]> CyberLeo.Net >> Repos - FreeBSD/releng/10.3.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/dmu_zfetch.c
- Copy stable/10@296371 to releng/10.3 in preparation for 10.3-RC1
[FreeBSD/releng/10.3.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / dmu_zfetch.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25
26 /*
27  * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
28  */
29
30 #include <sys/zfs_context.h>
31 #include <sys/dnode.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_zfetch.h>
34 #include <sys/dmu.h>
35 #include <sys/dbuf.h>
36 #include <sys/kstat.h>
37
38 /*
39  * This tunable disables predictive prefetch.  Note that it leaves "prescient"
40  * prefetch (e.g. prefetch for zfs send) intact.  Unlike predictive prefetch,
41  * prescient prefetch never issues i/os that end up not being needed,
42  * so it can't hurt performance.
43  */
44 boolean_t zfs_prefetch_disable = B_FALSE;
45
46 /* max # of streams per zfetch */
47 uint32_t        zfetch_max_streams = 8;
48 /* min time before stream reclaim */
49 uint32_t        zfetch_min_sec_reap = 2;
50 /* max bytes to prefetch per stream (default 8MB) */
51 uint32_t        zfetch_max_distance = 8 * 1024 * 1024;
52 /* max number of bytes in an array_read in which we allow prefetching (1MB) */
53 uint64_t        zfetch_array_rd_sz = 1024 * 1024;
54
55 SYSCTL_DECL(_vfs_zfs);
56 SYSCTL_INT(_vfs_zfs, OID_AUTO, prefetch_disable, CTLFLAG_RW,
57     &zfs_prefetch_disable, 0, "Disable prefetch");
58 SYSCTL_NODE(_vfs_zfs, OID_AUTO, zfetch, CTLFLAG_RW, 0, "ZFS ZFETCH");
59 TUNABLE_INT("vfs.zfs.zfetch.max_streams", &zfetch_max_streams);
60 SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_streams, CTLFLAG_RW,
61     &zfetch_max_streams, 0, "Max # of streams per zfetch");
62 TUNABLE_INT("vfs.zfs.zfetch.min_sec_reap", &zfetch_min_sec_reap);
63 SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, min_sec_reap, CTLFLAG_RWTUN,
64     &zfetch_min_sec_reap, 0, "Min time before stream reclaim");
65 TUNABLE_INT("vfs.zfs.zfetch.max_distance", &zfetch_max_distance);
66 SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_distance, CTLFLAG_RWTUN,
67     &zfetch_max_distance, 0, "Max bytes to prefetch per stream");
68 TUNABLE_QUAD("vfs.zfs.zfetch.array_rd_sz", &zfetch_array_rd_sz);
69 SYSCTL_UQUAD(_vfs_zfs_zfetch, OID_AUTO, array_rd_sz, CTLFLAG_RWTUN,
70     &zfetch_array_rd_sz, 0,
71     "Number of bytes in a array_read at which we stop prefetching");
72
73 typedef struct zfetch_stats {
74         kstat_named_t zfetchstat_hits;
75         kstat_named_t zfetchstat_misses;
76         kstat_named_t zfetchstat_max_streams;
77 } zfetch_stats_t;
78
79 static zfetch_stats_t zfetch_stats = {
80         { "hits",                       KSTAT_DATA_UINT64 },
81         { "misses",                     KSTAT_DATA_UINT64 },
82         { "max_streams",                KSTAT_DATA_UINT64 },
83 };
84
85 #define ZFETCHSTAT_BUMP(stat) \
86         atomic_inc_64(&zfetch_stats.stat.value.ui64);
87
88 kstat_t         *zfetch_ksp;
89
90 void
91 zfetch_init(void)
92 {
93         zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
94             KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
95             KSTAT_FLAG_VIRTUAL);
96
97         if (zfetch_ksp != NULL) {
98                 zfetch_ksp->ks_data = &zfetch_stats;
99                 kstat_install(zfetch_ksp);
100         }
101 }
102
103 void
104 zfetch_fini(void)
105 {
106         if (zfetch_ksp != NULL) {
107                 kstat_delete(zfetch_ksp);
108                 zfetch_ksp = NULL;
109         }
110 }
111
112 /*
113  * This takes a pointer to a zfetch structure and a dnode.  It performs the
114  * necessary setup for the zfetch structure, grokking data from the
115  * associated dnode.
116  */
117 void
118 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
119 {
120         if (zf == NULL)
121                 return;
122
123         zf->zf_dnode = dno;
124
125         list_create(&zf->zf_stream, sizeof (zstream_t),
126             offsetof(zstream_t, zs_node));
127
128         rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
129 }
130
131 static void
132 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
133 {
134         ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
135         list_remove(&zf->zf_stream, zs);
136         mutex_destroy(&zs->zs_lock);
137         kmem_free(zs, sizeof (*zs));
138 }
139
140 /*
141  * Clean-up state associated with a zfetch structure (e.g. destroy the
142  * streams).  This doesn't free the zfetch_t itself, that's left to the caller.
143  */
144 void
145 dmu_zfetch_fini(zfetch_t *zf)
146 {
147         zstream_t *zs;
148
149         ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
150
151         rw_enter(&zf->zf_rwlock, RW_WRITER);
152         while ((zs = list_head(&zf->zf_stream)) != NULL)
153                 dmu_zfetch_stream_remove(zf, zs);
154         rw_exit(&zf->zf_rwlock);
155         list_destroy(&zf->zf_stream);
156         rw_destroy(&zf->zf_rwlock);
157
158         zf->zf_dnode = NULL;
159 }
160
161 /*
162  * If there aren't too many streams already, create a new stream.
163  * The "blkid" argument is the next block that we expect this stream to access.
164  * While we're here, clean up old streams (which haven't been
165  * accessed for at least zfetch_min_sec_reap seconds).
166  */
167 static void
168 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
169 {
170         zstream_t *zs_next;
171         int numstreams = 0;
172
173         ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
174
175         /*
176          * Clean up old streams.
177          */
178         for (zstream_t *zs = list_head(&zf->zf_stream);
179             zs != NULL; zs = zs_next) {
180                 zs_next = list_next(&zf->zf_stream, zs);
181                 if (((gethrtime() - zs->zs_atime) / NANOSEC) >
182                     zfetch_min_sec_reap)
183                         dmu_zfetch_stream_remove(zf, zs);
184                 else
185                         numstreams++;
186         }
187
188         /*
189          * The maximum number of streams is normally zfetch_max_streams,
190          * but for small files we lower it such that it's at least possible
191          * for all the streams to be non-overlapping.
192          *
193          * If we are already at the maximum number of streams for this file,
194          * even after removing old streams, then don't create this stream.
195          */
196         uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
197             zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
198             zfetch_max_distance));
199         if (numstreams >= max_streams) {
200                 ZFETCHSTAT_BUMP(zfetchstat_max_streams);
201                 return;
202         }
203
204         zstream_t *zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
205         zs->zs_blkid = blkid;
206         zs->zs_pf_blkid = blkid;
207         zs->zs_atime = gethrtime();
208         mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);
209
210         list_insert_head(&zf->zf_stream, zs);
211 }
212
213 /*
214  * This is the prefetch entry point.  It calls all of the other dmu_zfetch
215  * routines to create, delete, find, or operate upon prefetch streams.
216  */
217 void
218 dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks)
219 {
220         zstream_t *zs;
221
222         if (zfs_prefetch_disable)
223                 return;
224
225         /*
226          * As a fast path for small (single-block) files, ignore access
227          * to the first block.
228          */
229         if (blkid == 0)
230                 return;
231
232         rw_enter(&zf->zf_rwlock, RW_READER);
233
234         for (zs = list_head(&zf->zf_stream); zs != NULL;
235             zs = list_next(&zf->zf_stream, zs)) {
236                 if (blkid == zs->zs_blkid) {
237                         mutex_enter(&zs->zs_lock);
238                         /*
239                          * zs_blkid could have changed before we
240                          * acquired zs_lock; re-check them here.
241                          */
242                         if (blkid != zs->zs_blkid) {
243                                 mutex_exit(&zs->zs_lock);
244                                 continue;
245                         }
246                         break;
247                 }
248         }
249
250         if (zs == NULL) {
251                 /*
252                  * This access is not part of any existing stream.  Create
253                  * a new stream for it.
254                  */
255                 ZFETCHSTAT_BUMP(zfetchstat_misses);
256                 if (rw_tryupgrade(&zf->zf_rwlock))
257                         dmu_zfetch_stream_create(zf, blkid + nblks);
258                 rw_exit(&zf->zf_rwlock);
259                 return;
260         }
261
262         /*
263          * This access was to a block that we issued a prefetch for on
264          * behalf of this stream. Issue further prefetches for this stream.
265          *
266          * Normally, we start prefetching where we stopped
267          * prefetching last (zs_pf_blkid).  But when we get our first
268          * hit on this stream, zs_pf_blkid == zs_blkid, we don't
269          * want to prefetch to block we just accessed.  In this case,
270          * start just after the block we just accessed.
271          */
272         int64_t pf_start = MAX(zs->zs_pf_blkid, blkid + nblks);
273
274         /*
275          * Double our amount of prefetched data, but don't let the
276          * prefetch get further ahead than zfetch_max_distance.
277          */
278         int pf_nblks =
279             MIN((int64_t)zs->zs_pf_blkid - zs->zs_blkid + nblks,
280             zs->zs_blkid + nblks +
281             (zfetch_max_distance >> zf->zf_dnode->dn_datablkshift) - pf_start);
282
283         zs->zs_pf_blkid = pf_start + pf_nblks;
284         zs->zs_atime = gethrtime();
285         zs->zs_blkid = blkid + nblks;
286
287         /*
288          * dbuf_prefetch() issues the prefetch i/o
289          * asynchronously, but it may need to wait for an
290          * indirect block to be read from disk.  Therefore
291          * we do not want to hold any locks while we call it.
292          */
293         mutex_exit(&zs->zs_lock);
294         rw_exit(&zf->zf_rwlock);
295         for (int i = 0; i < pf_nblks; i++) {
296                 dbuf_prefetch(zf->zf_dnode, 0, pf_start + i,
297                     ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
298         }
299         ZFETCHSTAT_BUMP(zfetchstat_hits);
300 }