]> CyberLeo.Net >> Repos - FreeBSD/releng/10.3.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
- Copy stable/10@296371 to releng/10.3 in preparation for 10.3-RC1
[FreeBSD/releng/10.3.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
26  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  */
28
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/metaslab_impl.h>
39 #include <sys/space_map.h>
40 #include <sys/space_reftree.h>
41 #include <sys/zio.h>
42 #include <sys/zap.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/arc.h>
45 #include <sys/zil.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/trim_map.h>
48
49 SYSCTL_DECL(_vfs_zfs);
50 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
51
52 /*
53  * Virtual device management.
54  */
55
56 /*
57  * The limit for ZFS to automatically increase a top-level vdev's ashift
58  * from logical ashift to physical ashift.
59  *
60  * Example: one or more 512B emulation child vdevs
61  *          child->vdev_ashift = 9 (512 bytes)
62  *          child->vdev_physical_ashift = 12 (4096 bytes)
63  *          zfs_max_auto_ashift = 11 (2048 bytes)
64  *          zfs_min_auto_ashift = 9 (512 bytes)
65  *
66  * On pool creation or the addition of a new top-level vdev, ZFS will
67  * increase the ashift of the top-level vdev to 2048 as limited by
68  * zfs_max_auto_ashift.
69  *
70  * Example: one or more 512B emulation child vdevs
71  *          child->vdev_ashift = 9 (512 bytes)
72  *          child->vdev_physical_ashift = 12 (4096 bytes)
73  *          zfs_max_auto_ashift = 13 (8192 bytes)
74  *          zfs_min_auto_ashift = 9 (512 bytes)
75  *
76  * On pool creation or the addition of a new top-level vdev, ZFS will
77  * increase the ashift of the top-level vdev to 4096 to match the
78  * max vdev_physical_ashift.
79  *
80  * Example: one or more 512B emulation child vdevs
81  *          child->vdev_ashift = 9 (512 bytes)
82  *          child->vdev_physical_ashift = 9 (512 bytes)
83  *          zfs_max_auto_ashift = 13 (8192 bytes)
84  *          zfs_min_auto_ashift = 12 (4096 bytes)
85  *
86  * On pool creation or the addition of a new top-level vdev, ZFS will
87  * increase the ashift of the top-level vdev to 4096 to match the
88  * zfs_min_auto_ashift.
89  */
90 static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
91 static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
92
93 static int
94 sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
95 {
96         uint64_t val;
97         int err;
98
99         val = zfs_max_auto_ashift;
100         err = sysctl_handle_64(oidp, &val, 0, req);
101         if (err != 0 || req->newptr == NULL)
102                 return (err);
103
104         if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
105                 return (EINVAL);
106
107         zfs_max_auto_ashift = val;
108
109         return (0);
110 }
111 SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
112     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
113     sysctl_vfs_zfs_max_auto_ashift, "QU",
114     "Max ashift used when optimising for logical -> physical sectors size on "
115     "new top-level vdevs.");
116
117 static int
118 sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
119 {
120         uint64_t val;
121         int err;
122
123         val = zfs_min_auto_ashift;
124         err = sysctl_handle_64(oidp, &val, 0, req);
125         if (err != 0 || req->newptr == NULL)
126                 return (err);
127
128         if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
129                 return (EINVAL);
130
131         zfs_min_auto_ashift = val;
132
133         return (0);
134 }
135 SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
136     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
137     sysctl_vfs_zfs_min_auto_ashift, "QU",
138     "Min ashift used when creating new top-level vdevs.");
139
140 static vdev_ops_t *vdev_ops_table[] = {
141         &vdev_root_ops,
142         &vdev_raidz_ops,
143         &vdev_mirror_ops,
144         &vdev_replacing_ops,
145         &vdev_spare_ops,
146 #ifdef _KERNEL
147         &vdev_geom_ops,
148 #else
149         &vdev_disk_ops,
150 #endif
151         &vdev_file_ops,
152         &vdev_missing_ops,
153         &vdev_hole_ops,
154         NULL
155 };
156
157
158 /*
159  * When a vdev is added, it will be divided into approximately (but no
160  * more than) this number of metaslabs.
161  */
162 int metaslabs_per_vdev = 200;
163 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, metaslabs_per_vdev, CTLFLAG_RDTUN,
164     &metaslabs_per_vdev, 0,
165     "When a vdev is added, how many metaslabs the vdev should be divided into");
166
167 /*
168  * Given a vdev type, return the appropriate ops vector.
169  */
170 static vdev_ops_t *
171 vdev_getops(const char *type)
172 {
173         vdev_ops_t *ops, **opspp;
174
175         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
176                 if (strcmp(ops->vdev_op_type, type) == 0)
177                         break;
178
179         return (ops);
180 }
181
182 /*
183  * Default asize function: return the MAX of psize with the asize of
184  * all children.  This is what's used by anything other than RAID-Z.
185  */
186 uint64_t
187 vdev_default_asize(vdev_t *vd, uint64_t psize)
188 {
189         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
190         uint64_t csize;
191
192         for (int c = 0; c < vd->vdev_children; c++) {
193                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
194                 asize = MAX(asize, csize);
195         }
196
197         return (asize);
198 }
199
200 /*
201  * Get the minimum allocatable size. We define the allocatable size as
202  * the vdev's asize rounded to the nearest metaslab. This allows us to
203  * replace or attach devices which don't have the same physical size but
204  * can still satisfy the same number of allocations.
205  */
206 uint64_t
207 vdev_get_min_asize(vdev_t *vd)
208 {
209         vdev_t *pvd = vd->vdev_parent;
210
211         /*
212          * If our parent is NULL (inactive spare or cache) or is the root,
213          * just return our own asize.
214          */
215         if (pvd == NULL)
216                 return (vd->vdev_asize);
217
218         /*
219          * The top-level vdev just returns the allocatable size rounded
220          * to the nearest metaslab.
221          */
222         if (vd == vd->vdev_top)
223                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
224
225         /*
226          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
227          * so each child must provide at least 1/Nth of its asize.
228          */
229         if (pvd->vdev_ops == &vdev_raidz_ops)
230                 return (pvd->vdev_min_asize / pvd->vdev_children);
231
232         return (pvd->vdev_min_asize);
233 }
234
235 void
236 vdev_set_min_asize(vdev_t *vd)
237 {
238         vd->vdev_min_asize = vdev_get_min_asize(vd);
239
240         for (int c = 0; c < vd->vdev_children; c++)
241                 vdev_set_min_asize(vd->vdev_child[c]);
242 }
243
244 vdev_t *
245 vdev_lookup_top(spa_t *spa, uint64_t vdev)
246 {
247         vdev_t *rvd = spa->spa_root_vdev;
248
249         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
250
251         if (vdev < rvd->vdev_children) {
252                 ASSERT(rvd->vdev_child[vdev] != NULL);
253                 return (rvd->vdev_child[vdev]);
254         }
255
256         return (NULL);
257 }
258
259 vdev_t *
260 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
261 {
262         vdev_t *mvd;
263
264         if (vd->vdev_guid == guid)
265                 return (vd);
266
267         for (int c = 0; c < vd->vdev_children; c++)
268                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
269                     NULL)
270                         return (mvd);
271
272         return (NULL);
273 }
274
275 static int
276 vdev_count_leaves_impl(vdev_t *vd)
277 {
278         int n = 0;
279
280         if (vd->vdev_ops->vdev_op_leaf)
281                 return (1);
282
283         for (int c = 0; c < vd->vdev_children; c++)
284                 n += vdev_count_leaves_impl(vd->vdev_child[c]);
285
286         return (n);
287 }
288
289 int
290 vdev_count_leaves(spa_t *spa)
291 {
292         return (vdev_count_leaves_impl(spa->spa_root_vdev));
293 }
294
295 void
296 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
297 {
298         size_t oldsize, newsize;
299         uint64_t id = cvd->vdev_id;
300         vdev_t **newchild;
301         spa_t *spa = cvd->vdev_spa;
302
303         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
304         ASSERT(cvd->vdev_parent == NULL);
305
306         cvd->vdev_parent = pvd;
307
308         if (pvd == NULL)
309                 return;
310
311         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
312
313         oldsize = pvd->vdev_children * sizeof (vdev_t *);
314         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
315         newsize = pvd->vdev_children * sizeof (vdev_t *);
316
317         newchild = kmem_zalloc(newsize, KM_SLEEP);
318         if (pvd->vdev_child != NULL) {
319                 bcopy(pvd->vdev_child, newchild, oldsize);
320                 kmem_free(pvd->vdev_child, oldsize);
321         }
322
323         pvd->vdev_child = newchild;
324         pvd->vdev_child[id] = cvd;
325
326         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
327         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
328
329         /*
330          * Walk up all ancestors to update guid sum.
331          */
332         for (; pvd != NULL; pvd = pvd->vdev_parent)
333                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
334 }
335
336 void
337 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
338 {
339         int c;
340         uint_t id = cvd->vdev_id;
341
342         ASSERT(cvd->vdev_parent == pvd);
343
344         if (pvd == NULL)
345                 return;
346
347         ASSERT(id < pvd->vdev_children);
348         ASSERT(pvd->vdev_child[id] == cvd);
349
350         pvd->vdev_child[id] = NULL;
351         cvd->vdev_parent = NULL;
352
353         for (c = 0; c < pvd->vdev_children; c++)
354                 if (pvd->vdev_child[c])
355                         break;
356
357         if (c == pvd->vdev_children) {
358                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
359                 pvd->vdev_child = NULL;
360                 pvd->vdev_children = 0;
361         }
362
363         /*
364          * Walk up all ancestors to update guid sum.
365          */
366         for (; pvd != NULL; pvd = pvd->vdev_parent)
367                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
368 }
369
370 /*
371  * Remove any holes in the child array.
372  */
373 void
374 vdev_compact_children(vdev_t *pvd)
375 {
376         vdev_t **newchild, *cvd;
377         int oldc = pvd->vdev_children;
378         int newc;
379
380         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
381
382         for (int c = newc = 0; c < oldc; c++)
383                 if (pvd->vdev_child[c])
384                         newc++;
385
386         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
387
388         for (int c = newc = 0; c < oldc; c++) {
389                 if ((cvd = pvd->vdev_child[c]) != NULL) {
390                         newchild[newc] = cvd;
391                         cvd->vdev_id = newc++;
392                 }
393         }
394
395         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
396         pvd->vdev_child = newchild;
397         pvd->vdev_children = newc;
398 }
399
400 /*
401  * Allocate and minimally initialize a vdev_t.
402  */
403 vdev_t *
404 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
405 {
406         vdev_t *vd;
407
408         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
409
410         if (spa->spa_root_vdev == NULL) {
411                 ASSERT(ops == &vdev_root_ops);
412                 spa->spa_root_vdev = vd;
413                 spa->spa_load_guid = spa_generate_guid(NULL);
414         }
415
416         if (guid == 0 && ops != &vdev_hole_ops) {
417                 if (spa->spa_root_vdev == vd) {
418                         /*
419                          * The root vdev's guid will also be the pool guid,
420                          * which must be unique among all pools.
421                          */
422                         guid = spa_generate_guid(NULL);
423                 } else {
424                         /*
425                          * Any other vdev's guid must be unique within the pool.
426                          */
427                         guid = spa_generate_guid(spa);
428                 }
429                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
430         }
431
432         vd->vdev_spa = spa;
433         vd->vdev_id = id;
434         vd->vdev_guid = guid;
435         vd->vdev_guid_sum = guid;
436         vd->vdev_ops = ops;
437         vd->vdev_state = VDEV_STATE_CLOSED;
438         vd->vdev_ishole = (ops == &vdev_hole_ops);
439
440         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
441         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
442         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
443         for (int t = 0; t < DTL_TYPES; t++) {
444                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
445                     &vd->vdev_dtl_lock);
446         }
447         txg_list_create(&vd->vdev_ms_list,
448             offsetof(struct metaslab, ms_txg_node));
449         txg_list_create(&vd->vdev_dtl_list,
450             offsetof(struct vdev, vdev_dtl_node));
451         vd->vdev_stat.vs_timestamp = gethrtime();
452         vdev_queue_init(vd);
453         vdev_cache_init(vd);
454
455         return (vd);
456 }
457
458 /*
459  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
460  * creating a new vdev or loading an existing one - the behavior is slightly
461  * different for each case.
462  */
463 int
464 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
465     int alloctype)
466 {
467         vdev_ops_t *ops;
468         char *type;
469         uint64_t guid = 0, islog, nparity;
470         vdev_t *vd;
471
472         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
473
474         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
475                 return (SET_ERROR(EINVAL));
476
477         if ((ops = vdev_getops(type)) == NULL)
478                 return (SET_ERROR(EINVAL));
479
480         /*
481          * If this is a load, get the vdev guid from the nvlist.
482          * Otherwise, vdev_alloc_common() will generate one for us.
483          */
484         if (alloctype == VDEV_ALLOC_LOAD) {
485                 uint64_t label_id;
486
487                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
488                     label_id != id)
489                         return (SET_ERROR(EINVAL));
490
491                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
492                         return (SET_ERROR(EINVAL));
493         } else if (alloctype == VDEV_ALLOC_SPARE) {
494                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
495                         return (SET_ERROR(EINVAL));
496         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
497                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
498                         return (SET_ERROR(EINVAL));
499         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
500                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
501                         return (SET_ERROR(EINVAL));
502         }
503
504         /*
505          * The first allocated vdev must be of type 'root'.
506          */
507         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
508                 return (SET_ERROR(EINVAL));
509
510         /*
511          * Determine whether we're a log vdev.
512          */
513         islog = 0;
514         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
515         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
516                 return (SET_ERROR(ENOTSUP));
517
518         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
519                 return (SET_ERROR(ENOTSUP));
520
521         /*
522          * Set the nparity property for RAID-Z vdevs.
523          */
524         nparity = -1ULL;
525         if (ops == &vdev_raidz_ops) {
526                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
527                     &nparity) == 0) {
528                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
529                                 return (SET_ERROR(EINVAL));
530                         /*
531                          * Previous versions could only support 1 or 2 parity
532                          * device.
533                          */
534                         if (nparity > 1 &&
535                             spa_version(spa) < SPA_VERSION_RAIDZ2)
536                                 return (SET_ERROR(ENOTSUP));
537                         if (nparity > 2 &&
538                             spa_version(spa) < SPA_VERSION_RAIDZ3)
539                                 return (SET_ERROR(ENOTSUP));
540                 } else {
541                         /*
542                          * We require the parity to be specified for SPAs that
543                          * support multiple parity levels.
544                          */
545                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
546                                 return (SET_ERROR(EINVAL));
547                         /*
548                          * Otherwise, we default to 1 parity device for RAID-Z.
549                          */
550                         nparity = 1;
551                 }
552         } else {
553                 nparity = 0;
554         }
555         ASSERT(nparity != -1ULL);
556
557         vd = vdev_alloc_common(spa, id, guid, ops);
558
559         vd->vdev_islog = islog;
560         vd->vdev_nparity = nparity;
561
562         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
563                 vd->vdev_path = spa_strdup(vd->vdev_path);
564         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
565                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
566         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
567             &vd->vdev_physpath) == 0)
568                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
569         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
570                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
571
572         /*
573          * Set the whole_disk property.  If it's not specified, leave the value
574          * as -1.
575          */
576         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
577             &vd->vdev_wholedisk) != 0)
578                 vd->vdev_wholedisk = -1ULL;
579
580         /*
581          * Look for the 'not present' flag.  This will only be set if the device
582          * was not present at the time of import.
583          */
584         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
585             &vd->vdev_not_present);
586
587         /*
588          * Get the alignment requirement.
589          */
590         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
591
592         /*
593          * Retrieve the vdev creation time.
594          */
595         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
596             &vd->vdev_crtxg);
597
598         /*
599          * If we're a top-level vdev, try to load the allocation parameters.
600          */
601         if (parent && !parent->vdev_parent &&
602             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
603                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
604                     &vd->vdev_ms_array);
605                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
606                     &vd->vdev_ms_shift);
607                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
608                     &vd->vdev_asize);
609                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
610                     &vd->vdev_removing);
611         }
612
613         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
614                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
615                     alloctype == VDEV_ALLOC_ADD ||
616                     alloctype == VDEV_ALLOC_SPLIT ||
617                     alloctype == VDEV_ALLOC_ROOTPOOL);
618                 vd->vdev_mg = metaslab_group_create(islog ?
619                     spa_log_class(spa) : spa_normal_class(spa), vd);
620         }
621
622         /*
623          * If we're a leaf vdev, try to load the DTL object and other state.
624          */
625         if (vd->vdev_ops->vdev_op_leaf &&
626             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
627             alloctype == VDEV_ALLOC_ROOTPOOL)) {
628                 if (alloctype == VDEV_ALLOC_LOAD) {
629                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
630                             &vd->vdev_dtl_object);
631                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
632                             &vd->vdev_unspare);
633                 }
634
635                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
636                         uint64_t spare = 0;
637
638                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
639                             &spare) == 0 && spare)
640                                 spa_spare_add(vd);
641                 }
642
643                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
644                     &vd->vdev_offline);
645
646                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
647                     &vd->vdev_resilver_txg);
648
649                 /*
650                  * When importing a pool, we want to ignore the persistent fault
651                  * state, as the diagnosis made on another system may not be
652                  * valid in the current context.  Local vdevs will
653                  * remain in the faulted state.
654                  */
655                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
656                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
657                             &vd->vdev_faulted);
658                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
659                             &vd->vdev_degraded);
660                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
661                             &vd->vdev_removed);
662
663                         if (vd->vdev_faulted || vd->vdev_degraded) {
664                                 char *aux;
665
666                                 vd->vdev_label_aux =
667                                     VDEV_AUX_ERR_EXCEEDED;
668                                 if (nvlist_lookup_string(nv,
669                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
670                                     strcmp(aux, "external") == 0)
671                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
672                         }
673                 }
674         }
675
676         /*
677          * Add ourselves to the parent's list of children.
678          */
679         vdev_add_child(parent, vd);
680
681         *vdp = vd;
682
683         return (0);
684 }
685
686 void
687 vdev_free(vdev_t *vd)
688 {
689         spa_t *spa = vd->vdev_spa;
690
691         /*
692          * vdev_free() implies closing the vdev first.  This is simpler than
693          * trying to ensure complicated semantics for all callers.
694          */
695         vdev_close(vd);
696
697         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
698         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
699
700         /*
701          * Free all children.
702          */
703         for (int c = 0; c < vd->vdev_children; c++)
704                 vdev_free(vd->vdev_child[c]);
705
706         ASSERT(vd->vdev_child == NULL);
707         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
708
709         /*
710          * Discard allocation state.
711          */
712         if (vd->vdev_mg != NULL) {
713                 vdev_metaslab_fini(vd);
714                 metaslab_group_destroy(vd->vdev_mg);
715         }
716
717         ASSERT0(vd->vdev_stat.vs_space);
718         ASSERT0(vd->vdev_stat.vs_dspace);
719         ASSERT0(vd->vdev_stat.vs_alloc);
720
721         /*
722          * Remove this vdev from its parent's child list.
723          */
724         vdev_remove_child(vd->vdev_parent, vd);
725
726         ASSERT(vd->vdev_parent == NULL);
727
728         /*
729          * Clean up vdev structure.
730          */
731         vdev_queue_fini(vd);
732         vdev_cache_fini(vd);
733
734         if (vd->vdev_path)
735                 spa_strfree(vd->vdev_path);
736         if (vd->vdev_devid)
737                 spa_strfree(vd->vdev_devid);
738         if (vd->vdev_physpath)
739                 spa_strfree(vd->vdev_physpath);
740         if (vd->vdev_fru)
741                 spa_strfree(vd->vdev_fru);
742
743         if (vd->vdev_isspare)
744                 spa_spare_remove(vd);
745         if (vd->vdev_isl2cache)
746                 spa_l2cache_remove(vd);
747
748         txg_list_destroy(&vd->vdev_ms_list);
749         txg_list_destroy(&vd->vdev_dtl_list);
750
751         mutex_enter(&vd->vdev_dtl_lock);
752         space_map_close(vd->vdev_dtl_sm);
753         for (int t = 0; t < DTL_TYPES; t++) {
754                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
755                 range_tree_destroy(vd->vdev_dtl[t]);
756         }
757         mutex_exit(&vd->vdev_dtl_lock);
758
759         mutex_destroy(&vd->vdev_dtl_lock);
760         mutex_destroy(&vd->vdev_stat_lock);
761         mutex_destroy(&vd->vdev_probe_lock);
762
763         if (vd == spa->spa_root_vdev)
764                 spa->spa_root_vdev = NULL;
765
766         kmem_free(vd, sizeof (vdev_t));
767 }
768
769 /*
770  * Transfer top-level vdev state from svd to tvd.
771  */
772 static void
773 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
774 {
775         spa_t *spa = svd->vdev_spa;
776         metaslab_t *msp;
777         vdev_t *vd;
778         int t;
779
780         ASSERT(tvd == tvd->vdev_top);
781
782         tvd->vdev_ms_array = svd->vdev_ms_array;
783         tvd->vdev_ms_shift = svd->vdev_ms_shift;
784         tvd->vdev_ms_count = svd->vdev_ms_count;
785
786         svd->vdev_ms_array = 0;
787         svd->vdev_ms_shift = 0;
788         svd->vdev_ms_count = 0;
789
790         if (tvd->vdev_mg)
791                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
792         tvd->vdev_mg = svd->vdev_mg;
793         tvd->vdev_ms = svd->vdev_ms;
794
795         svd->vdev_mg = NULL;
796         svd->vdev_ms = NULL;
797
798         if (tvd->vdev_mg != NULL)
799                 tvd->vdev_mg->mg_vd = tvd;
800
801         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
802         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
803         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
804
805         svd->vdev_stat.vs_alloc = 0;
806         svd->vdev_stat.vs_space = 0;
807         svd->vdev_stat.vs_dspace = 0;
808
809         for (t = 0; t < TXG_SIZE; t++) {
810                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
811                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
812                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
813                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
814                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
815                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
816         }
817
818         if (list_link_active(&svd->vdev_config_dirty_node)) {
819                 vdev_config_clean(svd);
820                 vdev_config_dirty(tvd);
821         }
822
823         if (list_link_active(&svd->vdev_state_dirty_node)) {
824                 vdev_state_clean(svd);
825                 vdev_state_dirty(tvd);
826         }
827
828         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
829         svd->vdev_deflate_ratio = 0;
830
831         tvd->vdev_islog = svd->vdev_islog;
832         svd->vdev_islog = 0;
833 }
834
835 static void
836 vdev_top_update(vdev_t *tvd, vdev_t *vd)
837 {
838         if (vd == NULL)
839                 return;
840
841         vd->vdev_top = tvd;
842
843         for (int c = 0; c < vd->vdev_children; c++)
844                 vdev_top_update(tvd, vd->vdev_child[c]);
845 }
846
847 /*
848  * Add a mirror/replacing vdev above an existing vdev.
849  */
850 vdev_t *
851 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
852 {
853         spa_t *spa = cvd->vdev_spa;
854         vdev_t *pvd = cvd->vdev_parent;
855         vdev_t *mvd;
856
857         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
858
859         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
860
861         mvd->vdev_asize = cvd->vdev_asize;
862         mvd->vdev_min_asize = cvd->vdev_min_asize;
863         mvd->vdev_max_asize = cvd->vdev_max_asize;
864         mvd->vdev_ashift = cvd->vdev_ashift;
865         mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
866         mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
867         mvd->vdev_state = cvd->vdev_state;
868         mvd->vdev_crtxg = cvd->vdev_crtxg;
869
870         vdev_remove_child(pvd, cvd);
871         vdev_add_child(pvd, mvd);
872         cvd->vdev_id = mvd->vdev_children;
873         vdev_add_child(mvd, cvd);
874         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
875
876         if (mvd == mvd->vdev_top)
877                 vdev_top_transfer(cvd, mvd);
878
879         return (mvd);
880 }
881
882 /*
883  * Remove a 1-way mirror/replacing vdev from the tree.
884  */
885 void
886 vdev_remove_parent(vdev_t *cvd)
887 {
888         vdev_t *mvd = cvd->vdev_parent;
889         vdev_t *pvd = mvd->vdev_parent;
890
891         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
892
893         ASSERT(mvd->vdev_children == 1);
894         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
895             mvd->vdev_ops == &vdev_replacing_ops ||
896             mvd->vdev_ops == &vdev_spare_ops);
897         cvd->vdev_ashift = mvd->vdev_ashift;
898         cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
899         cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
900
901         vdev_remove_child(mvd, cvd);
902         vdev_remove_child(pvd, mvd);
903
904         /*
905          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
906          * Otherwise, we could have detached an offline device, and when we
907          * go to import the pool we'll think we have two top-level vdevs,
908          * instead of a different version of the same top-level vdev.
909          */
910         if (mvd->vdev_top == mvd) {
911                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
912                 cvd->vdev_orig_guid = cvd->vdev_guid;
913                 cvd->vdev_guid += guid_delta;
914                 cvd->vdev_guid_sum += guid_delta;
915         }
916         cvd->vdev_id = mvd->vdev_id;
917         vdev_add_child(pvd, cvd);
918         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
919
920         if (cvd == cvd->vdev_top)
921                 vdev_top_transfer(mvd, cvd);
922
923         ASSERT(mvd->vdev_children == 0);
924         vdev_free(mvd);
925 }
926
927 int
928 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
929 {
930         spa_t *spa = vd->vdev_spa;
931         objset_t *mos = spa->spa_meta_objset;
932         uint64_t m;
933         uint64_t oldc = vd->vdev_ms_count;
934         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
935         metaslab_t **mspp;
936         int error;
937
938         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
939
940         /*
941          * This vdev is not being allocated from yet or is a hole.
942          */
943         if (vd->vdev_ms_shift == 0)
944                 return (0);
945
946         ASSERT(!vd->vdev_ishole);
947
948         /*
949          * Compute the raidz-deflation ratio.  Note, we hard-code
950          * in 128k (1 << 17) because it is the "typical" blocksize.
951          * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
952          * otherwise it would inconsistently account for existing bp's.
953          */
954         vd->vdev_deflate_ratio = (1 << 17) /
955             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
956
957         ASSERT(oldc <= newc);
958
959         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
960
961         if (oldc != 0) {
962                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
963                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
964         }
965
966         vd->vdev_ms = mspp;
967         vd->vdev_ms_count = newc;
968
969         for (m = oldc; m < newc; m++) {
970                 uint64_t object = 0;
971
972                 if (txg == 0) {
973                         error = dmu_read(mos, vd->vdev_ms_array,
974                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
975                             DMU_READ_PREFETCH);
976                         if (error)
977                                 return (error);
978                 }
979
980                 error = metaslab_init(vd->vdev_mg, m, object, txg,
981                     &(vd->vdev_ms[m]));
982                 if (error)
983                         return (error);
984         }
985
986         if (txg == 0)
987                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
988
989         /*
990          * If the vdev is being removed we don't activate
991          * the metaslabs since we want to ensure that no new
992          * allocations are performed on this device.
993          */
994         if (oldc == 0 && !vd->vdev_removing)
995                 metaslab_group_activate(vd->vdev_mg);
996
997         if (txg == 0)
998                 spa_config_exit(spa, SCL_ALLOC, FTAG);
999
1000         return (0);
1001 }
1002
1003 void
1004 vdev_metaslab_fini(vdev_t *vd)
1005 {
1006         uint64_t m;
1007         uint64_t count = vd->vdev_ms_count;
1008
1009         if (vd->vdev_ms != NULL) {
1010                 metaslab_group_passivate(vd->vdev_mg);
1011                 for (m = 0; m < count; m++) {
1012                         metaslab_t *msp = vd->vdev_ms[m];
1013
1014                         if (msp != NULL)
1015                                 metaslab_fini(msp);
1016                 }
1017                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1018                 vd->vdev_ms = NULL;
1019         }
1020 }
1021
1022 typedef struct vdev_probe_stats {
1023         boolean_t       vps_readable;
1024         boolean_t       vps_writeable;
1025         int             vps_flags;
1026 } vdev_probe_stats_t;
1027
1028 static void
1029 vdev_probe_done(zio_t *zio)
1030 {
1031         spa_t *spa = zio->io_spa;
1032         vdev_t *vd = zio->io_vd;
1033         vdev_probe_stats_t *vps = zio->io_private;
1034
1035         ASSERT(vd->vdev_probe_zio != NULL);
1036
1037         if (zio->io_type == ZIO_TYPE_READ) {
1038                 if (zio->io_error == 0)
1039                         vps->vps_readable = 1;
1040                 if (zio->io_error == 0 && spa_writeable(spa)) {
1041                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1042                             zio->io_offset, zio->io_size, zio->io_data,
1043                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1044                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1045                 } else {
1046                         zio_buf_free(zio->io_data, zio->io_size);
1047                 }
1048         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1049                 if (zio->io_error == 0)
1050                         vps->vps_writeable = 1;
1051                 zio_buf_free(zio->io_data, zio->io_size);
1052         } else if (zio->io_type == ZIO_TYPE_NULL) {
1053                 zio_t *pio;
1054
1055                 vd->vdev_cant_read |= !vps->vps_readable;
1056                 vd->vdev_cant_write |= !vps->vps_writeable;
1057
1058                 if (vdev_readable(vd) &&
1059                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1060                         zio->io_error = 0;
1061                 } else {
1062                         ASSERT(zio->io_error != 0);
1063                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1064                             spa, vd, NULL, 0, 0);
1065                         zio->io_error = SET_ERROR(ENXIO);
1066                 }
1067
1068                 mutex_enter(&vd->vdev_probe_lock);
1069                 ASSERT(vd->vdev_probe_zio == zio);
1070                 vd->vdev_probe_zio = NULL;
1071                 mutex_exit(&vd->vdev_probe_lock);
1072
1073                 while ((pio = zio_walk_parents(zio)) != NULL)
1074                         if (!vdev_accessible(vd, pio))
1075                                 pio->io_error = SET_ERROR(ENXIO);
1076
1077                 kmem_free(vps, sizeof (*vps));
1078         }
1079 }
1080
1081 /*
1082  * Determine whether this device is accessible.
1083  *
1084  * Read and write to several known locations: the pad regions of each
1085  * vdev label but the first, which we leave alone in case it contains
1086  * a VTOC.
1087  */
1088 zio_t *
1089 vdev_probe(vdev_t *vd, zio_t *zio)
1090 {
1091         spa_t *spa = vd->vdev_spa;
1092         vdev_probe_stats_t *vps = NULL;
1093         zio_t *pio;
1094
1095         ASSERT(vd->vdev_ops->vdev_op_leaf);
1096
1097         /*
1098          * Don't probe the probe.
1099          */
1100         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1101                 return (NULL);
1102
1103         /*
1104          * To prevent 'probe storms' when a device fails, we create
1105          * just one probe i/o at a time.  All zios that want to probe
1106          * this vdev will become parents of the probe io.
1107          */
1108         mutex_enter(&vd->vdev_probe_lock);
1109
1110         if ((pio = vd->vdev_probe_zio) == NULL) {
1111                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1112
1113                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1114                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1115                     ZIO_FLAG_TRYHARD;
1116
1117                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1118                         /*
1119                          * vdev_cant_read and vdev_cant_write can only
1120                          * transition from TRUE to FALSE when we have the
1121                          * SCL_ZIO lock as writer; otherwise they can only
1122                          * transition from FALSE to TRUE.  This ensures that
1123                          * any zio looking at these values can assume that
1124                          * failures persist for the life of the I/O.  That's
1125                          * important because when a device has intermittent
1126                          * connectivity problems, we want to ensure that
1127                          * they're ascribed to the device (ENXIO) and not
1128                          * the zio (EIO).
1129                          *
1130                          * Since we hold SCL_ZIO as writer here, clear both
1131                          * values so the probe can reevaluate from first
1132                          * principles.
1133                          */
1134                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1135                         vd->vdev_cant_read = B_FALSE;
1136                         vd->vdev_cant_write = B_FALSE;
1137                 }
1138
1139                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1140                     vdev_probe_done, vps,
1141                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1142
1143                 /*
1144                  * We can't change the vdev state in this context, so we
1145                  * kick off an async task to do it on our behalf.
1146                  */
1147                 if (zio != NULL) {
1148                         vd->vdev_probe_wanted = B_TRUE;
1149                         spa_async_request(spa, SPA_ASYNC_PROBE);
1150                 }
1151         }
1152
1153         if (zio != NULL)
1154                 zio_add_child(zio, pio);
1155
1156         mutex_exit(&vd->vdev_probe_lock);
1157
1158         if (vps == NULL) {
1159                 ASSERT(zio != NULL);
1160                 return (NULL);
1161         }
1162
1163         for (int l = 1; l < VDEV_LABELS; l++) {
1164                 zio_nowait(zio_read_phys(pio, vd,
1165                     vdev_label_offset(vd->vdev_psize, l,
1166                     offsetof(vdev_label_t, vl_pad2)),
1167                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1168                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1169                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1170         }
1171
1172         if (zio == NULL)
1173                 return (pio);
1174
1175         zio_nowait(pio);
1176         return (NULL);
1177 }
1178
1179 static void
1180 vdev_open_child(void *arg)
1181 {
1182         vdev_t *vd = arg;
1183
1184         vd->vdev_open_thread = curthread;
1185         vd->vdev_open_error = vdev_open(vd);
1186         vd->vdev_open_thread = NULL;
1187 }
1188
1189 boolean_t
1190 vdev_uses_zvols(vdev_t *vd)
1191 {
1192         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1193             strlen(ZVOL_DIR)) == 0)
1194                 return (B_TRUE);
1195         for (int c = 0; c < vd->vdev_children; c++)
1196                 if (vdev_uses_zvols(vd->vdev_child[c]))
1197                         return (B_TRUE);
1198         return (B_FALSE);
1199 }
1200
1201 void
1202 vdev_open_children(vdev_t *vd)
1203 {
1204         taskq_t *tq;
1205         int children = vd->vdev_children;
1206
1207         /*
1208          * in order to handle pools on top of zvols, do the opens
1209          * in a single thread so that the same thread holds the
1210          * spa_namespace_lock
1211          */
1212         if (B_TRUE || vdev_uses_zvols(vd)) {
1213                 for (int c = 0; c < children; c++)
1214                         vd->vdev_child[c]->vdev_open_error =
1215                             vdev_open(vd->vdev_child[c]);
1216                 return;
1217         }
1218         tq = taskq_create("vdev_open", children, minclsyspri,
1219             children, children, TASKQ_PREPOPULATE);
1220
1221         for (int c = 0; c < children; c++)
1222                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1223                     TQ_SLEEP) != 0);
1224
1225         taskq_destroy(tq);
1226 }
1227
1228 /*
1229  * Prepare a virtual device for access.
1230  */
1231 int
1232 vdev_open(vdev_t *vd)
1233 {
1234         spa_t *spa = vd->vdev_spa;
1235         int error;
1236         uint64_t osize = 0;
1237         uint64_t max_osize = 0;
1238         uint64_t asize, max_asize, psize;
1239         uint64_t logical_ashift = 0;
1240         uint64_t physical_ashift = 0;
1241
1242         ASSERT(vd->vdev_open_thread == curthread ||
1243             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1244         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1245             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1246             vd->vdev_state == VDEV_STATE_OFFLINE);
1247
1248         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1249         vd->vdev_cant_read = B_FALSE;
1250         vd->vdev_cant_write = B_FALSE;
1251         vd->vdev_notrim = B_FALSE;
1252         vd->vdev_min_asize = vdev_get_min_asize(vd);
1253
1254         /*
1255          * If this vdev is not removed, check its fault status.  If it's
1256          * faulted, bail out of the open.
1257          */
1258         if (!vd->vdev_removed && vd->vdev_faulted) {
1259                 ASSERT(vd->vdev_children == 0);
1260                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1261                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1262                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1263                     vd->vdev_label_aux);
1264                 return (SET_ERROR(ENXIO));
1265         } else if (vd->vdev_offline) {
1266                 ASSERT(vd->vdev_children == 0);
1267                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1268                 return (SET_ERROR(ENXIO));
1269         }
1270
1271         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1272             &logical_ashift, &physical_ashift);
1273
1274         /*
1275          * Reset the vdev_reopening flag so that we actually close
1276          * the vdev on error.
1277          */
1278         vd->vdev_reopening = B_FALSE;
1279         if (zio_injection_enabled && error == 0)
1280                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1281
1282         if (error) {
1283                 if (vd->vdev_removed &&
1284                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1285                         vd->vdev_removed = B_FALSE;
1286
1287                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1288                     vd->vdev_stat.vs_aux);
1289                 return (error);
1290         }
1291
1292         vd->vdev_removed = B_FALSE;
1293
1294         /*
1295          * Recheck the faulted flag now that we have confirmed that
1296          * the vdev is accessible.  If we're faulted, bail.
1297          */
1298         if (vd->vdev_faulted) {
1299                 ASSERT(vd->vdev_children == 0);
1300                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1301                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1302                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1303                     vd->vdev_label_aux);
1304                 return (SET_ERROR(ENXIO));
1305         }
1306
1307         if (vd->vdev_degraded) {
1308                 ASSERT(vd->vdev_children == 0);
1309                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1310                     VDEV_AUX_ERR_EXCEEDED);
1311         } else {
1312                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1313         }
1314
1315         /*
1316          * For hole or missing vdevs we just return success.
1317          */
1318         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1319                 return (0);
1320
1321         if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1322                 trim_map_create(vd);
1323
1324         for (int c = 0; c < vd->vdev_children; c++) {
1325                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1326                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1327                             VDEV_AUX_NONE);
1328                         break;
1329                 }
1330         }
1331
1332         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1333         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1334
1335         if (vd->vdev_children == 0) {
1336                 if (osize < SPA_MINDEVSIZE) {
1337                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1338                             VDEV_AUX_TOO_SMALL);
1339                         return (SET_ERROR(EOVERFLOW));
1340                 }
1341                 psize = osize;
1342                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1343                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1344                     VDEV_LABEL_END_SIZE);
1345         } else {
1346                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1347                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1348                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1349                             VDEV_AUX_TOO_SMALL);
1350                         return (SET_ERROR(EOVERFLOW));
1351                 }
1352                 psize = 0;
1353                 asize = osize;
1354                 max_asize = max_osize;
1355         }
1356
1357         vd->vdev_psize = psize;
1358
1359         /*
1360          * Make sure the allocatable size hasn't shrunk.
1361          */
1362         if (asize < vd->vdev_min_asize) {
1363                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1364                     VDEV_AUX_BAD_LABEL);
1365                 return (SET_ERROR(EINVAL));
1366         }
1367
1368         vd->vdev_physical_ashift =
1369             MAX(physical_ashift, vd->vdev_physical_ashift);
1370         vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1371         vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1372
1373         if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1374                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1375                     VDEV_AUX_ASHIFT_TOO_BIG);
1376                 return (EINVAL);
1377         }
1378
1379         if (vd->vdev_asize == 0) {
1380                 /*
1381                  * This is the first-ever open, so use the computed values.
1382                  * For testing purposes, a higher ashift can be requested.
1383                  */
1384                 vd->vdev_asize = asize;
1385                 vd->vdev_max_asize = max_asize;
1386         } else {
1387                 /*
1388                  * Make sure the alignment requirement hasn't increased.
1389                  */
1390                 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1391                     vd->vdev_ops->vdev_op_leaf) {
1392                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1393                             VDEV_AUX_BAD_LABEL);
1394                         return (EINVAL);
1395                 }
1396                 vd->vdev_max_asize = max_asize;
1397         }
1398
1399         /*
1400          * If all children are healthy and the asize has increased,
1401          * then we've experienced dynamic LUN growth.  If automatic
1402          * expansion is enabled then use the additional space.
1403          */
1404         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1405             (vd->vdev_expanding || spa->spa_autoexpand))
1406                 vd->vdev_asize = asize;
1407
1408         vdev_set_min_asize(vd);
1409
1410         /*
1411          * Ensure we can issue some IO before declaring the
1412          * vdev open for business.
1413          */
1414         if (vd->vdev_ops->vdev_op_leaf &&
1415             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1416                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1417                     VDEV_AUX_ERR_EXCEEDED);
1418                 return (error);
1419         }
1420
1421         /*
1422          * Track the min and max ashift values for normal data devices.
1423          */
1424         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1425             !vd->vdev_islog && vd->vdev_aux == NULL) {
1426                 if (vd->vdev_ashift > spa->spa_max_ashift)
1427                         spa->spa_max_ashift = vd->vdev_ashift;
1428                 if (vd->vdev_ashift < spa->spa_min_ashift)
1429                         spa->spa_min_ashift = vd->vdev_ashift;
1430         }
1431
1432         /*
1433          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1434          * resilver.  But don't do this if we are doing a reopen for a scrub,
1435          * since this would just restart the scrub we are already doing.
1436          */
1437         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1438             vdev_resilver_needed(vd, NULL, NULL))
1439                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1440
1441         return (0);
1442 }
1443
1444 /*
1445  * Called once the vdevs are all opened, this routine validates the label
1446  * contents.  This needs to be done before vdev_load() so that we don't
1447  * inadvertently do repair I/Os to the wrong device.
1448  *
1449  * If 'strict' is false ignore the spa guid check. This is necessary because
1450  * if the machine crashed during a re-guid the new guid might have been written
1451  * to all of the vdev labels, but not the cached config. The strict check
1452  * will be performed when the pool is opened again using the mos config.
1453  *
1454  * This function will only return failure if one of the vdevs indicates that it
1455  * has since been destroyed or exported.  This is only possible if
1456  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1457  * will be updated but the function will return 0.
1458  */
1459 int
1460 vdev_validate(vdev_t *vd, boolean_t strict)
1461 {
1462         spa_t *spa = vd->vdev_spa;
1463         nvlist_t *label;
1464         uint64_t guid = 0, top_guid;
1465         uint64_t state;
1466
1467         for (int c = 0; c < vd->vdev_children; c++)
1468                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1469                         return (SET_ERROR(EBADF));
1470
1471         /*
1472          * If the device has already failed, or was marked offline, don't do
1473          * any further validation.  Otherwise, label I/O will fail and we will
1474          * overwrite the previous state.
1475          */
1476         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1477                 uint64_t aux_guid = 0;
1478                 nvlist_t *nvl;
1479                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1480                     spa_last_synced_txg(spa) : -1ULL;
1481
1482                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1483                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1484                             VDEV_AUX_BAD_LABEL);
1485                         return (0);
1486                 }
1487
1488                 /*
1489                  * Determine if this vdev has been split off into another
1490                  * pool.  If so, then refuse to open it.
1491                  */
1492                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1493                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1494                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1495                             VDEV_AUX_SPLIT_POOL);
1496                         nvlist_free(label);
1497                         return (0);
1498                 }
1499
1500                 if (strict && (nvlist_lookup_uint64(label,
1501                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1502                     guid != spa_guid(spa))) {
1503                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1504                             VDEV_AUX_CORRUPT_DATA);
1505                         nvlist_free(label);
1506                         return (0);
1507                 }
1508
1509                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1510                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1511                     &aux_guid) != 0)
1512                         aux_guid = 0;
1513
1514                 /*
1515                  * If this vdev just became a top-level vdev because its
1516                  * sibling was detached, it will have adopted the parent's
1517                  * vdev guid -- but the label may or may not be on disk yet.
1518                  * Fortunately, either version of the label will have the
1519                  * same top guid, so if we're a top-level vdev, we can
1520                  * safely compare to that instead.
1521                  *
1522                  * If we split this vdev off instead, then we also check the
1523                  * original pool's guid.  We don't want to consider the vdev
1524                  * corrupt if it is partway through a split operation.
1525                  */
1526                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1527                     &guid) != 0 ||
1528                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1529                     &top_guid) != 0 ||
1530                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1531                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1532                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1533                             VDEV_AUX_CORRUPT_DATA);
1534                         nvlist_free(label);
1535                         return (0);
1536                 }
1537
1538                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1539                     &state) != 0) {
1540                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1541                             VDEV_AUX_CORRUPT_DATA);
1542                         nvlist_free(label);
1543                         return (0);
1544                 }
1545
1546                 nvlist_free(label);
1547
1548                 /*
1549                  * If this is a verbatim import, no need to check the
1550                  * state of the pool.
1551                  */
1552                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1553                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1554                     state != POOL_STATE_ACTIVE)
1555                         return (SET_ERROR(EBADF));
1556
1557                 /*
1558                  * If we were able to open and validate a vdev that was
1559                  * previously marked permanently unavailable, clear that state
1560                  * now.
1561                  */
1562                 if (vd->vdev_not_present)
1563                         vd->vdev_not_present = 0;
1564         }
1565
1566         return (0);
1567 }
1568
1569 /*
1570  * Close a virtual device.
1571  */
1572 void
1573 vdev_close(vdev_t *vd)
1574 {
1575         spa_t *spa = vd->vdev_spa;
1576         vdev_t *pvd = vd->vdev_parent;
1577
1578         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1579
1580         /*
1581          * If our parent is reopening, then we are as well, unless we are
1582          * going offline.
1583          */
1584         if (pvd != NULL && pvd->vdev_reopening)
1585                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1586
1587         vd->vdev_ops->vdev_op_close(vd);
1588
1589         vdev_cache_purge(vd);
1590
1591         if (vd->vdev_ops->vdev_op_leaf)
1592                 trim_map_destroy(vd);
1593
1594         /*
1595          * We record the previous state before we close it, so that if we are
1596          * doing a reopen(), we don't generate FMA ereports if we notice that
1597          * it's still faulted.
1598          */
1599         vd->vdev_prevstate = vd->vdev_state;
1600
1601         if (vd->vdev_offline)
1602                 vd->vdev_state = VDEV_STATE_OFFLINE;
1603         else
1604                 vd->vdev_state = VDEV_STATE_CLOSED;
1605         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1606 }
1607
1608 void
1609 vdev_hold(vdev_t *vd)
1610 {
1611         spa_t *spa = vd->vdev_spa;
1612
1613         ASSERT(spa_is_root(spa));
1614         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1615                 return;
1616
1617         for (int c = 0; c < vd->vdev_children; c++)
1618                 vdev_hold(vd->vdev_child[c]);
1619
1620         if (vd->vdev_ops->vdev_op_leaf)
1621                 vd->vdev_ops->vdev_op_hold(vd);
1622 }
1623
1624 void
1625 vdev_rele(vdev_t *vd)
1626 {
1627         spa_t *spa = vd->vdev_spa;
1628
1629         ASSERT(spa_is_root(spa));
1630         for (int c = 0; c < vd->vdev_children; c++)
1631                 vdev_rele(vd->vdev_child[c]);
1632
1633         if (vd->vdev_ops->vdev_op_leaf)
1634                 vd->vdev_ops->vdev_op_rele(vd);
1635 }
1636
1637 /*
1638  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1639  * reopen leaf vdevs which had previously been opened as they might deadlock
1640  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1641  * If the leaf has never been opened then open it, as usual.
1642  */
1643 void
1644 vdev_reopen(vdev_t *vd)
1645 {
1646         spa_t *spa = vd->vdev_spa;
1647
1648         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1649
1650         /* set the reopening flag unless we're taking the vdev offline */
1651         vd->vdev_reopening = !vd->vdev_offline;
1652         vdev_close(vd);
1653         (void) vdev_open(vd);
1654
1655         /*
1656          * Call vdev_validate() here to make sure we have the same device.
1657          * Otherwise, a device with an invalid label could be successfully
1658          * opened in response to vdev_reopen().
1659          */
1660         if (vd->vdev_aux) {
1661                 (void) vdev_validate_aux(vd);
1662                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1663                     vd->vdev_aux == &spa->spa_l2cache &&
1664                     !l2arc_vdev_present(vd))
1665                         l2arc_add_vdev(spa, vd);
1666         } else {
1667                 (void) vdev_validate(vd, B_TRUE);
1668         }
1669
1670         /*
1671          * Reassess parent vdev's health.
1672          */
1673         vdev_propagate_state(vd);
1674 }
1675
1676 int
1677 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1678 {
1679         int error;
1680
1681         /*
1682          * Normally, partial opens (e.g. of a mirror) are allowed.
1683          * For a create, however, we want to fail the request if
1684          * there are any components we can't open.
1685          */
1686         error = vdev_open(vd);
1687
1688         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1689                 vdev_close(vd);
1690                 return (error ? error : ENXIO);
1691         }
1692
1693         /*
1694          * Recursively load DTLs and initialize all labels.
1695          */
1696         if ((error = vdev_dtl_load(vd)) != 0 ||
1697             (error = vdev_label_init(vd, txg, isreplacing ?
1698             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1699                 vdev_close(vd);
1700                 return (error);
1701         }
1702
1703         return (0);
1704 }
1705
1706 void
1707 vdev_metaslab_set_size(vdev_t *vd)
1708 {
1709         /*
1710          * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1711          */
1712         vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1713         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1714 }
1715
1716 /*
1717  * Maximize performance by inflating the configured ashift for top level
1718  * vdevs to be as close to the physical ashift as possible while maintaining
1719  * administrator defined limits and ensuring it doesn't go below the
1720  * logical ashift.
1721  */
1722 void
1723 vdev_ashift_optimize(vdev_t *vd)
1724 {
1725         if (vd == vd->vdev_top) {
1726                 if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1727                         vd->vdev_ashift = MIN(
1728                             MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1729                             MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1730                 } else {
1731                         /*
1732                          * Unusual case where logical ashift > physical ashift
1733                          * so we can't cap the calculated ashift based on max
1734                          * ashift as that would cause failures.
1735                          * We still check if we need to increase it to match
1736                          * the min ashift.
1737                          */
1738                         vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1739                             vd->vdev_ashift);
1740                 }
1741         }
1742 }
1743
1744 void
1745 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1746 {
1747         ASSERT(vd == vd->vdev_top);
1748         ASSERT(!vd->vdev_ishole);
1749         ASSERT(ISP2(flags));
1750         ASSERT(spa_writeable(vd->vdev_spa));
1751
1752         if (flags & VDD_METASLAB)
1753                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1754
1755         if (flags & VDD_DTL)
1756                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1757
1758         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1759 }
1760
1761 void
1762 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1763 {
1764         for (int c = 0; c < vd->vdev_children; c++)
1765                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1766
1767         if (vd->vdev_ops->vdev_op_leaf)
1768                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1769 }
1770
1771 /*
1772  * DTLs.
1773  *
1774  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1775  * the vdev has less than perfect replication.  There are four kinds of DTL:
1776  *
1777  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1778  *
1779  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1780  *
1781  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1782  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1783  *      txgs that was scrubbed.
1784  *
1785  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1786  *      persistent errors or just some device being offline.
1787  *      Unlike the other three, the DTL_OUTAGE map is not generally
1788  *      maintained; it's only computed when needed, typically to
1789  *      determine whether a device can be detached.
1790  *
1791  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1792  * either has the data or it doesn't.
1793  *
1794  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1795  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1796  * if any child is less than fully replicated, then so is its parent.
1797  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1798  * comprising only those txgs which appear in 'maxfaults' or more children;
1799  * those are the txgs we don't have enough replication to read.  For example,
1800  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1801  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1802  * two child DTL_MISSING maps.
1803  *
1804  * It should be clear from the above that to compute the DTLs and outage maps
1805  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1806  * Therefore, that is all we keep on disk.  When loading the pool, or after
1807  * a configuration change, we generate all other DTLs from first principles.
1808  */
1809 void
1810 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1811 {
1812         range_tree_t *rt = vd->vdev_dtl[t];
1813
1814         ASSERT(t < DTL_TYPES);
1815         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1816         ASSERT(spa_writeable(vd->vdev_spa));
1817
1818         mutex_enter(rt->rt_lock);
1819         if (!range_tree_contains(rt, txg, size))
1820                 range_tree_add(rt, txg, size);
1821         mutex_exit(rt->rt_lock);
1822 }
1823
1824 boolean_t
1825 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1826 {
1827         range_tree_t *rt = vd->vdev_dtl[t];
1828         boolean_t dirty = B_FALSE;
1829
1830         ASSERT(t < DTL_TYPES);
1831         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1832
1833         mutex_enter(rt->rt_lock);
1834         if (range_tree_space(rt) != 0)
1835                 dirty = range_tree_contains(rt, txg, size);
1836         mutex_exit(rt->rt_lock);
1837
1838         return (dirty);
1839 }
1840
1841 boolean_t
1842 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1843 {
1844         range_tree_t *rt = vd->vdev_dtl[t];
1845         boolean_t empty;
1846
1847         mutex_enter(rt->rt_lock);
1848         empty = (range_tree_space(rt) == 0);
1849         mutex_exit(rt->rt_lock);
1850
1851         return (empty);
1852 }
1853
1854 /*
1855  * Returns the lowest txg in the DTL range.
1856  */
1857 static uint64_t
1858 vdev_dtl_min(vdev_t *vd)
1859 {
1860         range_seg_t *rs;
1861
1862         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1863         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1864         ASSERT0(vd->vdev_children);
1865
1866         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1867         return (rs->rs_start - 1);
1868 }
1869
1870 /*
1871  * Returns the highest txg in the DTL.
1872  */
1873 static uint64_t
1874 vdev_dtl_max(vdev_t *vd)
1875 {
1876         range_seg_t *rs;
1877
1878         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1879         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1880         ASSERT0(vd->vdev_children);
1881
1882         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1883         return (rs->rs_end);
1884 }
1885
1886 /*
1887  * Determine if a resilvering vdev should remove any DTL entries from
1888  * its range. If the vdev was resilvering for the entire duration of the
1889  * scan then it should excise that range from its DTLs. Otherwise, this
1890  * vdev is considered partially resilvered and should leave its DTL
1891  * entries intact. The comment in vdev_dtl_reassess() describes how we
1892  * excise the DTLs.
1893  */
1894 static boolean_t
1895 vdev_dtl_should_excise(vdev_t *vd)
1896 {
1897         spa_t *spa = vd->vdev_spa;
1898         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1899
1900         ASSERT0(scn->scn_phys.scn_errors);
1901         ASSERT0(vd->vdev_children);
1902
1903         if (vd->vdev_resilver_txg == 0 ||
1904             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1905                 return (B_TRUE);
1906
1907         /*
1908          * When a resilver is initiated the scan will assign the scn_max_txg
1909          * value to the highest txg value that exists in all DTLs. If this
1910          * device's max DTL is not part of this scan (i.e. it is not in
1911          * the range (scn_min_txg, scn_max_txg] then it is not eligible
1912          * for excision.
1913          */
1914         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1915                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1916                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1917                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1918                 return (B_TRUE);
1919         }
1920         return (B_FALSE);
1921 }
1922
1923 /*
1924  * Reassess DTLs after a config change or scrub completion.
1925  */
1926 void
1927 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1928 {
1929         spa_t *spa = vd->vdev_spa;
1930         avl_tree_t reftree;
1931         int minref;
1932
1933         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1934
1935         for (int c = 0; c < vd->vdev_children; c++)
1936                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1937                     scrub_txg, scrub_done);
1938
1939         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1940                 return;
1941
1942         if (vd->vdev_ops->vdev_op_leaf) {
1943                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1944
1945                 mutex_enter(&vd->vdev_dtl_lock);
1946
1947                 /*
1948                  * If we've completed a scan cleanly then determine
1949                  * if this vdev should remove any DTLs. We only want to
1950                  * excise regions on vdevs that were available during
1951                  * the entire duration of this scan.
1952                  */
1953                 if (scrub_txg != 0 &&
1954                     (spa->spa_scrub_started ||
1955                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1956                     vdev_dtl_should_excise(vd)) {
1957                         /*
1958                          * We completed a scrub up to scrub_txg.  If we
1959                          * did it without rebooting, then the scrub dtl
1960                          * will be valid, so excise the old region and
1961                          * fold in the scrub dtl.  Otherwise, leave the
1962                          * dtl as-is if there was an error.
1963                          *
1964                          * There's little trick here: to excise the beginning
1965                          * of the DTL_MISSING map, we put it into a reference
1966                          * tree and then add a segment with refcnt -1 that
1967                          * covers the range [0, scrub_txg).  This means
1968                          * that each txg in that range has refcnt -1 or 0.
1969                          * We then add DTL_SCRUB with a refcnt of 2, so that
1970                          * entries in the range [0, scrub_txg) will have a
1971                          * positive refcnt -- either 1 or 2.  We then convert
1972                          * the reference tree into the new DTL_MISSING map.
1973                          */
1974                         space_reftree_create(&reftree);
1975                         space_reftree_add_map(&reftree,
1976                             vd->vdev_dtl[DTL_MISSING], 1);
1977                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1978                         space_reftree_add_map(&reftree,
1979                             vd->vdev_dtl[DTL_SCRUB], 2);
1980                         space_reftree_generate_map(&reftree,
1981                             vd->vdev_dtl[DTL_MISSING], 1);
1982                         space_reftree_destroy(&reftree);
1983                 }
1984                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1985                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1986                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1987                 if (scrub_done)
1988                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1989                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1990                 if (!vdev_readable(vd))
1991                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1992                 else
1993                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1994                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1995
1996                 /*
1997                  * If the vdev was resilvering and no longer has any
1998                  * DTLs then reset its resilvering flag and dirty
1999                  * the top level so that we persist the change.
2000                  */
2001                 if (vd->vdev_resilver_txg != 0 &&
2002                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
2003                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
2004                         vd->vdev_resilver_txg = 0;
2005                         vdev_config_dirty(vd->vdev_top);
2006                 }
2007
2008                 mutex_exit(&vd->vdev_dtl_lock);
2009
2010                 if (txg != 0)
2011                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2012                 return;
2013         }
2014
2015         mutex_enter(&vd->vdev_dtl_lock);
2016         for (int t = 0; t < DTL_TYPES; t++) {
2017                 /* account for child's outage in parent's missing map */
2018                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2019                 if (t == DTL_SCRUB)
2020                         continue;                       /* leaf vdevs only */
2021                 if (t == DTL_PARTIAL)
2022                         minref = 1;                     /* i.e. non-zero */
2023                 else if (vd->vdev_nparity != 0)
2024                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
2025                 else
2026                         minref = vd->vdev_children;     /* any kind of mirror */
2027                 space_reftree_create(&reftree);
2028                 for (int c = 0; c < vd->vdev_children; c++) {
2029                         vdev_t *cvd = vd->vdev_child[c];
2030                         mutex_enter(&cvd->vdev_dtl_lock);
2031                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2032                         mutex_exit(&cvd->vdev_dtl_lock);
2033                 }
2034                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2035                 space_reftree_destroy(&reftree);
2036         }
2037         mutex_exit(&vd->vdev_dtl_lock);
2038 }
2039
2040 int
2041 vdev_dtl_load(vdev_t *vd)
2042 {
2043         spa_t *spa = vd->vdev_spa;
2044         objset_t *mos = spa->spa_meta_objset;
2045         int error = 0;
2046
2047         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2048                 ASSERT(!vd->vdev_ishole);
2049
2050                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2051                     vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2052                 if (error)
2053                         return (error);
2054                 ASSERT(vd->vdev_dtl_sm != NULL);
2055
2056                 mutex_enter(&vd->vdev_dtl_lock);
2057
2058                 /*
2059                  * Now that we've opened the space_map we need to update
2060                  * the in-core DTL.
2061                  */
2062                 space_map_update(vd->vdev_dtl_sm);
2063
2064                 error = space_map_load(vd->vdev_dtl_sm,
2065                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2066                 mutex_exit(&vd->vdev_dtl_lock);
2067
2068                 return (error);
2069         }
2070
2071         for (int c = 0; c < vd->vdev_children; c++) {
2072                 error = vdev_dtl_load(vd->vdev_child[c]);
2073                 if (error != 0)
2074                         break;
2075         }
2076
2077         return (error);
2078 }
2079
2080 void
2081 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2082 {
2083         spa_t *spa = vd->vdev_spa;
2084         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2085         objset_t *mos = spa->spa_meta_objset;
2086         range_tree_t *rtsync;
2087         kmutex_t rtlock;
2088         dmu_tx_t *tx;
2089         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2090
2091         ASSERT(!vd->vdev_ishole);
2092         ASSERT(vd->vdev_ops->vdev_op_leaf);
2093
2094         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2095
2096         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2097                 mutex_enter(&vd->vdev_dtl_lock);
2098                 space_map_free(vd->vdev_dtl_sm, tx);
2099                 space_map_close(vd->vdev_dtl_sm);
2100                 vd->vdev_dtl_sm = NULL;
2101                 mutex_exit(&vd->vdev_dtl_lock);
2102                 dmu_tx_commit(tx);
2103                 return;
2104         }
2105
2106         if (vd->vdev_dtl_sm == NULL) {
2107                 uint64_t new_object;
2108
2109                 new_object = space_map_alloc(mos, tx);
2110                 VERIFY3U(new_object, !=, 0);
2111
2112                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2113                     0, -1ULL, 0, &vd->vdev_dtl_lock));
2114                 ASSERT(vd->vdev_dtl_sm != NULL);
2115         }
2116
2117         bzero(&rtlock, sizeof(rtlock));
2118         mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2119
2120         rtsync = range_tree_create(NULL, NULL, &rtlock);
2121
2122         mutex_enter(&rtlock);
2123
2124         mutex_enter(&vd->vdev_dtl_lock);
2125         range_tree_walk(rt, range_tree_add, rtsync);
2126         mutex_exit(&vd->vdev_dtl_lock);
2127
2128         space_map_truncate(vd->vdev_dtl_sm, tx);
2129         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2130         range_tree_vacate(rtsync, NULL, NULL);
2131
2132         range_tree_destroy(rtsync);
2133
2134         mutex_exit(&rtlock);
2135         mutex_destroy(&rtlock);
2136
2137         /*
2138          * If the object for the space map has changed then dirty
2139          * the top level so that we update the config.
2140          */
2141         if (object != space_map_object(vd->vdev_dtl_sm)) {
2142                 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2143                     "new object %llu", txg, spa_name(spa), object,
2144                     space_map_object(vd->vdev_dtl_sm));
2145                 vdev_config_dirty(vd->vdev_top);
2146         }
2147
2148         dmu_tx_commit(tx);
2149
2150         mutex_enter(&vd->vdev_dtl_lock);
2151         space_map_update(vd->vdev_dtl_sm);
2152         mutex_exit(&vd->vdev_dtl_lock);
2153 }
2154
2155 /*
2156  * Determine whether the specified vdev can be offlined/detached/removed
2157  * without losing data.
2158  */
2159 boolean_t
2160 vdev_dtl_required(vdev_t *vd)
2161 {
2162         spa_t *spa = vd->vdev_spa;
2163         vdev_t *tvd = vd->vdev_top;
2164         uint8_t cant_read = vd->vdev_cant_read;
2165         boolean_t required;
2166
2167         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2168
2169         if (vd == spa->spa_root_vdev || vd == tvd)
2170                 return (B_TRUE);
2171
2172         /*
2173          * Temporarily mark the device as unreadable, and then determine
2174          * whether this results in any DTL outages in the top-level vdev.
2175          * If not, we can safely offline/detach/remove the device.
2176          */
2177         vd->vdev_cant_read = B_TRUE;
2178         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2179         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2180         vd->vdev_cant_read = cant_read;
2181         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2182
2183         if (!required && zio_injection_enabled)
2184                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2185
2186         return (required);
2187 }
2188
2189 /*
2190  * Determine if resilver is needed, and if so the txg range.
2191  */
2192 boolean_t
2193 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2194 {
2195         boolean_t needed = B_FALSE;
2196         uint64_t thismin = UINT64_MAX;
2197         uint64_t thismax = 0;
2198
2199         if (vd->vdev_children == 0) {
2200                 mutex_enter(&vd->vdev_dtl_lock);
2201                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2202                     vdev_writeable(vd)) {
2203
2204                         thismin = vdev_dtl_min(vd);
2205                         thismax = vdev_dtl_max(vd);
2206                         needed = B_TRUE;
2207                 }
2208                 mutex_exit(&vd->vdev_dtl_lock);
2209         } else {
2210                 for (int c = 0; c < vd->vdev_children; c++) {
2211                         vdev_t *cvd = vd->vdev_child[c];
2212                         uint64_t cmin, cmax;
2213
2214                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2215                                 thismin = MIN(thismin, cmin);
2216                                 thismax = MAX(thismax, cmax);
2217                                 needed = B_TRUE;
2218                         }
2219                 }
2220         }
2221
2222         if (needed && minp) {
2223                 *minp = thismin;
2224                 *maxp = thismax;
2225         }
2226         return (needed);
2227 }
2228
2229 void
2230 vdev_load(vdev_t *vd)
2231 {
2232         /*
2233          * Recursively load all children.
2234          */
2235         for (int c = 0; c < vd->vdev_children; c++)
2236                 vdev_load(vd->vdev_child[c]);
2237
2238         /*
2239          * If this is a top-level vdev, initialize its metaslabs.
2240          */
2241         if (vd == vd->vdev_top && !vd->vdev_ishole &&
2242             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2243             vdev_metaslab_init(vd, 0) != 0))
2244                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2245                     VDEV_AUX_CORRUPT_DATA);
2246
2247         /*
2248          * If this is a leaf vdev, load its DTL.
2249          */
2250         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2251                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2252                     VDEV_AUX_CORRUPT_DATA);
2253 }
2254
2255 /*
2256  * The special vdev case is used for hot spares and l2cache devices.  Its
2257  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2258  * we make sure that we can open the underlying device, then try to read the
2259  * label, and make sure that the label is sane and that it hasn't been
2260  * repurposed to another pool.
2261  */
2262 int
2263 vdev_validate_aux(vdev_t *vd)
2264 {
2265         nvlist_t *label;
2266         uint64_t guid, version;
2267         uint64_t state;
2268
2269         if (!vdev_readable(vd))
2270                 return (0);
2271
2272         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2273                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2274                     VDEV_AUX_CORRUPT_DATA);
2275                 return (-1);
2276         }
2277
2278         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2279             !SPA_VERSION_IS_SUPPORTED(version) ||
2280             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2281             guid != vd->vdev_guid ||
2282             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2283                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2284                     VDEV_AUX_CORRUPT_DATA);
2285                 nvlist_free(label);
2286                 return (-1);
2287         }
2288
2289         /*
2290          * We don't actually check the pool state here.  If it's in fact in
2291          * use by another pool, we update this fact on the fly when requested.
2292          */
2293         nvlist_free(label);
2294         return (0);
2295 }
2296
2297 void
2298 vdev_remove(vdev_t *vd, uint64_t txg)
2299 {
2300         spa_t *spa = vd->vdev_spa;
2301         objset_t *mos = spa->spa_meta_objset;
2302         dmu_tx_t *tx;
2303
2304         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2305
2306         if (vd->vdev_ms != NULL) {
2307                 metaslab_group_t *mg = vd->vdev_mg;
2308
2309                 metaslab_group_histogram_verify(mg);
2310                 metaslab_class_histogram_verify(mg->mg_class);
2311
2312                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2313                         metaslab_t *msp = vd->vdev_ms[m];
2314
2315                         if (msp == NULL || msp->ms_sm == NULL)
2316                                 continue;
2317
2318                         mutex_enter(&msp->ms_lock);
2319                         /*
2320                          * If the metaslab was not loaded when the vdev
2321                          * was removed then the histogram accounting may
2322                          * not be accurate. Update the histogram information
2323                          * here so that we ensure that the metaslab group
2324                          * and metaslab class are up-to-date.
2325                          */
2326                         metaslab_group_histogram_remove(mg, msp);
2327
2328                         VERIFY0(space_map_allocated(msp->ms_sm));
2329                         space_map_free(msp->ms_sm, tx);
2330                         space_map_close(msp->ms_sm);
2331                         msp->ms_sm = NULL;
2332                         mutex_exit(&msp->ms_lock);
2333                 }
2334
2335                 metaslab_group_histogram_verify(mg);
2336                 metaslab_class_histogram_verify(mg->mg_class);
2337                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2338                         ASSERT0(mg->mg_histogram[i]);
2339
2340         }
2341
2342         if (vd->vdev_ms_array) {
2343                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2344                 vd->vdev_ms_array = 0;
2345         }
2346         dmu_tx_commit(tx);
2347 }
2348
2349 void
2350 vdev_sync_done(vdev_t *vd, uint64_t txg)
2351 {
2352         metaslab_t *msp;
2353         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2354
2355         ASSERT(!vd->vdev_ishole);
2356
2357         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2358                 metaslab_sync_done(msp, txg);
2359
2360         if (reassess)
2361                 metaslab_sync_reassess(vd->vdev_mg);
2362 }
2363
2364 void
2365 vdev_sync(vdev_t *vd, uint64_t txg)
2366 {
2367         spa_t *spa = vd->vdev_spa;
2368         vdev_t *lvd;
2369         metaslab_t *msp;
2370         dmu_tx_t *tx;
2371
2372         ASSERT(!vd->vdev_ishole);
2373
2374         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2375                 ASSERT(vd == vd->vdev_top);
2376                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2377                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2378                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2379                 ASSERT(vd->vdev_ms_array != 0);
2380                 vdev_config_dirty(vd);
2381                 dmu_tx_commit(tx);
2382         }
2383
2384         /*
2385          * Remove the metadata associated with this vdev once it's empty.
2386          */
2387         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2388                 vdev_remove(vd, txg);
2389
2390         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2391                 metaslab_sync(msp, txg);
2392                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2393         }
2394
2395         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2396                 vdev_dtl_sync(lvd, txg);
2397
2398         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2399 }
2400
2401 uint64_t
2402 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2403 {
2404         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2405 }
2406
2407 /*
2408  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2409  * not be opened, and no I/O is attempted.
2410  */
2411 int
2412 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2413 {
2414         vdev_t *vd, *tvd;
2415
2416         spa_vdev_state_enter(spa, SCL_NONE);
2417
2418         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2419                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2420
2421         if (!vd->vdev_ops->vdev_op_leaf)
2422                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2423
2424         tvd = vd->vdev_top;
2425
2426         /*
2427          * We don't directly use the aux state here, but if we do a
2428          * vdev_reopen(), we need this value to be present to remember why we
2429          * were faulted.
2430          */
2431         vd->vdev_label_aux = aux;
2432
2433         /*
2434          * Faulted state takes precedence over degraded.
2435          */
2436         vd->vdev_delayed_close = B_FALSE;
2437         vd->vdev_faulted = 1ULL;
2438         vd->vdev_degraded = 0ULL;
2439         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2440
2441         /*
2442          * If this device has the only valid copy of the data, then
2443          * back off and simply mark the vdev as degraded instead.
2444          */
2445         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2446                 vd->vdev_degraded = 1ULL;
2447                 vd->vdev_faulted = 0ULL;
2448
2449                 /*
2450                  * If we reopen the device and it's not dead, only then do we
2451                  * mark it degraded.
2452                  */
2453                 vdev_reopen(tvd);
2454
2455                 if (vdev_readable(vd))
2456                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2457         }
2458
2459         return (spa_vdev_state_exit(spa, vd, 0));
2460 }
2461
2462 /*
2463  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2464  * user that something is wrong.  The vdev continues to operate as normal as far
2465  * as I/O is concerned.
2466  */
2467 int
2468 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2469 {
2470         vdev_t *vd;
2471
2472         spa_vdev_state_enter(spa, SCL_NONE);
2473
2474         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2475                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2476
2477         if (!vd->vdev_ops->vdev_op_leaf)
2478                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2479
2480         /*
2481          * If the vdev is already faulted, then don't do anything.
2482          */
2483         if (vd->vdev_faulted || vd->vdev_degraded)
2484                 return (spa_vdev_state_exit(spa, NULL, 0));
2485
2486         vd->vdev_degraded = 1ULL;
2487         if (!vdev_is_dead(vd))
2488                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2489                     aux);
2490
2491         return (spa_vdev_state_exit(spa, vd, 0));
2492 }
2493
2494 /*
2495  * Online the given vdev.
2496  *
2497  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2498  * spare device should be detached when the device finishes resilvering.
2499  * Second, the online should be treated like a 'test' online case, so no FMA
2500  * events are generated if the device fails to open.
2501  */
2502 int
2503 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2504 {
2505         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2506         boolean_t postevent = B_FALSE;
2507
2508         spa_vdev_state_enter(spa, SCL_NONE);
2509
2510         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2511                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2512
2513         if (!vd->vdev_ops->vdev_op_leaf)
2514                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2515
2516         postevent =
2517             (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2518             B_TRUE : B_FALSE;
2519
2520         tvd = vd->vdev_top;
2521         vd->vdev_offline = B_FALSE;
2522         vd->vdev_tmpoffline = B_FALSE;
2523         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2524         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2525
2526         /* XXX - L2ARC 1.0 does not support expansion */
2527         if (!vd->vdev_aux) {
2528                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2529                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2530         }
2531
2532         vdev_reopen(tvd);
2533         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2534
2535         if (!vd->vdev_aux) {
2536                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2537                         pvd->vdev_expanding = B_FALSE;
2538         }
2539
2540         if (newstate)
2541                 *newstate = vd->vdev_state;
2542         if ((flags & ZFS_ONLINE_UNSPARE) &&
2543             !vdev_is_dead(vd) && vd->vdev_parent &&
2544             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2545             vd->vdev_parent->vdev_child[0] == vd)
2546                 vd->vdev_unspare = B_TRUE;
2547
2548         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2549
2550                 /* XXX - L2ARC 1.0 does not support expansion */
2551                 if (vd->vdev_aux)
2552                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2553                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2554         }
2555
2556         if (postevent)
2557                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2558
2559         return (spa_vdev_state_exit(spa, vd, 0));
2560 }
2561
2562 static int
2563 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2564 {
2565         vdev_t *vd, *tvd;
2566         int error = 0;
2567         uint64_t generation;
2568         metaslab_group_t *mg;
2569
2570 top:
2571         spa_vdev_state_enter(spa, SCL_ALLOC);
2572
2573         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2574                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2575
2576         if (!vd->vdev_ops->vdev_op_leaf)
2577                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2578
2579         tvd = vd->vdev_top;
2580         mg = tvd->vdev_mg;
2581         generation = spa->spa_config_generation + 1;
2582
2583         /*
2584          * If the device isn't already offline, try to offline it.
2585          */
2586         if (!vd->vdev_offline) {
2587                 /*
2588                  * If this device has the only valid copy of some data,
2589                  * don't allow it to be offlined. Log devices are always
2590                  * expendable.
2591                  */
2592                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2593                     vdev_dtl_required(vd))
2594                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2595
2596                 /*
2597                  * If the top-level is a slog and it has had allocations
2598                  * then proceed.  We check that the vdev's metaslab group
2599                  * is not NULL since it's possible that we may have just
2600                  * added this vdev but not yet initialized its metaslabs.
2601                  */
2602                 if (tvd->vdev_islog && mg != NULL) {
2603                         /*
2604                          * Prevent any future allocations.
2605                          */
2606                         metaslab_group_passivate(mg);
2607                         (void) spa_vdev_state_exit(spa, vd, 0);
2608
2609                         error = spa_offline_log(spa);
2610
2611                         spa_vdev_state_enter(spa, SCL_ALLOC);
2612
2613                         /*
2614                          * Check to see if the config has changed.
2615                          */
2616                         if (error || generation != spa->spa_config_generation) {
2617                                 metaslab_group_activate(mg);
2618                                 if (error)
2619                                         return (spa_vdev_state_exit(spa,
2620                                             vd, error));
2621                                 (void) spa_vdev_state_exit(spa, vd, 0);
2622                                 goto top;
2623                         }
2624                         ASSERT0(tvd->vdev_stat.vs_alloc);
2625                 }
2626
2627                 /*
2628                  * Offline this device and reopen its top-level vdev.
2629                  * If the top-level vdev is a log device then just offline
2630                  * it. Otherwise, if this action results in the top-level
2631                  * vdev becoming unusable, undo it and fail the request.
2632                  */
2633                 vd->vdev_offline = B_TRUE;
2634                 vdev_reopen(tvd);
2635
2636                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2637                     vdev_is_dead(tvd)) {
2638                         vd->vdev_offline = B_FALSE;
2639                         vdev_reopen(tvd);
2640                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2641                 }
2642
2643                 /*
2644                  * Add the device back into the metaslab rotor so that
2645                  * once we online the device it's open for business.
2646                  */
2647                 if (tvd->vdev_islog && mg != NULL)
2648                         metaslab_group_activate(mg);
2649         }
2650
2651         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2652
2653         return (spa_vdev_state_exit(spa, vd, 0));
2654 }
2655
2656 int
2657 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2658 {
2659         int error;
2660
2661         mutex_enter(&spa->spa_vdev_top_lock);
2662         error = vdev_offline_locked(spa, guid, flags);
2663         mutex_exit(&spa->spa_vdev_top_lock);
2664
2665         return (error);
2666 }
2667
2668 /*
2669  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2670  * vdev_offline(), we assume the spa config is locked.  We also clear all
2671  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2672  */
2673 void
2674 vdev_clear(spa_t *spa, vdev_t *vd)
2675 {
2676         vdev_t *rvd = spa->spa_root_vdev;
2677
2678         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2679
2680         if (vd == NULL)
2681                 vd = rvd;
2682
2683         vd->vdev_stat.vs_read_errors = 0;
2684         vd->vdev_stat.vs_write_errors = 0;
2685         vd->vdev_stat.vs_checksum_errors = 0;
2686
2687         for (int c = 0; c < vd->vdev_children; c++)
2688                 vdev_clear(spa, vd->vdev_child[c]);
2689
2690         if (vd == rvd) {
2691                 for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2692                         vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2693
2694                 for (int c = 0; c < spa->spa_spares.sav_count; c++)
2695                         vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2696         }
2697
2698         /*
2699          * If we're in the FAULTED state or have experienced failed I/O, then
2700          * clear the persistent state and attempt to reopen the device.  We
2701          * also mark the vdev config dirty, so that the new faulted state is
2702          * written out to disk.
2703          */
2704         if (vd->vdev_faulted || vd->vdev_degraded ||
2705             !vdev_readable(vd) || !vdev_writeable(vd)) {
2706
2707                 /*
2708                  * When reopening in reponse to a clear event, it may be due to
2709                  * a fmadm repair request.  In this case, if the device is
2710                  * still broken, we want to still post the ereport again.
2711                  */
2712                 vd->vdev_forcefault = B_TRUE;
2713
2714                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2715                 vd->vdev_cant_read = B_FALSE;
2716                 vd->vdev_cant_write = B_FALSE;
2717
2718                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2719
2720                 vd->vdev_forcefault = B_FALSE;
2721
2722                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2723                         vdev_state_dirty(vd->vdev_top);
2724
2725                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2726                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2727
2728                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2729         }
2730
2731         /*
2732          * When clearing a FMA-diagnosed fault, we always want to
2733          * unspare the device, as we assume that the original spare was
2734          * done in response to the FMA fault.
2735          */
2736         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2737             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2738             vd->vdev_parent->vdev_child[0] == vd)
2739                 vd->vdev_unspare = B_TRUE;
2740 }
2741
2742 boolean_t
2743 vdev_is_dead(vdev_t *vd)
2744 {
2745         /*
2746          * Holes and missing devices are always considered "dead".
2747          * This simplifies the code since we don't have to check for
2748          * these types of devices in the various code paths.
2749          * Instead we rely on the fact that we skip over dead devices
2750          * before issuing I/O to them.
2751          */
2752         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2753             vd->vdev_ops == &vdev_missing_ops);
2754 }
2755
2756 boolean_t
2757 vdev_readable(vdev_t *vd)
2758 {
2759         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2760 }
2761
2762 boolean_t
2763 vdev_writeable(vdev_t *vd)
2764 {
2765         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2766 }
2767
2768 boolean_t
2769 vdev_allocatable(vdev_t *vd)
2770 {
2771         uint64_t state = vd->vdev_state;
2772
2773         /*
2774          * We currently allow allocations from vdevs which may be in the
2775          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2776          * fails to reopen then we'll catch it later when we're holding
2777          * the proper locks.  Note that we have to get the vdev state
2778          * in a local variable because although it changes atomically,
2779          * we're asking two separate questions about it.
2780          */
2781         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2782             !vd->vdev_cant_write && !vd->vdev_ishole);
2783 }
2784
2785 boolean_t
2786 vdev_accessible(vdev_t *vd, zio_t *zio)
2787 {
2788         ASSERT(zio->io_vd == vd);
2789
2790         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2791                 return (B_FALSE);
2792
2793         if (zio->io_type == ZIO_TYPE_READ)
2794                 return (!vd->vdev_cant_read);
2795
2796         if (zio->io_type == ZIO_TYPE_WRITE)
2797                 return (!vd->vdev_cant_write);
2798
2799         return (B_TRUE);
2800 }
2801
2802 /*
2803  * Get statistics for the given vdev.
2804  */
2805 void
2806 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2807 {
2808         spa_t *spa = vd->vdev_spa;
2809         vdev_t *rvd = spa->spa_root_vdev;
2810
2811         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2812
2813         mutex_enter(&vd->vdev_stat_lock);
2814         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2815         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2816         vs->vs_state = vd->vdev_state;
2817         vs->vs_rsize = vdev_get_min_asize(vd);
2818         if (vd->vdev_ops->vdev_op_leaf)
2819                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2820         if (vd->vdev_max_asize != 0)
2821                 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2822         vs->vs_configured_ashift = vd->vdev_top != NULL
2823             ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2824         vs->vs_logical_ashift = vd->vdev_logical_ashift;
2825         vs->vs_physical_ashift = vd->vdev_physical_ashift;
2826         if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2827                 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2828         }
2829
2830         /*
2831          * If we're getting stats on the root vdev, aggregate the I/O counts
2832          * over all top-level vdevs (i.e. the direct children of the root).
2833          */
2834         if (vd == rvd) {
2835                 for (int c = 0; c < rvd->vdev_children; c++) {
2836                         vdev_t *cvd = rvd->vdev_child[c];
2837                         vdev_stat_t *cvs = &cvd->vdev_stat;
2838
2839                         for (int t = 0; t < ZIO_TYPES; t++) {
2840                                 vs->vs_ops[t] += cvs->vs_ops[t];
2841                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2842                         }
2843                         cvs->vs_scan_removing = cvd->vdev_removing;
2844                 }
2845         }
2846         mutex_exit(&vd->vdev_stat_lock);
2847 }
2848
2849 void
2850 vdev_clear_stats(vdev_t *vd)
2851 {
2852         mutex_enter(&vd->vdev_stat_lock);
2853         vd->vdev_stat.vs_space = 0;
2854         vd->vdev_stat.vs_dspace = 0;
2855         vd->vdev_stat.vs_alloc = 0;
2856         mutex_exit(&vd->vdev_stat_lock);
2857 }
2858
2859 void
2860 vdev_scan_stat_init(vdev_t *vd)
2861 {
2862         vdev_stat_t *vs = &vd->vdev_stat;
2863
2864         for (int c = 0; c < vd->vdev_children; c++)
2865                 vdev_scan_stat_init(vd->vdev_child[c]);
2866
2867         mutex_enter(&vd->vdev_stat_lock);
2868         vs->vs_scan_processed = 0;
2869         mutex_exit(&vd->vdev_stat_lock);
2870 }
2871
2872 void
2873 vdev_stat_update(zio_t *zio, uint64_t psize)
2874 {
2875         spa_t *spa = zio->io_spa;
2876         vdev_t *rvd = spa->spa_root_vdev;
2877         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2878         vdev_t *pvd;
2879         uint64_t txg = zio->io_txg;
2880         vdev_stat_t *vs = &vd->vdev_stat;
2881         zio_type_t type = zio->io_type;
2882         int flags = zio->io_flags;
2883
2884         /*
2885          * If this i/o is a gang leader, it didn't do any actual work.
2886          */
2887         if (zio->io_gang_tree)
2888                 return;
2889
2890         if (zio->io_error == 0) {
2891                 /*
2892                  * If this is a root i/o, don't count it -- we've already
2893                  * counted the top-level vdevs, and vdev_get_stats() will
2894                  * aggregate them when asked.  This reduces contention on
2895                  * the root vdev_stat_lock and implicitly handles blocks
2896                  * that compress away to holes, for which there is no i/o.
2897                  * (Holes never create vdev children, so all the counters
2898                  * remain zero, which is what we want.)
2899                  *
2900                  * Note: this only applies to successful i/o (io_error == 0)
2901                  * because unlike i/o counts, errors are not additive.
2902                  * When reading a ditto block, for example, failure of
2903                  * one top-level vdev does not imply a root-level error.
2904                  */
2905                 if (vd == rvd)
2906                         return;
2907
2908                 ASSERT(vd == zio->io_vd);
2909
2910                 if (flags & ZIO_FLAG_IO_BYPASS)
2911                         return;
2912
2913                 mutex_enter(&vd->vdev_stat_lock);
2914
2915                 if (flags & ZIO_FLAG_IO_REPAIR) {
2916                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2917                                 dsl_scan_phys_t *scn_phys =
2918                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2919                                 uint64_t *processed = &scn_phys->scn_processed;
2920
2921                                 /* XXX cleanup? */
2922                                 if (vd->vdev_ops->vdev_op_leaf)
2923                                         atomic_add_64(processed, psize);
2924                                 vs->vs_scan_processed += psize;
2925                         }
2926
2927                         if (flags & ZIO_FLAG_SELF_HEAL)
2928                                 vs->vs_self_healed += psize;
2929                 }
2930
2931                 vs->vs_ops[type]++;
2932                 vs->vs_bytes[type] += psize;
2933
2934                 mutex_exit(&vd->vdev_stat_lock);
2935                 return;
2936         }
2937
2938         if (flags & ZIO_FLAG_SPECULATIVE)
2939                 return;
2940
2941         /*
2942          * If this is an I/O error that is going to be retried, then ignore the
2943          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2944          * hard errors, when in reality they can happen for any number of
2945          * innocuous reasons (bus resets, MPxIO link failure, etc).
2946          */
2947         if (zio->io_error == EIO &&
2948             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2949                 return;
2950
2951         /*
2952          * Intent logs writes won't propagate their error to the root
2953          * I/O so don't mark these types of failures as pool-level
2954          * errors.
2955          */
2956         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2957                 return;
2958
2959         mutex_enter(&vd->vdev_stat_lock);
2960         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2961                 if (zio->io_error == ECKSUM)
2962                         vs->vs_checksum_errors++;
2963                 else
2964                         vs->vs_read_errors++;
2965         }
2966         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2967                 vs->vs_write_errors++;
2968         mutex_exit(&vd->vdev_stat_lock);
2969
2970         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2971             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2972             (flags & ZIO_FLAG_SCAN_THREAD) ||
2973             spa->spa_claiming)) {
2974                 /*
2975                  * This is either a normal write (not a repair), or it's
2976                  * a repair induced by the scrub thread, or it's a repair
2977                  * made by zil_claim() during spa_load() in the first txg.
2978                  * In the normal case, we commit the DTL change in the same
2979                  * txg as the block was born.  In the scrub-induced repair
2980                  * case, we know that scrubs run in first-pass syncing context,
2981                  * so we commit the DTL change in spa_syncing_txg(spa).
2982                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2983                  *
2984                  * We currently do not make DTL entries for failed spontaneous
2985                  * self-healing writes triggered by normal (non-scrubbing)
2986                  * reads, because we have no transactional context in which to
2987                  * do so -- and it's not clear that it'd be desirable anyway.
2988                  */
2989                 if (vd->vdev_ops->vdev_op_leaf) {
2990                         uint64_t commit_txg = txg;
2991                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2992                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2993                                 ASSERT(spa_sync_pass(spa) == 1);
2994                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2995                                 commit_txg = spa_syncing_txg(spa);
2996                         } else if (spa->spa_claiming) {
2997                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2998                                 commit_txg = spa_first_txg(spa);
2999                         }
3000                         ASSERT(commit_txg >= spa_syncing_txg(spa));
3001                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3002                                 return;
3003                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3004                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3005                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3006                 }
3007                 if (vd != rvd)
3008                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3009         }
3010 }
3011
3012 /*
3013  * Update the in-core space usage stats for this vdev, its metaslab class,
3014  * and the root vdev.
3015  */
3016 void
3017 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3018     int64_t space_delta)
3019 {
3020         int64_t dspace_delta = space_delta;
3021         spa_t *spa = vd->vdev_spa;
3022         vdev_t *rvd = spa->spa_root_vdev;
3023         metaslab_group_t *mg = vd->vdev_mg;
3024         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3025
3026         ASSERT(vd == vd->vdev_top);
3027
3028         /*
3029          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3030          * factor.  We must calculate this here and not at the root vdev
3031          * because the root vdev's psize-to-asize is simply the max of its
3032          * childrens', thus not accurate enough for us.
3033          */
3034         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3035         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3036         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3037             vd->vdev_deflate_ratio;
3038
3039         mutex_enter(&vd->vdev_stat_lock);
3040         vd->vdev_stat.vs_alloc += alloc_delta;
3041         vd->vdev_stat.vs_space += space_delta;
3042         vd->vdev_stat.vs_dspace += dspace_delta;
3043         mutex_exit(&vd->vdev_stat_lock);
3044
3045         if (mc == spa_normal_class(spa)) {
3046                 mutex_enter(&rvd->vdev_stat_lock);
3047                 rvd->vdev_stat.vs_alloc += alloc_delta;
3048                 rvd->vdev_stat.vs_space += space_delta;
3049                 rvd->vdev_stat.vs_dspace += dspace_delta;
3050                 mutex_exit(&rvd->vdev_stat_lock);
3051         }
3052
3053         if (mc != NULL) {
3054                 ASSERT(rvd == vd->vdev_parent);
3055                 ASSERT(vd->vdev_ms_count != 0);
3056
3057                 metaslab_class_space_update(mc,
3058                     alloc_delta, defer_delta, space_delta, dspace_delta);
3059         }
3060 }
3061
3062 /*
3063  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3064  * so that it will be written out next time the vdev configuration is synced.
3065  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3066  */
3067 void
3068 vdev_config_dirty(vdev_t *vd)
3069 {
3070         spa_t *spa = vd->vdev_spa;
3071         vdev_t *rvd = spa->spa_root_vdev;
3072         int c;
3073
3074         ASSERT(spa_writeable(spa));
3075
3076         /*
3077          * If this is an aux vdev (as with l2cache and spare devices), then we
3078          * update the vdev config manually and set the sync flag.
3079          */
3080         if (vd->vdev_aux != NULL) {
3081                 spa_aux_vdev_t *sav = vd->vdev_aux;
3082                 nvlist_t **aux;
3083                 uint_t naux;
3084
3085                 for (c = 0; c < sav->sav_count; c++) {
3086                         if (sav->sav_vdevs[c] == vd)
3087                                 break;
3088                 }
3089
3090                 if (c == sav->sav_count) {
3091                         /*
3092                          * We're being removed.  There's nothing more to do.
3093                          */
3094                         ASSERT(sav->sav_sync == B_TRUE);
3095                         return;
3096                 }
3097
3098                 sav->sav_sync = B_TRUE;
3099
3100                 if (nvlist_lookup_nvlist_array(sav->sav_config,
3101                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3102                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3103                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3104                 }
3105
3106                 ASSERT(c < naux);
3107
3108                 /*
3109                  * Setting the nvlist in the middle if the array is a little
3110                  * sketchy, but it will work.
3111                  */
3112                 nvlist_free(aux[c]);
3113                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3114
3115                 return;
3116         }
3117
3118         /*
3119          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3120          * must either hold SCL_CONFIG as writer, or must be the sync thread
3121          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3122          * so this is sufficient to ensure mutual exclusion.
3123          */
3124         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3125             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3126             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3127
3128         if (vd == rvd) {
3129                 for (c = 0; c < rvd->vdev_children; c++)
3130                         vdev_config_dirty(rvd->vdev_child[c]);
3131         } else {
3132                 ASSERT(vd == vd->vdev_top);
3133
3134                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3135                     !vd->vdev_ishole)
3136                         list_insert_head(&spa->spa_config_dirty_list, vd);
3137         }
3138 }
3139
3140 void
3141 vdev_config_clean(vdev_t *vd)
3142 {
3143         spa_t *spa = vd->vdev_spa;
3144
3145         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3146             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3147             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3148
3149         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3150         list_remove(&spa->spa_config_dirty_list, vd);
3151 }
3152
3153 /*
3154  * Mark a top-level vdev's state as dirty, so that the next pass of
3155  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3156  * the state changes from larger config changes because they require
3157  * much less locking, and are often needed for administrative actions.
3158  */
3159 void
3160 vdev_state_dirty(vdev_t *vd)
3161 {
3162         spa_t *spa = vd->vdev_spa;
3163
3164         ASSERT(spa_writeable(spa));
3165         ASSERT(vd == vd->vdev_top);
3166
3167         /*
3168          * The state list is protected by the SCL_STATE lock.  The caller
3169          * must either hold SCL_STATE as writer, or must be the sync thread
3170          * (which holds SCL_STATE as reader).  There's only one sync thread,
3171          * so this is sufficient to ensure mutual exclusion.
3172          */
3173         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3174             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3175             spa_config_held(spa, SCL_STATE, RW_READER)));
3176
3177         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3178                 list_insert_head(&spa->spa_state_dirty_list, vd);
3179 }
3180
3181 void
3182 vdev_state_clean(vdev_t *vd)
3183 {
3184         spa_t *spa = vd->vdev_spa;
3185
3186         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3187             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3188             spa_config_held(spa, SCL_STATE, RW_READER)));
3189
3190         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3191         list_remove(&spa->spa_state_dirty_list, vd);
3192 }
3193
3194 /*
3195  * Propagate vdev state up from children to parent.
3196  */
3197 void
3198 vdev_propagate_state(vdev_t *vd)
3199 {
3200         spa_t *spa = vd->vdev_spa;
3201         vdev_t *rvd = spa->spa_root_vdev;
3202         int degraded = 0, faulted = 0;
3203         int corrupted = 0;
3204         vdev_t *child;
3205
3206         if (vd->vdev_children > 0) {
3207                 for (int c = 0; c < vd->vdev_children; c++) {
3208                         child = vd->vdev_child[c];
3209
3210                         /*
3211                          * Don't factor holes into the decision.
3212                          */
3213                         if (child->vdev_ishole)
3214                                 continue;
3215
3216                         if (!vdev_readable(child) ||
3217                             (!vdev_writeable(child) && spa_writeable(spa))) {
3218                                 /*
3219                                  * Root special: if there is a top-level log
3220                                  * device, treat the root vdev as if it were
3221                                  * degraded.
3222                                  */
3223                                 if (child->vdev_islog && vd == rvd)
3224                                         degraded++;
3225                                 else
3226                                         faulted++;
3227                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3228                                 degraded++;
3229                         }
3230
3231                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3232                                 corrupted++;
3233                 }
3234
3235                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3236
3237                 /*
3238                  * Root special: if there is a top-level vdev that cannot be
3239                  * opened due to corrupted metadata, then propagate the root
3240                  * vdev's aux state as 'corrupt' rather than 'insufficient
3241                  * replicas'.
3242                  */
3243                 if (corrupted && vd == rvd &&
3244                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3245                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3246                             VDEV_AUX_CORRUPT_DATA);
3247         }
3248
3249         if (vd->vdev_parent)
3250                 vdev_propagate_state(vd->vdev_parent);
3251 }
3252
3253 /*
3254  * Set a vdev's state.  If this is during an open, we don't update the parent
3255  * state, because we're in the process of opening children depth-first.
3256  * Otherwise, we propagate the change to the parent.
3257  *
3258  * If this routine places a device in a faulted state, an appropriate ereport is
3259  * generated.
3260  */
3261 void
3262 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3263 {
3264         uint64_t save_state;
3265         spa_t *spa = vd->vdev_spa;
3266
3267         if (state == vd->vdev_state) {
3268                 vd->vdev_stat.vs_aux = aux;
3269                 return;
3270         }
3271
3272         save_state = vd->vdev_state;
3273
3274         vd->vdev_state = state;
3275         vd->vdev_stat.vs_aux = aux;
3276
3277         /*
3278          * If we are setting the vdev state to anything but an open state, then
3279          * always close the underlying device unless the device has requested
3280          * a delayed close (i.e. we're about to remove or fault the device).
3281          * Otherwise, we keep accessible but invalid devices open forever.
3282          * We don't call vdev_close() itself, because that implies some extra
3283          * checks (offline, etc) that we don't want here.  This is limited to
3284          * leaf devices, because otherwise closing the device will affect other
3285          * children.
3286          */
3287         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3288             vd->vdev_ops->vdev_op_leaf)
3289                 vd->vdev_ops->vdev_op_close(vd);
3290
3291         /*
3292          * If we have brought this vdev back into service, we need
3293          * to notify fmd so that it can gracefully repair any outstanding
3294          * cases due to a missing device.  We do this in all cases, even those
3295          * that probably don't correlate to a repaired fault.  This is sure to
3296          * catch all cases, and we let the zfs-retire agent sort it out.  If
3297          * this is a transient state it's OK, as the retire agent will
3298          * double-check the state of the vdev before repairing it.
3299          */
3300         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3301             vd->vdev_prevstate != state)
3302                 zfs_post_state_change(spa, vd);
3303
3304         if (vd->vdev_removed &&
3305             state == VDEV_STATE_CANT_OPEN &&
3306             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3307                 /*
3308                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3309                  * device was previously marked removed and someone attempted to
3310                  * reopen it.  If this failed due to a nonexistent device, then
3311                  * keep the device in the REMOVED state.  We also let this be if
3312                  * it is one of our special test online cases, which is only
3313                  * attempting to online the device and shouldn't generate an FMA
3314                  * fault.
3315                  */
3316                 vd->vdev_state = VDEV_STATE_REMOVED;
3317                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3318         } else if (state == VDEV_STATE_REMOVED) {
3319                 vd->vdev_removed = B_TRUE;
3320         } else if (state == VDEV_STATE_CANT_OPEN) {
3321                 /*
3322                  * If we fail to open a vdev during an import or recovery, we
3323                  * mark it as "not available", which signifies that it was
3324                  * never there to begin with.  Failure to open such a device
3325                  * is not considered an error.
3326                  */
3327                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3328                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3329                     vd->vdev_ops->vdev_op_leaf)
3330                         vd->vdev_not_present = 1;
3331
3332                 /*
3333                  * Post the appropriate ereport.  If the 'prevstate' field is
3334                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3335                  * that this is part of a vdev_reopen().  In this case, we don't
3336                  * want to post the ereport if the device was already in the
3337                  * CANT_OPEN state beforehand.
3338                  *
3339                  * If the 'checkremove' flag is set, then this is an attempt to
3340                  * online the device in response to an insertion event.  If we
3341                  * hit this case, then we have detected an insertion event for a
3342                  * faulted or offline device that wasn't in the removed state.
3343                  * In this scenario, we don't post an ereport because we are
3344                  * about to replace the device, or attempt an online with
3345                  * vdev_forcefault, which will generate the fault for us.
3346                  */
3347                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3348                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3349                     vd != spa->spa_root_vdev) {
3350                         const char *class;
3351
3352                         switch (aux) {
3353                         case VDEV_AUX_OPEN_FAILED:
3354                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3355                                 break;
3356                         case VDEV_AUX_CORRUPT_DATA:
3357                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3358                                 break;
3359                         case VDEV_AUX_NO_REPLICAS:
3360                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3361                                 break;
3362                         case VDEV_AUX_BAD_GUID_SUM:
3363                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3364                                 break;
3365                         case VDEV_AUX_TOO_SMALL:
3366                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3367                                 break;
3368                         case VDEV_AUX_BAD_LABEL:
3369                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3370                                 break;
3371                         default:
3372                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3373                         }
3374
3375                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3376                 }
3377
3378                 /* Erase any notion of persistent removed state */
3379                 vd->vdev_removed = B_FALSE;
3380         } else {
3381                 vd->vdev_removed = B_FALSE;
3382         }
3383
3384         if (!isopen && vd->vdev_parent)
3385                 vdev_propagate_state(vd->vdev_parent);
3386 }
3387
3388 /*
3389  * Check the vdev configuration to ensure that it's capable of supporting
3390  * a root pool.
3391  *
3392  * On Solaris, we do not support RAID-Z or partial configuration.  In
3393  * addition, only a single top-level vdev is allowed and none of the
3394  * leaves can be wholedisks.
3395  *
3396  * For FreeBSD, we can boot from any configuration. There is a
3397  * limitation that the boot filesystem must be either uncompressed or
3398  * compresses with lzjb compression but I'm not sure how to enforce
3399  * that here.
3400  */
3401 boolean_t
3402 vdev_is_bootable(vdev_t *vd)
3403 {
3404 #ifdef sun
3405         if (!vd->vdev_ops->vdev_op_leaf) {
3406                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3407
3408                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3409                     vd->vdev_children > 1) {
3410                         return (B_FALSE);
3411                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3412                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3413                         return (B_FALSE);
3414                 }
3415         }
3416
3417         for (int c = 0; c < vd->vdev_children; c++) {
3418                 if (!vdev_is_bootable(vd->vdev_child[c]))
3419                         return (B_FALSE);
3420         }
3421 #endif  /* sun */
3422         return (B_TRUE);
3423 }
3424
3425 /*
3426  * Load the state from the original vdev tree (ovd) which
3427  * we've retrieved from the MOS config object. If the original
3428  * vdev was offline or faulted then we transfer that state to the
3429  * device in the current vdev tree (nvd).
3430  */
3431 void
3432 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3433 {
3434         spa_t *spa = nvd->vdev_spa;
3435
3436         ASSERT(nvd->vdev_top->vdev_islog);
3437         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3438         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3439
3440         for (int c = 0; c < nvd->vdev_children; c++)
3441                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3442
3443         if (nvd->vdev_ops->vdev_op_leaf) {
3444                 /*
3445                  * Restore the persistent vdev state
3446                  */
3447                 nvd->vdev_offline = ovd->vdev_offline;
3448                 nvd->vdev_faulted = ovd->vdev_faulted;
3449                 nvd->vdev_degraded = ovd->vdev_degraded;
3450                 nvd->vdev_removed = ovd->vdev_removed;
3451         }
3452 }
3453
3454 /*
3455  * Determine if a log device has valid content.  If the vdev was
3456  * removed or faulted in the MOS config then we know that
3457  * the content on the log device has already been written to the pool.
3458  */
3459 boolean_t
3460 vdev_log_state_valid(vdev_t *vd)
3461 {
3462         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3463             !vd->vdev_removed)
3464                 return (B_TRUE);
3465
3466         for (int c = 0; c < vd->vdev_children; c++)
3467                 if (vdev_log_state_valid(vd->vdev_child[c]))
3468                         return (B_TRUE);
3469
3470         return (B_FALSE);
3471 }
3472
3473 /*
3474  * Expand a vdev if possible.
3475  */
3476 void
3477 vdev_expand(vdev_t *vd, uint64_t txg)
3478 {
3479         ASSERT(vd->vdev_top == vd);
3480         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3481
3482         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3483                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3484                 vdev_config_dirty(vd);
3485         }
3486 }
3487
3488 /*
3489  * Split a vdev.
3490  */
3491 void
3492 vdev_split(vdev_t *vd)
3493 {
3494         vdev_t *cvd, *pvd = vd->vdev_parent;
3495
3496         vdev_remove_child(pvd, vd);
3497         vdev_compact_children(pvd);
3498
3499         cvd = pvd->vdev_child[0];
3500         if (pvd->vdev_children == 1) {
3501                 vdev_remove_parent(cvd);
3502                 cvd->vdev_splitting = B_TRUE;
3503         }
3504         vdev_propagate_state(cvd);
3505 }
3506
3507 void
3508 vdev_deadman(vdev_t *vd)
3509 {
3510         for (int c = 0; c < vd->vdev_children; c++) {
3511                 vdev_t *cvd = vd->vdev_child[c];
3512
3513                 vdev_deadman(cvd);
3514         }
3515
3516         if (vd->vdev_ops->vdev_op_leaf) {
3517                 vdev_queue_t *vq = &vd->vdev_queue;
3518
3519                 mutex_enter(&vq->vq_lock);
3520                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3521                         spa_t *spa = vd->vdev_spa;
3522                         zio_t *fio;
3523                         uint64_t delta;
3524
3525                         /*
3526                          * Look at the head of all the pending queues,
3527                          * if any I/O has been outstanding for longer than
3528                          * the spa_deadman_synctime we panic the system.
3529                          */
3530                         fio = avl_first(&vq->vq_active_tree);
3531                         delta = gethrtime() - fio->io_timestamp;
3532                         if (delta > spa_deadman_synctime(spa)) {
3533                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3534                                     "delta %lluns, last io %lluns",
3535                                     fio->io_timestamp, delta,
3536                                     vq->vq_io_complete_ts);
3537                                 fm_panic("I/O to pool '%s' appears to be "
3538                                     "hung on vdev guid %llu at '%s'.",
3539                                     spa_name(spa),
3540                                     (long long unsigned int) vd->vdev_guid,
3541                                     vd->vdev_path);
3542                         }
3543                 }
3544                 mutex_exit(&vq->vq_lock);
3545         }
3546 }