEED) {
1185                         vm_page_activate(m);
1186                 } else {
1187                         vm_page_advise(m, advise);
1188                 }
1189                 vm_page_unlock(m);
1190                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1191                         swap_pager_freespace(tobject, tpindex, 1);
1192 unlock_tobject:
1193                 if (tobject != object)
1194                         VM_OBJECT_WUNLOCK(tobject);
1195         }       
1196         VM_OBJECT_WUNLOCK(object);
1197 }
1198
1199 /*
1200  *      vm_object_shadow:
1201  *
1202  *      Create a new object which is backed by the
1203  *      specified existing object range.  The source
1204  *      object reference is deallocated.
1205  *
1206  *      The new object and offset into that object
1207  *      are returned in the source parameters.
1208  */
1209 void
1210 vm_object_shadow(
1211         vm_object_t *object,    /* IN/OUT */
1212         vm_ooffset_t *offset,   /* IN/OUT */
1213         vm_size_t length)
1214 {
1215         vm_object_t source;
1216         vm_object_t result;
1217
1218         source = *object;
1219
1220         /*
1221          * Don't create the new object if the old object isn't shared.
1222          */
1223         if (source != NULL) {
1224                 VM_OBJECT_WLOCK(source);
1225                 if (source->ref_count == 1 &&
1226                     source->handle == NULL &&
1227                     (source->type == OBJT_DEFAULT ||
1228                      source->type == OBJT_SWAP)) {
1229                         VM_OBJECT_WUNLOCK(source);
1230                         return;
1231                 }
1232                 VM_OBJECT_WUNLOCK(source);
1233         }
1234
1235         /*
1236          * Allocate a new object with the given length.
1237          */
1238         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1239
1240         /*
1241          * The new object shadows the source object, adding a reference to it.
1242          * Our caller changes his reference to point to the new object,
1243          * removing a reference to the source object.  Net result: no change
1244          * of reference count.
1245          *
1246          * Try to optimize the result object's page color when shadowing
1247          * in order to maintain page coloring consistency in the combined 
1248          * shadowed object.
1249          */
1250         result->backing_object = source;
1251         /*
1252          * Store the offset into the source object, and fix up the offset into
1253          * the new object.
1254          */
1255         result->backing_object_offset = *offset;
1256         if (source != NULL) {
1257                 VM_OBJECT_WLOCK(source);
1258                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1259                 source->shadow_count++;
1260 #if VM_NRESERVLEVEL > 0
1261                 result->flags |= source->flags & OBJ_COLORED;
1262                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1263                     ((1 << (VM_NFREEORDER - 1)) - 1);
1264 #endif
1265                 VM_OBJECT_WUNLOCK(source);
1266         }
1267
1268
1269         /*
1270          * Return the new things
1271          */
1272         *offset = 0;
1273         *object = result;
1274 }
1275
1276 /*
1277  *      vm_object_split:
1278  *
1279  * Split the pages in a map entry into a new object.  This affords
1280  * easier removal of unused pages, and keeps object inheritance from
1281  * being a negative impact on memory usage.
1282  */
1283 void
1284 vm_object_split(vm_map_entry_t entry)
1285 {
1286         vm_page_t m, m_next;
1287         vm_object_t orig_object, new_object, source;
1288         vm_pindex_t idx, offidxstart;
1289         vm_size_t size;
1290
1291         orig_object = entry->object.vm_object;
1292         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1293                 return;
1294         if (orig_object->ref_count <= 1)
1295                 return;
1296         VM_OBJECT_WUNLOCK(orig_object);
1297
1298         offidxstart = OFF_TO_IDX(entry->offset);
1299         size = atop(entry->end - entry->start);
1300
1301         /*
1302          * If swap_pager_copy() is later called, it will convert new_object
1303          * into a swap object.
1304          */
1305         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1306
1307         /*
1308          * At this point, the new object is still private, so the order in
1309          * which the original and new objects are locked does not matter.
1310          */
1311         VM_OBJECT_WLOCK(new_object);
1312         VM_OBJECT_WLOCK(orig_object);
1313         source = orig_object->backing_object;
1314         if (source != NULL) {
1315                 VM_OBJECT_WLOCK(source);
1316                 if ((source->flags & OBJ_DEAD) != 0) {
1317                         VM_OBJECT_WUNLOCK(source);
1318                         VM_OBJECT_WUNLOCK(orig_object);
1319                         VM_OBJECT_WUNLOCK(new_object);
1320                         vm_object_deallocate(new_object);
1321                         VM_OBJECT_WLOCK(orig_object);
1322                         return;
1323                 }
1324                 LIST_INSERT_HEAD(&source->shadow_head,
1325                                   new_object, shadow_list);
1326                 source->shadow_count++;
1327                 vm_object_reference_locked(source);     /* for new_object */
1328                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1329                 VM_OBJECT_WUNLOCK(source);
1330                 new_object->backing_object_offset = 
1331                         orig_object->backing_object_offset + entry->offset;
1332                 new_object->backing_object = source;
1333         }
1334         if (orig_object->cred != NULL) {
1335                 new_object->cred = orig_object->cred;
1336                 crhold(orig_object->cred);
1337                 new_object->charge = ptoa(size);
1338                 KASSERT(orig_object->charge >= ptoa(size),
1339                     ("orig_object->charge < 0"));
1340                 orig_object->charge -= ptoa(size);
1341         }
1342 retry:
1343         m = vm_page_find_least(orig_object, offidxstart);
1344         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1345             m = m_next) {
1346                 m_next = TAILQ_NEXT(m, listq);
1347
1348                 /*
1349                  * We must wait for pending I/O to complete before we can
1350                  * rename the page.
1351                  *
1352                  * We do not have to VM_PROT_NONE the page as mappings should
1353                  * not be changed by this operation.
1354                  */
1355                 if (vm_page_busied(m)) {
1356                         VM_OBJECT_WUNLOCK(new_object);
1357                         vm_page_lock(m);
1358                         VM_OBJECT_WUNLOCK(orig_object);
1359                         vm_page_busy_sleep(m, "spltwt");
1360                         VM_OBJECT_WLOCK(orig_object);
1361                         VM_OBJECT_WLOCK(new_object);
1362                         goto retry;
1363                 }
1364
1365                 /* vm_page_rename() will handle dirty and cache. */
1366                 if (vm_page_rename(m, new_object, idx)) {
1367                         VM_OBJECT_WUNLOCK(new_object);
1368                         VM_OBJECT_WUNLOCK(orig_object);
1369                         VM_WAIT;
1370                         VM_OBJECT_WLOCK(orig_object);
1371                         VM_OBJECT_WLOCK(new_object);
1372                         goto retry;
1373                 }
1374 #if VM_NRESERVLEVEL > 0
1375                 /*
1376                  * If some of the reservation's allocated pages remain with
1377                  * the original object, then transferring the reservation to
1378                  * the new object is neither particularly beneficial nor
1379                  * particularly harmful as compared to leaving the reservation
1380                  * with the original object.  If, however, all of the
1381                  * reservation's allocated pages are transferred to the new
1382                  * object, then transferring the reservation is typically
1383                  * beneficial.  Determining which of these two cases applies
1384                  * would be more costly than unconditionally renaming the
1385                  * reservation.
1386                  */
1387                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1388 #endif
1389                 if (orig_object->type == OBJT_SWAP)
1390                         vm_page_xbusy(m);
1391         }
1392         if (orig_object->type == OBJT_SWAP) {
1393                 /*
1394                  * swap_pager_copy() can sleep, in which case the orig_object's
1395                  * and new_object's locks are released and reacquired. 
1396                  */
1397                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1398                 TAILQ_FOREACH(m, &new_object->memq, listq)
1399                         vm_page_xunbusy(m);
1400
1401                 /*
1402                  * Transfer any cached pages from orig_object to new_object.
1403                  * If swap_pager_copy() found swapped out pages within the
1404                  * specified range of orig_object, then it changed
1405                  * new_object's type to OBJT_SWAP when it transferred those
1406                  * pages to new_object.  Otherwise, new_object's type
1407                  * should still be OBJT_DEFAULT and orig_object should not
1408                  * contain any cached pages within the specified range.
1409                  */
1410                 if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1411                         vm_page_cache_transfer(orig_object, offidxstart,
1412                             new_object);
1413         }
1414         VM_OBJECT_WUNLOCK(orig_object);
1415         VM_OBJECT_WUNLOCK(new_object);
1416         entry->object.vm_object = new_object;
1417         entry->offset = 0LL;
1418         vm_object_deallocate(orig_object);
1419         VM_OBJECT_WLOCK(new_object);
1420 }
1421
1422 #define OBSC_TEST_ALL_SHADOWED  0x0001
1423 #define OBSC_COLLAPSE_NOWAIT    0x0002
1424 #define OBSC_COLLAPSE_WAIT      0x0004
1425
1426 static int
1427 vm_object_backing_scan(vm_object_t object, int op)
1428 {
1429         int r = 1;
1430         vm_page_t p;
1431         vm_object_t backing_object;
1432         vm_pindex_t backing_offset_index;
1433
1434         VM_OBJECT_ASSERT_WLOCKED(object);
1435         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1436
1437         backing_object = object->backing_object;
1438         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1439
1440         /*
1441          * Initial conditions
1442          */
1443         if (op & OBSC_TEST_ALL_SHADOWED) {
1444                 /*
1445                  * We do not want to have to test for the existence of cache
1446                  * or swap pages in the backing object.  XXX but with the
1447                  * new swapper this would be pretty easy to do.
1448                  *
1449                  * XXX what about anonymous MAP_SHARED memory that hasn't
1450                  * been ZFOD faulted yet?  If we do not test for this, the
1451                  * shadow test may succeed! XXX
1452                  */
1453                 if (backing_object->type != OBJT_DEFAULT) {
1454                         return (0);
1455                 }
1456         }
1457         if (op & OBSC_COLLAPSE_WAIT) {
1458                 vm_object_set_flag(backing_object, OBJ_DEAD);
1459         }
1460
1461         /*
1462          * Our scan
1463          */
1464         p = TAILQ_FIRST(&backing_object->memq);
1465         while (p) {
1466                 vm_page_t next = TAILQ_NEXT(p, listq);
1467                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1468
1469                 if (op & OBSC_TEST_ALL_SHADOWED) {
1470                         vm_page_t pp;
1471
1472                         /*
1473                          * Ignore pages outside the parent object's range
1474                          * and outside the parent object's mapping of the 
1475                          * backing object.
1476                          *
1477                          * note that we do not busy the backing object's
1478                          * page.
1479                          */
1480                         if (
1481                             p->pindex < backing_offset_index ||
1482                             new_pindex >= object->size
1483                         ) {
1484                                 p = next;
1485                                 continue;
1486                         }
1487
1488                         /*
1489                          * See if the parent has the page or if the parent's
1490                          * object pager has the page.  If the parent has the
1491                          * page but the page is not valid, the parent's
1492                          * object pager must have the page.
1493                          *
1494                          * If this fails, the parent does not completely shadow
1495                          * the object and we might as well give up now.
1496                          */
1497
1498                         pp = vm_page_lookup(object, new_pindex);
1499                         if (
1500                             (pp == NULL || pp->valid == 0) &&
1501                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1502                         ) {
1503                                 r = 0;
1504                                 break;
1505                         }
1506                 }
1507
1508                 /*
1509                  * Check for busy page
1510                  */
1511                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1512                         vm_page_t pp;
1513
1514                         if (op & OBSC_COLLAPSE_NOWAIT) {
1515                                 if (!p->valid || vm_page_busied(p)) {
1516                                         p = next;
1517                                         continue;
1518                                 }
1519                         } else if (op & OBSC_COLLAPSE_WAIT) {
1520                                 if (vm_page_busied(p)) {
1521                                         VM_OBJECT_WUNLOCK(object);
1522                                         vm_page_lock(p);
1523                                         VM_OBJECT_WUNLOCK(backing_object);
1524                                         vm_page_busy_sleep(p, "vmocol");
1525                                         VM_OBJECT_WLOCK(object);
1526                                         VM_OBJECT_WLOCK(backing_object);
1527                                         /*
1528                                          * If we slept, anything could have
1529                                          * happened.  Since the object is
1530                                          * marked dead, the backing offset
1531                                          * should not have changed so we
1532                                          * just restart our scan.
1533                                          */
1534                                         p = TAILQ_FIRST(&backing_object->memq);
1535                                         continue;
1536                                 }
1537                         }
1538
1539                         KASSERT(
1540                             p->object == backing_object,
1541                             ("vm_object_backing_scan: object mismatch")
1542                         );
1543
1544                         if (
1545                             p->pindex < backing_offset_index ||
1546                             new_pindex >= object->size
1547                         ) {
1548                                 if (backing_object->type == OBJT_SWAP)
1549                                         swap_pager_freespace(backing_object, 
1550                                             p->pindex, 1);
1551
1552                                 /*
1553                                  * Page is out of the parent object's range, we 
1554                                  * can simply destroy it. 
1555                                  */
1556                                 vm_page_lock(p);
1557                                 KASSERT(!pmap_page_is_mapped(p),
1558                                     ("freeing mapped page %p", p));
1559                                 if (p->wire_count == 0)
1560                                         vm_page_free(p);
1561                                 else
1562                                         vm_page_remove(p);
1563                                 vm_page_unlock(p);
1564                                 p = next;
1565                                 continue;
1566                         }
1567
1568                         pp = vm_page_lookup(object, new_pindex);
1569                         if (
1570                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1571                             (pp != NULL && pp->valid == 0)
1572                         ) {
1573                                 if (backing_object->type == OBJT_SWAP)
1574                                         swap_pager_freespace(backing_object, 
1575                                             p->pindex, 1);
1576
1577                                 /*
1578                                  * The page in the parent is not (yet) valid.
1579                                  * We don't know anything about the state of
1580                                  * the original page.  It might be mapped,
1581                                  * so we must avoid the next if here.
1582                                  *
1583                                  * This is due to a race in vm_fault() where
1584                                  * we must unbusy the original (backing_obj)
1585                                  * page before we can (re)lock the parent.
1586                                  * Hence we can get here.
1587                                  */
1588                                 p = next;
1589                                 continue;
1590                         }
1591                         if (
1592                             pp != NULL ||
1593                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1594                         ) {
1595                                 if (backing_object->type == OBJT_SWAP)
1596                                         swap_pager_freespace(backing_object, 
1597                                             p->pindex, 1);
1598
1599                                 /*
1600                                  * page already exists in parent OR swap exists
1601                                  * for this location in the parent.  Destroy 
1602                                  * the original page from the backing object.
1603                                  *
1604                                  * Leave the parent's page alone
1605                                  */
1606                                 vm_page_lock(p);
1607                                 KASSERT(!pmap_page_is_mapped(p),
1608                                     ("freeing mapped page %p", p));
1609                                 if (p->wire_count == 0)
1610                                         vm_page_free(p);
1611                                 else
1612                                         vm_page_remove(p);
1613                                 vm_page_unlock(p);
1614                                 p = next;
1615                                 continue;
1616                         }
1617
1618                         /*
1619                          * Page does not exist in parent, rename the
1620                          * page from the backing object to the main object. 
1621                          *
1622                          * If the page was mapped to a process, it can remain 
1623                          * mapped through the rename.
1624                          * vm_page_rename() will handle dirty and cache.
1625                          */
1626                         if (vm_page_rename(p, object, new_pindex)) {
1627                                 if (op & OBSC_COLLAPSE_NOWAIT) {
1628                                         p = next;
1629                                         continue;
1630                                 }
1631                                 VM_OBJECT_WUNLOCK(backing_object);
1632                                 VM_OBJECT_WUNLOCK(object);
1633                                 VM_WAIT;
1634                                 VM_OBJECT_WLOCK(object);
1635                                 VM_OBJECT_WLOCK(backing_object);
1636                                 p = TAILQ_FIRST(&backing_object->memq);
1637                                 continue;
1638                         }
1639
1640                         /* Use the old pindex to free the right page. */
1641                         if (backing_object->type == OBJT_SWAP)
1642                                 swap_pager_freespace(backing_object,
1643                                     new_pindex + backing_offset_index, 1);
1644
1645 #if VM_NRESERVLEVEL > 0
1646                         /*
1647                          * Rename the reservation.
1648                          */
1649                         vm_reserv_rename(p, object, backing_object,
1650                             backing_offset_index);
1651 #endif
1652                 }
1653                 p = next;
1654         }
1655         return (r);
1656 }
1657
1658
1659 /*
1660  * this version of collapse allows the operation to occur earlier and
1661  * when paging_in_progress is true for an object...  This is not a complete
1662  * operation, but should plug 99.9% of the rest of the leaks.
1663  */
1664 static void
1665 vm_object_qcollapse(vm_object_t object)
1666 {
1667         vm_object_t backing_object = object->backing_object;
1668
1669         VM_OBJECT_ASSERT_WLOCKED(object);
1670         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1671
1672         if (backing_object->ref_count != 1)
1673                 return;
1674
1675         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1676 }
1677
1678 /*
1679  *      vm_object_collapse:
1680  *
1681  *      Collapse an object with the object backing it.
1682  *      Pages in the backing object are moved into the
1683  *      parent, and the backing object is deallocated.
1684  */
1685 void
1686 vm_object_collapse(vm_object_t object)
1687 {
1688         VM_OBJECT_ASSERT_WLOCKED(object);
1689         
1690         while (TRUE) {
1691                 vm_object_t backing_object;
1692
1693                 /*
1694                  * Verify that the conditions are right for collapse:
1695                  *
1696                  * The object exists and the backing object exists.
1697                  */
1698                 if ((backing_object = object->backing_object) == NULL)
1699                         break;
1700
1701                 /*
1702                  * we check the backing object first, because it is most likely
1703                  * not collapsable.
1704                  */
1705                 VM_OBJECT_WLOCK(backing_object);
1706                 if (backing_object->handle != NULL ||
1707                     (backing_object->type != OBJT_DEFAULT &&
1708                      backing_object->type != OBJT_SWAP) ||
1709                     (backing_object->flags & OBJ_DEAD) ||
1710                     object->handle != NULL ||
1711                     (object->type != OBJT_DEFAULT &&
1712                      object->type != OBJT_SWAP) ||
1713                     (object->flags & OBJ_DEAD)) {
1714                         VM_OBJECT_WUNLOCK(backing_object);
1715                         break;
1716                 }
1717
1718                 if (
1719                     object->paging_in_progress != 0 ||
1720                     backing_object->paging_in_progress != 0
1721                 ) {
1722                         vm_object_qcollapse(object);
1723                         VM_OBJECT_WUNLOCK(backing_object);
1724                         break;
1725                 }
1726                 /*
1727                  * We know that we can either collapse the backing object (if
1728                  * the parent is the only reference to it) or (perhaps) have
1729                  * the parent bypass the object if the parent happens to shadow
1730                  * all the resident pages in the entire backing object.
1731                  *
1732                  * This is ignoring pager-backed pages such as swap pages.
1733                  * vm_object_backing_scan fails the shadowing test in this
1734                  * case.
1735                  */
1736                 if (backing_object->ref_count == 1) {
1737                         /*
1738                          * If there is exactly one reference to the backing
1739                          * object, we can collapse it into the parent.  
1740                          */
1741                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1742
1743 #if VM_NRESERVLEVEL > 0
1744                         /*
1745                          * Break any reservations from backing_object.
1746                          */
1747                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1748                                 vm_reserv_break_all(backing_object);
1749 #endif
1750
1751                         /*
1752                          * Move the pager from backing_object to object.
1753                          */
1754                         if (backing_object->type == OBJT_SWAP) {
1755                                 /*
1756                                  * swap_pager_copy() can sleep, in which case
1757                                  * the backing_object's and object's locks are
1758                                  * released and reacquired.
1759                                  * Since swap_pager_copy() is being asked to
1760                                  * destroy the source, it will change the
1761                                  * backing_object's type to OBJT_DEFAULT.
1762                                  */
1763                                 swap_pager_copy(
1764                                     backing_object,
1765                                     object,
1766                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1767
1768                                 /*
1769                                  * Free any cached pages from backing_object.
1770                                  */
1771                                 if (__predict_false(
1772                                     !vm_object_cache_is_empty(backing_object)))
1773                                         vm_page_cache_free(backing_object, 0, 0);
1774                         }
1775                         /*
1776                          * Object now shadows whatever backing_object did.
1777                          * Note that the reference to 
1778                          * backing_object->backing_object moves from within 
1779                          * backing_object to within object.
1780                          */
1781                         LIST_REMOVE(object, shadow_list);
1782                         backing_object->shadow_count--;
1783                         if (backing_object->backing_object) {
1784                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1785                                 LIST_REMOVE(backing_object, shadow_list);
1786                                 LIST_INSERT_HEAD(
1787                                     &backing_object->backing_object->shadow_head,
1788                                     object, shadow_list);
1789                                 /*
1790                                  * The shadow_count has not changed.
1791                                  */
1792                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1793                         }
1794                         object->backing_object = backing_object->backing_object;
1795                         object->backing_object_offset +=
1796                             backing_object->backing_object_offset;
1797
1798                         /*
1799                          * Discard backing_object.
1800                          *
1801                          * Since the backing object has no pages, no pager left,
1802                          * and no object references within it, all that is
1803                          * necessary is to dispose of it.
1804                          */
1805                         KASSERT(backing_object->ref_count == 1, (
1806 "backing_object %p was somehow re-referenced during collapse!",
1807                             backing_object));
1808                         backing_object->type = OBJT_DEAD;
1809                         backing_object->ref_count = 0;
1810                         VM_OBJECT_WUNLOCK(backing_object);
1811                         vm_object_destroy(backing_object);
1812
1813                         object_collapses++;
1814                 } else {
1815                         vm_object_t new_backing_object;
1816
1817                         /*
1818                          * If we do not entirely shadow the backing object,
1819                          * there is nothing we can do so we give up.
1820                          */
1821                         if (object->resident_page_count != object->size &&
1822                             vm_object_backing_scan(object,
1823                             OBSC_TEST_ALL_SHADOWED) == 0) {
1824                                 VM_OBJECT_WUNLOCK(backing_object);
1825                                 break;
1826                         }
1827
1828                         /*
1829                          * Make the parent shadow the next object in the
1830                          * chain.  Deallocating backing_object will not remove
1831                          * it, since its reference count is at least 2.
1832                          */
1833                         LIST_REMOVE(object, shadow_list);
1834                         backing_object->shadow_count--;
1835
1836                         new_backing_object = backing_object->backing_object;
1837                         if ((object->backing_object = new_backing_object) != NULL) {
1838                                 VM_OBJECT_WLOCK(new_backing_object);
1839                                 LIST_INSERT_HEAD(
1840                                     &new_backing_object->shadow_head,
1841                                     object,
1842                                     shadow_list
1843                                 );
1844                                 new_backing_object->shadow_count++;
1845                                 vm_object_reference_locked(new_backing_object);
1846                                 VM_OBJECT_WUNLOCK(new_backing_object);
1847                                 object->backing_object_offset +=
1848                                         backing_object->backing_object_offset;
1849                         }
1850
1851                         /*
1852                          * Drop the reference count on backing_object. Since
1853                          * its ref_count was at least 2, it will not vanish.
1854                          */
1855                         backing_object->ref_count--;
1856                         VM_OBJECT_WUNLOCK(backing_object);
1857                         object_bypasses++;
1858                 }
1859
1860                 /*
1861                  * Try again with this object's new backing object.
1862                  */
1863         }
1864 }
1865
1866 /*
1867  *      vm_object_page_remove:
1868  *
1869  *      For the given object, either frees or invalidates each of the
1870  *      specified pages.  In general, a page is freed.  However, if a page is
1871  *      wired for any reason other than the existence of a managed, wired
1872  *      mapping, then it may be invalidated but not removed from the object.
1873  *      Pages are specified by the given range ["start", "end") and the option
1874  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1875  *      extends from "start" to the end of the object.  If the option
1876  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1877  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1878  *      specified, then the pages within the specified range must have no
1879  *      mappings.  Otherwise, if this option is not specified, any mappings to
1880  *      the specified pages are removed before the pages are freed or
1881  *      invalidated.
1882  *
1883  *      In general, this operation should only be performed on objects that
1884  *      contain managed pages.  There are, however, two exceptions.  First, it
1885  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1886  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1887  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1888  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1889  *
1890  *      The object must be locked.
1891  */
1892 void
1893 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1894     int options)
1895 {
1896         vm_page_t p, next;
1897         int wirings;
1898
1899         VM_OBJECT_ASSERT_WLOCKED(object);
1900         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1901             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1902             ("vm_object_page_remove: illegal options for object %p", object));
1903         if (object->resident_page_count == 0)
1904                 goto skipmemq;
1905         vm_object_pip_add(object, 1);
1906 again:
1907         p = vm_page_find_least(object, start);
1908
1909         /*
1910          * Here, the variable "p" is either (1) the page with the least pindex
1911          * greater than or equal to the parameter "start" or (2) NULL. 
1912          */
1913         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1914                 next = TAILQ_NEXT(p, listq);
1915
1916                 /*
1917                  * If the page is wired for any reason besides the existence
1918                  * of managed, wired mappings, then it cannot be freed.  For
1919                  * example, fictitious pages, which represent device memory,
1920                  * are inherently wired and cannot be freed.  They can,
1921                  * however, be invalidated if the option OBJPR_CLEANONLY is
1922                  * not specified.
1923                  */
1924                 vm_page_lock(p);
1925                 if (vm_page_xbusied(p)) {
1926                         VM_OBJECT_WUNLOCK(object);
1927                         vm_page_busy_sleep(p, "vmopax");
1928                         VM_OBJECT_WLOCK(object);
1929                         goto again;
1930                 }
1931                 if ((wirings = p->wire_count) != 0 &&
1932                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1933                         if ((options & (OBJPR_NOTWIRED | OBJPR_NOTMAPPED)) ==
1934                             0) {
1935                                 pmap_remove_all(p);
1936                                 /* Account for removal of wired mappings. */
1937                                 if (wirings != 0)
1938                                         p->wire_count -= wirings;
1939                         }
1940                         if ((options & OBJPR_CLEANONLY) == 0) {
1941                                 p->valid = 0;
1942                                 vm_page_undirty(p);
1943                         }
1944                         goto next;
1945                 }
1946                 if (vm_page_busied(p)) {
1947                         VM_OBJECT_WUNLOCK(object);
1948                         vm_page_busy_sleep(p, "vmopar");
1949                         VM_OBJECT_WLOCK(object);
1950                         goto again;
1951                 }
1952                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1953                     ("vm_object_page_remove: page %p is fictitious", p));
1954                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1955                         if ((options & OBJPR_NOTMAPPED) == 0)
1956                                 pmap_remove_write(p);
1957                         if (p->dirty)
1958                                 goto next;
1959                 }
1960                 if ((options & OBJPR_NOTMAPPED) == 0) {
1961                         if ((options & OBJPR_NOTWIRED) != 0 && wirings != 0)
1962                                 goto next;
1963                         pmap_remove_all(p);
1964                         /* Account for removal of wired mappings. */
1965                         if (wirings != 0) {
1966                                 KASSERT(p->wire_count == wirings,
1967                                     ("inconsistent wire count %d %d %p",
1968                                     p->wire_count, wirings, p));
1969                                 p->wire_count = 0;
1970                                 atomic_subtract_int(&cnt.v_wire_count, 1);
1971                         }
1972                 }
1973                 vm_page_free(p);
1974 next:
1975                 vm_page_unlock(p);
1976         }
1977         vm_object_pip_wakeup(object);
1978 skipmemq:
1979         if (__predict_false(!vm_object_cache_is_empty(object)))
1980                 vm_page_cache_free(object, start, end);
1981 }
1982
1983 /*
1984  *      vm_object_page_cache:
1985  *
1986  *      For the given object, attempt to move the specified clean
1987  *      pages to the cache queue.  If a page is wired for any reason,
1988  *      then it will not be changed.  Pages are specified by the given
1989  *      range ["start", "end").  As a special case, if "end" is zero,
1990  *      then the range extends from "start" to the end of the object.
1991  *      Any mappings to the specified pages are removed before the
1992  *      pages are moved to the cache queue.
1993  *
1994  *      This operation should only be performed on objects that
1995  *      contain non-fictitious, managed pages.
1996  *
1997  *      The object must be locked.
1998  */
1999 void
2000 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2001 {
2002         struct mtx *mtx, *new_mtx;
2003         vm_page_t p, next;
2004
2005         VM_OBJECT_ASSERT_WLOCKED(object);
2006         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2007             ("vm_object_page_cache: illegal object %p", object));
2008         if (object->resident_page_count == 0)
2009                 return;
2010         p = vm_page_find_least(object, start);
2011
2012         /*
2013          * Here, the variable "p" is either (1) the page with the least pindex
2014          * greater than or equal to the parameter "start" or (2) NULL. 
2015          */
2016         mtx = NULL;
2017         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2018                 next = TAILQ_NEXT(p, listq);
2019
2020                 /*
2021                  * Avoid releasing and reacquiring the same page lock.
2022                  */
2023                 new_mtx = vm_page_lockptr(p);
2024                 if (mtx != new_mtx) {
2025                         if (mtx != NULL)
2026                                 mtx_unlock(mtx);
2027                         mtx = new_mtx;
2028                         mtx_lock(mtx);
2029                 }
2030                 vm_page_try_to_cache(p);
2031         }
2032         if (mtx != NULL)
2033                 mtx_unlock(mtx);
2034 }
2035
2036 /*
2037  *      Populate the specified range of the object with valid pages.  Returns
2038  *      TRUE if the range is successfully populated and FALSE otherwise.
2039  *
2040  *      Note: This function should be optimized to pass a larger array of
2041  *      pages to vm_pager_get_pages() before it is applied to a non-
2042  *      OBJT_DEVICE object.
2043  *
2044  *      The object must be locked.
2045  */
2046 boolean_t
2047 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2048 {
2049         vm_page_t m, ma[1];
2050         vm_pindex_t pindex;
2051         int rv;
2052
2053         VM_OBJECT_ASSERT_WLOCKED(object);
2054         for (pindex = start; pindex < end; pindex++) {
2055                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2056                 if (m->valid != VM_PAGE_BITS_ALL) {
2057                         ma[0] = m;
2058                         rv = vm_pager_get_pages(object, ma, 1, 0);
2059                         m = vm_page_lookup(object, pindex);
2060                         if (m == NULL)
2061                                 break;
2062                         if (rv != VM_PAGER_OK) {
2063                                 vm_page_lock(m);
2064                                 vm_page_free(m);
2065                                 vm_page_unlock(m);
2066                                 break;
2067                         }
2068                 }
2069                 /*
2070                  * Keep "m" busy because a subsequent iteration may unlock
2071                  * the object.
2072                  */
2073         }
2074         if (pindex > start) {
2075                 m = vm_page_lookup(object, start);
2076                 while (m != NULL && m->pindex < pindex) {
2077                         vm_page_xunbusy(m);
2078                         m = TAILQ_NEXT(m, listq);
2079                 }
2080         }
2081         return (pindex == end);
2082 }
2083
2084 /*
2085  *      Routine:        vm_object_coalesce
2086  *      Function:       Coalesces two objects backing up adjoining
2087  *                      regions of memory into a single object.
2088  *
2089  *      returns TRUE if objects were combined.
2090  *
2091  *      NOTE:   Only works at the moment if the second object is NULL -
2092  *              if it's not, which object do we lock first?
2093  *
2094  *      Parameters:
2095  *              prev_object     First object to coalesce
2096  *              prev_offset     Offset into prev_object
2097  *              prev_size       Size of reference to prev_object
2098  *              next_size       Size of reference to the second object
2099  *              reserved        Indicator that extension region has
2100  *                              swap accounted for
2101  *
2102  *      Conditions:
2103  *      The object must *not* be locked.
2104  */
2105 boolean_t
2106 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2107     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2108 {
2109         vm_pindex_t next_pindex;
2110
2111         if (prev_object == NULL)
2112                 return (TRUE);
2113         VM_OBJECT_WLOCK(prev_object);
2114         if ((prev_object->type != OBJT_DEFAULT &&
2115             prev_object->type != OBJT_SWAP) ||
2116             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2117                 VM_OBJECT_WUNLOCK(prev_object);
2118                 return (FALSE);
2119         }
2120
2121         /*
2122          * Try to collapse the object first
2123          */
2124         vm_object_collapse(prev_object);
2125
2126         /*
2127          * Can't coalesce if: . more than one reference . paged out . shadows
2128          * another object . has a copy elsewhere (any of which mean that the
2129          * pages not mapped to prev_entry may be in use anyway)
2130          */
2131         if (prev_object->backing_object != NULL) {
2132                 VM_OBJECT_WUNLOCK(prev_object);
2133                 return (FALSE);
2134         }
2135
2136         prev_size >>= PAGE_SHIFT;
2137         next_size >>= PAGE_SHIFT;
2138         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2139
2140         if ((prev_object->ref_count > 1) &&
2141             (prev_object->size != next_pindex)) {
2142                 VM_OBJECT_WUNLOCK(prev_object);
2143                 return (FALSE);
2144         }
2145
2146         /*
2147          * Account for the charge.
2148          */
2149         if (prev_object->cred != NULL) {
2150
2151                 /*
2152                  * If prev_object was charged, then this mapping,
2153                  * althought not charged now, may become writable
2154                  * later. Non-NULL cred in the object would prevent
2155                  * swap reservation during enabling of the write
2156                  * access, so reserve swap now. Failed reservation
2157                  * cause allocation of the separate object for the map
2158                  * entry, and swap reservation for this entry is
2159                  * managed in appropriate time.
2160                  */
2161                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2162                     prev_object->cred)) {
2163                         return (FALSE);
2164                 }
2165                 prev_object->charge += ptoa(next_size);
2166         }
2167
2168         /*
2169          * Remove any pages that may still be in the object from a previous
2170          * deallocation.
2171          */
2172         if (next_pindex < prev_object->size) {
2173                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2174                     next_size, 0);
2175                 if (prev_object->type == OBJT_SWAP)
2176                         swap_pager_freespace(prev_object,
2177                                              next_pindex, next_size);
2178 #if 0
2179                 if (prev_object->cred != NULL) {
2180                         KASSERT(prev_object->charge >=
2181                             ptoa(prev_object->size - next_pindex),
2182                             ("object %p overcharged 1 %jx %jx", prev_object,
2183                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2184                         prev_object->charge -= ptoa(prev_object->size -
2185                             next_pindex);
2186                 }
2187 #endif
2188         }
2189
2190         /*
2191          * Extend the object if necessary.
2192          */
2193         if (next_pindex + next_size > prev_object->size)
2194                 prev_object->size = next_pindex + next_size;
2195
2196         VM_OBJECT_WUNLOCK(prev_object);
2197         return (TRUE);
2198 }
2199
2200 void
2201 vm_object_set_writeable_dirty(vm_object_t object)
2202 {
2203
2204         VM_OBJECT_ASSERT_WLOCKED(object);
2205         if (object->type != OBJT_VNODE) {
2206                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2207                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2208                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2209                 }
2210                 return;
2211         }
2212         object->generation++;
2213         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2214                 return;
2215         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2216 }
2217
2218 /*
2219  *      vm_object_unwire:
2220  *
2221  *      For each page offset within the specified range of the given object,
2222  *      find the highest-level page in the shadow chain and unwire it.  A page
2223  *      must exist at every page offset, and the highest-level page must be
2224  *      wired.
2225  */
2226 void
2227 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2228     uint8_t queue)
2229 {
2230         vm_object_t tobject;
2231         vm_page_t m, tm;
2232         vm_pindex_t end_pindex, pindex, tpindex;
2233         int depth, locked_depth;
2234
2235         KASSERT((offset & PAGE_MASK) == 0,
2236             ("vm_object_unwire: offset is not page aligned"));
2237         KASSERT((length & PAGE_MASK) == 0,
2238             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2239         /* The wired count of a fictitious page never changes. */
2240         if ((object->flags & OBJ_FICTITIOUS) != 0)
2241                 return;
2242         pindex = OFF_TO_IDX(offset);
2243         end_pindex = pindex + atop(length);
2244         locked_depth = 1;
2245         VM_OBJECT_RLOCK(object);
2246         m = vm_page_find_least(object, pindex);
2247         while (pindex < end_pindex) {
2248                 if (m == NULL || pindex < m->pindex) {
2249                         /*
2250                          * The first object in the shadow chain doesn't
2251                          * contain a page at the current index.  Therefore,
2252                          * the page must exist in a backing object.
2253                          */
2254                         tobject = object;
2255                         tpindex = pindex;
2256                         depth = 0;
2257                         do {
2258                                 tpindex +=
2259                                     OFF_TO_IDX(tobject->backing_object_offset);
2260                                 tobject = tobject->backing_object;
2261                                 KASSERT(tobject != NULL,
2262                                     ("vm_object_unwire: missing page"));
2263                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2264                                         goto next_page;
2265                                 depth++;
2266                                 if (depth == locked_depth) {
2267                                         locked_depth++;
2268                                         VM_OBJECT_RLOCK(tobject);
2269                                 }
2270                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2271                             NULL);
2272                 } else {
2273                         tm = m;
2274                         m = TAILQ_NEXT(m, listq);
2275                 }
2276                 vm_page_lock(tm);
2277                 vm_page_unwire(tm, queue);
2278                 vm_page_unlock(tm);
2279 next_page:
2280                 pindex++;
2281         }
2282         /* Release the accumulated object locks. */
2283         for (depth = 0; depth < locked_depth; depth++) {
2284                 tobject = object->backing_object;
2285                 VM_OBJECT_RUNLOCK(object);
2286                 object = tobject;
2287         }
2288 }
2289
2290 #include "opt_ddb.h"
2291 #ifdef DDB
2292 #include <sys/kernel.h>
2293
2294 #include <sys/cons.h>
2295
2296 #include <ddb/ddb.h>
2297
2298 static int
2299 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2300 {
2301         vm_map_t tmpm;
2302         vm_map_entry_t tmpe;
2303         vm_object_t obj;
2304         int entcount;
2305
2306         if (map == 0)
2307                 return 0;
2308
2309         if (entry == 0) {
2310                 tmpe = map->header.next;
2311                 entcount = map->nentries;
2312                 while (entcount-- && (tmpe != &map->header)) {
2313                         if (_vm_object_in_map(map, object, tmpe)) {
2314                                 return 1;
2315                         }
2316                         tmpe = tmpe->next;
2317                 }
2318         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2319                 tmpm = entry->object.sub_map;
2320                 tmpe = tmpm->header.next;
2321                 entcount = tmpm->nentries;
2322                 while (entcount-- && tmpe != &tmpm->header) {
2323                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2324                                 return 1;
2325                         }
2326                         tmpe = tmpe->next;
2327                 }
2328         } else if ((obj = entry->object.vm_object) != NULL) {
2329                 for (; obj; obj = obj->backing_object)
2330                         if (obj == object) {
2331                                 return 1;
2332                         }
2333         }
2334         return 0;
2335 }
2336
2337 static int
2338 vm_object_in_map(vm_object_t object)
2339 {
2340         struct proc *p;
2341
2342         /* sx_slock(&allproc_lock); */
2343         FOREACH_PROC_IN_SYSTEM(p) {
2344                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2345                         continue;
2346                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2347                         /* sx_sunlock(&allproc_lock); */
2348                         return 1;
2349                 }
2350         }
2351         /* sx_sunlock(&allproc_lock); */
2352         if (_vm_object_in_map(kernel_map, object, 0))
2353                 return 1;
2354         return 0;
2355 }
2356
2357 DB_SHOW_COMMAND(vmochk, vm_object_check)
2358 {
2359         vm_object_t object;
2360
2361         /*
2362          * make sure that internal objs are in a map somewhere
2363          * and none have zero ref counts.
2364          */
2365         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2366                 if (object->handle == NULL &&
2367                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2368                         if (object->ref_count == 0) {
2369                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2370                                         (long)object->size);
2371                         }
2372                         if (!vm_object_in_map(object)) {
2373                                 db_printf(
2374                         "vmochk: internal obj is not in a map: "
2375                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2376                                     object->ref_count, (u_long)object->size, 
2377                                     (u_long)object->size,
2378                                     (void *)object->backing_object);
2379                         }
2380                 }
2381         }
2382 }
2383
2384 /*
2385  *      vm_object_print:        [ debug ]
2386  */
2387 DB_SHOW_COMMAND(object, vm_object_print_static)
2388 {
2389         /* XXX convert args. */
2390         vm_object_t object = (vm_object_t)addr;
2391         boolean_t full = have_addr;
2392
2393         vm_page_t p;
2394
2395         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2396 #define count   was_count
2397
2398         int count;
2399
2400         if (object == NULL)
2401                 return;
2402
2403         db_iprintf(
2404             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2405             object, (int)object->type, (uintmax_t)object->size,
2406             object->resident_page_count, object->ref_count, object->flags,
2407             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2408         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2409             object->shadow_count, 
2410             object->backing_object ? object->backing_object->ref_count : 0,
2411             object->backing_object, (uintmax_t)object->backing_object_offset);
2412
2413         if (!full)
2414                 return;
2415
2416         db_indent += 2;
2417         count = 0;
2418         TAILQ_FOREACH(p, &object->memq, listq) {
2419                 if (count == 0)
2420                         db_iprintf("memory:=");
2421                 else if (count == 6) {
2422                         db_printf("\n");
2423                         db_iprintf(" ...");
2424                         count = 0;
2425                 } else
2426                         db_printf(",");
2427                 count++;
2428
2429                 db_printf("(off=0x%jx,page=0x%jx)",
2430                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2431         }
2432         if (count != 0)
2433                 db_printf("\n");
2434         db_indent -= 2;
2435 }
2436
2437 /* XXX. */
2438 #undef count
2439
2440 /* XXX need this non-static entry for calling from vm_map_print. */
2441 void
2442 vm_object_print(
2443         /* db_expr_t */ long addr,
2444         boolean_t have_addr,
2445         /* db_expr_t */ long count,
2446         char *modif)
2447 {
2448         vm_object_print_static(addr, have_addr, count, modif);
2449 }
2450
2451 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2452 {
2453         vm_object_t object;
2454         vm_pindex_t fidx;
2455         vm_paddr_t pa;
2456         vm_page_t m, prev_m;
2457         int rcount, nl, c;
2458
2459         nl = 0;
2460         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2461                 db_printf("new object: %p\n", (void *)object);
2462                 if (nl > 18) {
2463                         c = cngetc();
2464                         if (c != ' ')
2465                                 return;
2466                         nl = 0;
2467                 }
2468                 nl++;
2469                 rcount = 0;
2470                 fidx = 0;
2471                 pa = -1;
2472                 TAILQ_FOREACH(m, &object->memq, listq) {
2473                         if (m->pindex > 128)
2474                                 break;
2475                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2476                             prev_m->pindex + 1 != m->pindex) {
2477                                 if (rcount) {
2478                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2479                                                 (long)fidx, rcount, (long)pa);
2480                                         if (nl > 18) {
2481                                                 c = cngetc();
2482                                                 if (c != ' ')
2483                                                         return;
2484                                                 nl = 0;
2485                                         }
2486                                         nl++;
2487                                         rcount = 0;
2488                                 }
2489                         }                               
2490                         if (rcount &&
2491                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2492                                 ++rcount;
2493                                 continue;
2494                         }
2495                         if (rcount) {
2496                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2497                                         (long)fidx, rcount, (long)pa);
2498                                 if (nl > 18) {
2499                                         c = cngetc();
2500                                         if (c != ' ')
2501                                                 return;
2502                                         nl = 0;
2503                                 }
2504                                 nl++;
2505                         }
2506                         fidx = m->pindex;
2507                         pa = VM_PAGE_TO_PHYS(m);
2508                         rcount = 1;
2509                 }
2510                 if (rcount) {
2511                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2512                                 (long)fidx, rcount, (long)pa);
2513                         if (nl > 18) {
2514                                 c = cngetc();
2515                                 if (c != ' ')
2516                                         return;
2517                                 nl = 0;
2518                         }
2519                         nl++;
2520                 }
2521         }
2522 }
2523 #endif /* DDB */