]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - sys/x86/x86/tsc.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / sys / x86 / x86 / tsc.c
1 /*-
2  * Copyright (c) 1998-2003 Poul-Henning Kamp
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include "opt_compat.h"
31 #include "opt_clock.h"
32
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/cpu.h>
36 #include <sys/limits.h>
37 #include <sys/malloc.h>
38 #include <sys/systm.h>
39 #include <sys/sysctl.h>
40 #include <sys/time.h>
41 #include <sys/timetc.h>
42 #include <sys/kernel.h>
43 #include <sys/power.h>
44 #include <sys/smp.h>
45 #include <sys/vdso.h>
46 #include <machine/clock.h>
47 #include <machine/cputypes.h>
48 #include <machine/md_var.h>
49 #include <machine/specialreg.h>
50 #include <x86/vmware.h>
51
52 #include "cpufreq_if.h"
53
54 uint64_t        tsc_freq;
55 int             tsc_is_invariant;
56 int             tsc_perf_stat;
57
58 static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag;
59
60 SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN,
61     &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant");
62 TUNABLE_INT("kern.timecounter.invariant_tsc", &tsc_is_invariant);
63
64 #ifdef SMP
65 int     smp_tsc;
66 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0,
67     "Indicates whether the TSC is safe to use in SMP mode");
68 TUNABLE_INT("kern.timecounter.smp_tsc", &smp_tsc);
69
70 int     smp_tsc_adjust = 0;
71 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc_adjust, CTLFLAG_RDTUN,
72     &smp_tsc_adjust, 0, "Try to adjust TSC on APs to match BSP");
73 TUNABLE_INT("kern.timecounter.smp_tsc_adjust", &smp_tsc_adjust);
74 #endif
75
76 static int      tsc_shift = 1;
77 SYSCTL_INT(_kern_timecounter, OID_AUTO, tsc_shift, CTLFLAG_RDTUN,
78     &tsc_shift, 0, "Shift to pre-apply for the maximum TSC frequency");
79 TUNABLE_INT("kern.timecounter.tsc_shift", &tsc_shift);
80
81 static int      tsc_disabled;
82 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0,
83     "Disable x86 Time Stamp Counter");
84 TUNABLE_INT("machdep.disable_tsc", &tsc_disabled);
85
86 static int      tsc_skip_calibration;
87 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN,
88     &tsc_skip_calibration, 0, "Disable TSC frequency calibration");
89 TUNABLE_INT("machdep.disable_tsc_calibration", &tsc_skip_calibration);
90
91 static void tsc_freq_changed(void *arg, const struct cf_level *level,
92     int status);
93 static void tsc_freq_changing(void *arg, const struct cf_level *level,
94     int *status);
95 static unsigned tsc_get_timecount(struct timecounter *tc);
96 static inline unsigned tsc_get_timecount_low(struct timecounter *tc);
97 static unsigned tsc_get_timecount_lfence(struct timecounter *tc);
98 static unsigned tsc_get_timecount_low_lfence(struct timecounter *tc);
99 static unsigned tsc_get_timecount_mfence(struct timecounter *tc);
100 static unsigned tsc_get_timecount_low_mfence(struct timecounter *tc);
101 static void tsc_levels_changed(void *arg, int unit);
102
103 static struct timecounter tsc_timecounter = {
104         tsc_get_timecount,      /* get_timecount */
105         0,                      /* no poll_pps */
106         ~0u,                    /* counter_mask */
107         0,                      /* frequency */
108         "TSC",                  /* name */
109         800,                    /* quality (adjusted in code) */
110 };
111
112 static void
113 tsc_freq_vmware(void)
114 {
115         u_int regs[4];
116
117         if (hv_high >= 0x40000010) {
118                 do_cpuid(0x40000010, regs);
119                 tsc_freq = regs[0] * 1000;
120         } else {
121                 vmware_hvcall(VMW_HVCMD_GETHZ, regs);
122                 if (regs[1] != UINT_MAX)
123                         tsc_freq = regs[0] | ((uint64_t)regs[1] << 32);
124         }
125         tsc_is_invariant = 1;
126 }
127
128 static void
129 tsc_freq_intel(void)
130 {
131         char brand[48];
132         u_int regs[4];
133         uint64_t freq;
134         char *p;
135         u_int i;
136
137         /*
138          * Intel Processor Identification and the CPUID Instruction
139          * Application Note 485.
140          * http://www.intel.com/assets/pdf/appnote/241618.pdf
141          */
142         if (cpu_exthigh >= 0x80000004) {
143                 p = brand;
144                 for (i = 0x80000002; i < 0x80000005; i++) {
145                         do_cpuid(i, regs);
146                         memcpy(p, regs, sizeof(regs));
147                         p += sizeof(regs);
148                 }
149                 p = NULL;
150                 for (i = 0; i < sizeof(brand) - 1; i++)
151                         if (brand[i] == 'H' && brand[i + 1] == 'z')
152                                 p = brand + i;
153                 if (p != NULL) {
154                         p -= 5;
155                         switch (p[4]) {
156                         case 'M':
157                                 i = 1;
158                                 break;
159                         case 'G':
160                                 i = 1000;
161                                 break;
162                         case 'T':
163                                 i = 1000000;
164                                 break;
165                         default:
166                                 return;
167                         }
168 #define C2D(c)  ((c) - '0')
169                         if (p[1] == '.') {
170                                 freq = C2D(p[0]) * 1000;
171                                 freq += C2D(p[2]) * 100;
172                                 freq += C2D(p[3]) * 10;
173                                 freq *= i * 1000;
174                         } else {
175                                 freq = C2D(p[0]) * 1000;
176                                 freq += C2D(p[1]) * 100;
177                                 freq += C2D(p[2]) * 10;
178                                 freq += C2D(p[3]);
179                                 freq *= i * 1000000;
180                         }
181 #undef C2D
182                         tsc_freq = freq;
183                 }
184         }
185 }
186
187 static void
188 probe_tsc_freq(void)
189 {
190         u_int regs[4];
191         uint64_t tsc1, tsc2;
192
193         if (cpu_high >= 6) {
194                 do_cpuid(6, regs);
195                 if ((regs[2] & CPUID_PERF_STAT) != 0) {
196                         /*
197                          * XXX Some emulators expose host CPUID without actual
198                          * support for these MSRs.  We must test whether they
199                          * really work.
200                          */
201                         wrmsr(MSR_MPERF, 0);
202                         wrmsr(MSR_APERF, 0);
203                         DELAY(10);
204                         if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0)
205                                 tsc_perf_stat = 1;
206                 }
207         }
208
209         if (vm_guest == VM_GUEST_VMWARE) {
210                 tsc_freq_vmware();
211                 return;
212         }
213
214         switch (cpu_vendor_id) {
215         case CPU_VENDOR_AMD:
216                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
217                     (vm_guest == VM_GUEST_NO &&
218                     CPUID_TO_FAMILY(cpu_id) >= 0x10))
219                         tsc_is_invariant = 1;
220                 if (cpu_feature & CPUID_SSE2) {
221                         tsc_timecounter.tc_get_timecount =
222                             tsc_get_timecount_mfence;
223                 }
224                 break;
225         case CPU_VENDOR_INTEL:
226                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
227                     (vm_guest == VM_GUEST_NO &&
228                     ((CPUID_TO_FAMILY(cpu_id) == 0x6 &&
229                     CPUID_TO_MODEL(cpu_id) >= 0xe) ||
230                     (CPUID_TO_FAMILY(cpu_id) == 0xf &&
231                     CPUID_TO_MODEL(cpu_id) >= 0x3))))
232                         tsc_is_invariant = 1;
233                 if (cpu_feature & CPUID_SSE2) {
234                         tsc_timecounter.tc_get_timecount =
235                             tsc_get_timecount_lfence;
236                 }
237                 break;
238         case CPU_VENDOR_CENTAUR:
239                 if (vm_guest == VM_GUEST_NO &&
240                     CPUID_TO_FAMILY(cpu_id) == 0x6 &&
241                     CPUID_TO_MODEL(cpu_id) >= 0xf &&
242                     (rdmsr(0x1203) & 0x100000000ULL) == 0)
243                         tsc_is_invariant = 1;
244                 if (cpu_feature & CPUID_SSE2) {
245                         tsc_timecounter.tc_get_timecount =
246                             tsc_get_timecount_lfence;
247                 }
248                 break;
249         }
250
251         if (tsc_skip_calibration) {
252                 if (cpu_vendor_id == CPU_VENDOR_INTEL)
253                         tsc_freq_intel();
254                 return;
255         }
256
257         if (bootverbose)
258                 printf("Calibrating TSC clock ... ");
259         tsc1 = rdtsc();
260         DELAY(1000000);
261         tsc2 = rdtsc();
262         tsc_freq = tsc2 - tsc1;
263         if (bootverbose)
264                 printf("TSC clock: %ju Hz\n", (intmax_t)tsc_freq);
265 }
266
267 void
268 init_TSC(void)
269 {
270
271         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
272                 return;
273
274 #ifdef __i386__
275         /* The TSC is known to be broken on certain CPUs. */
276         switch (cpu_vendor_id) {
277         case CPU_VENDOR_AMD:
278                 switch (cpu_id & 0xFF0) {
279                 case 0x500:
280                         /* K5 Model 0 */
281                         return;
282                 }
283                 break;
284         case CPU_VENDOR_CENTAUR:
285                 switch (cpu_id & 0xff0) {
286                 case 0x540:
287                         /*
288                          * http://www.centtech.com/c6_data_sheet.pdf
289                          *
290                          * I-12 RDTSC may return incoherent values in EDX:EAX
291                          * I-13 RDTSC hangs when certain event counters are used
292                          */
293                         return;
294                 }
295                 break;
296         case CPU_VENDOR_NSC:
297                 switch (cpu_id & 0xff0) {
298                 case 0x540:
299                         if ((cpu_id & CPUID_STEPPING) == 0)
300                                 return;
301                         break;
302                 }
303                 break;
304         }
305 #endif
306                 
307         probe_tsc_freq();
308
309         /*
310          * Inform CPU accounting about our boot-time clock rate.  This will
311          * be updated if someone loads a cpufreq driver after boot that
312          * discovers a new max frequency.
313          */
314         if (tsc_freq != 0)
315                 set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
316
317         if (tsc_is_invariant)
318                 return;
319
320         /* Register to find out about changes in CPU frequency. */
321         tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
322             tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST);
323         tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
324             tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST);
325         tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed,
326             tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY);
327 }
328
329 #ifdef SMP
330
331 /*
332  * RDTSC is not a serializing instruction, and does not drain
333  * instruction stream, so we need to drain the stream before executing
334  * it.  It could be fixed by use of RDTSCP, except the instruction is
335  * not available everywhere.
336  *
337  * Use CPUID for draining in the boot-time SMP constistency test.  The
338  * timecounters use MFENCE for AMD CPUs, and LFENCE for others (Intel
339  * and VIA) when SSE2 is present, and nothing on older machines which
340  * also do not issue RDTSC prematurely.  There, testing for SSE2 and
341  * vendor is too cumbersome, and we learn about TSC presence from CPUID.
342  *
343  * Do not use do_cpuid(), since we do not need CPUID results, which
344  * have to be written into memory with do_cpuid().
345  */
346 #define TSC_READ(x)                                                     \
347 static void                                                             \
348 tsc_read_##x(void *arg)                                                 \
349 {                                                                       \
350         uint64_t *tsc = arg;                                            \
351         u_int cpu = PCPU_GET(cpuid);                                    \
352                                                                         \
353         __asm __volatile("cpuid" : : : "eax", "ebx", "ecx", "edx");     \
354         tsc[cpu * 3 + x] = rdtsc();                                     \
355 }
356 TSC_READ(0)
357 TSC_READ(1)
358 TSC_READ(2)
359 #undef TSC_READ
360
361 #define N       1000
362
363 static void
364 comp_smp_tsc(void *arg)
365 {
366         uint64_t *tsc;
367         int64_t d1, d2;
368         u_int cpu = PCPU_GET(cpuid);
369         u_int i, j, size;
370
371         size = (mp_maxid + 1) * 3;
372         for (i = 0, tsc = arg; i < N; i++, tsc += size)
373                 CPU_FOREACH(j) {
374                         if (j == cpu)
375                                 continue;
376                         d1 = tsc[cpu * 3 + 1] - tsc[j * 3];
377                         d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1];
378                         if (d1 <= 0 || d2 <= 0) {
379                                 smp_tsc = 0;
380                                 return;
381                         }
382                 }
383 }
384
385 static void
386 adj_smp_tsc(void *arg)
387 {
388         uint64_t *tsc;
389         int64_t d, min, max;
390         u_int cpu = PCPU_GET(cpuid);
391         u_int first, i, size;
392
393         first = CPU_FIRST();
394         if (cpu == first)
395                 return;
396         min = INT64_MIN;
397         max = INT64_MAX;
398         size = (mp_maxid + 1) * 3;
399         for (i = 0, tsc = arg; i < N; i++, tsc += size) {
400                 d = tsc[first * 3] - tsc[cpu * 3 + 1];
401                 if (d > min)
402                         min = d;
403                 d = tsc[first * 3 + 1] - tsc[cpu * 3 + 2];
404                 if (d > min)
405                         min = d;
406                 d = tsc[first * 3 + 1] - tsc[cpu * 3];
407                 if (d < max)
408                         max = d;
409                 d = tsc[first * 3 + 2] - tsc[cpu * 3 + 1];
410                 if (d < max)
411                         max = d;
412         }
413         if (min > max)
414                 return;
415         d = min / 2 + max / 2;
416         __asm __volatile (
417                 "movl $0x10, %%ecx\n\t"
418                 "rdmsr\n\t"
419                 "addl %%edi, %%eax\n\t"
420                 "adcl %%esi, %%edx\n\t"
421                 "wrmsr\n"
422                 : /* No output */
423                 : "D" ((uint32_t)d), "S" ((uint32_t)(d >> 32))
424                 : "ax", "cx", "dx", "cc"
425         );
426 }
427
428 static int
429 test_tsc(void)
430 {
431         uint64_t *data, *tsc;
432         u_int i, size, adj;
433
434         if ((!smp_tsc && !tsc_is_invariant) || vm_guest)
435                 return (-100);
436         size = (mp_maxid + 1) * 3;
437         data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK);
438         adj = 0;
439 retry:
440         for (i = 0, tsc = data; i < N; i++, tsc += size)
441                 smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc);
442         smp_tsc = 1;    /* XXX */
443         smp_rendezvous(smp_no_rendevous_barrier, comp_smp_tsc,
444             smp_no_rendevous_barrier, data);
445         if (!smp_tsc && adj < smp_tsc_adjust) {
446                 adj++;
447                 smp_rendezvous(smp_no_rendevous_barrier, adj_smp_tsc,
448                     smp_no_rendevous_barrier, data);
449                 goto retry;
450         }
451         free(data, M_TEMP);
452         if (bootverbose)
453                 printf("SMP: %sed TSC synchronization test%s\n",
454                     smp_tsc ? "pass" : "fail", 
455                     adj > 0 ? " after adjustment" : "");
456         if (smp_tsc && tsc_is_invariant) {
457                 switch (cpu_vendor_id) {
458                 case CPU_VENDOR_AMD:
459                         /*
460                          * Starting with Family 15h processors, TSC clock
461                          * source is in the north bridge.  Check whether
462                          * we have a single-socket/multi-core platform.
463                          * XXX Need more work for complex cases.
464                          */
465                         if (CPUID_TO_FAMILY(cpu_id) < 0x15 ||
466                             (amd_feature2 & AMDID2_CMP) == 0 ||
467                             smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1)
468                                 break;
469                         return (1000);
470                 case CPU_VENDOR_INTEL:
471                         /*
472                          * XXX Assume Intel platforms have synchronized TSCs.
473                          */
474                         return (1000);
475                 }
476                 return (800);
477         }
478         return (-100);
479 }
480
481 #undef N
482
483 #else
484
485 /*
486  * The function is not called, it is provided to avoid linking failure
487  * on uniprocessor kernel.
488  */
489 static int
490 test_tsc(void)
491 {
492
493         return (0);
494 }
495
496 #endif /* SMP */
497
498 static void
499 init_TSC_tc(void)
500 {
501         uint64_t max_freq;
502         int shift;
503
504         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
505                 return;
506
507         /*
508          * Limit timecounter frequency to fit in an int and prevent it from
509          * overflowing too fast.
510          */
511         max_freq = UINT_MAX;
512
513         /*
514          * We can not use the TSC if we support APM.  Precise timekeeping
515          * on an APM'ed machine is at best a fools pursuit, since 
516          * any and all of the time spent in various SMM code can't 
517          * be reliably accounted for.  Reading the RTC is your only
518          * source of reliable time info.  The i8254 loses too, of course,
519          * but we need to have some kind of time...
520          * We don't know at this point whether APM is going to be used
521          * or not, nor when it might be activated.  Play it safe.
522          */
523         if (power_pm_get_type() == POWER_PM_TYPE_APM) {
524                 tsc_timecounter.tc_quality = -1000;
525                 if (bootverbose)
526                         printf("TSC timecounter disabled: APM enabled.\n");
527                 goto init;
528         }
529
530         /*
531          * We cannot use the TSC if it stops incrementing while idle.
532          * Intel CPUs without a C-state invariant TSC can stop the TSC
533          * in either C2 or C3.
534          */
535         if (cpu_deepest_sleep >= 2 && cpu_vendor_id == CPU_VENDOR_INTEL &&
536             (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) {
537                 tsc_timecounter.tc_quality = -1000;
538                 tsc_timecounter.tc_flags |= TC_FLAGS_C2STOP;
539                 if (bootverbose)
540                         printf("TSC timecounter disabled: C2/C3 may halt it.\n");
541                 goto init;
542         }
543
544         /*
545          * We can not use the TSC in SMP mode unless the TSCs on all CPUs
546          * are synchronized.  If the user is sure that the system has
547          * synchronized TSCs, set kern.timecounter.smp_tsc tunable to a
548          * non-zero value.  The TSC seems unreliable in virtualized SMP
549          * environments, so it is set to a negative quality in those cases.
550          */
551         if (mp_ncpus > 1)
552                 tsc_timecounter.tc_quality = test_tsc();
553         else if (tsc_is_invariant)
554                 tsc_timecounter.tc_quality = 1000;
555         max_freq >>= tsc_shift;
556
557 init:
558         for (shift = 0; shift <= 31 && (tsc_freq >> shift) > max_freq; shift++)
559                 ;
560         if ((cpu_feature & CPUID_SSE2) != 0 && mp_ncpus > 1) {
561                 if (cpu_vendor_id == CPU_VENDOR_AMD) {
562                         tsc_timecounter.tc_get_timecount = shift > 0 ?
563                             tsc_get_timecount_low_mfence :
564                             tsc_get_timecount_mfence;
565                 } else {
566                         tsc_timecounter.tc_get_timecount = shift > 0 ?
567                             tsc_get_timecount_low_lfence :
568                             tsc_get_timecount_lfence;
569                 }
570         } else {
571                 tsc_timecounter.tc_get_timecount = shift > 0 ?
572                     tsc_get_timecount_low : tsc_get_timecount;
573         }
574         if (shift > 0) {
575                 tsc_timecounter.tc_name = "TSC-low";
576                 if (bootverbose)
577                         printf("TSC timecounter discards lower %d bit(s)\n",
578                             shift);
579         }
580         if (tsc_freq != 0) {
581                 tsc_timecounter.tc_frequency = tsc_freq >> shift;
582                 tsc_timecounter.tc_priv = (void *)(intptr_t)shift;
583                 tc_init(&tsc_timecounter);
584         }
585 }
586 SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL);
587
588 /*
589  * When cpufreq levels change, find out about the (new) max frequency.  We
590  * use this to update CPU accounting in case it got a lower estimate at boot.
591  */
592 static void
593 tsc_levels_changed(void *arg, int unit)
594 {
595         device_t cf_dev;
596         struct cf_level *levels;
597         int count, error;
598         uint64_t max_freq;
599
600         /* Only use values from the first CPU, assuming all are equal. */
601         if (unit != 0)
602                 return;
603
604         /* Find the appropriate cpufreq device instance. */
605         cf_dev = devclass_get_device(devclass_find("cpufreq"), unit);
606         if (cf_dev == NULL) {
607                 printf("tsc_levels_changed() called but no cpufreq device?\n");
608                 return;
609         }
610
611         /* Get settings from the device and find the max frequency. */
612         count = 64;
613         levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
614         if (levels == NULL)
615                 return;
616         error = CPUFREQ_LEVELS(cf_dev, levels, &count);
617         if (error == 0 && count != 0) {
618                 max_freq = (uint64_t)levels[0].total_set.freq * 1000000;
619                 set_cputicker(rdtsc, max_freq, 1);
620         } else
621                 printf("tsc_levels_changed: no max freq found\n");
622         free(levels, M_TEMP);
623 }
624
625 /*
626  * If the TSC timecounter is in use, veto the pending change.  It may be
627  * possible in the future to handle a dynamically-changing timecounter rate.
628  */
629 static void
630 tsc_freq_changing(void *arg, const struct cf_level *level, int *status)
631 {
632
633         if (*status != 0 || timecounter != &tsc_timecounter)
634                 return;
635
636         printf("timecounter TSC must not be in use when "
637             "changing frequencies; change denied\n");
638         *status = EBUSY;
639 }
640
641 /* Update TSC freq with the value indicated by the caller. */
642 static void
643 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
644 {
645         uint64_t freq;
646
647         /* If there was an error during the transition, don't do anything. */
648         if (tsc_disabled || status != 0)
649                 return;
650
651         /* Total setting for this level gives the new frequency in MHz. */
652         freq = (uint64_t)level->total_set.freq * 1000000;
653         atomic_store_rel_64(&tsc_freq, freq);
654         tsc_timecounter.tc_frequency =
655             freq >> (int)(intptr_t)tsc_timecounter.tc_priv;
656 }
657
658 static int
659 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
660 {
661         int error;
662         uint64_t freq;
663
664         freq = atomic_load_acq_64(&tsc_freq);
665         if (freq == 0)
666                 return (EOPNOTSUPP);
667         error = sysctl_handle_64(oidp, &freq, 0, req);
668         if (error == 0 && req->newptr != NULL) {
669                 atomic_store_rel_64(&tsc_freq, freq);
670                 atomic_store_rel_64(&tsc_timecounter.tc_frequency,
671                     freq >> (int)(intptr_t)tsc_timecounter.tc_priv);
672         }
673         return (error);
674 }
675
676 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_U64 | CTLFLAG_RW,
677     0, 0, sysctl_machdep_tsc_freq, "QU", "Time Stamp Counter frequency");
678
679 static u_int
680 tsc_get_timecount(struct timecounter *tc __unused)
681 {
682
683         return (rdtsc32());
684 }
685
686 static inline u_int
687 tsc_get_timecount_low(struct timecounter *tc)
688 {
689         uint32_t rv;
690
691         __asm __volatile("rdtsc; shrd %%cl, %%edx, %0"
692             : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx");
693         return (rv);
694 }
695
696 static u_int
697 tsc_get_timecount_lfence(struct timecounter *tc __unused)
698 {
699
700         lfence();
701         return (rdtsc32());
702 }
703
704 static u_int
705 tsc_get_timecount_low_lfence(struct timecounter *tc)
706 {
707
708         lfence();
709         return (tsc_get_timecount_low(tc));
710 }
711
712 static u_int
713 tsc_get_timecount_mfence(struct timecounter *tc __unused)
714 {
715
716         mfence();
717         return (rdtsc32());
718 }
719
720 static u_int
721 tsc_get_timecount_low_mfence(struct timecounter *tc)
722 {
723
724         mfence();
725         return (tsc_get_timecount_low(tc));
726 }
727
728 uint32_t
729 cpu_fill_vdso_timehands(struct vdso_timehands *vdso_th)
730 {
731
732         vdso_th->th_x86_shift = (int)(intptr_t)timecounter->tc_priv;
733         bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
734         return (timecounter == &tsc_timecounter);
735 }
736
737 #ifdef COMPAT_FREEBSD32
738 uint32_t
739 cpu_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
740 {
741
742         vdso_th32->th_x86_shift = (int)(intptr_t)timecounter->tc_priv;
743         bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
744         return (timecounter == &tsc_timecounter);
745 }
746 #endif