]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/vm/vm_pageout.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79 #include "opt_kdtrace.h"
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/lock.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/kthread.h>
88 #include <sys/ktr.h>
89 #include <sys/mount.h>
90 #include <sys/racct.h>
91 #include <sys/resourcevar.h>
92 #include <sys/sched.h>
93 #include <sys/sdt.h>
94 #include <sys/signalvar.h>
95 #include <sys/smp.h>
96 #include <sys/vnode.h>
97 #include <sys/vmmeter.h>
98 #include <sys/rwlock.h>
99 #include <sys/sx.h>
100 #include <sys/sysctl.h>
101
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/vm_object.h>
105 #include <vm/vm_page.h>
106 #include <vm/vm_map.h>
107 #include <vm/vm_pageout.h>
108 #include <vm/vm_pager.h>
109 #include <vm/vm_phys.h>
110 #include <vm/swap_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/uma.h>
113
114 /*
115  * System initialization
116  */
117
118 /* the kernel process "vm_pageout"*/
119 static void vm_pageout(void);
120 static void vm_pageout_init(void);
121 static int vm_pageout_clean(vm_page_t);
122 static void vm_pageout_scan(struct vm_domain *vmd, int pass);
123 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass);
124
125 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
126     NULL);
127
128 struct proc *pageproc;
129
130 static struct kproc_desc page_kp = {
131         "pagedaemon",
132         vm_pageout,
133         &pageproc
134 };
135 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
136     &page_kp);
137
138 SDT_PROVIDER_DEFINE(vm);
139 SDT_PROBE_DEFINE(vm, , , vm__lowmem_cache);
140 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
141
142 #if !defined(NO_SWAPPING)
143 /* the kernel process "vm_daemon"*/
144 static void vm_daemon(void);
145 static struct   proc *vmproc;
146
147 static struct kproc_desc vm_kp = {
148         "vmdaemon",
149         vm_daemon,
150         &vmproc
151 };
152 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
153 #endif
154
155
156 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
157 int vm_pageout_deficit;         /* Estimated number of pages deficit */
158 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
159 int vm_pageout_wakeup_thresh;
160
161 #if !defined(NO_SWAPPING)
162 static int vm_pageout_req_swapout;      /* XXX */
163 static int vm_daemon_needed;
164 static struct mtx vm_daemon_mtx;
165 /* Allow for use by vm_pageout before vm_daemon is initialized. */
166 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
167 #endif
168 static int vm_max_launder = 32;
169 static int vm_pageout_update_period;
170 static int defer_swap_pageouts;
171 static int disable_swap_pageouts;
172 static int lowmem_period = 10;
173 static int lowmem_ticks;
174
175 #if defined(NO_SWAPPING)
176 static int vm_swap_enabled = 0;
177 static int vm_swap_idle_enabled = 0;
178 #else
179 static int vm_swap_enabled = 1;
180 static int vm_swap_idle_enabled = 0;
181 #endif
182
183 SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
184         CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
185         "free page threshold for waking up the pageout daemon");
186
187 SYSCTL_INT(_vm, OID_AUTO, max_launder,
188         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
189
190 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
191         CTLFLAG_RW, &vm_pageout_update_period, 0,
192         "Maximum active LRU update period");
193   
194 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
195         "Low memory callback period");
196
197 #if defined(NO_SWAPPING)
198 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
199         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
200 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
201         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
202 #else
203 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
204         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
205 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
206         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
207 #endif
208
209 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
210         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
211
212 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
213         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
214
215 static int pageout_lock_miss;
216 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
217         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
218
219 #define VM_PAGEOUT_PAGE_COUNT 16
220 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
221
222 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
223 SYSCTL_INT(_vm, OID_AUTO, max_wired,
224         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
225
226 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
227 static boolean_t vm_pageout_launder(struct vm_pagequeue *pq, int, vm_paddr_t,
228     vm_paddr_t);
229 #if !defined(NO_SWAPPING)
230 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
231 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
232 static void vm_req_vmdaemon(int req);
233 #endif
234 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
235
236 /*
237  * Initialize a dummy page for marking the caller's place in the specified
238  * paging queue.  In principle, this function only needs to set the flag
239  * PG_MARKER.  Nonetheless, it wirte busies and initializes the hold count
240  * to one as safety precautions.
241  */ 
242 static void
243 vm_pageout_init_marker(vm_page_t marker, u_short queue)
244 {
245
246         bzero(marker, sizeof(*marker));
247         marker->flags = PG_MARKER;
248         marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
249         marker->queue = queue;
250         marker->hold_count = 1;
251 }
252
253 /*
254  * vm_pageout_fallback_object_lock:
255  * 
256  * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
257  * known to have failed and page queue must be either PQ_ACTIVE or
258  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
259  * while locking the vm object.  Use marker page to detect page queue
260  * changes and maintain notion of next page on page queue.  Return
261  * TRUE if no changes were detected, FALSE otherwise.  vm object is
262  * locked on return.
263  * 
264  * This function depends on both the lock portion of struct vm_object
265  * and normal struct vm_page being type stable.
266  */
267 static boolean_t
268 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
269 {
270         struct vm_page marker;
271         struct vm_pagequeue *pq;
272         boolean_t unchanged;
273         u_short queue;
274         vm_object_t object;
275
276         queue = m->queue;
277         vm_pageout_init_marker(&marker, queue);
278         pq = vm_page_pagequeue(m);
279         object = m->object;
280         
281         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
282         vm_pagequeue_unlock(pq);
283         vm_page_unlock(m);
284         VM_OBJECT_WLOCK(object);
285         vm_page_lock(m);
286         vm_pagequeue_lock(pq);
287
288         /* Page queue might have changed. */
289         *next = TAILQ_NEXT(&marker, plinks.q);
290         unchanged = (m->queue == queue &&
291                      m->object == object &&
292                      &marker == TAILQ_NEXT(m, plinks.q));
293         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
294         return (unchanged);
295 }
296
297 /*
298  * Lock the page while holding the page queue lock.  Use marker page
299  * to detect page queue changes and maintain notion of next page on
300  * page queue.  Return TRUE if no changes were detected, FALSE
301  * otherwise.  The page is locked on return. The page queue lock might
302  * be dropped and reacquired.
303  *
304  * This function depends on normal struct vm_page being type stable.
305  */
306 static boolean_t
307 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
308 {
309         struct vm_page marker;
310         struct vm_pagequeue *pq;
311         boolean_t unchanged;
312         u_short queue;
313
314         vm_page_lock_assert(m, MA_NOTOWNED);
315         if (vm_page_trylock(m))
316                 return (TRUE);
317
318         queue = m->queue;
319         vm_pageout_init_marker(&marker, queue);
320         pq = vm_page_pagequeue(m);
321
322         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
323         vm_pagequeue_unlock(pq);
324         vm_page_lock(m);
325         vm_pagequeue_lock(pq);
326
327         /* Page queue might have changed. */
328         *next = TAILQ_NEXT(&marker, plinks.q);
329         unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, plinks.q));
330         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
331         return (unchanged);
332 }
333
334 /*
335  * vm_pageout_clean:
336  *
337  * Clean the page and remove it from the laundry.
338  * 
339  * We set the busy bit to cause potential page faults on this page to
340  * block.  Note the careful timing, however, the busy bit isn't set till
341  * late and we cannot do anything that will mess with the page.
342  */
343 static int
344 vm_pageout_clean(vm_page_t m)
345 {
346         vm_object_t object;
347         vm_page_t mc[2*vm_pageout_page_count], pb, ps;
348         int pageout_count;
349         int ib, is, page_base;
350         vm_pindex_t pindex = m->pindex;
351
352         vm_page_lock_assert(m, MA_OWNED);
353         object = m->object;
354         VM_OBJECT_ASSERT_WLOCKED(object);
355
356         /*
357          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
358          * with the new swapper, but we could have serious problems paging
359          * out other object types if there is insufficient memory.  
360          *
361          * Unfortunately, checking free memory here is far too late, so the
362          * check has been moved up a procedural level.
363          */
364
365         /*
366          * Can't clean the page if it's busy or held.
367          */
368         vm_page_assert_unbusied(m);
369         KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
370         vm_page_unlock(m);
371
372         mc[vm_pageout_page_count] = pb = ps = m;
373         pageout_count = 1;
374         page_base = vm_pageout_page_count;
375         ib = 1;
376         is = 1;
377
378         /*
379          * Scan object for clusterable pages.
380          *
381          * We can cluster ONLY if: ->> the page is NOT
382          * clean, wired, busy, held, or mapped into a
383          * buffer, and one of the following:
384          * 1) The page is inactive, or a seldom used
385          *    active page.
386          * -or-
387          * 2) we force the issue.
388          *
389          * During heavy mmap/modification loads the pageout
390          * daemon can really fragment the underlying file
391          * due to flushing pages out of order and not trying
392          * align the clusters (which leave sporatic out-of-order
393          * holes).  To solve this problem we do the reverse scan
394          * first and attempt to align our cluster, then do a 
395          * forward scan if room remains.
396          */
397 more:
398         while (ib && pageout_count < vm_pageout_page_count) {
399                 vm_page_t p;
400
401                 if (ib > pindex) {
402                         ib = 0;
403                         break;
404                 }
405
406                 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
407                         ib = 0;
408                         break;
409                 }
410                 vm_page_lock(p);
411                 vm_page_test_dirty(p);
412                 if (p->dirty == 0 ||
413                     p->queue != PQ_INACTIVE ||
414                     p->hold_count != 0) {       /* may be undergoing I/O */
415                         vm_page_unlock(p);
416                         ib = 0;
417                         break;
418                 }
419                 vm_page_unlock(p);
420                 mc[--page_base] = pb = p;
421                 ++pageout_count;
422                 ++ib;
423                 /*
424                  * alignment boundry, stop here and switch directions.  Do
425                  * not clear ib.
426                  */
427                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
428                         break;
429         }
430
431         while (pageout_count < vm_pageout_page_count && 
432             pindex + is < object->size) {
433                 vm_page_t p;
434
435                 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
436                         break;
437                 vm_page_lock(p);
438                 vm_page_test_dirty(p);
439                 if (p->dirty == 0 ||
440                     p->queue != PQ_INACTIVE ||
441                     p->hold_count != 0) {       /* may be undergoing I/O */
442                         vm_page_unlock(p);
443                         break;
444                 }
445                 vm_page_unlock(p);
446                 mc[page_base + pageout_count] = ps = p;
447                 ++pageout_count;
448                 ++is;
449         }
450
451         /*
452          * If we exhausted our forward scan, continue with the reverse scan
453          * when possible, even past a page boundry.  This catches boundry
454          * conditions.
455          */
456         if (ib && pageout_count < vm_pageout_page_count)
457                 goto more;
458
459         /*
460          * we allow reads during pageouts...
461          */
462         return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
463             NULL));
464 }
465
466 /*
467  * vm_pageout_flush() - launder the given pages
468  *
469  *      The given pages are laundered.  Note that we setup for the start of
470  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
471  *      reference count all in here rather then in the parent.  If we want
472  *      the parent to do more sophisticated things we may have to change
473  *      the ordering.
474  *
475  *      Returned runlen is the count of pages between mreq and first
476  *      page after mreq with status VM_PAGER_AGAIN.
477  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
478  *      for any page in runlen set.
479  */
480 int
481 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
482     boolean_t *eio)
483 {
484         vm_object_t object = mc[0]->object;
485         int pageout_status[count];
486         int numpagedout = 0;
487         int i, runlen;
488
489         VM_OBJECT_ASSERT_WLOCKED(object);
490
491         /*
492          * Initiate I/O.  Bump the vm_page_t->busy counter and
493          * mark the pages read-only.
494          *
495          * We do not have to fixup the clean/dirty bits here... we can
496          * allow the pager to do it after the I/O completes.
497          *
498          * NOTE! mc[i]->dirty may be partial or fragmented due to an
499          * edge case with file fragments.
500          */
501         for (i = 0; i < count; i++) {
502                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
503                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
504                         mc[i], i, count));
505                 vm_page_sbusy(mc[i]);
506                 pmap_remove_write(mc[i]);
507         }
508         vm_object_pip_add(object, count);
509
510         vm_pager_put_pages(object, mc, count, flags, pageout_status);
511
512         runlen = count - mreq;
513         if (eio != NULL)
514                 *eio = FALSE;
515         for (i = 0; i < count; i++) {
516                 vm_page_t mt = mc[i];
517
518                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
519                     !pmap_page_is_write_mapped(mt),
520                     ("vm_pageout_flush: page %p is not write protected", mt));
521                 switch (pageout_status[i]) {
522                 case VM_PAGER_OK:
523                 case VM_PAGER_PEND:
524                         numpagedout++;
525                         break;
526                 case VM_PAGER_BAD:
527                         /*
528                          * Page outside of range of object. Right now we
529                          * essentially lose the changes by pretending it
530                          * worked.
531                          */
532                         vm_page_undirty(mt);
533                         break;
534                 case VM_PAGER_ERROR:
535                 case VM_PAGER_FAIL:
536                         /*
537                          * If page couldn't be paged out, then reactivate the
538                          * page so it doesn't clog the inactive list.  (We
539                          * will try paging out it again later).
540                          */
541                         vm_page_lock(mt);
542                         vm_page_activate(mt);
543                         vm_page_unlock(mt);
544                         if (eio != NULL && i >= mreq && i - mreq < runlen)
545                                 *eio = TRUE;
546                         break;
547                 case VM_PAGER_AGAIN:
548                         if (i >= mreq && i - mreq < runlen)
549                                 runlen = i - mreq;
550                         break;
551                 }
552
553                 /*
554                  * If the operation is still going, leave the page busy to
555                  * block all other accesses. Also, leave the paging in
556                  * progress indicator set so that we don't attempt an object
557                  * collapse.
558                  */
559                 if (pageout_status[i] != VM_PAGER_PEND) {
560                         vm_object_pip_wakeup(object);
561                         vm_page_sunbusy(mt);
562                         if (vm_page_count_severe()) {
563                                 vm_page_lock(mt);
564                                 vm_page_try_to_cache(mt);
565                                 vm_page_unlock(mt);
566                         }
567                 }
568         }
569         if (prunlen != NULL)
570                 *prunlen = runlen;
571         return (numpagedout);
572 }
573
574 static boolean_t
575 vm_pageout_launder(struct vm_pagequeue *pq, int tries, vm_paddr_t low,
576     vm_paddr_t high)
577 {
578         struct mount *mp;
579         struct vnode *vp;
580         vm_object_t object;
581         vm_paddr_t pa;
582         vm_page_t m, m_tmp, next;
583         int lockmode;
584
585         vm_pagequeue_lock(pq);
586         TAILQ_FOREACH_SAFE(m, &pq->pq_pl, plinks.q, next) {
587                 if ((m->flags & PG_MARKER) != 0)
588                         continue;
589                 pa = VM_PAGE_TO_PHYS(m);
590                 if (pa < low || pa + PAGE_SIZE > high)
591                         continue;
592                 if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
593                         vm_page_unlock(m);
594                         continue;
595                 }
596                 object = m->object;
597                 if ((!VM_OBJECT_TRYWLOCK(object) &&
598                     (!vm_pageout_fallback_object_lock(m, &next) ||
599                     m->hold_count != 0)) || vm_page_busied(m)) {
600                         vm_page_unlock(m);
601                         VM_OBJECT_WUNLOCK(object);
602                         continue;
603                 }
604                 vm_page_test_dirty(m);
605                 if (m->dirty == 0 && object->ref_count != 0)
606                         pmap_remove_all(m);
607                 if (m->dirty != 0) {
608                         vm_page_unlock(m);
609                         if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
610                                 VM_OBJECT_WUNLOCK(object);
611                                 continue;
612                         }
613                         if (object->type == OBJT_VNODE) {
614                                 vm_pagequeue_unlock(pq);
615                                 vp = object->handle;
616                                 vm_object_reference_locked(object);
617                                 VM_OBJECT_WUNLOCK(object);
618                                 (void)vn_start_write(vp, &mp, V_WAIT);
619                                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
620                                     LK_SHARED : LK_EXCLUSIVE;
621                                 vn_lock(vp, lockmode | LK_RETRY);
622                                 VM_OBJECT_WLOCK(object);
623                                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
624                                 VM_OBJECT_WUNLOCK(object);
625                                 VOP_UNLOCK(vp, 0);
626                                 vm_object_deallocate(object);
627                                 vn_finished_write(mp);
628                                 return (TRUE);
629                         } else if (object->type == OBJT_SWAP ||
630                             object->type == OBJT_DEFAULT) {
631                                 vm_pagequeue_unlock(pq);
632                                 m_tmp = m;
633                                 vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
634                                     0, NULL, NULL);
635                                 VM_OBJECT_WUNLOCK(object);
636                                 return (TRUE);
637                         }
638                 } else {
639                         /*
640                          * Dequeue here to prevent lock recursion in
641                          * vm_page_cache().
642                          */
643                         vm_page_dequeue_locked(m);
644                         vm_page_cache(m);
645                         vm_page_unlock(m);
646                 }
647                 VM_OBJECT_WUNLOCK(object);
648         }
649         vm_pagequeue_unlock(pq);
650         return (FALSE);
651 }
652
653 /*
654  * Increase the number of cached pages.  The specified value, "tries",
655  * determines which categories of pages are cached:
656  *
657  *  0: All clean, inactive pages within the specified physical address range
658  *     are cached.  Will not sleep.
659  *  1: The vm_lowmem handlers are called.  All inactive pages within
660  *     the specified physical address range are cached.  May sleep.
661  *  2: The vm_lowmem handlers are called.  All inactive and active pages
662  *     within the specified physical address range are cached.  May sleep.
663  */
664 void
665 vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
666 {
667         int actl, actmax, inactl, inactmax, dom, initial_dom;
668         static int start_dom = 0;
669
670         if (tries > 0) {
671                 /*
672                  * Decrease registered cache sizes.  The vm_lowmem handlers
673                  * may acquire locks and/or sleep, so they can only be invoked
674                  * when "tries" is greater than zero.
675                  */
676                 SDT_PROBE0(vm, , , vm__lowmem_cache);
677                 EVENTHANDLER_INVOKE(vm_lowmem, 0);
678
679                 /*
680                  * We do this explicitly after the caches have been drained
681                  * above.
682                  */
683                 uma_reclaim();
684         }
685
686         /*
687          * Make the next scan start on the next domain.
688          */
689         initial_dom = atomic_fetchadd_int(&start_dom, 1) % vm_ndomains;
690
691         inactl = 0;
692         inactmax = cnt.v_inactive_count;
693         actl = 0;
694         actmax = tries < 2 ? 0 : cnt.v_active_count;
695         dom = initial_dom;
696
697         /*
698          * Scan domains in round-robin order, first inactive queues,
699          * then active.  Since domain usually owns large physically
700          * contiguous chunk of memory, it makes sense to completely
701          * exhaust one domain before switching to next, while growing
702          * the pool of contiguous physical pages.
703          *
704          * Do not even start launder a domain which cannot contain
705          * the specified address range, as indicated by segments
706          * constituting the domain.
707          */
708 again:
709         if (inactl < inactmax) {
710                 if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
711                     low, high) &&
712                     vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_INACTIVE],
713                     tries, low, high)) {
714                         inactl++;
715                         goto again;
716                 }
717                 if (++dom == vm_ndomains)
718                         dom = 0;
719                 if (dom != initial_dom)
720                         goto again;
721         }
722         if (actl < actmax) {
723                 if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
724                     low, high) &&
725                     vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_ACTIVE],
726                       tries, low, high)) {
727                         actl++;
728                         goto again;
729                 }
730                 if (++dom == vm_ndomains)
731                         dom = 0;
732                 if (dom != initial_dom)
733                         goto again;
734         }
735 }
736
737 #if !defined(NO_SWAPPING)
738 /*
739  *      vm_pageout_object_deactivate_pages
740  *
741  *      Deactivate enough pages to satisfy the inactive target
742  *      requirements.
743  *
744  *      The object and map must be locked.
745  */
746 static void
747 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
748     long desired)
749 {
750         vm_object_t backing_object, object;
751         vm_page_t p;
752         int act_delta, remove_mode;
753
754         VM_OBJECT_ASSERT_LOCKED(first_object);
755         if ((first_object->flags & OBJ_FICTITIOUS) != 0)
756                 return;
757         for (object = first_object;; object = backing_object) {
758                 if (pmap_resident_count(pmap) <= desired)
759                         goto unlock_return;
760                 VM_OBJECT_ASSERT_LOCKED(object);
761                 if ((object->flags & OBJ_UNMANAGED) != 0 ||
762                     object->paging_in_progress != 0)
763                         goto unlock_return;
764
765                 remove_mode = 0;
766                 if (object->shadow_count > 1)
767                         remove_mode = 1;
768                 /*
769                  * Scan the object's entire memory queue.
770                  */
771                 TAILQ_FOREACH(p, &object->memq, listq) {
772                         if (pmap_resident_count(pmap) <= desired)
773                                 goto unlock_return;
774                         if (vm_page_busied(p))
775                                 continue;
776                         PCPU_INC(cnt.v_pdpages);
777                         vm_page_lock(p);
778                         if (p->wire_count != 0 || p->hold_count != 0 ||
779                             !pmap_page_exists_quick(pmap, p)) {
780                                 vm_page_unlock(p);
781                                 continue;
782                         }
783                         act_delta = pmap_ts_referenced(p);
784                         if ((p->aflags & PGA_REFERENCED) != 0) {
785                                 if (act_delta == 0)
786                                         act_delta = 1;
787                                 vm_page_aflag_clear(p, PGA_REFERENCED);
788                         }
789                         if (p->queue != PQ_ACTIVE && act_delta != 0) {
790                                 vm_page_activate(p);
791                                 p->act_count += act_delta;
792                         } else if (p->queue == PQ_ACTIVE) {
793                                 if (act_delta == 0) {
794                                         p->act_count -= min(p->act_count,
795                                             ACT_DECLINE);
796                                         if (!remove_mode && p->act_count == 0) {
797                                                 pmap_remove_all(p);
798                                                 vm_page_deactivate(p);
799                                         } else
800                                                 vm_page_requeue(p);
801                                 } else {
802                                         vm_page_activate(p);
803                                         if (p->act_count < ACT_MAX -
804                                             ACT_ADVANCE)
805                                                 p->act_count += ACT_ADVANCE;
806                                         vm_page_requeue(p);
807                                 }
808                         } else if (p->queue == PQ_INACTIVE)
809                                 pmap_remove_all(p);
810                         vm_page_unlock(p);
811                 }
812                 if ((backing_object = object->backing_object) == NULL)
813                         goto unlock_return;
814                 VM_OBJECT_RLOCK(backing_object);
815                 if (object != first_object)
816                         VM_OBJECT_RUNLOCK(object);
817         }
818 unlock_return:
819         if (object != first_object)
820                 VM_OBJECT_RUNLOCK(object);
821 }
822
823 /*
824  * deactivate some number of pages in a map, try to do it fairly, but
825  * that is really hard to do.
826  */
827 static void
828 vm_pageout_map_deactivate_pages(map, desired)
829         vm_map_t map;
830         long desired;
831 {
832         vm_map_entry_t tmpe;
833         vm_object_t obj, bigobj;
834         int nothingwired;
835
836         if (!vm_map_trylock(map))
837                 return;
838
839         bigobj = NULL;
840         nothingwired = TRUE;
841
842         /*
843          * first, search out the biggest object, and try to free pages from
844          * that.
845          */
846         tmpe = map->header.next;
847         while (tmpe != &map->header) {
848                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
849                         obj = tmpe->object.vm_object;
850                         if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
851                                 if (obj->shadow_count <= 1 &&
852                                     (bigobj == NULL ||
853                                      bigobj->resident_page_count < obj->resident_page_count)) {
854                                         if (bigobj != NULL)
855                                                 VM_OBJECT_RUNLOCK(bigobj);
856                                         bigobj = obj;
857                                 } else
858                                         VM_OBJECT_RUNLOCK(obj);
859                         }
860                 }
861                 if (tmpe->wired_count > 0)
862                         nothingwired = FALSE;
863                 tmpe = tmpe->next;
864         }
865
866         if (bigobj != NULL) {
867                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
868                 VM_OBJECT_RUNLOCK(bigobj);
869         }
870         /*
871          * Next, hunt around for other pages to deactivate.  We actually
872          * do this search sort of wrong -- .text first is not the best idea.
873          */
874         tmpe = map->header.next;
875         while (tmpe != &map->header) {
876                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
877                         break;
878                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
879                         obj = tmpe->object.vm_object;
880                         if (obj != NULL) {
881                                 VM_OBJECT_RLOCK(obj);
882                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
883                                 VM_OBJECT_RUNLOCK(obj);
884                         }
885                 }
886                 tmpe = tmpe->next;
887         }
888
889 #ifdef __ia64__
890         /*
891          * Remove all non-wired, managed mappings if a process is swapped out.
892          * This will free page table pages.
893          */
894         if (desired == 0)
895                 pmap_remove_pages(map->pmap);
896 #else
897         /*
898          * Remove all mappings if a process is swapped out, this will free page
899          * table pages.
900          */
901         if (desired == 0 && nothingwired) {
902                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
903                     vm_map_max(map));
904         }
905 #endif
906
907         vm_map_unlock(map);
908 }
909 #endif          /* !defined(NO_SWAPPING) */
910
911 /*
912  *      vm_pageout_scan does the dirty work for the pageout daemon.
913  *
914  *      pass 0 - Update active LRU/deactivate pages
915  *      pass 1 - Move inactive to cache or free
916  *      pass 2 - Launder dirty pages
917  */
918 static void
919 vm_pageout_scan(struct vm_domain *vmd, int pass)
920 {
921         vm_page_t m, next;
922         struct vm_pagequeue *pq;
923         vm_object_t object;
924         int act_delta, addl_page_shortage, deficit, maxscan, page_shortage;
925         int vnodes_skipped = 0;
926         int maxlaunder;
927         int lockmode;
928         boolean_t queues_locked;
929
930         /*
931          * If we need to reclaim memory ask kernel caches to return
932          * some.  We rate limit to avoid thrashing.
933          */
934         if (vmd == &vm_dom[0] && pass > 0 &&
935             (ticks - lowmem_ticks) / hz >= lowmem_period) {
936                 /*
937                  * Decrease registered cache sizes.
938                  */
939                 SDT_PROBE0(vm, , , vm__lowmem_scan);
940                 EVENTHANDLER_INVOKE(vm_lowmem, 0);
941                 /*
942                  * We do this explicitly after the caches have been
943                  * drained above.
944                  */
945                 uma_reclaim();
946                 lowmem_ticks = ticks;
947         }
948
949         /*
950          * The addl_page_shortage is the number of temporarily
951          * stuck pages in the inactive queue.  In other words, the
952          * number of pages from the inactive count that should be
953          * discounted in setting the target for the active queue scan.
954          */
955         addl_page_shortage = 0;
956
957         /*
958          * Calculate the number of pages we want to either free or move
959          * to the cache.
960          */
961         if (pass > 0) {
962                 deficit = atomic_readandclear_int(&vm_pageout_deficit);
963                 page_shortage = vm_paging_target() + deficit;
964         } else
965                 page_shortage = deficit = 0;
966
967         /*
968          * maxlaunder limits the number of dirty pages we flush per scan.
969          * For most systems a smaller value (16 or 32) is more robust under
970          * extreme memory and disk pressure because any unnecessary writes
971          * to disk can result in extreme performance degredation.  However,
972          * systems with excessive dirty pages (especially when MAP_NOSYNC is
973          * used) will die horribly with limited laundering.  If the pageout
974          * daemon cannot clean enough pages in the first pass, we let it go
975          * all out in succeeding passes.
976          */
977         if ((maxlaunder = vm_max_launder) <= 1)
978                 maxlaunder = 1;
979         if (pass > 1)
980                 maxlaunder = 10000;
981
982         /*
983          * Start scanning the inactive queue for pages we can move to the
984          * cache or free.  The scan will stop when the target is reached or
985          * we have scanned the entire inactive queue.  Note that m->act_count
986          * is not used to form decisions for the inactive queue, only for the
987          * active queue.
988          */
989         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
990         maxscan = pq->pq_cnt;
991         vm_pagequeue_lock(pq);
992         queues_locked = TRUE;
993         for (m = TAILQ_FIRST(&pq->pq_pl);
994              m != NULL && maxscan-- > 0 && page_shortage > 0;
995              m = next) {
996                 vm_pagequeue_assert_locked(pq);
997                 KASSERT(queues_locked, ("unlocked queues"));
998                 KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
999
1000                 PCPU_INC(cnt.v_pdpages);
1001                 next = TAILQ_NEXT(m, plinks.q);
1002
1003                 /*
1004                  * skip marker pages
1005                  */
1006                 if (m->flags & PG_MARKER)
1007                         continue;
1008
1009                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1010                     ("Fictitious page %p cannot be in inactive queue", m));
1011                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1012                     ("Unmanaged page %p cannot be in inactive queue", m));
1013
1014                 /*
1015                  * The page or object lock acquisitions fail if the
1016                  * page was removed from the queue or moved to a
1017                  * different position within the queue.  In either
1018                  * case, addl_page_shortage should not be incremented.
1019                  */
1020                 if (!vm_pageout_page_lock(m, &next)) {
1021                         vm_page_unlock(m);
1022                         continue;
1023                 }
1024                 object = m->object;
1025                 if (!VM_OBJECT_TRYWLOCK(object) &&
1026                     !vm_pageout_fallback_object_lock(m, &next)) {
1027                         vm_page_unlock(m);
1028                         VM_OBJECT_WUNLOCK(object);
1029                         continue;
1030                 }
1031
1032                 /*
1033                  * Don't mess with busy pages, keep them at at the
1034                  * front of the queue, most likely they are being
1035                  * paged out.  Increment addl_page_shortage for busy
1036                  * pages, because they may leave the inactive queue
1037                  * shortly after page scan is finished.
1038                  */
1039                 if (vm_page_busied(m)) {
1040                         vm_page_unlock(m);
1041                         VM_OBJECT_WUNLOCK(object);
1042                         addl_page_shortage++;
1043                         continue;
1044                 }
1045
1046                 /*
1047                  * We unlock the inactive page queue, invalidating the
1048                  * 'next' pointer.  Use our marker to remember our
1049                  * place.
1050                  */
1051                 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1052                 vm_pagequeue_unlock(pq);
1053                 queues_locked = FALSE;
1054
1055                 /*
1056                  * We bump the activation count if the page has been
1057                  * referenced while in the inactive queue.  This makes
1058                  * it less likely that the page will be added back to the
1059                  * inactive queue prematurely again.  Here we check the 
1060                  * page tables (or emulated bits, if any), given the upper 
1061                  * level VM system not knowing anything about existing 
1062                  * references.
1063                  */
1064                 act_delta = 0;
1065                 if ((m->aflags & PGA_REFERENCED) != 0) {
1066                         vm_page_aflag_clear(m, PGA_REFERENCED);
1067                         act_delta = 1;
1068                 }
1069                 if (object->ref_count != 0) {
1070                         act_delta += pmap_ts_referenced(m);
1071                 } else {
1072                         KASSERT(!pmap_page_is_mapped(m),
1073                             ("vm_pageout_scan: page %p is mapped", m));
1074                 }
1075
1076                 /*
1077                  * If the upper level VM system knows about any page 
1078                  * references, we reactivate the page or requeue it.
1079                  */
1080                 if (act_delta != 0) {
1081                         if (object->ref_count) {
1082                                 vm_page_activate(m);
1083                                 m->act_count += act_delta + ACT_ADVANCE;
1084                         } else {
1085                                 vm_pagequeue_lock(pq);
1086                                 queues_locked = TRUE;
1087                                 vm_page_requeue_locked(m);
1088                         }
1089                         VM_OBJECT_WUNLOCK(object);
1090                         vm_page_unlock(m);
1091                         goto relock_queues;
1092                 }
1093
1094                 if (m->hold_count != 0) {
1095                         vm_page_unlock(m);
1096                         VM_OBJECT_WUNLOCK(object);
1097
1098                         /*
1099                          * Held pages are essentially stuck in the
1100                          * queue.  So, they ought to be discounted
1101                          * from the inactive count.  See the
1102                          * calculation of the page_shortage for the
1103                          * loop over the active queue below.
1104                          */
1105                         addl_page_shortage++;
1106                         goto relock_queues;
1107                 }
1108
1109                 /*
1110                  * If the page appears to be clean at the machine-independent
1111                  * layer, then remove all of its mappings from the pmap in
1112                  * anticipation of placing it onto the cache queue.  If,
1113                  * however, any of the page's mappings allow write access,
1114                  * then the page may still be modified until the last of those
1115                  * mappings are removed.
1116                  */
1117                 vm_page_test_dirty(m);
1118                 if (m->dirty == 0 && object->ref_count != 0)
1119                         pmap_remove_all(m);
1120
1121                 if (m->valid == 0) {
1122                         /*
1123                          * Invalid pages can be easily freed
1124                          */
1125                         vm_page_free(m);
1126                         PCPU_INC(cnt.v_dfree);
1127                         --page_shortage;
1128                 } else if (m->dirty == 0) {
1129                         /*
1130                          * Clean pages can be placed onto the cache queue.
1131                          * This effectively frees them.
1132                          */
1133                         vm_page_cache(m);
1134                         --page_shortage;
1135                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) {
1136                         /*
1137                          * Dirty pages need to be paged out, but flushing
1138                          * a page is extremely expensive verses freeing
1139                          * a clean page.  Rather then artificially limiting
1140                          * the number of pages we can flush, we instead give
1141                          * dirty pages extra priority on the inactive queue
1142                          * by forcing them to be cycled through the queue
1143                          * twice before being flushed, after which the
1144                          * (now clean) page will cycle through once more
1145                          * before being freed.  This significantly extends
1146                          * the thrash point for a heavily loaded machine.
1147                          */
1148                         m->flags |= PG_WINATCFLS;
1149                         vm_pagequeue_lock(pq);
1150                         queues_locked = TRUE;
1151                         vm_page_requeue_locked(m);
1152                 } else if (maxlaunder > 0) {
1153                         /*
1154                          * We always want to try to flush some dirty pages if
1155                          * we encounter them, to keep the system stable.
1156                          * Normally this number is small, but under extreme
1157                          * pressure where there are insufficient clean pages
1158                          * on the inactive queue, we may have to go all out.
1159                          */
1160                         int swap_pageouts_ok;
1161                         struct vnode *vp = NULL;
1162                         struct mount *mp = NULL;
1163
1164                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
1165                                 swap_pageouts_ok = 1;
1166                         } else {
1167                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
1168                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
1169                                 vm_page_count_min());
1170                                                                                 
1171                         }
1172
1173                         /*
1174                          * We don't bother paging objects that are "dead".  
1175                          * Those objects are in a "rundown" state.
1176                          */
1177                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1178                                 vm_pagequeue_lock(pq);
1179                                 vm_page_unlock(m);
1180                                 VM_OBJECT_WUNLOCK(object);
1181                                 queues_locked = TRUE;
1182                                 vm_page_requeue_locked(m);
1183                                 goto relock_queues;
1184                         }
1185
1186                         /*
1187                          * The object is already known NOT to be dead.   It
1188                          * is possible for the vget() to block the whole
1189                          * pageout daemon, but the new low-memory handling
1190                          * code should prevent it.
1191                          *
1192                          * The previous code skipped locked vnodes and, worse,
1193                          * reordered pages in the queue.  This results in
1194                          * completely non-deterministic operation and, on a
1195                          * busy system, can lead to extremely non-optimal
1196                          * pageouts.  For example, it can cause clean pages
1197                          * to be freed and dirty pages to be moved to the end
1198                          * of the queue.  Since dirty pages are also moved to
1199                          * the end of the queue once-cleaned, this gives
1200                          * way too large a weighting to defering the freeing
1201                          * of dirty pages.
1202                          *
1203                          * We can't wait forever for the vnode lock, we might
1204                          * deadlock due to a vn_read() getting stuck in
1205                          * vm_wait while holding this vnode.  We skip the 
1206                          * vnode if we can't get it in a reasonable amount
1207                          * of time.
1208                          */
1209                         if (object->type == OBJT_VNODE) {
1210                                 vm_page_unlock(m);
1211                                 vp = object->handle;
1212                                 if (vp->v_type == VREG &&
1213                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1214                                         mp = NULL;
1215                                         ++pageout_lock_miss;
1216                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1217                                                 vnodes_skipped++;
1218                                         goto unlock_and_continue;
1219                                 }
1220                                 KASSERT(mp != NULL,
1221                                     ("vp %p with NULL v_mount", vp));
1222                                 vm_object_reference_locked(object);
1223                                 VM_OBJECT_WUNLOCK(object);
1224                                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
1225                                     LK_SHARED : LK_EXCLUSIVE;
1226                                 if (vget(vp, lockmode | LK_TIMELOCK,
1227                                     curthread)) {
1228                                         VM_OBJECT_WLOCK(object);
1229                                         ++pageout_lock_miss;
1230                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1231                                                 vnodes_skipped++;
1232                                         vp = NULL;
1233                                         goto unlock_and_continue;
1234                                 }
1235                                 VM_OBJECT_WLOCK(object);
1236                                 vm_page_lock(m);
1237                                 vm_pagequeue_lock(pq);
1238                                 queues_locked = TRUE;
1239                                 /*
1240                                  * The page might have been moved to another
1241                                  * queue during potential blocking in vget()
1242                                  * above.  The page might have been freed and
1243                                  * reused for another vnode.
1244                                  */
1245                                 if (m->queue != PQ_INACTIVE ||
1246                                     m->object != object ||
1247                                     TAILQ_NEXT(m, plinks.q) != &vmd->vmd_marker) {
1248                                         vm_page_unlock(m);
1249                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1250                                                 vnodes_skipped++;
1251                                         goto unlock_and_continue;
1252                                 }
1253         
1254                                 /*
1255                                  * The page may have been busied during the
1256                                  * blocking in vget().  We don't move the
1257                                  * page back onto the end of the queue so that
1258                                  * statistics are more correct if we don't.
1259                                  */
1260                                 if (vm_page_busied(m)) {
1261                                         vm_page_unlock(m);
1262                                         addl_page_shortage++;
1263                                         goto unlock_and_continue;
1264                                 }
1265
1266                                 /*
1267                                  * If the page has become held it might
1268                                  * be undergoing I/O, so skip it
1269                                  */
1270                                 if (m->hold_count != 0) {
1271                                         vm_page_unlock(m);
1272                                         addl_page_shortage++;
1273                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1274                                                 vnodes_skipped++;
1275                                         goto unlock_and_continue;
1276                                 }
1277                                 vm_pagequeue_unlock(pq);
1278                                 queues_locked = FALSE;
1279                         }
1280
1281                         /*
1282                          * If a page is dirty, then it is either being washed
1283                          * (but not yet cleaned) or it is still in the
1284                          * laundry.  If it is still in the laundry, then we
1285                          * start the cleaning operation. 
1286                          *
1287                          * decrement page_shortage on success to account for
1288                          * the (future) cleaned page.  Otherwise we could wind
1289                          * up laundering or cleaning too many pages.
1290                          */
1291                         if (vm_pageout_clean(m) != 0) {
1292                                 --page_shortage;
1293                                 --maxlaunder;
1294                         }
1295 unlock_and_continue:
1296                         vm_page_lock_assert(m, MA_NOTOWNED);
1297                         VM_OBJECT_WUNLOCK(object);
1298                         if (mp != NULL) {
1299                                 if (queues_locked) {
1300                                         vm_pagequeue_unlock(pq);
1301                                         queues_locked = FALSE;
1302                                 }
1303                                 if (vp != NULL)
1304                                         vput(vp);
1305                                 vm_object_deallocate(object);
1306                                 vn_finished_write(mp);
1307                         }
1308                         vm_page_lock_assert(m, MA_NOTOWNED);
1309                         goto relock_queues;
1310                 }
1311                 vm_page_unlock(m);
1312                 VM_OBJECT_WUNLOCK(object);
1313 relock_queues:
1314                 if (!queues_locked) {
1315                         vm_pagequeue_lock(pq);
1316                         queues_locked = TRUE;
1317                 }
1318                 next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1319                 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1320         }
1321         vm_pagequeue_unlock(pq);
1322
1323 #if !defined(NO_SWAPPING)
1324         /*
1325          * Wakeup the swapout daemon if we didn't cache or free the targeted
1326          * number of pages. 
1327          */
1328         if (vm_swap_enabled && page_shortage > 0)
1329                 vm_req_vmdaemon(VM_SWAP_NORMAL);
1330 #endif
1331
1332         /*
1333          * Wakeup the sync daemon if we skipped a vnode in a writeable object
1334          * and we didn't cache or free enough pages.
1335          */
1336         if (vnodes_skipped > 0 && page_shortage > cnt.v_free_target -
1337             cnt.v_free_min)
1338                 (void)speedup_syncer();
1339
1340         /*
1341          * Compute the number of pages we want to try to move from the
1342          * active queue to the inactive queue.
1343          */
1344         page_shortage = cnt.v_inactive_target - cnt.v_inactive_count +
1345             vm_paging_target() + deficit + addl_page_shortage;
1346
1347         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1348         vm_pagequeue_lock(pq);
1349         maxscan = pq->pq_cnt;
1350
1351         /*
1352          * If we're just idle polling attempt to visit every
1353          * active page within 'update_period' seconds.
1354          */
1355         if (pass == 0 && vm_pageout_update_period != 0) {
1356                 maxscan /= vm_pageout_update_period;
1357                 page_shortage = maxscan;
1358         }
1359
1360         /*
1361          * Scan the active queue for things we can deactivate. We nominally
1362          * track the per-page activity counter and use it to locate
1363          * deactivation candidates.
1364          */
1365         m = TAILQ_FIRST(&pq->pq_pl);
1366         while (m != NULL && maxscan-- > 0 && page_shortage > 0) {
1367
1368                 KASSERT(m->queue == PQ_ACTIVE,
1369                     ("vm_pageout_scan: page %p isn't active", m));
1370
1371                 next = TAILQ_NEXT(m, plinks.q);
1372                 if ((m->flags & PG_MARKER) != 0) {
1373                         m = next;
1374                         continue;
1375                 }
1376                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1377                     ("Fictitious page %p cannot be in active queue", m));
1378                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1379                     ("Unmanaged page %p cannot be in active queue", m));
1380                 if (!vm_pageout_page_lock(m, &next)) {
1381                         vm_page_unlock(m);
1382                         m = next;
1383                         continue;
1384                 }
1385
1386                 /*
1387                  * The count for pagedaemon pages is done after checking the
1388                  * page for eligibility...
1389                  */
1390                 PCPU_INC(cnt.v_pdpages);
1391
1392                 /*
1393                  * Check to see "how much" the page has been used.
1394                  */
1395                 act_delta = 0;
1396                 if (m->aflags & PGA_REFERENCED) {
1397                         vm_page_aflag_clear(m, PGA_REFERENCED);
1398                         act_delta += 1;
1399                 }
1400                 /*
1401                  * Unlocked object ref count check.  Two races are possible.
1402                  * 1) The ref was transitioning to zero and we saw non-zero,
1403                  *    the pmap bits will be checked unnecessarily.
1404                  * 2) The ref was transitioning to one and we saw zero. 
1405                  *    The page lock prevents a new reference to this page so
1406                  *    we need not check the reference bits.
1407                  */
1408                 if (m->object->ref_count != 0)
1409                         act_delta += pmap_ts_referenced(m);
1410
1411                 /*
1412                  * Advance or decay the act_count based on recent usage.
1413                  */
1414                 if (act_delta) {
1415                         m->act_count += ACT_ADVANCE + act_delta;
1416                         if (m->act_count > ACT_MAX)
1417                                 m->act_count = ACT_MAX;
1418                 } else {
1419                         m->act_count -= min(m->act_count, ACT_DECLINE);
1420                         act_delta = m->act_count;
1421                 }
1422
1423                 /*
1424                  * Move this page to the tail of the active or inactive
1425                  * queue depending on usage.
1426                  */
1427                 if (act_delta == 0) {
1428                         /* Dequeue to avoid later lock recursion. */
1429                         vm_page_dequeue_locked(m);
1430                         vm_page_deactivate(m);
1431                         page_shortage--;
1432                 } else
1433                         vm_page_requeue_locked(m);
1434                 vm_page_unlock(m);
1435                 m = next;
1436         }
1437         vm_pagequeue_unlock(pq);
1438 #if !defined(NO_SWAPPING)
1439         /*
1440          * Idle process swapout -- run once per second.
1441          */
1442         if (vm_swap_idle_enabled) {
1443                 static long lsec;
1444                 if (time_second != lsec) {
1445                         vm_req_vmdaemon(VM_SWAP_IDLE);
1446                         lsec = time_second;
1447                 }
1448         }
1449 #endif
1450
1451         /*
1452          * If we are critically low on one of RAM or swap and low on
1453          * the other, kill the largest process.  However, we avoid
1454          * doing this on the first pass in order to give ourselves a
1455          * chance to flush out dirty vnode-backed pages and to allow
1456          * active pages to be moved to the inactive queue and reclaimed.
1457          */
1458         vm_pageout_mightbe_oom(vmd, pass);
1459 }
1460
1461 static int vm_pageout_oom_vote;
1462
1463 /*
1464  * The pagedaemon threads randlomly select one to perform the
1465  * OOM.  Trying to kill processes before all pagedaemons
1466  * failed to reach free target is premature.
1467  */
1468 static void
1469 vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass)
1470 {
1471         int old_vote;
1472
1473         if (pass <= 1 || !((swap_pager_avail < 64 && vm_page_count_min()) ||
1474             (swap_pager_full && vm_paging_target() > 0))) {
1475                 if (vmd->vmd_oom) {
1476                         vmd->vmd_oom = FALSE;
1477                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1478                 }
1479                 return;
1480         }
1481
1482         if (vmd->vmd_oom)
1483                 return;
1484
1485         vmd->vmd_oom = TRUE;
1486         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1487         if (old_vote != vm_ndomains - 1)
1488                 return;
1489
1490         /*
1491          * The current pagedaemon thread is the last in the quorum to
1492          * start OOM.  Initiate the selection and signaling of the
1493          * victim.
1494          */
1495         vm_pageout_oom(VM_OOM_MEM);
1496
1497         /*
1498          * After one round of OOM terror, recall our vote.  On the
1499          * next pass, current pagedaemon would vote again if the low
1500          * memory condition is still there, due to vmd_oom being
1501          * false.
1502          */
1503         vmd->vmd_oom = FALSE;
1504         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1505 }
1506
1507 void
1508 vm_pageout_oom(int shortage)
1509 {
1510         struct proc *p, *bigproc;
1511         vm_offset_t size, bigsize;
1512         struct thread *td;
1513         struct vmspace *vm;
1514
1515         /*
1516          * We keep the process bigproc locked once we find it to keep anyone
1517          * from messing with it; however, there is a possibility of
1518          * deadlock if process B is bigproc and one of it's child processes
1519          * attempts to propagate a signal to B while we are waiting for A's
1520          * lock while walking this list.  To avoid this, we don't block on
1521          * the process lock but just skip a process if it is already locked.
1522          */
1523         bigproc = NULL;
1524         bigsize = 0;
1525         sx_slock(&allproc_lock);
1526         FOREACH_PROC_IN_SYSTEM(p) {
1527                 int breakout;
1528
1529                 PROC_LOCK(p);
1530
1531                 /*
1532                  * If this is a system, protected or killed process, skip it.
1533                  */
1534                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1535                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1536                     p->p_pid == 1 || P_KILLED(p) ||
1537                     (p->p_pid < 48 && swap_pager_avail != 0)) {
1538                         PROC_UNLOCK(p);
1539                         continue;
1540                 }
1541                 /*
1542                  * If the process is in a non-running type state,
1543                  * don't touch it.  Check all the threads individually.
1544                  */
1545                 breakout = 0;
1546                 FOREACH_THREAD_IN_PROC(p, td) {
1547                         thread_lock(td);
1548                         if (!TD_ON_RUNQ(td) &&
1549                             !TD_IS_RUNNING(td) &&
1550                             !TD_IS_SLEEPING(td) &&
1551                             !TD_IS_SUSPENDED(td)) {
1552                                 thread_unlock(td);
1553                                 breakout = 1;
1554                                 break;
1555                         }
1556                         thread_unlock(td);
1557                 }
1558                 if (breakout) {
1559                         PROC_UNLOCK(p);
1560                         continue;
1561                 }
1562                 /*
1563                  * get the process size
1564                  */
1565                 vm = vmspace_acquire_ref(p);
1566                 if (vm == NULL) {
1567                         PROC_UNLOCK(p);
1568                         continue;
1569                 }
1570                 _PHOLD(p);
1571                 if (!vm_map_trylock_read(&vm->vm_map)) {
1572                         _PRELE(p);
1573                         PROC_UNLOCK(p);
1574                         vmspace_free(vm);
1575                         continue;
1576                 }
1577                 PROC_UNLOCK(p);
1578                 size = vmspace_swap_count(vm);
1579                 vm_map_unlock_read(&vm->vm_map);
1580                 if (shortage == VM_OOM_MEM)
1581                         size += vmspace_resident_count(vm);
1582                 vmspace_free(vm);
1583                 /*
1584                  * if the this process is bigger than the biggest one
1585                  * remember it.
1586                  */
1587                 if (size > bigsize) {
1588                         if (bigproc != NULL)
1589                                 PRELE(bigproc);
1590                         bigproc = p;
1591                         bigsize = size;
1592                 } else {
1593                         PRELE(p);
1594                 }
1595         }
1596         sx_sunlock(&allproc_lock);
1597         if (bigproc != NULL) {
1598                 PROC_LOCK(bigproc);
1599                 killproc(bigproc, "out of swap space");
1600                 sched_nice(bigproc, PRIO_MIN);
1601                 _PRELE(bigproc);
1602                 PROC_UNLOCK(bigproc);
1603                 wakeup(&cnt.v_free_count);
1604         }
1605 }
1606
1607 static void
1608 vm_pageout_worker(void *arg)
1609 {
1610         struct vm_domain *domain;
1611         int domidx;
1612
1613         domidx = (uintptr_t)arg;
1614         domain = &vm_dom[domidx];
1615
1616         /*
1617          * XXXKIB It could be useful to bind pageout daemon threads to
1618          * the cores belonging to the domain, from which vm_page_array
1619          * is allocated.
1620          */
1621
1622         KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1623         vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1624
1625         /*
1626          * The pageout daemon worker is never done, so loop forever.
1627          */
1628         while (TRUE) {
1629                 /*
1630                  * If we have enough free memory, wakeup waiters.  Do
1631                  * not clear vm_pages_needed until we reach our target,
1632                  * otherwise we may be woken up over and over again and
1633                  * waste a lot of cpu.
1634                  */
1635                 mtx_lock(&vm_page_queue_free_mtx);
1636                 if (vm_pages_needed && !vm_page_count_min()) {
1637                         if (!vm_paging_needed())
1638                                 vm_pages_needed = 0;
1639                         wakeup(&cnt.v_free_count);
1640                 }
1641                 if (vm_pages_needed) {
1642                         /*
1643                          * Still not done, take a second pass without waiting
1644                          * (unlimited dirty cleaning), otherwise sleep a bit
1645                          * and try again.
1646                          */
1647                         if (domain->vmd_pass > 1)
1648                                 msleep(&vm_pages_needed,
1649                                     &vm_page_queue_free_mtx, PVM, "psleep",
1650                                     hz / 2);
1651                 } else {
1652                         /*
1653                          * Good enough, sleep until required to refresh
1654                          * stats.
1655                          */
1656                         domain->vmd_pass = 0;
1657                         msleep(&vm_pages_needed, &vm_page_queue_free_mtx,
1658                             PVM, "psleep", hz);
1659
1660                 }
1661                 if (vm_pages_needed) {
1662                         cnt.v_pdwakeups++;
1663                         domain->vmd_pass++;
1664                 }
1665                 mtx_unlock(&vm_page_queue_free_mtx);
1666                 vm_pageout_scan(domain, domain->vmd_pass);
1667         }
1668 }
1669
1670 /*
1671  *      vm_pageout_init initialises basic pageout daemon settings.
1672  */
1673 static void
1674 vm_pageout_init(void)
1675 {
1676         /*
1677          * Initialize some paging parameters.
1678          */
1679         cnt.v_interrupt_free_min = 2;
1680         if (cnt.v_page_count < 2000)
1681                 vm_pageout_page_count = 8;
1682
1683         /*
1684          * v_free_reserved needs to include enough for the largest
1685          * swap pager structures plus enough for any pv_entry structs
1686          * when paging. 
1687          */
1688         if (cnt.v_page_count > 1024)
1689                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1690         else
1691                 cnt.v_free_min = 4;
1692         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1693             cnt.v_interrupt_free_min;
1694         cnt.v_free_reserved = vm_pageout_page_count +
1695             cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1696         cnt.v_free_severe = cnt.v_free_min / 2;
1697         cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1698         cnt.v_free_min += cnt.v_free_reserved;
1699         cnt.v_free_severe += cnt.v_free_reserved;
1700         cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1701         if (cnt.v_inactive_target > cnt.v_free_count / 3)
1702                 cnt.v_inactive_target = cnt.v_free_count / 3;
1703
1704         /*
1705          * Set the default wakeup threshold to be 10% above the minimum
1706          * page limit.  This keeps the steady state out of shortfall.
1707          */
1708         vm_pageout_wakeup_thresh = (cnt.v_free_min / 10) * 11;
1709
1710         /*
1711          * Set interval in seconds for active scan.  We want to visit each
1712          * page at least once every ten minutes.  This is to prevent worst
1713          * case paging behaviors with stale active LRU.
1714          */
1715         if (vm_pageout_update_period == 0)
1716                 vm_pageout_update_period = 600;
1717
1718         /* XXX does not really belong here */
1719         if (vm_page_max_wired == 0)
1720                 vm_page_max_wired = cnt.v_free_count / 3;
1721 }
1722
1723 /*
1724  *     vm_pageout is the high level pageout daemon.
1725  */
1726 static void
1727 vm_pageout(void)
1728 {
1729         int error;
1730 #if MAXMEMDOM > 1
1731         int i;
1732 #endif
1733
1734         swap_pager_swap_init();
1735 #if MAXMEMDOM > 1
1736         for (i = 1; i < vm_ndomains; i++) {
1737                 error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
1738                     curproc, NULL, 0, 0, "dom%d", i);
1739                 if (error != 0) {
1740                         panic("starting pageout for domain %d, error %d\n",
1741                             i, error);
1742                 }
1743         }
1744 #endif
1745         error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL,
1746             0, 0, "uma");
1747         if (error != 0)
1748                 panic("starting uma_reclaim helper, error %d\n", error);
1749         vm_pageout_worker((void *)(uintptr_t)0);
1750 }
1751
1752 /*
1753  * Unless the free page queue lock is held by the caller, this function
1754  * should be regarded as advisory.  Specifically, the caller should
1755  * not msleep() on &cnt.v_free_count following this function unless
1756  * the free page queue lock is held until the msleep() is performed.
1757  */
1758 void
1759 pagedaemon_wakeup(void)
1760 {
1761
1762         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1763                 vm_pages_needed = 1;
1764                 wakeup(&vm_pages_needed);
1765         }
1766 }
1767
1768 #if !defined(NO_SWAPPING)
1769 static void
1770 vm_req_vmdaemon(int req)
1771 {
1772         static int lastrun = 0;
1773
1774         mtx_lock(&vm_daemon_mtx);
1775         vm_pageout_req_swapout |= req;
1776         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1777                 wakeup(&vm_daemon_needed);
1778                 lastrun = ticks;
1779         }
1780         mtx_unlock(&vm_daemon_mtx);
1781 }
1782
1783 static void
1784 vm_daemon(void)
1785 {
1786         struct rlimit rsslim;
1787         struct proc *p;
1788         struct thread *td;
1789         struct vmspace *vm;
1790         int breakout, swapout_flags, tryagain, attempts;
1791 #ifdef RACCT
1792         uint64_t rsize, ravailable;
1793 #endif
1794
1795         while (TRUE) {
1796                 mtx_lock(&vm_daemon_mtx);
1797                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep",
1798 #ifdef RACCT
1799                     racct_enable ? hz : 0
1800 #else
1801                     0
1802 #endif
1803                 );
1804                 swapout_flags = vm_pageout_req_swapout;
1805                 vm_pageout_req_swapout = 0;
1806                 mtx_unlock(&vm_daemon_mtx);
1807                 if (swapout_flags)
1808                         swapout_procs(swapout_flags);
1809
1810                 /*
1811                  * scan the processes for exceeding their rlimits or if
1812                  * process is swapped out -- deactivate pages
1813                  */
1814                 tryagain = 0;
1815                 attempts = 0;
1816 again:
1817                 attempts++;
1818                 sx_slock(&allproc_lock);
1819                 FOREACH_PROC_IN_SYSTEM(p) {
1820                         vm_pindex_t limit, size;
1821
1822                         /*
1823                          * if this is a system process or if we have already
1824                          * looked at this process, skip it.
1825                          */
1826                         PROC_LOCK(p);
1827                         if (p->p_state != PRS_NORMAL ||
1828                             p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1829                                 PROC_UNLOCK(p);
1830                                 continue;
1831                         }
1832                         /*
1833                          * if the process is in a non-running type state,
1834                          * don't touch it.
1835                          */
1836                         breakout = 0;
1837                         FOREACH_THREAD_IN_PROC(p, td) {
1838                                 thread_lock(td);
1839                                 if (!TD_ON_RUNQ(td) &&
1840                                     !TD_IS_RUNNING(td) &&
1841                                     !TD_IS_SLEEPING(td) &&
1842                                     !TD_IS_SUSPENDED(td)) {
1843                                         thread_unlock(td);
1844                                         breakout = 1;
1845                                         break;
1846                                 }
1847                                 thread_unlock(td);
1848                         }
1849                         if (breakout) {
1850                                 PROC_UNLOCK(p);
1851                                 continue;
1852                         }
1853                         /*
1854                          * get a limit
1855                          */
1856                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
1857                         limit = OFF_TO_IDX(
1858                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1859
1860                         /*
1861                          * let processes that are swapped out really be
1862                          * swapped out set the limit to nothing (will force a
1863                          * swap-out.)
1864                          */
1865                         if ((p->p_flag & P_INMEM) == 0)
1866                                 limit = 0;      /* XXX */
1867                         vm = vmspace_acquire_ref(p);
1868                         PROC_UNLOCK(p);
1869                         if (vm == NULL)
1870                                 continue;
1871
1872                         size = vmspace_resident_count(vm);
1873                         if (size >= limit) {
1874                                 vm_pageout_map_deactivate_pages(
1875                                     &vm->vm_map, limit);
1876                         }
1877 #ifdef RACCT
1878                         if (racct_enable) {
1879                                 rsize = IDX_TO_OFF(size);
1880                                 PROC_LOCK(p);
1881                                 racct_set(p, RACCT_RSS, rsize);
1882                                 ravailable = racct_get_available(p, RACCT_RSS);
1883                                 PROC_UNLOCK(p);
1884                                 if (rsize > ravailable) {
1885                                         /*
1886                                          * Don't be overly aggressive; this
1887                                          * might be an innocent process,
1888                                          * and the limit could've been exceeded
1889                                          * by some memory hog.  Don't try
1890                                          * to deactivate more than 1/4th
1891                                          * of process' resident set size.
1892                                          */
1893                                         if (attempts <= 8) {
1894                                                 if (ravailable < rsize -
1895                                                     (rsize / 4)) {
1896                                                         ravailable = rsize -
1897                                                             (rsize / 4);
1898                                                 }
1899                                         }
1900                                         vm_pageout_map_deactivate_pages(
1901                                             &vm->vm_map,
1902                                             OFF_TO_IDX(ravailable));
1903                                         /* Update RSS usage after paging out. */
1904                                         size = vmspace_resident_count(vm);
1905                                         rsize = IDX_TO_OFF(size);
1906                                         PROC_LOCK(p);
1907                                         racct_set(p, RACCT_RSS, rsize);
1908                                         PROC_UNLOCK(p);
1909                                         if (rsize > ravailable)
1910                                                 tryagain = 1;
1911                                 }
1912                         }
1913 #endif
1914                         vmspace_free(vm);
1915                 }
1916                 sx_sunlock(&allproc_lock);
1917                 if (tryagain != 0 && attempts <= 10)
1918                         goto again;
1919         }
1920 }
1921 #endif                  /* !defined(NO_SWAPPING) */