]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/vm/vm_phys.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / vm / vm_phys.c
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 /*
33  *      Physical memory system implementation
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #if MAXMEMDOM > 1
52 #include <sys/proc.h>
53 #endif
54 #include <sys/queue.h>
55 #include <sys/sbuf.h>
56 #include <sys/sysctl.h>
57 #include <sys/vmmeter.h>
58
59 #include <ddb/ddb.h>
60
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_phys.h>
67
68 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
69     "Too many physsegs.");
70
71 struct mem_affinity *mem_affinity;
72
73 int vm_ndomains = 1;
74
75 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
76 int vm_phys_nsegs;
77
78 #define VM_PHYS_FICTITIOUS_NSEGS        8
79 static struct vm_phys_fictitious_seg {
80         vm_paddr_t      start;
81         vm_paddr_t      end;
82         vm_page_t       first_page;
83 } vm_phys_fictitious_segs[VM_PHYS_FICTITIOUS_NSEGS];
84 static struct mtx vm_phys_fictitious_reg_mtx;
85 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
86
87 static struct vm_freelist
88     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
89
90 static int vm_nfreelists;
91
92 /*
93  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
94  */
95 static int vm_freelist_to_flind[VM_NFREELIST];
96
97 CTASSERT(VM_FREELIST_DEFAULT == 0);
98
99 #ifdef VM_FREELIST_ISADMA
100 #define VM_ISADMA_BOUNDARY      16777216
101 #endif
102 #ifdef VM_FREELIST_DMA32
103 #define VM_DMA32_BOUNDARY       ((vm_paddr_t)1 << 32)
104 #endif
105
106 /*
107  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
108  * the ordering of the free list boundaries.
109  */
110 #if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY)
111 CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY);
112 #endif
113 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
114 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
115 #endif
116
117 static int cnt_prezero;
118 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
119     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
120
121 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
122 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
123     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
124
125 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
126 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
127     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
128
129 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
130     &vm_ndomains, 0, "Number of physical memory domains available.");
131
132 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
133     int order);
134 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
135 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
136 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
137 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
138     int order);
139
140 static __inline int
141 vm_rr_selectdomain(void)
142 {
143 #if MAXMEMDOM > 1
144         struct thread *td;
145
146         td = curthread;
147
148         td->td_dom_rr_idx++;
149         td->td_dom_rr_idx %= vm_ndomains;
150         return (td->td_dom_rr_idx);
151 #else
152         return (0);
153 #endif
154 }
155
156 boolean_t
157 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
158 {
159         struct vm_phys_seg *s;
160         int idx;
161
162         while ((idx = ffsl(mask)) != 0) {
163                 idx--;  /* ffsl counts from 1 */
164                 mask &= ~(1UL << idx);
165                 s = &vm_phys_segs[idx];
166                 if (low < s->end && high > s->start)
167                         return (TRUE);
168         }
169         return (FALSE);
170 }
171
172 /*
173  * Outputs the state of the physical memory allocator, specifically,
174  * the amount of physical memory in each free list.
175  */
176 static int
177 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
178 {
179         struct sbuf sbuf;
180         struct vm_freelist *fl;
181         int dom, error, flind, oind, pind;
182
183         error = sysctl_wire_old_buffer(req, 0);
184         if (error != 0)
185                 return (error);
186         sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
187         for (dom = 0; dom < vm_ndomains; dom++) {
188                 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
189                 for (flind = 0; flind < vm_nfreelists; flind++) {
190                         sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
191                             "\n  ORDER (SIZE)  |  NUMBER"
192                             "\n              ", flind);
193                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
194                                 sbuf_printf(&sbuf, "  |  POOL %d", pind);
195                         sbuf_printf(&sbuf, "\n--            ");
196                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
197                                 sbuf_printf(&sbuf, "-- --      ");
198                         sbuf_printf(&sbuf, "--\n");
199                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
200                                 sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
201                                     1 << (PAGE_SHIFT - 10 + oind));
202                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
203                                 fl = vm_phys_free_queues[dom][flind][pind];
204                                         sbuf_printf(&sbuf, "  |  %6d",
205                                             fl[oind].lcnt);
206                                 }
207                                 sbuf_printf(&sbuf, "\n");
208                         }
209                 }
210         }
211         error = sbuf_finish(&sbuf);
212         sbuf_delete(&sbuf);
213         return (error);
214 }
215
216 /*
217  * Outputs the set of physical memory segments.
218  */
219 static int
220 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
221 {
222         struct sbuf sbuf;
223         struct vm_phys_seg *seg;
224         int error, segind;
225
226         error = sysctl_wire_old_buffer(req, 0);
227         if (error != 0)
228                 return (error);
229         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
230         for (segind = 0; segind < vm_phys_nsegs; segind++) {
231                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
232                 seg = &vm_phys_segs[segind];
233                 sbuf_printf(&sbuf, "start:     %#jx\n",
234                     (uintmax_t)seg->start);
235                 sbuf_printf(&sbuf, "end:       %#jx\n",
236                     (uintmax_t)seg->end);
237                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
238                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
239         }
240         error = sbuf_finish(&sbuf);
241         sbuf_delete(&sbuf);
242         return (error);
243 }
244
245 static void
246 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
247 {
248
249         m->order = order;
250         if (tail)
251                 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
252         else
253                 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
254         fl[order].lcnt++;
255 }
256
257 static void
258 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
259 {
260
261         TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
262         fl[order].lcnt--;
263         m->order = VM_NFREEORDER;
264 }
265
266 /*
267  * Create a physical memory segment.
268  */
269 static void
270 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
271 {
272         struct vm_phys_seg *seg;
273
274         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
275             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
276         KASSERT(domain < vm_ndomains,
277             ("vm_phys_create_seg: invalid domain provided"));
278         seg = &vm_phys_segs[vm_phys_nsegs++];
279         while (seg > vm_phys_segs && (seg - 1)->start >= end) {
280                 *seg = *(seg - 1);
281                 seg--;
282         }
283         seg->start = start;
284         seg->end = end;
285         seg->domain = domain;
286 }
287
288 static void
289 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
290 {
291         int i;
292
293         if (mem_affinity == NULL) {
294                 _vm_phys_create_seg(start, end, 0);
295                 return;
296         }
297
298         for (i = 0;; i++) {
299                 if (mem_affinity[i].end == 0)
300                         panic("Reached end of affinity info");
301                 if (mem_affinity[i].end <= start)
302                         continue;
303                 if (mem_affinity[i].start > start)
304                         panic("No affinity info for start %jx",
305                             (uintmax_t)start);
306                 if (mem_affinity[i].end >= end) {
307                         _vm_phys_create_seg(start, end,
308                             mem_affinity[i].domain);
309                         break;
310                 }
311                 _vm_phys_create_seg(start, mem_affinity[i].end,
312                     mem_affinity[i].domain);
313                 start = mem_affinity[i].end;
314         }
315 }
316
317 /*
318  * Add a physical memory segment.
319  */
320 void
321 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
322 {
323         vm_paddr_t paddr;
324
325         KASSERT((start & PAGE_MASK) == 0,
326             ("vm_phys_define_seg: start is not page aligned"));
327         KASSERT((end & PAGE_MASK) == 0,
328             ("vm_phys_define_seg: end is not page aligned"));
329
330         /*
331          * Split the physical memory segment if it spans two or more free
332          * list boundaries.
333          */
334         paddr = start;
335 #ifdef  VM_FREELIST_ISADMA
336         if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) {
337                 vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY);
338                 paddr = VM_ISADMA_BOUNDARY;
339         }
340 #endif
341 #ifdef  VM_FREELIST_LOWMEM
342         if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
343                 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
344                 paddr = VM_LOWMEM_BOUNDARY;
345         }
346 #endif
347 #ifdef  VM_FREELIST_DMA32
348         if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
349                 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
350                 paddr = VM_DMA32_BOUNDARY;
351         }
352 #endif
353         vm_phys_create_seg(paddr, end);
354 }
355
356 /*
357  * Initialize the physical memory allocator.
358  *
359  * Requires that vm_page_array is initialized!
360  */
361 void
362 vm_phys_init(void)
363 {
364         struct vm_freelist *fl;
365         struct vm_phys_seg *seg;
366         u_long npages;
367         int dom, flind, freelist, oind, pind, segind;
368
369         /*
370          * Compute the number of free lists, and generate the mapping from the
371          * manifest constants VM_FREELIST_* to the free list indices.
372          *
373          * Initially, the entries of vm_freelist_to_flind[] are set to either
374          * 0 or 1 to indicate which free lists should be created.
375          */
376         npages = 0;
377         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
378                 seg = &vm_phys_segs[segind];
379 #ifdef  VM_FREELIST_ISADMA
380                 if (seg->end <= VM_ISADMA_BOUNDARY)
381                         vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1;
382                 else
383 #endif
384 #ifdef  VM_FREELIST_LOWMEM
385                 if (seg->end <= VM_LOWMEM_BOUNDARY)
386                         vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
387                 else
388 #endif
389 #ifdef  VM_FREELIST_DMA32
390                 if (
391 #ifdef  VM_DMA32_NPAGES_THRESHOLD
392                     /*
393                      * Create the DMA32 free list only if the amount of
394                      * physical memory above physical address 4G exceeds the
395                      * given threshold.
396                      */
397                     npages > VM_DMA32_NPAGES_THRESHOLD &&
398 #endif
399                     seg->end <= VM_DMA32_BOUNDARY)
400                         vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
401                 else
402 #endif
403                 {
404                         npages += atop(seg->end - seg->start);
405                         vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
406                 }
407         }
408         /* Change each entry into a running total of the free lists. */
409         for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
410                 vm_freelist_to_flind[freelist] +=
411                     vm_freelist_to_flind[freelist - 1];
412         }
413         vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
414         KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
415         /* Change each entry into a free list index. */
416         for (freelist = 0; freelist < VM_NFREELIST; freelist++)
417                 vm_freelist_to_flind[freelist]--;
418
419         /*
420          * Initialize the first_page and free_queues fields of each physical
421          * memory segment.
422          */
423 #ifdef VM_PHYSSEG_SPARSE
424         npages = 0;
425 #endif
426         for (segind = 0; segind < vm_phys_nsegs; segind++) {
427                 seg = &vm_phys_segs[segind];
428 #ifdef VM_PHYSSEG_SPARSE
429                 seg->first_page = &vm_page_array[npages];
430                 npages += atop(seg->end - seg->start);
431 #else
432                 seg->first_page = PHYS_TO_VM_PAGE(seg->start);
433 #endif
434 #ifdef  VM_FREELIST_ISADMA
435                 if (seg->end <= VM_ISADMA_BOUNDARY) {
436                         flind = vm_freelist_to_flind[VM_FREELIST_ISADMA];
437                         KASSERT(flind >= 0,
438                             ("vm_phys_init: ISADMA flind < 0"));
439                 } else
440 #endif
441 #ifdef  VM_FREELIST_LOWMEM
442                 if (seg->end <= VM_LOWMEM_BOUNDARY) {
443                         flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
444                         KASSERT(flind >= 0,
445                             ("vm_phys_init: LOWMEM flind < 0"));
446                 } else
447 #endif
448 #ifdef  VM_FREELIST_DMA32
449                 if (seg->end <= VM_DMA32_BOUNDARY) {
450                         flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
451                         KASSERT(flind >= 0,
452                             ("vm_phys_init: DMA32 flind < 0"));
453                 } else
454 #endif
455                 {
456                         flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
457                         KASSERT(flind >= 0,
458                             ("vm_phys_init: DEFAULT flind < 0"));
459                 }
460                 seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
461         }
462
463         /*
464          * Initialize the free queues.
465          */
466         for (dom = 0; dom < vm_ndomains; dom++) {
467                 for (flind = 0; flind < vm_nfreelists; flind++) {
468                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
469                                 fl = vm_phys_free_queues[dom][flind][pind];
470                                 for (oind = 0; oind < VM_NFREEORDER; oind++)
471                                         TAILQ_INIT(&fl[oind].pl);
472                         }
473                 }
474         }
475         mtx_init(&vm_phys_fictitious_reg_mtx, "vmfctr", NULL, MTX_DEF);
476 }
477
478 /*
479  * Split a contiguous, power of two-sized set of physical pages.
480  */
481 static __inline void
482 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
483 {
484         vm_page_t m_buddy;
485
486         while (oind > order) {
487                 oind--;
488                 m_buddy = &m[1 << oind];
489                 KASSERT(m_buddy->order == VM_NFREEORDER,
490                     ("vm_phys_split_pages: page %p has unexpected order %d",
491                     m_buddy, m_buddy->order));
492                 vm_freelist_add(fl, m_buddy, oind, 0);
493         }
494 }
495
496 /*
497  * Initialize a physical page and add it to the free lists.
498  */
499 void
500 vm_phys_add_page(vm_paddr_t pa)
501 {
502         vm_page_t m;
503         struct vm_domain *vmd;
504
505         cnt.v_page_count++;
506         m = vm_phys_paddr_to_vm_page(pa);
507         m->phys_addr = pa;
508         m->queue = PQ_NONE;
509         m->segind = vm_phys_paddr_to_segind(pa);
510         vmd = vm_phys_domain(m);
511         vmd->vmd_page_count++;
512         vmd->vmd_segs |= 1UL << m->segind;
513         m->flags = PG_FREE;
514         KASSERT(m->order == VM_NFREEORDER,
515             ("vm_phys_add_page: page %p has unexpected order %d",
516             m, m->order));
517         m->pool = VM_FREEPOOL_DEFAULT;
518         pmap_page_init(m);
519         mtx_lock(&vm_page_queue_free_mtx);
520         vm_phys_freecnt_adj(m, 1);
521         vm_phys_free_pages(m, 0);
522         mtx_unlock(&vm_page_queue_free_mtx);
523 }
524
525 /*
526  * Allocate a contiguous, power of two-sized set of physical pages
527  * from the free lists.
528  *
529  * The free page queues must be locked.
530  */
531 vm_page_t
532 vm_phys_alloc_pages(int pool, int order)
533 {
534         vm_page_t m;
535         int dom, domain, flind;
536
537         KASSERT(pool < VM_NFREEPOOL,
538             ("vm_phys_alloc_pages: pool %d is out of range", pool));
539         KASSERT(order < VM_NFREEORDER,
540             ("vm_phys_alloc_pages: order %d is out of range", order));
541
542         for (dom = 0; dom < vm_ndomains; dom++) {
543                 domain = vm_rr_selectdomain();
544                 for (flind = 0; flind < vm_nfreelists; flind++) {
545                         m = vm_phys_alloc_domain_pages(domain, flind, pool,
546                             order);
547                         if (m != NULL)
548                                 return (m);
549                 }
550         }
551         return (NULL);
552 }
553
554 /*
555  * Allocate a contiguous, power of two-sized set of physical pages from the
556  * specified free list.  The free list must be specified using one of the
557  * manifest constants VM_FREELIST_*.
558  *
559  * The free page queues must be locked.
560  */
561 vm_page_t
562 vm_phys_alloc_freelist_pages(int freelist, int pool, int order)
563 {
564         vm_page_t m;
565         int dom, domain;
566
567         KASSERT(freelist < VM_NFREELIST,
568             ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
569             freelist));
570         KASSERT(pool < VM_NFREEPOOL,
571             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
572         KASSERT(order < VM_NFREEORDER,
573             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
574         for (dom = 0; dom < vm_ndomains; dom++) {
575                 domain = vm_rr_selectdomain();
576                 m = vm_phys_alloc_domain_pages(domain,
577                     vm_freelist_to_flind[freelist], pool, order);
578                 if (m != NULL)
579                         return (m);
580         }
581         return (NULL);
582 }
583
584 static vm_page_t
585 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
586 {       
587         struct vm_freelist *fl;
588         struct vm_freelist *alt;
589         int oind, pind;
590         vm_page_t m;
591
592         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
593         fl = &vm_phys_free_queues[domain][flind][pool][0];
594         for (oind = order; oind < VM_NFREEORDER; oind++) {
595                 m = TAILQ_FIRST(&fl[oind].pl);
596                 if (m != NULL) {
597                         vm_freelist_rem(fl, m, oind);
598                         vm_phys_split_pages(m, oind, fl, order);
599                         return (m);
600                 }
601         }
602
603         /*
604          * The given pool was empty.  Find the largest
605          * contiguous, power-of-two-sized set of pages in any
606          * pool.  Transfer these pages to the given pool, and
607          * use them to satisfy the allocation.
608          */
609         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
610                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
611                         alt = &vm_phys_free_queues[domain][flind][pind][0];
612                         m = TAILQ_FIRST(&alt[oind].pl);
613                         if (m != NULL) {
614                                 vm_freelist_rem(alt, m, oind);
615                                 vm_phys_set_pool(pool, m, oind);
616                                 vm_phys_split_pages(m, oind, fl, order);
617                                 return (m);
618                         }
619                 }
620         }
621         return (NULL);
622 }
623
624 /*
625  * Find the vm_page corresponding to the given physical address.
626  */
627 vm_page_t
628 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
629 {
630         struct vm_phys_seg *seg;
631         int segind;
632
633         for (segind = 0; segind < vm_phys_nsegs; segind++) {
634                 seg = &vm_phys_segs[segind];
635                 if (pa >= seg->start && pa < seg->end)
636                         return (&seg->first_page[atop(pa - seg->start)]);
637         }
638         return (NULL);
639 }
640
641 vm_page_t
642 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
643 {
644         struct vm_phys_fictitious_seg *seg;
645         vm_page_t m;
646         int segind;
647
648         m = NULL;
649         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
650                 seg = &vm_phys_fictitious_segs[segind];
651                 if (pa >= seg->start && pa < seg->end) {
652                         m = &seg->first_page[atop(pa - seg->start)];
653                         KASSERT((m->flags & PG_FICTITIOUS) != 0,
654                             ("%p not fictitious", m));
655                         break;
656                 }
657         }
658         return (m);
659 }
660
661 int
662 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
663     vm_memattr_t memattr)
664 {
665         struct vm_phys_fictitious_seg *seg;
666         vm_page_t fp;
667         long i, page_count;
668         int segind;
669 #ifdef VM_PHYSSEG_DENSE
670         long pi;
671         boolean_t malloced;
672 #endif
673
674         page_count = (end - start) / PAGE_SIZE;
675
676 #ifdef VM_PHYSSEG_DENSE
677         pi = atop(start);
678         if (pi >= first_page && pi < vm_page_array_size + first_page) {
679                 if (atop(end) >= vm_page_array_size + first_page)
680                         return (EINVAL);
681                 fp = &vm_page_array[pi - first_page];
682                 malloced = FALSE;
683         } else
684 #endif
685         {
686                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
687                     M_WAITOK | M_ZERO);
688 #ifdef VM_PHYSSEG_DENSE
689                 malloced = TRUE;
690 #endif
691         }
692         for (i = 0; i < page_count; i++) {
693                 vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr);
694                 fp[i].oflags &= ~VPO_UNMANAGED;
695                 fp[i].busy_lock = VPB_UNBUSIED;
696         }
697         mtx_lock(&vm_phys_fictitious_reg_mtx);
698         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
699                 seg = &vm_phys_fictitious_segs[segind];
700                 if (seg->start == 0 && seg->end == 0) {
701                         seg->start = start;
702                         seg->end = end;
703                         seg->first_page = fp;
704                         mtx_unlock(&vm_phys_fictitious_reg_mtx);
705                         return (0);
706                 }
707         }
708         mtx_unlock(&vm_phys_fictitious_reg_mtx);
709 #ifdef VM_PHYSSEG_DENSE
710         if (malloced)
711 #endif
712                 free(fp, M_FICT_PAGES);
713         return (EBUSY);
714 }
715
716 void
717 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
718 {
719         struct vm_phys_fictitious_seg *seg;
720         vm_page_t fp;
721         int segind;
722 #ifdef VM_PHYSSEG_DENSE
723         long pi;
724 #endif
725
726 #ifdef VM_PHYSSEG_DENSE
727         pi = atop(start);
728 #endif
729
730         mtx_lock(&vm_phys_fictitious_reg_mtx);
731         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
732                 seg = &vm_phys_fictitious_segs[segind];
733                 if (seg->start == start && seg->end == end) {
734                         seg->start = seg->end = 0;
735                         fp = seg->first_page;
736                         seg->first_page = NULL;
737                         mtx_unlock(&vm_phys_fictitious_reg_mtx);
738 #ifdef VM_PHYSSEG_DENSE
739                         if (pi < first_page || atop(end) >= vm_page_array_size)
740 #endif
741                                 free(fp, M_FICT_PAGES);
742                         return;
743                 }
744         }
745         mtx_unlock(&vm_phys_fictitious_reg_mtx);
746         KASSERT(0, ("Unregistering not registered fictitious range"));
747 }
748
749 /*
750  * Find the segment containing the given physical address.
751  */
752 static int
753 vm_phys_paddr_to_segind(vm_paddr_t pa)
754 {
755         struct vm_phys_seg *seg;
756         int segind;
757
758         for (segind = 0; segind < vm_phys_nsegs; segind++) {
759                 seg = &vm_phys_segs[segind];
760                 if (pa >= seg->start && pa < seg->end)
761                         return (segind);
762         }
763         panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
764             (uintmax_t)pa);
765 }
766
767 /*
768  * Free a contiguous, power of two-sized set of physical pages.
769  *
770  * The free page queues must be locked.
771  */
772 void
773 vm_phys_free_pages(vm_page_t m, int order)
774 {
775         struct vm_freelist *fl;
776         struct vm_phys_seg *seg;
777         vm_paddr_t pa;
778         vm_page_t m_buddy;
779
780         KASSERT(m->order == VM_NFREEORDER,
781             ("vm_phys_free_pages: page %p has unexpected order %d",
782             m, m->order));
783         KASSERT(m->pool < VM_NFREEPOOL,
784             ("vm_phys_free_pages: page %p has unexpected pool %d",
785             m, m->pool));
786         KASSERT(order < VM_NFREEORDER,
787             ("vm_phys_free_pages: order %d is out of range", order));
788         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
789         seg = &vm_phys_segs[m->segind];
790         if (order < VM_NFREEORDER - 1) {
791                 pa = VM_PAGE_TO_PHYS(m);
792                 do {
793                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
794                         if (pa < seg->start || pa >= seg->end)
795                                 break;
796                         m_buddy = &seg->first_page[atop(pa - seg->start)];
797                         if (m_buddy->order != order)
798                                 break;
799                         fl = (*seg->free_queues)[m_buddy->pool];
800                         vm_freelist_rem(fl, m_buddy, order);
801                         if (m_buddy->pool != m->pool)
802                                 vm_phys_set_pool(m->pool, m_buddy, order);
803                         order++;
804                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
805                         m = &seg->first_page[atop(pa - seg->start)];
806                 } while (order < VM_NFREEORDER - 1);
807         }
808         fl = (*seg->free_queues)[m->pool];
809         vm_freelist_add(fl, m, order, 1);
810 }
811
812 /*
813  * Free a contiguous, arbitrarily sized set of physical pages.
814  *
815  * The free page queues must be locked.
816  */
817 void
818 vm_phys_free_contig(vm_page_t m, u_long npages)
819 {
820         u_int n;
821         int order;
822
823         /*
824          * Avoid unnecessary coalescing by freeing the pages in the largest
825          * possible power-of-two-sized subsets.
826          */
827         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
828         for (;; npages -= n) {
829                 /*
830                  * Unsigned "min" is used here so that "order" is assigned
831                  * "VM_NFREEORDER - 1" when "m"'s physical address is zero
832                  * or the low-order bits of its physical address are zero
833                  * because the size of a physical address exceeds the size of
834                  * a long.
835                  */
836                 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
837                     VM_NFREEORDER - 1);
838                 n = 1 << order;
839                 if (npages < n)
840                         break;
841                 vm_phys_free_pages(m, order);
842                 m += n;
843         }
844         /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
845         for (; npages > 0; npages -= n) {
846                 order = flsl(npages) - 1;
847                 n = 1 << order;
848                 vm_phys_free_pages(m, order);
849                 m += n;
850         }
851 }
852
853 /*
854  * Set the pool for a contiguous, power of two-sized set of physical pages. 
855  */
856 void
857 vm_phys_set_pool(int pool, vm_page_t m, int order)
858 {
859         vm_page_t m_tmp;
860
861         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
862                 m_tmp->pool = pool;
863 }
864
865 /*
866  * Search for the given physical page "m" in the free lists.  If the search
867  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
868  * FALSE, indicating that "m" is not in the free lists.
869  *
870  * The free page queues must be locked.
871  */
872 boolean_t
873 vm_phys_unfree_page(vm_page_t m)
874 {
875         struct vm_freelist *fl;
876         struct vm_phys_seg *seg;
877         vm_paddr_t pa, pa_half;
878         vm_page_t m_set, m_tmp;
879         int order;
880
881         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
882
883         /*
884          * First, find the contiguous, power of two-sized set of free
885          * physical pages containing the given physical page "m" and
886          * assign it to "m_set".
887          */
888         seg = &vm_phys_segs[m->segind];
889         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
890             order < VM_NFREEORDER - 1; ) {
891                 order++;
892                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
893                 if (pa >= seg->start)
894                         m_set = &seg->first_page[atop(pa - seg->start)];
895                 else
896                         return (FALSE);
897         }
898         if (m_set->order < order)
899                 return (FALSE);
900         if (m_set->order == VM_NFREEORDER)
901                 return (FALSE);
902         KASSERT(m_set->order < VM_NFREEORDER,
903             ("vm_phys_unfree_page: page %p has unexpected order %d",
904             m_set, m_set->order));
905
906         /*
907          * Next, remove "m_set" from the free lists.  Finally, extract
908          * "m" from "m_set" using an iterative algorithm: While "m_set"
909          * is larger than a page, shrink "m_set" by returning the half
910          * of "m_set" that does not contain "m" to the free lists.
911          */
912         fl = (*seg->free_queues)[m_set->pool];
913         order = m_set->order;
914         vm_freelist_rem(fl, m_set, order);
915         while (order > 0) {
916                 order--;
917                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
918                 if (m->phys_addr < pa_half)
919                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
920                 else {
921                         m_tmp = m_set;
922                         m_set = &seg->first_page[atop(pa_half - seg->start)];
923                 }
924                 vm_freelist_add(fl, m_tmp, order, 0);
925         }
926         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
927         return (TRUE);
928 }
929
930 /*
931  * Try to zero one physical page.  Used by an idle priority thread.
932  */
933 boolean_t
934 vm_phys_zero_pages_idle(void)
935 {
936         static struct vm_freelist *fl;
937         static int flind, oind, pind;
938         vm_page_t m, m_tmp;
939         int domain;
940
941         domain = vm_rr_selectdomain();
942         fl = vm_phys_free_queues[domain][0][0];
943         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
944         for (;;) {
945                 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
946                         for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
947                                 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
948                                         vm_phys_unfree_page(m_tmp);
949                                         vm_phys_freecnt_adj(m, -1);
950                                         mtx_unlock(&vm_page_queue_free_mtx);
951                                         pmap_zero_page_idle(m_tmp);
952                                         m_tmp->flags |= PG_ZERO;
953                                         mtx_lock(&vm_page_queue_free_mtx);
954                                         vm_phys_freecnt_adj(m, 1);
955                                         vm_phys_free_pages(m_tmp, 0);
956                                         vm_page_zero_count++;
957                                         cnt_prezero++;
958                                         return (TRUE);
959                                 }
960                         }
961                 }
962                 oind++;
963                 if (oind == VM_NFREEORDER) {
964                         oind = 0;
965                         pind++;
966                         if (pind == VM_NFREEPOOL) {
967                                 pind = 0;
968                                 flind++;
969                                 if (flind == vm_nfreelists)
970                                         flind = 0;
971                         }
972                         fl = vm_phys_free_queues[domain][flind][pind];
973                 }
974         }
975 }
976
977 /*
978  * Allocate a contiguous set of physical pages of the given size
979  * "npages" from the free lists.  All of the physical pages must be at
980  * or above the given physical address "low" and below the given
981  * physical address "high".  The given value "alignment" determines the
982  * alignment of the first physical page in the set.  If the given value
983  * "boundary" is non-zero, then the set of physical pages cannot cross
984  * any physical address boundary that is a multiple of that value.  Both
985  * "alignment" and "boundary" must be a power of two.
986  */
987 vm_page_t
988 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
989     u_long alignment, vm_paddr_t boundary)
990 {
991         struct vm_freelist *fl;
992         struct vm_phys_seg *seg;
993         vm_paddr_t pa, pa_last, size;
994         vm_page_t m, m_ret;
995         u_long npages_end;
996         int dom, domain, flind, oind, order, pind;
997
998         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
999         size = npages << PAGE_SHIFT;
1000         KASSERT(size != 0,
1001             ("vm_phys_alloc_contig: size must not be 0"));
1002         KASSERT((alignment & (alignment - 1)) == 0,
1003             ("vm_phys_alloc_contig: alignment must be a power of 2"));
1004         KASSERT((boundary & (boundary - 1)) == 0,
1005             ("vm_phys_alloc_contig: boundary must be a power of 2"));
1006         /* Compute the queue that is the best fit for npages. */
1007         for (order = 0; (1 << order) < npages; order++);
1008         dom = 0;
1009 restartdom:
1010         domain = vm_rr_selectdomain();
1011         for (flind = 0; flind < vm_nfreelists; flind++) {
1012                 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
1013                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1014                                 fl = &vm_phys_free_queues[domain][flind][pind][0];
1015                                 TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
1016                                         /*
1017                                          * A free list may contain physical pages
1018                                          * from one or more segments.
1019                                          */
1020                                         seg = &vm_phys_segs[m_ret->segind];
1021                                         if (seg->start > high ||
1022                                             low >= seg->end)
1023                                                 continue;
1024
1025                                         /*
1026                                          * Is the size of this allocation request
1027                                          * larger than the largest block size?
1028                                          */
1029                                         if (order >= VM_NFREEORDER) {
1030                                                 /*
1031                                                  * Determine if a sufficient number
1032                                                  * of subsequent blocks to satisfy
1033                                                  * the allocation request are free.
1034                                                  */
1035                                                 pa = VM_PAGE_TO_PHYS(m_ret);
1036                                                 pa_last = pa + size;
1037                                                 for (;;) {
1038                                                         pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
1039                                                         if (pa >= pa_last)
1040                                                                 break;
1041                                                         if (pa < seg->start ||
1042                                                             pa >= seg->end)
1043                                                                 break;
1044                                                         m = &seg->first_page[atop(pa - seg->start)];
1045                                                         if (m->order != VM_NFREEORDER - 1)
1046                                                                 break;
1047                                                 }
1048                                                 /* If not, continue to the next block. */
1049                                                 if (pa < pa_last)
1050                                                         continue;
1051                                         }
1052
1053                                         /*
1054                                          * Determine if the blocks are within the given range,
1055                                          * satisfy the given alignment, and do not cross the
1056                                          * given boundary.
1057                                          */
1058                                         pa = VM_PAGE_TO_PHYS(m_ret);
1059                                         if (pa >= low &&
1060                                             pa + size <= high &&
1061                                             (pa & (alignment - 1)) == 0 &&
1062                                             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
1063                                                 goto done;
1064                                 }
1065                         }
1066                 }
1067         }
1068         if (++dom < vm_ndomains)
1069                 goto restartdom;
1070         return (NULL);
1071 done:
1072         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1073                 fl = (*seg->free_queues)[m->pool];
1074                 vm_freelist_rem(fl, m, m->order);
1075         }
1076         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
1077                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
1078         fl = (*seg->free_queues)[m_ret->pool];
1079         vm_phys_split_pages(m_ret, oind, fl, order);
1080         /* Return excess pages to the free lists. */
1081         npages_end = roundup2(npages, 1 << imin(oind, order));
1082         if (npages < npages_end)
1083                 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
1084         return (m_ret);
1085 }
1086
1087 #ifdef DDB
1088 /*
1089  * Show the number of physical pages in each of the free lists.
1090  */
1091 DB_SHOW_COMMAND(freepages, db_show_freepages)
1092 {
1093         struct vm_freelist *fl;
1094         int flind, oind, pind, dom;
1095
1096         for (dom = 0; dom < vm_ndomains; dom++) {
1097                 db_printf("DOMAIN: %d\n", dom);
1098                 for (flind = 0; flind < vm_nfreelists; flind++) {
1099                         db_printf("FREE LIST %d:\n"
1100                             "\n  ORDER (SIZE)  |  NUMBER"
1101                             "\n              ", flind);
1102                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1103                                 db_printf("  |  POOL %d", pind);
1104                         db_printf("\n--            ");
1105                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1106                                 db_printf("-- --      ");
1107                         db_printf("--\n");
1108                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1109                                 db_printf("  %2.2d (%6.6dK)", oind,
1110                                     1 << (PAGE_SHIFT - 10 + oind));
1111                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1112                                 fl = vm_phys_free_queues[dom][flind][pind];
1113                                         db_printf("  |  %6.6d", fl[oind].lcnt);
1114                                 }
1115                                 db_printf("\n");
1116                         }
1117                         db_printf("\n");
1118                 }
1119                 db_printf("\n");
1120         }
1121 }
1122 #endif