]> CyberLeo.Net >> Repos - FreeBSD/releng/10.2.git/blob - usr.bin/sort/radixsort.c
- Copy stable/10@285827 to releng/10.2 in preparation for 10.2-RC1
[FreeBSD/releng/10.2.git] / usr.bin / sort / radixsort.c
1 /*-
2  * Copyright (C) 2012 Oleg Moskalenko <mom040267@gmail.com>
3  * Copyright (C) 2012 Gabor Kovesdan <gabor@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include <errno.h>
32 #include <err.h>
33 #include <langinfo.h>
34 #include <math.h>
35 #if defined(SORT_THREADS)
36 #include <pthread.h>
37 #include <semaphore.h>
38 #endif
39 #include <stdlib.h>
40 #include <string.h>
41 #include <wchar.h>
42 #include <wctype.h>
43 #include <unistd.h>
44
45 #include "coll.h"
46 #include "radixsort.h"
47
48 #define DEFAULT_SORT_FUNC_RADIXSORT mergesort
49
50 #define TINY_NODE(sl) ((sl)->tosort_num < 65)
51 #define SMALL_NODE(sl) ((sl)->tosort_num < 5)
52
53 /* are we sorting in reverse order ? */
54 static bool reverse_sort;
55
56 /* sort sub-levels array size */
57 static const size_t slsz = 256 * sizeof(struct sort_level*);
58
59 /* one sort level structure */
60 struct sort_level
61 {
62         struct sort_level       **sublevels;
63         struct sort_list_item   **leaves;
64         struct sort_list_item   **sorted;
65         struct sort_list_item   **tosort;
66         size_t                    leaves_num;
67         size_t                    leaves_sz;
68         size_t                    level;
69         size_t                    real_sln;
70         size_t                    start_position;
71         size_t                    sln;
72         size_t                    tosort_num;
73         size_t                    tosort_sz;
74 };
75
76 /* stack of sort levels ready to be sorted */
77 struct level_stack {
78         struct level_stack       *next;
79         struct sort_level        *sl;
80 };
81
82 static struct level_stack *g_ls;
83
84 #if defined(SORT_THREADS)
85 /* stack guarding mutex */
86 static pthread_mutex_t g_ls_mutex;
87
88 /* counter: how many items are left */
89 static size_t sort_left;
90 /* guarding mutex */
91 static pthread_mutex_t sort_left_mutex;
92
93 /* semaphore to count threads */
94 static sem_t mtsem;
95
96 /*
97  * Decrement items counter
98  */
99 static inline void
100 sort_left_dec(size_t n)
101 {
102
103         pthread_mutex_lock(&sort_left_mutex);
104         sort_left -= n;
105         pthread_mutex_unlock(&sort_left_mutex);
106 }
107
108 /*
109  * Do we have something to sort ?
110  */
111 static inline bool
112 have_sort_left(void)
113 {
114         bool ret;
115
116         pthread_mutex_lock(&sort_left_mutex);
117         ret = (sort_left > 0);
118         pthread_mutex_unlock(&sort_left_mutex);
119         return (ret);
120 }
121
122 #else
123
124 #define sort_left_dec(n)
125
126 #endif /* SORT_THREADS */
127
128 /*
129  * Push sort level to the stack
130  */
131 static inline void
132 push_ls(struct sort_level* sl)
133 {
134         struct level_stack *new_ls;
135
136         new_ls = sort_malloc(sizeof(struct level_stack));
137         new_ls->sl = sl;
138
139 #if defined(SORT_THREADS)
140         if (nthreads > 1)
141                 pthread_mutex_lock(&g_ls_mutex);
142 #endif
143
144         new_ls->next = g_ls;
145         g_ls = new_ls;
146
147 #if defined(SORT_THREADS)
148         if (nthreads > 1)
149                 pthread_mutex_unlock(&g_ls_mutex);
150 #endif
151 }
152
153 /*
154  * Pop sort level from the stack (single-threaded style)
155  */
156 static inline struct sort_level*
157 pop_ls_st(void)
158 {
159         struct sort_level *sl;
160
161         if (g_ls) {
162                 struct level_stack *saved_ls;
163
164                 sl = g_ls->sl;
165                 saved_ls = g_ls;
166                 g_ls = g_ls->next;
167                 sort_free(saved_ls);
168         } else
169                 sl = NULL;
170
171         return (sl);
172 }
173
174 #if defined(SORT_THREADS)
175
176 /*
177  * Pop sort level from the stack (multi-threaded style)
178  */
179 static inline struct sort_level*
180 pop_ls_mt(void)
181 {
182         struct level_stack *saved_ls;
183         struct sort_level *sl;
184
185         pthread_mutex_lock(&g_ls_mutex);
186
187         if (g_ls) {
188                 sl = g_ls->sl;
189                 saved_ls = g_ls;
190                 g_ls = g_ls->next;
191         } else {
192                 sl = NULL;
193                 saved_ls = NULL;
194         }
195
196         pthread_mutex_unlock(&g_ls_mutex);
197
198         sort_free(saved_ls);
199
200         return (sl);
201 }
202
203 #endif /* defined(SORT_THREADS) */
204
205 static void
206 add_to_sublevel(struct sort_level *sl, struct sort_list_item *item, size_t indx)
207 {
208         struct sort_level *ssl;
209
210         ssl = sl->sublevels[indx];
211
212         if (ssl == NULL) {
213                 ssl = sort_malloc(sizeof(struct sort_level));
214                 memset(ssl, 0, sizeof(struct sort_level));
215
216                 ssl->level = sl->level + 1;
217                 sl->sublevels[indx] = ssl;
218
219                 ++(sl->real_sln);
220         }
221
222         if (++(ssl->tosort_num) > ssl->tosort_sz) {
223                 ssl->tosort_sz = ssl->tosort_num + 128;
224                 ssl->tosort = sort_realloc(ssl->tosort,
225                     sizeof(struct sort_list_item*) * (ssl->tosort_sz));
226         }
227
228         ssl->tosort[ssl->tosort_num - 1] = item;
229 }
230
231 static inline void
232 add_leaf(struct sort_level *sl, struct sort_list_item *item)
233 {
234
235         if (++(sl->leaves_num) > sl->leaves_sz) {
236                 sl->leaves_sz = sl->leaves_num + 128;
237                 sl->leaves = sort_realloc(sl->leaves,
238                     (sizeof(struct sort_list_item*) * (sl->leaves_sz)));
239         }
240         sl->leaves[sl->leaves_num - 1] = item;
241 }
242
243 static inline int
244 get_wc_index(struct sort_list_item *sli, size_t level)
245 {
246         const struct bwstring *bws;
247
248         bws = sli->ka.key[0].k;
249
250         if ((BWSLEN(bws) > level))
251                 return (unsigned char) BWS_GET(bws,level);
252         return (-1);
253 }
254
255 static void
256 place_item(struct sort_level *sl, size_t item)
257 {
258         struct sort_list_item *sli;
259         int c;
260
261         sli = sl->tosort[item];
262         c = get_wc_index(sli, sl->level);
263
264         if (c == -1)
265                 add_leaf(sl, sli);
266         else
267                 add_to_sublevel(sl, sli, c);
268 }
269
270 static void
271 free_sort_level(struct sort_level *sl)
272 {
273
274         if (sl) {
275                 if (sl->leaves)
276                         sort_free(sl->leaves);
277
278                 if (sl->level > 0)
279                         sort_free(sl->tosort);
280
281                 if (sl->sublevels) {
282                         struct sort_level *slc;
283                         size_t sln;
284
285                         sln = sl->sln;
286
287                         for (size_t i = 0; i < sln; ++i) {
288                                 slc = sl->sublevels[i];
289                                 if (slc)
290                                         free_sort_level(slc);
291                         }
292
293                         sort_free(sl->sublevels);
294                 }
295
296                 sort_free(sl);
297         }
298 }
299
300 static void
301 run_sort_level_next(struct sort_level *sl)
302 {
303         struct sort_level *slc;
304         size_t i, sln, tosort_num;
305
306         if (sl->sublevels) {
307                 sort_free(sl->sublevels);
308                 sl->sublevels = NULL;
309         }
310
311         switch (sl->tosort_num){
312         case 0:
313                 goto end;
314         case (1):
315                 sl->sorted[sl->start_position] = sl->tosort[0];
316                 sort_left_dec(1);
317                 goto end;
318         case (2):
319                 if (list_coll_offset(&(sl->tosort[0]), &(sl->tosort[1]),
320                     sl->level) > 0) {
321                         sl->sorted[sl->start_position++] = sl->tosort[1];
322                         sl->sorted[sl->start_position] = sl->tosort[0];
323                 } else {
324                         sl->sorted[sl->start_position++] = sl->tosort[0];
325                         sl->sorted[sl->start_position] = sl->tosort[1];
326                 }
327                 sort_left_dec(2);
328
329                 goto end;
330         default:
331                 if (TINY_NODE(sl) || (sl->level > 15)) {
332                         listcoll_t func;
333
334                         func = get_list_call_func(sl->level);
335
336                         sl->leaves = sl->tosort;
337                         sl->leaves_num = sl->tosort_num;
338                         sl->leaves_sz = sl->leaves_num;
339                         sl->leaves = sort_realloc(sl->leaves,
340                             (sizeof(struct sort_list_item *) *
341                             (sl->leaves_sz)));
342                         sl->tosort = NULL;
343                         sl->tosort_num = 0;
344                         sl->tosort_sz = 0;
345                         sl->sln = 0;
346                         sl->real_sln = 0;
347                         if (sort_opts_vals.sflag) {
348                                 if (mergesort(sl->leaves, sl->leaves_num,
349                                     sizeof(struct sort_list_item *),
350                                     (int(*)(const void *, const void *)) func) == -1)
351                                         /* NOTREACHED */
352                                         err(2, "Radix sort error 3");
353                         } else
354                                 DEFAULT_SORT_FUNC_RADIXSORT(sl->leaves, sl->leaves_num,
355                                     sizeof(struct sort_list_item *),
356                                     (int(*)(const void *, const void *)) func);
357
358                         memcpy(sl->sorted + sl->start_position,
359                             sl->leaves, sl->leaves_num *
360                             sizeof(struct sort_list_item*));
361
362                         sort_left_dec(sl->leaves_num);
363
364                         goto end;
365                 } else {
366                         sl->tosort_sz = sl->tosort_num;
367                         sl->tosort = sort_realloc(sl->tosort,
368                             sizeof(struct sort_list_item*) * (sl->tosort_sz));
369                 }
370         }
371
372         sl->sln = 256;
373         sl->sublevels = sort_malloc(slsz);
374         memset(sl->sublevels, 0, slsz);
375
376         sl->real_sln = 0;
377
378         tosort_num = sl->tosort_num;
379         for (i = 0; i < tosort_num; ++i)
380                 place_item(sl, i);
381
382         sort_free(sl->tosort);
383         sl->tosort = NULL;
384         sl->tosort_num = 0;
385         sl->tosort_sz = 0;
386
387         if (sl->leaves_num > 1) {
388                 if (keys_num > 1) {
389                         if (sort_opts_vals.sflag) {
390                                 mergesort(sl->leaves, sl->leaves_num,
391                                     sizeof(struct sort_list_item *),
392                                     (int(*)(const void *, const void *)) list_coll);
393                         } else {
394                                 DEFAULT_SORT_FUNC_RADIXSORT(sl->leaves, sl->leaves_num,
395                                     sizeof(struct sort_list_item *),
396                                     (int(*)(const void *, const void *)) list_coll);
397                         }
398                 } else if (!sort_opts_vals.sflag && sort_opts_vals.complex_sort) {
399                         DEFAULT_SORT_FUNC_RADIXSORT(sl->leaves, sl->leaves_num,
400                             sizeof(struct sort_list_item *),
401                             (int(*)(const void *, const void *)) list_coll_by_str_only);
402                 }
403         }
404
405         sl->leaves_sz = sl->leaves_num;
406         sl->leaves = sort_realloc(sl->leaves, (sizeof(struct sort_list_item *) *
407             (sl->leaves_sz)));
408
409         if (!reverse_sort) {
410                 memcpy(sl->sorted + sl->start_position, sl->leaves,
411                     sl->leaves_num * sizeof(struct sort_list_item*));
412                 sl->start_position += sl->leaves_num;
413                 sort_left_dec(sl->leaves_num);
414
415                 sort_free(sl->leaves);
416                 sl->leaves = NULL;
417                 sl->leaves_num = 0;
418                 sl->leaves_sz = 0;
419
420                 sln = sl->sln;
421
422                 for (i = 0; i < sln; ++i) {
423                         slc = sl->sublevels[i];
424
425                         if (slc) {
426                                 slc->sorted = sl->sorted;
427                                 slc->start_position = sl->start_position;
428                                 sl->start_position += slc->tosort_num;
429                                 if (SMALL_NODE(slc))
430                                         run_sort_level_next(slc);
431                                 else
432                                         push_ls(slc);
433                                 sl->sublevels[i] = NULL;
434                         }
435                 }
436
437         } else {
438                 size_t n;
439
440                 sln = sl->sln;
441
442                 for (i = 0; i < sln; ++i) {
443                         n = sln - i - 1;
444                         slc = sl->sublevels[n];
445
446                         if (slc) {
447                                 slc->sorted = sl->sorted;
448                                 slc->start_position = sl->start_position;
449                                 sl->start_position += slc->tosort_num;
450                                 if (SMALL_NODE(slc))
451                                         run_sort_level_next(slc);
452                                 else
453                                         push_ls(slc);
454                                 sl->sublevels[n] = NULL;
455                         }
456                 }
457
458                 memcpy(sl->sorted + sl->start_position, sl->leaves,
459                     sl->leaves_num * sizeof(struct sort_list_item*));
460                 sort_left_dec(sl->leaves_num);
461         }
462
463 end:
464         free_sort_level(sl);
465 }
466
467 /*
468  * Single-threaded sort cycle
469  */
470 static void
471 run_sort_cycle_st(void)
472 {
473         struct sort_level *slc;
474
475         for (;;) {
476                 slc = pop_ls_st();
477                 if (slc == NULL) {
478                         break;
479                 }
480                 run_sort_level_next(slc);
481         }
482 }
483
484 #if defined(SORT_THREADS)
485
486 /*
487  * Multi-threaded sort cycle
488  */
489 static void
490 run_sort_cycle_mt(void)
491 {
492         struct sort_level *slc;
493
494         for (;;) {
495                 slc = pop_ls_mt();
496                 if (slc == NULL) {
497                         if (have_sort_left()) {
498                                 pthread_yield();
499                                 continue;
500                         }
501                         break;
502                 }
503                 run_sort_level_next(slc);
504         }
505 }
506
507 /*
508  * Sort cycle thread (in multi-threaded mode)
509  */
510 static void*
511 sort_thread(void* arg)
512 {
513
514         run_sort_cycle_mt();
515
516         sem_post(&mtsem);
517
518         return (arg);
519 }
520
521 #endif /* defined(SORT_THREADS) */
522
523 static void
524 run_top_sort_level(struct sort_level *sl)
525 {
526         struct sort_level *slc;
527
528         reverse_sort = sort_opts_vals.kflag ? keys[0].sm.rflag :
529             default_sort_mods->rflag;
530
531         sl->start_position = 0;
532         sl->sln = 256;
533         sl->sublevels = sort_malloc(slsz);
534         memset(sl->sublevels, 0, slsz);
535
536         for (size_t i = 0; i < sl->tosort_num; ++i)
537                 place_item(sl, i);
538
539         if (sl->leaves_num > 1) {
540                 if (keys_num > 1) {
541                         if (sort_opts_vals.sflag) {
542                                 mergesort(sl->leaves, sl->leaves_num,
543                                     sizeof(struct sort_list_item *),
544                                     (int(*)(const void *, const void *)) list_coll);
545                         } else {
546                                 DEFAULT_SORT_FUNC_RADIXSORT(sl->leaves, sl->leaves_num,
547                                     sizeof(struct sort_list_item *),
548                                     (int(*)(const void *, const void *)) list_coll);
549                         }
550                 } else if (!sort_opts_vals.sflag && sort_opts_vals.complex_sort) {
551                         DEFAULT_SORT_FUNC_RADIXSORT(sl->leaves, sl->leaves_num,
552                             sizeof(struct sort_list_item *),
553                             (int(*)(const void *, const void *)) list_coll_by_str_only);
554                 }
555         }
556
557         if (!reverse_sort) {
558                 memcpy(sl->tosort + sl->start_position, sl->leaves,
559                     sl->leaves_num * sizeof(struct sort_list_item*));
560                 sl->start_position += sl->leaves_num;
561                 sort_left_dec(sl->leaves_num);
562
563                 for (size_t i = 0; i < sl->sln; ++i) {
564                         slc = sl->sublevels[i];
565
566                         if (slc) {
567                                 slc->sorted = sl->tosort;
568                                 slc->start_position = sl->start_position;
569                                 sl->start_position += slc->tosort_num;
570                                 push_ls(slc);
571                                 sl->sublevels[i] = NULL;
572                         }
573                 }
574
575         } else {
576                 size_t n;
577
578                 for (size_t i = 0; i < sl->sln; ++i) {
579
580                         n = sl->sln - i - 1;
581                         slc = sl->sublevels[n];
582
583                         if (slc) {
584                                 slc->sorted = sl->tosort;
585                                 slc->start_position = sl->start_position;
586                                 sl->start_position += slc->tosort_num;
587                                 push_ls(slc);
588                                 sl->sublevels[n] = NULL;
589                         }
590                 }
591
592                 memcpy(sl->tosort + sl->start_position, sl->leaves,
593                     sl->leaves_num * sizeof(struct sort_list_item*));
594
595                 sort_left_dec(sl->leaves_num);
596         }
597
598 #if defined(SORT_THREADS)
599         if (nthreads < 2) {
600 #endif
601                 run_sort_cycle_st();
602 #if defined(SORT_THREADS)
603         } else {
604                 size_t i;
605
606                 for(i = 0; i < nthreads; ++i) {
607                         pthread_attr_t attr;
608                         pthread_t pth;
609
610                         pthread_attr_init(&attr);
611                         pthread_attr_setdetachstate(&attr,
612                             PTHREAD_DETACHED);
613
614                         for (;;) {
615                                 int res = pthread_create(&pth, &attr,
616                                     sort_thread, NULL);
617                                 if (res >= 0)
618                                         break;
619                                 if (errno == EAGAIN) {
620                                         pthread_yield();
621                                         continue;
622                                 }
623                                 err(2, NULL);
624                         }
625
626                         pthread_attr_destroy(&attr);
627                 }
628
629                 for(i = 0; i < nthreads; ++i)
630                         sem_wait(&mtsem);
631         }
632 #endif /* defined(SORT_THREADS) */
633 }
634
635 static void
636 run_sort(struct sort_list_item **base, size_t nmemb)
637 {
638         struct sort_level *sl;
639
640 #if defined(SORT_THREADS)
641         size_t nthreads_save = nthreads;
642         if (nmemb < MT_SORT_THRESHOLD)
643                 nthreads = 1;
644
645         if (nthreads > 1) {
646                 pthread_mutexattr_t mattr;
647
648                 pthread_mutexattr_init(&mattr);
649                 pthread_mutexattr_settype(&mattr, PTHREAD_MUTEX_ADAPTIVE_NP);
650
651                 pthread_mutex_init(&g_ls_mutex, &mattr);
652                 pthread_mutex_init(&sort_left_mutex, &mattr);
653
654                 pthread_mutexattr_destroy(&mattr);
655
656                 sem_init(&mtsem, 0, 0);
657
658         }
659 #endif
660
661         sl = sort_malloc(sizeof(struct sort_level));
662         memset(sl, 0, sizeof(struct sort_level));
663
664         sl->tosort = base;
665         sl->tosort_num = nmemb;
666         sl->tosort_sz = nmemb;
667
668 #if defined(SORT_THREADS)
669         sort_left = nmemb;
670 #endif
671
672         run_top_sort_level(sl);
673
674         free_sort_level(sl);
675
676 #if defined(SORT_THREADS)
677         if (nthreads > 1) {
678                 sem_destroy(&mtsem);
679                 pthread_mutex_destroy(&g_ls_mutex);
680                 pthread_mutex_destroy(&sort_left_mutex);
681         }
682         nthreads = nthreads_save;
683 #endif
684 }
685
686 void
687 rxsort(struct sort_list_item **base, size_t nmemb)
688 {
689
690         run_sort(base, nmemb);
691 }