]> CyberLeo.Net >> Repos - FreeBSD/releng/10.3.git/blob - sys/dev/hyperv/storvsc/hv_storvsc_drv_freebsd.c
Release 6 errata notices for 10.3-RELEASE, all related to Microsoft Hyper-V.
[FreeBSD/releng/10.3.git] / sys / dev / hyperv / storvsc / hv_storvsc_drv_freebsd.c
1 /*-
2  * Copyright (c) 2009-2012 Microsoft Corp.
3  * Copyright (c) 2012 NetApp Inc.
4  * Copyright (c) 2012 Citrix Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28
29 /**
30  * StorVSC driver for Hyper-V.  This driver presents a SCSI HBA interface
31  * to the Comman Access Method (CAM) layer.  CAM control blocks (CCBs) are
32  * converted into VSCSI protocol messages which are delivered to the parent
33  * partition StorVSP driver over the Hyper-V VMBUS.
34  */
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37
38 #include <sys/param.h>
39 #include <sys/proc.h>
40 #include <sys/condvar.h>
41 #include <sys/time.h>
42 #include <sys/systm.h>
43 #include <sys/sockio.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/module.h>
47 #include <sys/kernel.h>
48 #include <sys/queue.h>
49 #include <sys/lock.h>
50 #include <sys/sx.h>
51 #include <sys/taskqueue.h>
52 #include <sys/bus.h>
53 #include <sys/mutex.h>
54 #include <sys/callout.h>
55 #include <vm/vm.h>
56 #include <vm/pmap.h>
57 #include <vm/uma.h>
58 #include <sys/lock.h>
59 #include <sys/sema.h>
60 #include <sys/sglist.h>
61 #include <machine/bus.h>
62 #include <sys/bus_dma.h>
63
64 #include <cam/cam.h>
65 #include <cam/cam_ccb.h>
66 #include <cam/cam_periph.h>
67 #include <cam/cam_sim.h>
68 #include <cam/cam_xpt_sim.h>
69 #include <cam/cam_xpt_internal.h>
70 #include <cam/cam_debug.h>
71 #include <cam/scsi/scsi_all.h>
72 #include <cam/scsi/scsi_message.h>
73
74 #include <dev/hyperv/include/hyperv.h>
75 #include "hv_vstorage.h"
76
77 #define STORVSC_RINGBUFFER_SIZE         (20*PAGE_SIZE)
78 #define STORVSC_MAX_LUNS_PER_TARGET     (64)
79 #define STORVSC_MAX_IO_REQUESTS         (STORVSC_MAX_LUNS_PER_TARGET * 2)
80 #define BLKVSC_MAX_IDE_DISKS_PER_TARGET (1)
81 #define BLKVSC_MAX_IO_REQUESTS          STORVSC_MAX_IO_REQUESTS
82 #define STORVSC_MAX_TARGETS             (2)
83
84 #define VSTOR_PKT_SIZE  (sizeof(struct vstor_packet) - vmscsi_size_delta)
85
86 #define HV_ALIGN(x, a) roundup2(x, a)
87
88 struct storvsc_softc;
89
90 struct hv_sgl_node {
91         LIST_ENTRY(hv_sgl_node) link;
92         struct sglist *sgl_data;
93 };
94
95 struct hv_sgl_page_pool{
96         LIST_HEAD(, hv_sgl_node) in_use_sgl_list;
97         LIST_HEAD(, hv_sgl_node) free_sgl_list;
98         boolean_t                is_init;
99 } g_hv_sgl_page_pool;
100
101 #define STORVSC_MAX_SG_PAGE_CNT STORVSC_MAX_IO_REQUESTS * HV_MAX_MULTIPAGE_BUFFER_COUNT
102
103 enum storvsc_request_type {
104         WRITE_TYPE,
105         READ_TYPE,
106         UNKNOWN_TYPE
107 };
108
109 struct hv_storvsc_request {
110         LIST_ENTRY(hv_storvsc_request) link;
111         struct vstor_packet     vstor_packet;
112         hv_vmbus_multipage_buffer data_buf;
113         void *sense_data;
114         uint8_t sense_info_len;
115         uint8_t retries;
116         union ccb *ccb;
117         struct storvsc_softc *softc;
118         struct callout callout;
119         struct sema synch_sema; /*Synchronize the request/response if needed */
120         struct sglist *bounce_sgl;
121         unsigned int bounce_sgl_count;
122         uint64_t not_aligned_seg_bits;
123 };
124
125 struct storvsc_softc {
126         struct hv_device                *hs_dev;
127         LIST_HEAD(, hv_storvsc_request) hs_free_list;
128         struct mtx                      hs_lock;
129         struct storvsc_driver_props     *hs_drv_props;
130         int                             hs_unit;
131         uint32_t                        hs_frozen;
132         struct cam_sim                  *hs_sim;
133         struct cam_path                 *hs_path;
134         uint32_t                        hs_num_out_reqs;
135         boolean_t                       hs_destroy;
136         boolean_t                       hs_drain_notify;
137         boolean_t                       hs_open_multi_channel;
138         struct sema                     hs_drain_sema;  
139         struct hv_storvsc_request       hs_init_req;
140         struct hv_storvsc_request       hs_reset_req;
141 };
142
143
144 /**
145  * HyperV storvsc timeout testing cases:
146  * a. IO returned after first timeout;
147  * b. IO returned after second timeout and queue freeze;
148  * c. IO returned while timer handler is running
149  * The first can be tested by "sg_senddiag -vv /dev/daX",
150  * and the second and third can be done by
151  * "sg_wr_mode -v -p 08 -c 0,1a -m 0,ff /dev/daX".
152  */
153 #define HVS_TIMEOUT_TEST 0
154
155 /*
156  * Bus/adapter reset functionality on the Hyper-V host is
157  * buggy and it will be disabled until
158  * it can be further tested.
159  */
160 #define HVS_HOST_RESET 0
161
162 struct storvsc_driver_props {
163         char            *drv_name;
164         char            *drv_desc;
165         uint8_t         drv_max_luns_per_target;
166         uint8_t         drv_max_ios_per_target;
167         uint32_t        drv_ringbuffer_size;
168 };
169
170 enum hv_storage_type {
171         DRIVER_BLKVSC,
172         DRIVER_STORVSC,
173         DRIVER_UNKNOWN
174 };
175
176 #define HS_MAX_ADAPTERS 10
177
178 #define HV_STORAGE_SUPPORTS_MULTI_CHANNEL 0x1
179
180 /* {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} */
181 static const hv_guid gStorVscDeviceType={
182         .data = {0xd9, 0x63, 0x61, 0xba, 0xa1, 0x04, 0x29, 0x4d,
183                  0xb6, 0x05, 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f}
184 };
185
186 /* {32412632-86cb-44a2-9b5c-50d1417354f5} */
187 static const hv_guid gBlkVscDeviceType={
188         .data = {0x32, 0x26, 0x41, 0x32, 0xcb, 0x86, 0xa2, 0x44,
189                  0x9b, 0x5c, 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5}
190 };
191
192 static struct storvsc_driver_props g_drv_props_table[] = {
193         {"blkvsc", "Hyper-V IDE Storage Interface",
194          BLKVSC_MAX_IDE_DISKS_PER_TARGET, BLKVSC_MAX_IO_REQUESTS,
195          STORVSC_RINGBUFFER_SIZE},
196         {"storvsc", "Hyper-V SCSI Storage Interface",
197          STORVSC_MAX_LUNS_PER_TARGET, STORVSC_MAX_IO_REQUESTS,
198          STORVSC_RINGBUFFER_SIZE}
199 };
200
201 /*
202  * Sense buffer size changed in win8; have a run-time
203  * variable to track the size we should use.
204  */
205 static int sense_buffer_size = PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE;
206
207 /*
208  * The size of the vmscsi_request has changed in win8. The
209  * additional size is for the newly added elements in the
210  * structure. These elements are valid only when we are talking
211  * to a win8 host.
212  * Track the correct size we need to apply.
213  */
214 static int vmscsi_size_delta;
215 /*
216  * The storage protocol version is determined during the
217  * initial exchange with the host.  It will indicate which
218  * storage functionality is available in the host.
219 */
220 static int vmstor_proto_version;
221
222 struct vmstor_proto {
223         int proto_version;
224         int sense_buffer_size;
225         int vmscsi_size_delta;
226 };
227
228 static const struct vmstor_proto vmstor_proto_list[] = {
229         {
230                 VMSTOR_PROTOCOL_VERSION_WIN10,
231                 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
232                 0
233         },
234         {
235                 VMSTOR_PROTOCOL_VERSION_WIN8_1,
236                 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
237                 0
238         },
239         {
240                 VMSTOR_PROTOCOL_VERSION_WIN8,
241                 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
242                 0
243         },
244         {
245                 VMSTOR_PROTOCOL_VERSION_WIN7,
246                 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE,
247                 sizeof(struct vmscsi_win8_extension),
248         },
249         {
250                 VMSTOR_PROTOCOL_VERSION_WIN6,
251                 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE,
252                 sizeof(struct vmscsi_win8_extension),
253         }
254 };
255
256 /* static functions */
257 static int storvsc_probe(device_t dev);
258 static int storvsc_attach(device_t dev);
259 static int storvsc_detach(device_t dev);
260 static void storvsc_poll(struct cam_sim * sim);
261 static void storvsc_action(struct cam_sim * sim, union ccb * ccb);
262 static int create_storvsc_request(union ccb *ccb, struct hv_storvsc_request *reqp);
263 static void storvsc_free_request(struct storvsc_softc *sc, struct hv_storvsc_request *reqp);
264 static enum hv_storage_type storvsc_get_storage_type(device_t dev);
265 static void hv_storvsc_rescan_target(struct storvsc_softc *sc);
266 static void hv_storvsc_on_channel_callback(void *context);
267 static void hv_storvsc_on_iocompletion( struct storvsc_softc *sc,
268                                         struct vstor_packet *vstor_packet,
269                                         struct hv_storvsc_request *request);
270 static int hv_storvsc_connect_vsp(struct hv_device *device);
271 static void storvsc_io_done(struct hv_storvsc_request *reqp);
272 static void storvsc_copy_sgl_to_bounce_buf(struct sglist *bounce_sgl,
273                                 bus_dma_segment_t *orig_sgl,
274                                 unsigned int orig_sgl_count,
275                                 uint64_t seg_bits);
276 void storvsc_copy_from_bounce_buf_to_sgl(bus_dma_segment_t *dest_sgl,
277                                 unsigned int dest_sgl_count,
278                                 struct sglist* src_sgl,
279                                 uint64_t seg_bits);
280
281 static device_method_t storvsc_methods[] = {
282         /* Device interface */
283         DEVMETHOD(device_probe,         storvsc_probe),
284         DEVMETHOD(device_attach,        storvsc_attach),
285         DEVMETHOD(device_detach,        storvsc_detach),
286         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
287         DEVMETHOD_END
288 };
289
290 static driver_t storvsc_driver = {
291         "storvsc", storvsc_methods, sizeof(struct storvsc_softc),
292 };
293
294 static devclass_t storvsc_devclass;
295 DRIVER_MODULE(storvsc, vmbus, storvsc_driver, storvsc_devclass, 0, 0);
296 MODULE_VERSION(storvsc, 1);
297 MODULE_DEPEND(storvsc, vmbus, 1, 1, 1);
298
299
300 /**
301  * The host is capable of sending messages to us that are
302  * completely unsolicited. So, we need to address the race
303  * condition where we may be in the process of unloading the
304  * driver when the host may send us an unsolicited message.
305  * We address this issue by implementing a sequentially
306  * consistent protocol:
307  *
308  * 1. Channel callback is invoked while holding the the channel lock
309  *    and an unloading driver will reset the channel callback under
310  *    the protection of this channel lock.
311  *
312  * 2. To ensure bounded wait time for unloading a driver, we don't
313  *    permit outgoing traffic once the device is marked as being
314  *    destroyed.
315  *
316  * 3. Once the device is marked as being destroyed, we only
317  *    permit incoming traffic to properly account for
318  *    packets already sent out.
319  */
320 static inline struct storvsc_softc *
321 get_stor_device(struct hv_device *device,
322                                 boolean_t outbound)
323 {
324         struct storvsc_softc *sc;
325
326         sc = device_get_softc(device->device);
327         if (sc == NULL) {
328                 return NULL;
329         }
330
331         if (outbound) {
332                 /*
333                  * Here we permit outgoing I/O only
334                  * if the device is not being destroyed.
335                  */
336
337                 if (sc->hs_destroy) {
338                         sc = NULL;
339                 }
340         } else {
341                 /*
342                  * inbound case; if being destroyed
343                  * only permit to account for
344                  * messages already sent out.
345                  */
346                 if (sc->hs_destroy && (sc->hs_num_out_reqs == 0)) {
347                         sc = NULL;
348                 }
349         }
350         return sc;
351 }
352
353 /**
354  * @brief Callback handler, will be invoked when receive mutil-channel offer
355  *
356  * @param context  new multi-channel
357  */
358 static void
359 storvsc_handle_sc_creation(void *context)
360 {
361         hv_vmbus_channel *new_channel;
362         struct hv_device *device;
363         struct storvsc_softc *sc;
364         struct vmstor_chan_props props;
365         int ret = 0;
366
367         new_channel = (hv_vmbus_channel *)context;
368         device = new_channel->primary_channel->device;
369         sc = get_stor_device(device, TRUE);
370         if (sc == NULL)
371                 return;
372
373         if (FALSE == sc->hs_open_multi_channel)
374                 return;
375         
376         memset(&props, 0, sizeof(props));
377
378         ret = hv_vmbus_channel_open(new_channel,
379             sc->hs_drv_props->drv_ringbuffer_size,
380             sc->hs_drv_props->drv_ringbuffer_size,
381             (void *)&props,
382             sizeof(struct vmstor_chan_props),
383             hv_storvsc_on_channel_callback,
384             new_channel);
385
386         return;
387 }
388
389 /**
390  * @brief Send multi-channel creation request to host
391  *
392  * @param device  a Hyper-V device pointer
393  * @param max_chans  the max channels supported by vmbus
394  */
395 static void
396 storvsc_send_multichannel_request(struct hv_device *dev, int max_chans)
397 {
398         struct storvsc_softc *sc;
399         struct hv_storvsc_request *request;
400         struct vstor_packet *vstor_packet;      
401         int request_channels_cnt = 0;
402         int ret;
403
404         /* get multichannels count that need to create */
405         request_channels_cnt = MIN(max_chans, mp_ncpus);
406
407         sc = get_stor_device(dev, TRUE);
408         if (sc == NULL) {
409                 printf("Storvsc_error: get sc failed while send mutilchannel "
410                     "request\n");
411                 return;
412         }
413
414         request = &sc->hs_init_req;
415
416         /* Establish a handler for multi-channel */
417         dev->channel->sc_creation_callback = storvsc_handle_sc_creation;
418
419         /* request the host to create multi-channel */
420         memset(request, 0, sizeof(struct hv_storvsc_request));
421         
422         sema_init(&request->synch_sema, 0, ("stor_synch_sema"));
423
424         vstor_packet = &request->vstor_packet;
425         
426         vstor_packet->operation = VSTOR_OPERATION_CREATE_MULTI_CHANNELS;
427         vstor_packet->flags = REQUEST_COMPLETION_FLAG;
428         vstor_packet->u.multi_channels_cnt = request_channels_cnt;
429
430         ret = hv_vmbus_channel_send_packet(
431             dev->channel,
432             vstor_packet,
433             VSTOR_PKT_SIZE,
434             (uint64_t)(uintptr_t)request,
435             HV_VMBUS_PACKET_TYPE_DATA_IN_BAND,
436             HV_VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
437
438         /* wait for 5 seconds */
439         ret = sema_timedwait(&request->synch_sema, 5 * hz);
440         if (ret != 0) {         
441                 printf("Storvsc_error: create multi-channel timeout, %d\n",
442                     ret);
443                 return;
444         }
445
446         if (vstor_packet->operation != VSTOR_OPERATION_COMPLETEIO ||
447             vstor_packet->status != 0) {                
448                 printf("Storvsc_error: create multi-channel invalid operation "
449                     "(%d) or statue (%u)\n",
450                     vstor_packet->operation, vstor_packet->status);
451                 return;
452         }
453
454         sc->hs_open_multi_channel = TRUE;
455
456         if (bootverbose)
457                 printf("Storvsc create multi-channel success!\n");
458 }
459
460 /**
461  * @brief initialize channel connection to parent partition
462  *
463  * @param dev  a Hyper-V device pointer
464  * @returns  0 on success, non-zero error on failure
465  */
466 static int
467 hv_storvsc_channel_init(struct hv_device *dev)
468 {
469         int ret = 0, i;
470         struct hv_storvsc_request *request;
471         struct vstor_packet *vstor_packet;
472         struct storvsc_softc *sc;
473         uint16_t max_chans = 0;
474         boolean_t support_multichannel = FALSE;
475
476         max_chans = 0;
477         support_multichannel = FALSE;
478
479         sc = get_stor_device(dev, TRUE);
480         if (sc == NULL)
481                 return (ENODEV);
482
483         request = &sc->hs_init_req;
484         memset(request, 0, sizeof(struct hv_storvsc_request));
485         vstor_packet = &request->vstor_packet;
486         request->softc = sc;
487
488         /**
489          * Initiate the vsc/vsp initialization protocol on the open channel
490          */
491         sema_init(&request->synch_sema, 0, ("stor_synch_sema"));
492
493         vstor_packet->operation = VSTOR_OPERATION_BEGININITIALIZATION;
494         vstor_packet->flags = REQUEST_COMPLETION_FLAG;
495
496
497         ret = hv_vmbus_channel_send_packet(
498                         dev->channel,
499                         vstor_packet,
500                         VSTOR_PKT_SIZE,
501                         (uint64_t)(uintptr_t)request,
502                         HV_VMBUS_PACKET_TYPE_DATA_IN_BAND,
503                         HV_VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
504
505         if (ret != 0)
506                 goto cleanup;
507
508         /* wait 5 seconds */
509         ret = sema_timedwait(&request->synch_sema, 5 * hz);
510         if (ret != 0)
511                 goto cleanup;
512
513         if (vstor_packet->operation != VSTOR_OPERATION_COMPLETEIO ||
514                 vstor_packet->status != 0) {
515                 goto cleanup;
516         }
517
518         for (i = 0; i < nitems(vmstor_proto_list); i++) {
519                 /* reuse the packet for version range supported */
520
521                 memset(vstor_packet, 0, sizeof(struct vstor_packet));
522                 vstor_packet->operation = VSTOR_OPERATION_QUERYPROTOCOLVERSION;
523                 vstor_packet->flags = REQUEST_COMPLETION_FLAG;
524
525                 vstor_packet->u.version.major_minor =
526                         vmstor_proto_list[i].proto_version;
527
528                 /* revision is only significant for Windows guests */
529                 vstor_packet->u.version.revision = 0;
530
531                 ret = hv_vmbus_channel_send_packet(
532                         dev->channel,
533                         vstor_packet,
534                         VSTOR_PKT_SIZE,
535                         (uint64_t)(uintptr_t)request,
536                         HV_VMBUS_PACKET_TYPE_DATA_IN_BAND,
537                         HV_VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
538
539                 if (ret != 0)
540                         goto cleanup;
541
542                 /* wait 5 seconds */
543                 ret = sema_timedwait(&request->synch_sema, 5 * hz);
544
545                 if (ret)
546                         goto cleanup;
547
548                 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETEIO) {
549                         ret = EINVAL;
550                         goto cleanup;   
551                 }
552                 if (vstor_packet->status == 0) {
553                         vmstor_proto_version =
554                                 vmstor_proto_list[i].proto_version;
555                         sense_buffer_size =
556                                 vmstor_proto_list[i].sense_buffer_size;
557                         vmscsi_size_delta =
558                                 vmstor_proto_list[i].vmscsi_size_delta;
559                         break;
560                 }
561         }
562
563         if (vstor_packet->status != 0) {
564                 ret = EINVAL;
565                 goto cleanup;
566         }
567         /**
568          * Query channel properties
569          */
570         memset(vstor_packet, 0, sizeof(struct vstor_packet));
571         vstor_packet->operation = VSTOR_OPERATION_QUERYPROPERTIES;
572         vstor_packet->flags = REQUEST_COMPLETION_FLAG;
573
574         ret = hv_vmbus_channel_send_packet(
575                                 dev->channel,
576                                 vstor_packet,
577                                 VSTOR_PKT_SIZE,
578                                 (uint64_t)(uintptr_t)request,
579                                 HV_VMBUS_PACKET_TYPE_DATA_IN_BAND,
580                                 HV_VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
581
582         if ( ret != 0)
583                 goto cleanup;
584
585         /* wait 5 seconds */
586         ret = sema_timedwait(&request->synch_sema, 5 * hz);
587
588         if (ret != 0)
589                 goto cleanup;
590
591         /* TODO: Check returned version */
592         if (vstor_packet->operation != VSTOR_OPERATION_COMPLETEIO ||
593             vstor_packet->status != 0) {
594                 goto cleanup;
595         }
596
597         /* multi-channels feature is supported by WIN8 and above version */
598         max_chans = vstor_packet->u.chan_props.max_channel_cnt;
599         if ((hv_vmbus_protocal_version != HV_VMBUS_VERSION_WIN7) &&
600             (hv_vmbus_protocal_version != HV_VMBUS_VERSION_WS2008) &&
601             (vstor_packet->u.chan_props.flags &
602              HV_STORAGE_SUPPORTS_MULTI_CHANNEL)) {
603                 support_multichannel = TRUE;
604         }
605
606         memset(vstor_packet, 0, sizeof(struct vstor_packet));
607         vstor_packet->operation = VSTOR_OPERATION_ENDINITIALIZATION;
608         vstor_packet->flags = REQUEST_COMPLETION_FLAG;
609
610         ret = hv_vmbus_channel_send_packet(
611                         dev->channel,
612                         vstor_packet,
613                         VSTOR_PKT_SIZE,
614                         (uint64_t)(uintptr_t)request,
615                         HV_VMBUS_PACKET_TYPE_DATA_IN_BAND,
616                         HV_VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
617
618         if (ret != 0) {
619                 goto cleanup;
620         }
621
622         /* wait 5 seconds */
623         ret = sema_timedwait(&request->synch_sema, 5 * hz);
624
625         if (ret != 0)
626                 goto cleanup;
627
628         if (vstor_packet->operation != VSTOR_OPERATION_COMPLETEIO ||
629             vstor_packet->status != 0)
630                 goto cleanup;
631
632         /*
633          * If multi-channel is supported, send multichannel create
634          * request to host.
635          */
636         if (support_multichannel)
637                 storvsc_send_multichannel_request(dev, max_chans);
638
639 cleanup:
640         sema_destroy(&request->synch_sema);
641         return (ret);
642 }
643
644 /**
645  * @brief Open channel connection to paraent partition StorVSP driver
646  *
647  * Open and initialize channel connection to parent partition StorVSP driver.
648  *
649  * @param pointer to a Hyper-V device
650  * @returns 0 on success, non-zero error on failure
651  */
652 static int
653 hv_storvsc_connect_vsp(struct hv_device *dev)
654 {       
655         int ret = 0;
656         struct vmstor_chan_props props;
657         struct storvsc_softc *sc;
658
659         sc = device_get_softc(dev->device);
660                 
661         memset(&props, 0, sizeof(struct vmstor_chan_props));
662
663         /*
664          * Open the channel
665          */
666
667         ret = hv_vmbus_channel_open(
668                 dev->channel,
669                 sc->hs_drv_props->drv_ringbuffer_size,
670                 sc->hs_drv_props->drv_ringbuffer_size,
671                 (void *)&props,
672                 sizeof(struct vmstor_chan_props),
673                 hv_storvsc_on_channel_callback,
674                 dev->channel);
675
676         if (ret != 0) {
677                 return ret;
678         }
679
680         ret = hv_storvsc_channel_init(dev);
681
682         return (ret);
683 }
684
685 #if HVS_HOST_RESET
686 static int
687 hv_storvsc_host_reset(struct hv_device *dev)
688 {
689         int ret = 0;
690         struct storvsc_softc *sc;
691
692         struct hv_storvsc_request *request;
693         struct vstor_packet *vstor_packet;
694
695         sc = get_stor_device(dev, TRUE);
696         if (sc == NULL) {
697                 return ENODEV;
698         }
699
700         request = &sc->hs_reset_req;
701         request->softc = sc;
702         vstor_packet = &request->vstor_packet;
703
704         sema_init(&request->synch_sema, 0, "stor synch sema");
705
706         vstor_packet->operation = VSTOR_OPERATION_RESETBUS;
707         vstor_packet->flags = REQUEST_COMPLETION_FLAG;
708
709         ret = hv_vmbus_channel_send_packet(dev->channel,
710                         vstor_packet,
711                         VSTOR_PKT_SIZE,
712                         (uint64_t)(uintptr_t)&sc->hs_reset_req,
713                         HV_VMBUS_PACKET_TYPE_DATA_IN_BAND,
714                         HV_VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
715
716         if (ret != 0) {
717                 goto cleanup;
718         }
719
720         ret = sema_timedwait(&request->synch_sema, 5 * hz); /* KYS 5 seconds */
721
722         if (ret) {
723                 goto cleanup;
724         }
725
726
727         /*
728          * At this point, all outstanding requests in the adapter
729          * should have been flushed out and return to us
730          */
731
732 cleanup:
733         sema_destroy(&request->synch_sema);
734         return (ret);
735 }
736 #endif /* HVS_HOST_RESET */
737
738 /**
739  * @brief Function to initiate an I/O request
740  *
741  * @param device Hyper-V device pointer
742  * @param request pointer to a request structure
743  * @returns 0 on success, non-zero error on failure
744  */
745 static int
746 hv_storvsc_io_request(struct hv_device *device,
747                                           struct hv_storvsc_request *request)
748 {
749         struct storvsc_softc *sc;
750         struct vstor_packet *vstor_packet = &request->vstor_packet;
751         struct hv_vmbus_channel* outgoing_channel = NULL;
752         int ret = 0;
753
754         sc = get_stor_device(device, TRUE);
755
756         if (sc == NULL) {
757                 return ENODEV;
758         }
759
760         vstor_packet->flags |= REQUEST_COMPLETION_FLAG;
761
762         vstor_packet->u.vm_srb.length = VSTOR_PKT_SIZE;
763         
764         vstor_packet->u.vm_srb.sense_info_len = sense_buffer_size;
765
766         vstor_packet->u.vm_srb.transfer_len = request->data_buf.length;
767
768         vstor_packet->operation = VSTOR_OPERATION_EXECUTESRB;
769
770         outgoing_channel = vmbus_select_outgoing_channel(device->channel);
771
772         mtx_unlock(&request->softc->hs_lock);
773         if (request->data_buf.length) {
774                 ret = hv_vmbus_channel_send_packet_multipagebuffer(
775                                 outgoing_channel,
776                                 &request->data_buf,
777                                 vstor_packet,
778                                 VSTOR_PKT_SIZE,
779                                 (uint64_t)(uintptr_t)request);
780
781         } else {
782                 ret = hv_vmbus_channel_send_packet(
783                         outgoing_channel,
784                         vstor_packet,
785                         VSTOR_PKT_SIZE,
786                         (uint64_t)(uintptr_t)request,
787                         HV_VMBUS_PACKET_TYPE_DATA_IN_BAND,
788                         HV_VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
789         }
790         mtx_lock(&request->softc->hs_lock);
791
792         if (ret != 0) {
793                 printf("Unable to send packet %p ret %d", vstor_packet, ret);
794         } else {
795                 atomic_add_int(&sc->hs_num_out_reqs, 1);
796         }
797
798         return (ret);
799 }
800
801
802 /**
803  * Process IO_COMPLETION_OPERATION and ready
804  * the result to be completed for upper layer
805  * processing by the CAM layer.
806  */
807 static void
808 hv_storvsc_on_iocompletion(struct storvsc_softc *sc,
809                            struct vstor_packet *vstor_packet,
810                            struct hv_storvsc_request *request)
811 {
812         struct vmscsi_req *vm_srb;
813
814         vm_srb = &vstor_packet->u.vm_srb;
815
816         /*
817          * Copy some fields of the host's response into the request structure,
818          * because the fields will be used later in storvsc_io_done().
819          */
820         request->vstor_packet.u.vm_srb.scsi_status = vm_srb->scsi_status;
821         request->vstor_packet.u.vm_srb.transfer_len = vm_srb->transfer_len;
822
823         if (((vm_srb->scsi_status & 0xFF) == SCSI_STATUS_CHECK_COND) &&
824                         (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID)) {
825                 /* Autosense data available */
826
827                 KASSERT(vm_srb->sense_info_len <= request->sense_info_len,
828                                 ("vm_srb->sense_info_len <= "
829                                  "request->sense_info_len"));
830
831                 memcpy(request->sense_data, vm_srb->u.sense_data,
832                         vm_srb->sense_info_len);
833
834                 request->sense_info_len = vm_srb->sense_info_len;
835         }
836
837         /* Complete request by passing to the CAM layer */
838         storvsc_io_done(request);
839         atomic_subtract_int(&sc->hs_num_out_reqs, 1);
840         if (sc->hs_drain_notify && (sc->hs_num_out_reqs == 0)) {
841                 sema_post(&sc->hs_drain_sema);
842         }
843 }
844
845 static void
846 hv_storvsc_rescan_target(struct storvsc_softc *sc)
847 {
848         path_id_t pathid;
849         target_id_t targetid;
850         union ccb *ccb;
851
852         pathid = cam_sim_path(sc->hs_sim);
853         targetid = CAM_TARGET_WILDCARD;
854
855         /*
856          * Allocate a CCB and schedule a rescan.
857          */
858         ccb = xpt_alloc_ccb_nowait();
859         if (ccb == NULL) {
860                 printf("unable to alloc CCB for rescan\n");
861                 return;
862         }
863
864         if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid, targetid,
865             CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
866                 printf("unable to create path for rescan, pathid: %d,"
867                     "targetid: %d\n", pathid, targetid);
868                 xpt_free_ccb(ccb);
869                 return;
870         }
871
872         if (targetid == CAM_TARGET_WILDCARD)
873                 ccb->ccb_h.func_code = XPT_SCAN_BUS;
874         else
875                 ccb->ccb_h.func_code = XPT_SCAN_TGT;
876
877         xpt_rescan(ccb);
878 }
879
880 static void
881 hv_storvsc_on_channel_callback(void *context)
882 {
883         int ret = 0;
884         hv_vmbus_channel *channel = (hv_vmbus_channel *)context;
885         struct hv_device *device = NULL;
886         struct storvsc_softc *sc;
887         uint32_t bytes_recvd;
888         uint64_t request_id;
889         uint8_t packet[roundup2(sizeof(struct vstor_packet), 8)];
890         struct hv_storvsc_request *request;
891         struct vstor_packet *vstor_packet;
892
893         if (channel->primary_channel != NULL){
894                 device = channel->primary_channel->device;
895         } else {
896                 device = channel->device;
897         }
898
899         KASSERT(device, ("device is NULL"));
900
901         sc = get_stor_device(device, FALSE);
902         if (sc == NULL) {
903                 printf("Storvsc_error: get stor device failed.\n");
904                 return;
905         }
906
907         ret = hv_vmbus_channel_recv_packet(
908                         channel,
909                         packet,
910                         roundup2(VSTOR_PKT_SIZE, 8),
911                         &bytes_recvd,
912                         &request_id);
913
914         while ((ret == 0) && (bytes_recvd > 0)) {
915                 request = (struct hv_storvsc_request *)(uintptr_t)request_id;
916
917                 if ((request == &sc->hs_init_req) ||
918                         (request == &sc->hs_reset_req)) {
919                         memcpy(&request->vstor_packet, packet,
920                                    sizeof(struct vstor_packet));
921                         sema_post(&request->synch_sema);
922                 } else {
923                         vstor_packet = (struct vstor_packet *)packet;
924                         switch(vstor_packet->operation) {
925                         case VSTOR_OPERATION_COMPLETEIO:
926                                 if (request == NULL)
927                                         panic("VMBUS: storvsc received a "
928                                             "packet with NULL request id in "
929                                             "COMPLETEIO operation.");
930
931                                 hv_storvsc_on_iocompletion(sc,
932                                                         vstor_packet, request);
933                                 break;
934                         case VSTOR_OPERATION_REMOVEDEVICE:
935                                 printf("VMBUS: storvsc operation %d not "
936                                     "implemented.\n", vstor_packet->operation);
937                                 /* TODO: implement */
938                                 break;
939                         case VSTOR_OPERATION_ENUMERATE_BUS:
940                                 hv_storvsc_rescan_target(sc);
941                                 break;
942                         default:
943                                 break;
944                         }                       
945                 }
946                 ret = hv_vmbus_channel_recv_packet(
947                                 channel,
948                                 packet,
949                                 roundup2(VSTOR_PKT_SIZE, 8),
950                                 &bytes_recvd,
951                                 &request_id);
952         }
953 }
954
955 /**
956  * @brief StorVSC probe function
957  *
958  * Device probe function.  Returns 0 if the input device is a StorVSC
959  * device.  Otherwise, a ENXIO is returned.  If the input device is
960  * for BlkVSC (paravirtual IDE) device and this support is disabled in
961  * favor of the emulated ATA/IDE device, return ENXIO.
962  *
963  * @param a device
964  * @returns 0 on success, ENXIO if not a matcing StorVSC device
965  */
966 static int
967 storvsc_probe(device_t dev)
968 {
969         int ata_disk_enable = 0;
970         int ret = ENXIO;
971         
972         switch (storvsc_get_storage_type(dev)) {
973         case DRIVER_BLKVSC:
974                 if(bootverbose)
975                         device_printf(dev, "DRIVER_BLKVSC-Emulated ATA/IDE probe\n");
976                 if (!getenv_int("hw.ata.disk_enable", &ata_disk_enable)) {
977                         if(bootverbose)
978                                 device_printf(dev,
979                                         "Enlightened ATA/IDE detected\n");
980                         ret = BUS_PROBE_DEFAULT;
981                 } else if(bootverbose)
982                         device_printf(dev, "Emulated ATA/IDE set (hw.ata.disk_enable set)\n");
983                 break;
984         case DRIVER_STORVSC:
985                 if(bootverbose)
986                         device_printf(dev, "Enlightened SCSI device detected\n");
987                 ret = BUS_PROBE_DEFAULT;
988                 break;
989         default:
990                 ret = ENXIO;
991         }
992         return (ret);
993 }
994
995 /**
996  * @brief StorVSC attach function
997  *
998  * Function responsible for allocating per-device structures,
999  * setting up CAM interfaces and scanning for available LUNs to
1000  * be used for SCSI device peripherals.
1001  *
1002  * @param a device
1003  * @returns 0 on success or an error on failure
1004  */
1005 static int
1006 storvsc_attach(device_t dev)
1007 {
1008         struct hv_device *hv_dev = vmbus_get_devctx(dev);
1009         enum hv_storage_type stor_type;
1010         struct storvsc_softc *sc;
1011         struct cam_devq *devq;
1012         int ret, i, j;
1013         struct hv_storvsc_request *reqp;
1014         struct root_hold_token *root_mount_token = NULL;
1015         struct hv_sgl_node *sgl_node = NULL;
1016         void *tmp_buff = NULL;
1017
1018         /*
1019          * We need to serialize storvsc attach calls.
1020          */
1021         root_mount_token = root_mount_hold("storvsc");
1022
1023         sc = device_get_softc(dev);
1024         if (sc == NULL) {
1025                 ret = ENOMEM;
1026                 goto cleanup;
1027         }
1028
1029         stor_type = storvsc_get_storage_type(dev);
1030
1031         if (stor_type == DRIVER_UNKNOWN) {
1032                 ret = ENODEV;
1033                 goto cleanup;
1034         }
1035
1036         bzero(sc, sizeof(struct storvsc_softc));
1037
1038         /* fill in driver specific properties */
1039         sc->hs_drv_props = &g_drv_props_table[stor_type];
1040
1041         /* fill in device specific properties */
1042         sc->hs_unit     = device_get_unit(dev);
1043         sc->hs_dev      = hv_dev;
1044         device_set_desc(dev, g_drv_props_table[stor_type].drv_desc);
1045
1046         LIST_INIT(&sc->hs_free_list);
1047         mtx_init(&sc->hs_lock, "hvslck", NULL, MTX_DEF);
1048
1049         for (i = 0; i < sc->hs_drv_props->drv_max_ios_per_target; ++i) {
1050                 reqp = malloc(sizeof(struct hv_storvsc_request),
1051                                  M_DEVBUF, M_WAITOK|M_ZERO);
1052                 reqp->softc = sc;
1053
1054                 LIST_INSERT_HEAD(&sc->hs_free_list, reqp, link);
1055         }
1056
1057         /* create sg-list page pool */
1058         if (FALSE == g_hv_sgl_page_pool.is_init) {
1059                 g_hv_sgl_page_pool.is_init = TRUE;
1060                 LIST_INIT(&g_hv_sgl_page_pool.in_use_sgl_list);
1061                 LIST_INIT(&g_hv_sgl_page_pool.free_sgl_list);
1062
1063                 /*
1064                  * Pre-create SG list, each SG list with
1065                  * HV_MAX_MULTIPAGE_BUFFER_COUNT segments, each
1066                  * segment has one page buffer
1067                  */
1068                 for (i = 0; i < STORVSC_MAX_IO_REQUESTS; i++) {
1069                         sgl_node = malloc(sizeof(struct hv_sgl_node),
1070                             M_DEVBUF, M_WAITOK|M_ZERO);
1071
1072                         sgl_node->sgl_data =
1073                             sglist_alloc(HV_MAX_MULTIPAGE_BUFFER_COUNT,
1074                             M_WAITOK|M_ZERO);
1075
1076                         for (j = 0; j < HV_MAX_MULTIPAGE_BUFFER_COUNT; j++) {
1077                                 tmp_buff = malloc(PAGE_SIZE,
1078                                     M_DEVBUF, M_WAITOK|M_ZERO);
1079
1080                                 sgl_node->sgl_data->sg_segs[j].ss_paddr =
1081                                     (vm_paddr_t)tmp_buff;
1082                         }
1083
1084                         LIST_INSERT_HEAD(&g_hv_sgl_page_pool.free_sgl_list,
1085                             sgl_node, link);
1086                 }
1087         }
1088
1089         sc->hs_destroy = FALSE;
1090         sc->hs_drain_notify = FALSE;
1091         sc->hs_open_multi_channel = FALSE;
1092         sema_init(&sc->hs_drain_sema, 0, "Store Drain Sema");
1093
1094         ret = hv_storvsc_connect_vsp(hv_dev);
1095         if (ret != 0) {
1096                 goto cleanup;
1097         }
1098
1099         /*
1100          * Create the device queue.
1101          * Hyper-V maps each target to one SCSI HBA
1102          */
1103         devq = cam_simq_alloc(sc->hs_drv_props->drv_max_ios_per_target);
1104         if (devq == NULL) {
1105                 device_printf(dev, "Failed to alloc device queue\n");
1106                 ret = ENOMEM;
1107                 goto cleanup;
1108         }
1109
1110         sc->hs_sim = cam_sim_alloc(storvsc_action,
1111                                 storvsc_poll,
1112                                 sc->hs_drv_props->drv_name,
1113                                 sc,
1114                                 sc->hs_unit,
1115                                 &sc->hs_lock, 1,
1116                                 sc->hs_drv_props->drv_max_ios_per_target,
1117                                 devq);
1118
1119         if (sc->hs_sim == NULL) {
1120                 device_printf(dev, "Failed to alloc sim\n");
1121                 cam_simq_free(devq);
1122                 ret = ENOMEM;
1123                 goto cleanup;
1124         }
1125
1126         mtx_lock(&sc->hs_lock);
1127         /* bus_id is set to 0, need to get it from VMBUS channel query? */
1128         if (xpt_bus_register(sc->hs_sim, dev, 0) != CAM_SUCCESS) {
1129                 cam_sim_free(sc->hs_sim, /*free_devq*/TRUE);
1130                 mtx_unlock(&sc->hs_lock);
1131                 device_printf(dev, "Unable to register SCSI bus\n");
1132                 ret = ENXIO;
1133                 goto cleanup;
1134         }
1135
1136         if (xpt_create_path(&sc->hs_path, /*periph*/NULL,
1137                  cam_sim_path(sc->hs_sim),
1138                 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
1139                 xpt_bus_deregister(cam_sim_path(sc->hs_sim));
1140                 cam_sim_free(sc->hs_sim, /*free_devq*/TRUE);
1141                 mtx_unlock(&sc->hs_lock);
1142                 device_printf(dev, "Unable to create path\n");
1143                 ret = ENXIO;
1144                 goto cleanup;
1145         }
1146
1147         mtx_unlock(&sc->hs_lock);
1148
1149         root_mount_rel(root_mount_token);
1150         return (0);
1151
1152
1153 cleanup:
1154         root_mount_rel(root_mount_token);
1155         while (!LIST_EMPTY(&sc->hs_free_list)) {
1156                 reqp = LIST_FIRST(&sc->hs_free_list);
1157                 LIST_REMOVE(reqp, link);
1158                 free(reqp, M_DEVBUF);
1159         }
1160
1161         while (!LIST_EMPTY(&g_hv_sgl_page_pool.free_sgl_list)) {
1162                 sgl_node = LIST_FIRST(&g_hv_sgl_page_pool.free_sgl_list);
1163                 LIST_REMOVE(sgl_node, link);
1164                 for (j = 0; j < HV_MAX_MULTIPAGE_BUFFER_COUNT; j++) {
1165                         if (NULL !=
1166                             (void*)sgl_node->sgl_data->sg_segs[j].ss_paddr) {
1167                                 free((void*)sgl_node->sgl_data->sg_segs[j].ss_paddr, M_DEVBUF);
1168                         }
1169                 }
1170                 sglist_free(sgl_node->sgl_data);
1171                 free(sgl_node, M_DEVBUF);
1172         }
1173
1174         return (ret);
1175 }
1176
1177 /**
1178  * @brief StorVSC device detach function
1179  *
1180  * This function is responsible for safely detaching a
1181  * StorVSC device.  This includes waiting for inbound responses
1182  * to complete and freeing associated per-device structures.
1183  *
1184  * @param dev a device
1185  * returns 0 on success
1186  */
1187 static int
1188 storvsc_detach(device_t dev)
1189 {
1190         struct storvsc_softc *sc = device_get_softc(dev);
1191         struct hv_storvsc_request *reqp = NULL;
1192         struct hv_device *hv_device = vmbus_get_devctx(dev);
1193         struct hv_sgl_node *sgl_node = NULL;
1194         int j = 0;
1195
1196         mtx_lock(&hv_device->channel->inbound_lock);
1197         sc->hs_destroy = TRUE;
1198         mtx_unlock(&hv_device->channel->inbound_lock);
1199
1200         /*
1201          * At this point, all outbound traffic should be disabled. We
1202          * only allow inbound traffic (responses) to proceed so that
1203          * outstanding requests can be completed.
1204          */
1205
1206         sc->hs_drain_notify = TRUE;
1207         sema_wait(&sc->hs_drain_sema);
1208         sc->hs_drain_notify = FALSE;
1209
1210         /*
1211          * Since we have already drained, we don't need to busy wait.
1212          * The call to close the channel will reset the callback
1213          * under the protection of the incoming channel lock.
1214          */
1215
1216         hv_vmbus_channel_close(hv_device->channel);
1217
1218         mtx_lock(&sc->hs_lock);
1219         while (!LIST_EMPTY(&sc->hs_free_list)) {
1220                 reqp = LIST_FIRST(&sc->hs_free_list);
1221                 LIST_REMOVE(reqp, link);
1222
1223                 free(reqp, M_DEVBUF);
1224         }
1225         mtx_unlock(&sc->hs_lock);
1226
1227         while (!LIST_EMPTY(&g_hv_sgl_page_pool.free_sgl_list)) {
1228                 sgl_node = LIST_FIRST(&g_hv_sgl_page_pool.free_sgl_list);
1229                 LIST_REMOVE(sgl_node, link);
1230                 for (j = 0; j < HV_MAX_MULTIPAGE_BUFFER_COUNT; j++){
1231                         if (NULL !=
1232                             (void*)sgl_node->sgl_data->sg_segs[j].ss_paddr) {
1233                                 free((void*)sgl_node->sgl_data->sg_segs[j].ss_paddr, M_DEVBUF);
1234                         }
1235                 }
1236                 sglist_free(sgl_node->sgl_data);
1237                 free(sgl_node, M_DEVBUF);
1238         }
1239         
1240         return (0);
1241 }
1242
1243 #if HVS_TIMEOUT_TEST
1244 /**
1245  * @brief unit test for timed out operations
1246  *
1247  * This function provides unit testing capability to simulate
1248  * timed out operations.  Recompilation with HV_TIMEOUT_TEST=1
1249  * is required.
1250  *
1251  * @param reqp pointer to a request structure
1252  * @param opcode SCSI operation being performed
1253  * @param wait if 1, wait for I/O to complete
1254  */
1255 static void
1256 storvsc_timeout_test(struct hv_storvsc_request *reqp,
1257                 uint8_t opcode, int wait)
1258 {
1259         int ret;
1260         union ccb *ccb = reqp->ccb;
1261         struct storvsc_softc *sc = reqp->softc;
1262
1263         if (reqp->vstor_packet.vm_srb.cdb[0] != opcode) {
1264                 return;
1265         }
1266
1267         if (wait) {
1268                 mtx_lock(&reqp->event.mtx);
1269         }
1270         ret = hv_storvsc_io_request(sc->hs_dev, reqp);
1271         if (ret != 0) {
1272                 if (wait) {
1273                         mtx_unlock(&reqp->event.mtx);
1274                 }
1275                 printf("%s: io_request failed with %d.\n",
1276                                 __func__, ret);
1277                 ccb->ccb_h.status = CAM_PROVIDE_FAIL;
1278                 mtx_lock(&sc->hs_lock);
1279                 storvsc_free_request(sc, reqp);
1280                 xpt_done(ccb);
1281                 mtx_unlock(&sc->hs_lock);
1282                 return;
1283         }
1284
1285         if (wait) {
1286                 xpt_print(ccb->ccb_h.path,
1287                                 "%u: %s: waiting for IO return.\n",
1288                                 ticks, __func__);
1289                 ret = cv_timedwait(&reqp->event.cv, &reqp->event.mtx, 60*hz);
1290                 mtx_unlock(&reqp->event.mtx);
1291                 xpt_print(ccb->ccb_h.path, "%u: %s: %s.\n",
1292                                 ticks, __func__, (ret == 0)?
1293                                 "IO return detected" :
1294                                 "IO return not detected");
1295                 /*
1296                  * Now both the timer handler and io done are running
1297                  * simultaneously. We want to confirm the io done always
1298                  * finishes after the timer handler exits. So reqp used by
1299                  * timer handler is not freed or stale. Do busy loop for
1300                  * another 1/10 second to make sure io done does
1301                  * wait for the timer handler to complete.
1302                  */
1303                 DELAY(100*1000);
1304                 mtx_lock(&sc->hs_lock);
1305                 xpt_print(ccb->ccb_h.path,
1306                                 "%u: %s: finishing, queue frozen %d, "
1307                                 "ccb status 0x%x scsi_status 0x%x.\n",
1308                                 ticks, __func__, sc->hs_frozen,
1309                                 ccb->ccb_h.status,
1310                                 ccb->csio.scsi_status);
1311                 mtx_unlock(&sc->hs_lock);
1312         }
1313 }
1314 #endif /* HVS_TIMEOUT_TEST */
1315
1316 #ifdef notyet
1317 /**
1318  * @brief timeout handler for requests
1319  *
1320  * This function is called as a result of a callout expiring.
1321  *
1322  * @param arg pointer to a request
1323  */
1324 static void
1325 storvsc_timeout(void *arg)
1326 {
1327         struct hv_storvsc_request *reqp = arg;
1328         struct storvsc_softc *sc = reqp->softc;
1329         union ccb *ccb = reqp->ccb;
1330
1331         if (reqp->retries == 0) {
1332                 mtx_lock(&sc->hs_lock);
1333                 xpt_print(ccb->ccb_h.path,
1334                     "%u: IO timed out (req=0x%p), wait for another %u secs.\n",
1335                     ticks, reqp, ccb->ccb_h.timeout / 1000);
1336                 cam_error_print(ccb, CAM_ESF_ALL, CAM_EPF_ALL);
1337                 mtx_unlock(&sc->hs_lock);
1338
1339                 reqp->retries++;
1340                 callout_reset_sbt(&reqp->callout, SBT_1MS * ccb->ccb_h.timeout,
1341                     0, storvsc_timeout, reqp, 0);
1342 #if HVS_TIMEOUT_TEST
1343                 storvsc_timeout_test(reqp, SEND_DIAGNOSTIC, 0);
1344 #endif
1345                 return;
1346         }
1347
1348         mtx_lock(&sc->hs_lock);
1349         xpt_print(ccb->ccb_h.path,
1350                 "%u: IO (reqp = 0x%p) did not return for %u seconds, %s.\n",
1351                 ticks, reqp, ccb->ccb_h.timeout * (reqp->retries+1) / 1000,
1352                 (sc->hs_frozen == 0)?
1353                 "freezing the queue" : "the queue is already frozen");
1354         if (sc->hs_frozen == 0) {
1355                 sc->hs_frozen = 1;
1356                 xpt_freeze_simq(xpt_path_sim(ccb->ccb_h.path), 1);
1357         }
1358         mtx_unlock(&sc->hs_lock);
1359         
1360 #if HVS_TIMEOUT_TEST
1361         storvsc_timeout_test(reqp, MODE_SELECT_10, 1);
1362 #endif
1363 }
1364 #endif
1365
1366 /**
1367  * @brief StorVSC device poll function
1368  *
1369  * This function is responsible for servicing requests when
1370  * interrupts are disabled (i.e when we are dumping core.)
1371  *
1372  * @param sim a pointer to a CAM SCSI interface module
1373  */
1374 static void
1375 storvsc_poll(struct cam_sim *sim)
1376 {
1377         struct storvsc_softc *sc = cam_sim_softc(sim);
1378
1379         mtx_assert(&sc->hs_lock, MA_OWNED);
1380         mtx_unlock(&sc->hs_lock);
1381         hv_storvsc_on_channel_callback(sc->hs_dev->channel);
1382         mtx_lock(&sc->hs_lock);
1383 }
1384
1385 /**
1386  * @brief StorVSC device action function
1387  *
1388  * This function is responsible for handling SCSI operations which
1389  * are passed from the CAM layer.  The requests are in the form of
1390  * CAM control blocks which indicate the action being performed.
1391  * Not all actions require converting the request to a VSCSI protocol
1392  * message - these actions can be responded to by this driver.
1393  * Requests which are destined for a backend storage device are converted
1394  * to a VSCSI protocol message and sent on the channel connection associated
1395  * with this device.
1396  *
1397  * @param sim pointer to a CAM SCSI interface module
1398  * @param ccb pointer to a CAM control block
1399  */
1400 static void
1401 storvsc_action(struct cam_sim *sim, union ccb *ccb)
1402 {
1403         struct storvsc_softc *sc = cam_sim_softc(sim);
1404         int res;
1405
1406         mtx_assert(&sc->hs_lock, MA_OWNED);
1407         switch (ccb->ccb_h.func_code) {
1408         case XPT_PATH_INQ: {
1409                 struct ccb_pathinq *cpi = &ccb->cpi;
1410
1411                 cpi->version_num = 1;
1412                 cpi->hba_inquiry = PI_TAG_ABLE|PI_SDTR_ABLE;
1413                 cpi->target_sprt = 0;
1414                 cpi->hba_misc = PIM_NOBUSRESET;
1415                 cpi->hba_eng_cnt = 0;
1416                 cpi->max_target = STORVSC_MAX_TARGETS;
1417                 cpi->max_lun = sc->hs_drv_props->drv_max_luns_per_target;
1418                 cpi->initiator_id = cpi->max_target;
1419                 cpi->bus_id = cam_sim_bus(sim);
1420                 cpi->base_transfer_speed = 300000;
1421                 cpi->transport = XPORT_SAS;
1422                 cpi->transport_version = 0;
1423                 cpi->protocol = PROTO_SCSI;
1424                 cpi->protocol_version = SCSI_REV_SPC2;
1425                 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
1426                 strncpy(cpi->hba_vid, sc->hs_drv_props->drv_name, HBA_IDLEN);
1427                 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
1428                 cpi->unit_number = cam_sim_unit(sim);
1429
1430                 ccb->ccb_h.status = CAM_REQ_CMP;
1431                 xpt_done(ccb);
1432                 return;
1433         }
1434         case XPT_GET_TRAN_SETTINGS: {
1435                 struct  ccb_trans_settings *cts = &ccb->cts;
1436
1437                 cts->transport = XPORT_SAS;
1438                 cts->transport_version = 0;
1439                 cts->protocol = PROTO_SCSI;
1440                 cts->protocol_version = SCSI_REV_SPC2;
1441
1442                 /* enable tag queuing and disconnected mode */
1443                 cts->proto_specific.valid = CTS_SCSI_VALID_TQ;
1444                 cts->proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
1445                 cts->proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
1446                 cts->xport_specific.valid = CTS_SPI_VALID_DISC;
1447                 cts->xport_specific.spi.flags = CTS_SPI_FLAGS_DISC_ENB;
1448                         
1449                 ccb->ccb_h.status = CAM_REQ_CMP;
1450                 xpt_done(ccb);
1451                 return;
1452         }
1453         case XPT_SET_TRAN_SETTINGS:     {
1454                 ccb->ccb_h.status = CAM_REQ_CMP;
1455                 xpt_done(ccb);
1456                 return;
1457         }
1458         case XPT_CALC_GEOMETRY:{
1459                 cam_calc_geometry(&ccb->ccg, 1);
1460                 xpt_done(ccb);
1461                 return;
1462         }
1463         case  XPT_RESET_BUS:
1464         case  XPT_RESET_DEV:{
1465 #if HVS_HOST_RESET
1466                 if ((res = hv_storvsc_host_reset(sc->hs_dev)) != 0) {
1467                         xpt_print(ccb->ccb_h.path,
1468                                 "hv_storvsc_host_reset failed with %d\n", res);
1469                         ccb->ccb_h.status = CAM_PROVIDE_FAIL;
1470                         xpt_done(ccb);
1471                         return;
1472                 }
1473                 ccb->ccb_h.status = CAM_REQ_CMP;
1474                 xpt_done(ccb);
1475                 return;
1476 #else
1477                 xpt_print(ccb->ccb_h.path,
1478                                   "%s reset not supported.\n",
1479                                   (ccb->ccb_h.func_code == XPT_RESET_BUS)?
1480                                   "bus" : "dev");
1481                 ccb->ccb_h.status = CAM_REQ_INVALID;
1482                 xpt_done(ccb);
1483                 return;
1484 #endif  /* HVS_HOST_RESET */
1485         }
1486         case XPT_SCSI_IO:
1487         case XPT_IMMED_NOTIFY: {
1488                 struct hv_storvsc_request *reqp = NULL;
1489
1490                 if (ccb->csio.cdb_len == 0) {
1491                         panic("cdl_len is 0\n");
1492                 }
1493
1494                 if (LIST_EMPTY(&sc->hs_free_list)) {
1495                         ccb->ccb_h.status = CAM_REQUEUE_REQ;
1496                         if (sc->hs_frozen == 0) {
1497                                 sc->hs_frozen = 1;
1498                                 xpt_freeze_simq(sim, /* count*/1);
1499                         }
1500                         xpt_done(ccb);
1501                         return;
1502                 }
1503
1504                 reqp = LIST_FIRST(&sc->hs_free_list);
1505                 LIST_REMOVE(reqp, link);
1506
1507                 bzero(reqp, sizeof(struct hv_storvsc_request));
1508                 reqp->softc = sc;
1509                 
1510                 ccb->ccb_h.status |= CAM_SIM_QUEUED;
1511                 if ((res = create_storvsc_request(ccb, reqp)) != 0) {
1512                         ccb->ccb_h.status = CAM_REQ_INVALID;
1513                         xpt_done(ccb);
1514                         return;
1515                 }
1516
1517 #ifdef notyet
1518                 if (ccb->ccb_h.timeout != CAM_TIME_INFINITY) {
1519                         callout_init(&reqp->callout, CALLOUT_MPSAFE);
1520                         callout_reset_sbt(&reqp->callout,
1521                             SBT_1MS * ccb->ccb_h.timeout, 0,
1522                             storvsc_timeout, reqp, 0);
1523 #if HVS_TIMEOUT_TEST
1524                         cv_init(&reqp->event.cv, "storvsc timeout cv");
1525                         mtx_init(&reqp->event.mtx, "storvsc timeout mutex",
1526                                         NULL, MTX_DEF);
1527                         switch (reqp->vstor_packet.vm_srb.cdb[0]) {
1528                                 case MODE_SELECT_10:
1529                                 case SEND_DIAGNOSTIC:
1530                                         /* To have timer send the request. */
1531                                         return;
1532                                 default:
1533                                         break;
1534                         }
1535 #endif /* HVS_TIMEOUT_TEST */
1536                 }
1537 #endif
1538
1539                 if ((res = hv_storvsc_io_request(sc->hs_dev, reqp)) != 0) {
1540                         xpt_print(ccb->ccb_h.path,
1541                                 "hv_storvsc_io_request failed with %d\n", res);
1542                         ccb->ccb_h.status = CAM_PROVIDE_FAIL;
1543                         storvsc_free_request(sc, reqp);
1544                         xpt_done(ccb);
1545                         return;
1546                 }
1547                 return;
1548         }
1549
1550         default:
1551                 ccb->ccb_h.status = CAM_REQ_INVALID;
1552                 xpt_done(ccb);
1553                 return;
1554         }
1555 }
1556
1557 /**
1558  * @brief destroy bounce buffer
1559  *
1560  * This function is responsible for destroy a Scatter/Gather list
1561  * that create by storvsc_create_bounce_buffer()
1562  *
1563  * @param sgl- the Scatter/Gather need be destroy
1564  * @param sg_count- page count of the SG list.
1565  *
1566  */
1567 static void
1568 storvsc_destroy_bounce_buffer(struct sglist *sgl)
1569 {
1570         struct hv_sgl_node *sgl_node = NULL;
1571
1572         sgl_node = LIST_FIRST(&g_hv_sgl_page_pool.in_use_sgl_list);
1573         LIST_REMOVE(sgl_node, link);
1574         if (NULL == sgl_node) {
1575                 printf("storvsc error: not enough in use sgl\n");
1576                 return;
1577         }
1578         sgl_node->sgl_data = sgl;
1579         LIST_INSERT_HEAD(&g_hv_sgl_page_pool.free_sgl_list, sgl_node, link);
1580 }
1581
1582 /**
1583  * @brief create bounce buffer
1584  *
1585  * This function is responsible for create a Scatter/Gather list,
1586  * which hold several pages that can be aligned with page size.
1587  *
1588  * @param seg_count- SG-list segments count
1589  * @param write - if WRITE_TYPE, set SG list page used size to 0,
1590  * otherwise set used size to page size.
1591  *
1592  * return NULL if create failed
1593  */
1594 static struct sglist *
1595 storvsc_create_bounce_buffer(uint16_t seg_count, int write)
1596 {
1597         int i = 0;
1598         struct sglist *bounce_sgl = NULL;
1599         unsigned int buf_len = ((write == WRITE_TYPE) ? 0 : PAGE_SIZE);
1600         struct hv_sgl_node *sgl_node = NULL;    
1601
1602         /* get struct sglist from free_sgl_list */
1603         sgl_node = LIST_FIRST(&g_hv_sgl_page_pool.free_sgl_list);
1604         LIST_REMOVE(sgl_node, link);
1605         if (NULL == sgl_node) {
1606                 printf("storvsc error: not enough free sgl\n");
1607                 return NULL;
1608         }
1609         bounce_sgl = sgl_node->sgl_data;
1610         LIST_INSERT_HEAD(&g_hv_sgl_page_pool.in_use_sgl_list, sgl_node, link);
1611
1612         bounce_sgl->sg_maxseg = seg_count;
1613
1614         if (write == WRITE_TYPE)
1615                 bounce_sgl->sg_nseg = 0;
1616         else
1617                 bounce_sgl->sg_nseg = seg_count;
1618
1619         for (i = 0; i < seg_count; i++)
1620                 bounce_sgl->sg_segs[i].ss_len = buf_len;
1621
1622         return bounce_sgl;
1623 }
1624
1625 /**
1626  * @brief copy data from SG list to bounce buffer
1627  *
1628  * This function is responsible for copy data from one SG list's segments
1629  * to another SG list which used as bounce buffer.
1630  *
1631  * @param bounce_sgl - the destination SG list
1632  * @param orig_sgl - the segment of the source SG list.
1633  * @param orig_sgl_count - the count of segments.
1634  * @param orig_sgl_count - indicate which segment need bounce buffer,
1635  *  set 1 means need.
1636  *
1637  */
1638 static void
1639 storvsc_copy_sgl_to_bounce_buf(struct sglist *bounce_sgl,
1640                                bus_dma_segment_t *orig_sgl,
1641                                unsigned int orig_sgl_count,
1642                                uint64_t seg_bits)
1643 {
1644         int src_sgl_idx = 0;
1645
1646         for (src_sgl_idx = 0; src_sgl_idx < orig_sgl_count; src_sgl_idx++) {
1647                 if (seg_bits & (1 << src_sgl_idx)) {
1648                         memcpy((void*)bounce_sgl->sg_segs[src_sgl_idx].ss_paddr,
1649                             (void*)orig_sgl[src_sgl_idx].ds_addr,
1650                             orig_sgl[src_sgl_idx].ds_len);
1651
1652                         bounce_sgl->sg_segs[src_sgl_idx].ss_len =
1653                             orig_sgl[src_sgl_idx].ds_len;
1654                 }
1655         }
1656 }
1657
1658 /**
1659  * @brief copy data from SG list which used as bounce to another SG list
1660  *
1661  * This function is responsible for copy data from one SG list with bounce
1662  * buffer to another SG list's segments.
1663  *
1664  * @param dest_sgl - the destination SG list's segments
1665  * @param dest_sgl_count - the count of destination SG list's segment.
1666  * @param src_sgl - the source SG list.
1667  * @param seg_bits - indicate which segment used bounce buffer of src SG-list.
1668  *
1669  */
1670 void
1671 storvsc_copy_from_bounce_buf_to_sgl(bus_dma_segment_t *dest_sgl,
1672                                     unsigned int dest_sgl_count,
1673                                     struct sglist* src_sgl,
1674                                     uint64_t seg_bits)
1675 {
1676         int sgl_idx = 0;
1677         
1678         for (sgl_idx = 0; sgl_idx < dest_sgl_count; sgl_idx++) {
1679                 if (seg_bits & (1 << sgl_idx)) {
1680                         memcpy((void*)(dest_sgl[sgl_idx].ds_addr),
1681                             (void*)(src_sgl->sg_segs[sgl_idx].ss_paddr),
1682                             src_sgl->sg_segs[sgl_idx].ss_len);
1683                 }
1684         }
1685 }
1686
1687 /**
1688  * @brief check SG list with bounce buffer or not
1689  *
1690  * This function is responsible for check if need bounce buffer for SG list.
1691  *
1692  * @param sgl - the SG list's segments
1693  * @param sg_count - the count of SG list's segment.
1694  * @param bits - segmengs number that need bounce buffer
1695  *
1696  * return -1 if SG list needless bounce buffer
1697  */
1698 static int
1699 storvsc_check_bounce_buffer_sgl(bus_dma_segment_t *sgl,
1700                                 unsigned int sg_count,
1701                                 uint64_t *bits)
1702 {
1703         int i = 0;
1704         int offset = 0;
1705         uint64_t phys_addr = 0;
1706         uint64_t tmp_bits = 0;
1707         boolean_t found_hole = FALSE;
1708         boolean_t pre_aligned = TRUE;
1709
1710         if (sg_count < 2){
1711                 return -1;
1712         }
1713
1714         *bits = 0;
1715         
1716         phys_addr = vtophys(sgl[0].ds_addr);
1717         offset =  phys_addr - trunc_page(phys_addr);
1718
1719         if (offset != 0) {
1720                 pre_aligned = FALSE;
1721                 tmp_bits |= 1;
1722         }
1723
1724         for (i = 1; i < sg_count; i++) {
1725                 phys_addr = vtophys(sgl[i].ds_addr);
1726                 offset =  phys_addr - trunc_page(phys_addr);
1727
1728                 if (offset == 0) {
1729                         if (FALSE == pre_aligned){
1730                                 /*
1731                                  * This segment is aligned, if the previous
1732                                  * one is not aligned, find a hole
1733                                  */
1734                                 found_hole = TRUE;
1735                         }
1736                         pre_aligned = TRUE;
1737                 } else {
1738                         tmp_bits |= 1 << i;
1739                         if (!pre_aligned) {
1740                                 if (phys_addr != vtophys(sgl[i-1].ds_addr +
1741                                     sgl[i-1].ds_len)) {
1742                                         /*
1743                                          * Check whether connect to previous
1744                                          * segment,if not, find the hole
1745                                          */
1746                                         found_hole = TRUE;
1747                                 }
1748                         } else {
1749                                 found_hole = TRUE;
1750                         }
1751                         pre_aligned = FALSE;
1752                 }
1753         }
1754
1755         if (!found_hole) {
1756                 return (-1);
1757         } else {
1758                 *bits = tmp_bits;
1759                 return 0;
1760         }
1761 }
1762
1763 /**
1764  * @brief Fill in a request structure based on a CAM control block
1765  *
1766  * Fills in a request structure based on the contents of a CAM control
1767  * block.  The request structure holds the payload information for
1768  * VSCSI protocol request.
1769  *
1770  * @param ccb pointer to a CAM contorl block
1771  * @param reqp pointer to a request structure
1772  */
1773 static int
1774 create_storvsc_request(union ccb *ccb, struct hv_storvsc_request *reqp)
1775 {
1776         struct ccb_scsiio *csio = &ccb->csio;
1777         uint64_t phys_addr;
1778         uint32_t bytes_to_copy = 0;
1779         uint32_t pfn_num = 0;
1780         uint32_t pfn;
1781         uint64_t not_aligned_seg_bits = 0;
1782         
1783         /* refer to struct vmscsi_req for meanings of these two fields */
1784         reqp->vstor_packet.u.vm_srb.port =
1785                 cam_sim_unit(xpt_path_sim(ccb->ccb_h.path));
1786         reqp->vstor_packet.u.vm_srb.path_id =
1787                 cam_sim_bus(xpt_path_sim(ccb->ccb_h.path));
1788
1789         reqp->vstor_packet.u.vm_srb.target_id = ccb->ccb_h.target_id;
1790         reqp->vstor_packet.u.vm_srb.lun = ccb->ccb_h.target_lun;
1791
1792         reqp->vstor_packet.u.vm_srb.cdb_len = csio->cdb_len;
1793         if(ccb->ccb_h.flags & CAM_CDB_POINTER) {
1794                 memcpy(&reqp->vstor_packet.u.vm_srb.u.cdb, csio->cdb_io.cdb_ptr,
1795                         csio->cdb_len);
1796         } else {
1797                 memcpy(&reqp->vstor_packet.u.vm_srb.u.cdb, csio->cdb_io.cdb_bytes,
1798                         csio->cdb_len);
1799         }
1800
1801         switch (ccb->ccb_h.flags & CAM_DIR_MASK) {
1802         case CAM_DIR_OUT:
1803                 reqp->vstor_packet.u.vm_srb.data_in = WRITE_TYPE;       
1804                 break;
1805         case CAM_DIR_IN:
1806                 reqp->vstor_packet.u.vm_srb.data_in = READ_TYPE;
1807                 break;
1808         case CAM_DIR_NONE:
1809                 reqp->vstor_packet.u.vm_srb.data_in = UNKNOWN_TYPE;
1810                 break;
1811         default:
1812                 reqp->vstor_packet.u.vm_srb.data_in = UNKNOWN_TYPE;
1813                 break;
1814         }
1815
1816         reqp->sense_data     = &csio->sense_data;
1817         reqp->sense_info_len = csio->sense_len;
1818
1819         reqp->ccb = ccb;
1820
1821         if (0 == csio->dxfer_len) {
1822                 return (0);
1823         }
1824
1825         reqp->data_buf.length = csio->dxfer_len;
1826
1827         switch (ccb->ccb_h.flags & CAM_DATA_MASK) {
1828         case CAM_DATA_VADDR:
1829         {
1830                 bytes_to_copy = csio->dxfer_len;
1831                 phys_addr = vtophys(csio->data_ptr);
1832                 reqp->data_buf.offset = phys_addr & PAGE_MASK;
1833                 
1834                 while (bytes_to_copy != 0) {
1835                         int bytes, page_offset;
1836                         phys_addr =
1837                             vtophys(&csio->data_ptr[reqp->data_buf.length -
1838                             bytes_to_copy]);
1839                         pfn = phys_addr >> PAGE_SHIFT;
1840                         reqp->data_buf.pfn_array[pfn_num] = pfn;
1841                         page_offset = phys_addr & PAGE_MASK;
1842
1843                         bytes = min(PAGE_SIZE - page_offset, bytes_to_copy);
1844
1845                         bytes_to_copy -= bytes;
1846                         pfn_num++;
1847                 }
1848                 break;
1849         }
1850
1851         case CAM_DATA_SG:
1852         {
1853                 int i = 0;
1854                 int offset = 0;
1855                 int ret;
1856
1857                 bus_dma_segment_t *storvsc_sglist =
1858                     (bus_dma_segment_t *)ccb->csio.data_ptr;
1859                 u_int16_t storvsc_sg_count = ccb->csio.sglist_cnt;
1860
1861                 printf("Storvsc: get SG I/O operation, %d\n",
1862                     reqp->vstor_packet.u.vm_srb.data_in);
1863
1864                 if (storvsc_sg_count > HV_MAX_MULTIPAGE_BUFFER_COUNT){
1865                         printf("Storvsc: %d segments is too much, "
1866                             "only support %d segments\n",
1867                             storvsc_sg_count, HV_MAX_MULTIPAGE_BUFFER_COUNT);
1868                         return (EINVAL);
1869                 }
1870
1871                 /*
1872                  * We create our own bounce buffer function currently. Idealy
1873                  * we should use BUS_DMA(9) framework. But with current BUS_DMA
1874                  * code there is no callback API to check the page alignment of
1875                  * middle segments before busdma can decide if a bounce buffer
1876                  * is needed for particular segment. There is callback,
1877                  * "bus_dma_filter_t *filter", but the parrameters are not
1878                  * sufficient for storvsc driver.
1879                  * TODO:
1880                  *      Add page alignment check in BUS_DMA(9) callback. Once
1881                  *      this is complete, switch the following code to use
1882                  *      BUS_DMA(9) for storvsc bounce buffer support.
1883                  */
1884                 /* check if we need to create bounce buffer */
1885                 ret = storvsc_check_bounce_buffer_sgl(storvsc_sglist,
1886                     storvsc_sg_count, &not_aligned_seg_bits);
1887                 if (ret != -1) {
1888                         reqp->bounce_sgl =
1889                             storvsc_create_bounce_buffer(storvsc_sg_count,
1890                             reqp->vstor_packet.u.vm_srb.data_in);
1891                         if (NULL == reqp->bounce_sgl) {
1892                                 printf("Storvsc_error: "
1893                                     "create bounce buffer failed.\n");
1894                                 return (ENOMEM);
1895                         }
1896
1897                         reqp->bounce_sgl_count = storvsc_sg_count;
1898                         reqp->not_aligned_seg_bits = not_aligned_seg_bits;
1899
1900                         /*
1901                          * if it is write, we need copy the original data
1902                          *to bounce buffer
1903                          */
1904                         if (WRITE_TYPE == reqp->vstor_packet.u.vm_srb.data_in) {
1905                                 storvsc_copy_sgl_to_bounce_buf(
1906                                     reqp->bounce_sgl,
1907                                     storvsc_sglist,
1908                                     storvsc_sg_count,
1909                                     reqp->not_aligned_seg_bits);
1910                         }
1911
1912                         /* transfer virtual address to physical frame number */
1913                         if (reqp->not_aligned_seg_bits & 0x1){
1914                                 phys_addr =
1915                                     vtophys(reqp->bounce_sgl->sg_segs[0].ss_paddr);
1916                         }else{
1917                                 phys_addr =
1918                                         vtophys(storvsc_sglist[0].ds_addr);
1919                         }
1920                         reqp->data_buf.offset = phys_addr & PAGE_MASK;
1921
1922                         pfn = phys_addr >> PAGE_SHIFT;
1923                         reqp->data_buf.pfn_array[0] = pfn;
1924                         
1925                         for (i = 1; i < storvsc_sg_count; i++) {
1926                                 if (reqp->not_aligned_seg_bits & (1 << i)) {
1927                                         phys_addr =
1928                                             vtophys(reqp->bounce_sgl->sg_segs[i].ss_paddr);
1929                                 } else {
1930                                         phys_addr =
1931                                             vtophys(storvsc_sglist[i].ds_addr);
1932                                 }
1933
1934                                 pfn = phys_addr >> PAGE_SHIFT;
1935                                 reqp->data_buf.pfn_array[i] = pfn;
1936                         }
1937                 } else {
1938                         phys_addr = vtophys(storvsc_sglist[0].ds_addr);
1939
1940                         reqp->data_buf.offset = phys_addr & PAGE_MASK;
1941
1942                         for (i = 0; i < storvsc_sg_count; i++) {
1943                                 phys_addr = vtophys(storvsc_sglist[i].ds_addr);
1944                                 pfn = phys_addr >> PAGE_SHIFT;
1945                                 reqp->data_buf.pfn_array[i] = pfn;
1946                         }
1947
1948                         /* check the last segment cross boundary or not */
1949                         offset = phys_addr & PAGE_MASK;
1950                         if (offset) {
1951                                 phys_addr =
1952                                     vtophys(storvsc_sglist[i-1].ds_addr +
1953                                     PAGE_SIZE - offset);
1954                                 pfn = phys_addr >> PAGE_SHIFT;
1955                                 reqp->data_buf.pfn_array[i] = pfn;
1956                         }
1957                         
1958                         reqp->bounce_sgl_count = 0;
1959                 }
1960                 break;
1961         }
1962         default:
1963                 printf("Unknow flags: %d\n", ccb->ccb_h.flags);
1964                 return(EINVAL);
1965         }
1966
1967         return(0);
1968 }
1969
1970 /*
1971  * SCSI Inquiry checks qualifier and type.
1972  * If qualifier is 011b, means the device server is not capable
1973  * of supporting a peripheral device on this logical unit, and
1974  * the type should be set to 1Fh.
1975  * 
1976  * Return 1 if it is valid, 0 otherwise.
1977  */
1978 static inline int
1979 is_inquiry_valid(const struct scsi_inquiry_data *inq_data)
1980 {
1981         uint8_t type;
1982         if (SID_QUAL(inq_data) != SID_QUAL_LU_CONNECTED) {
1983                 return (0);
1984         }
1985         type = SID_TYPE(inq_data);
1986         if (type == T_NODEVICE) {
1987                 return (0);
1988         }
1989         return (1);
1990 }
1991
1992 /**
1993  * @brief completion function before returning to CAM
1994  *
1995  * I/O process has been completed and the result needs
1996  * to be passed to the CAM layer.
1997  * Free resources related to this request.
1998  *
1999  * @param reqp pointer to a request structure
2000  */
2001 static void
2002 storvsc_io_done(struct hv_storvsc_request *reqp)
2003 {
2004         union ccb *ccb = reqp->ccb;
2005         struct ccb_scsiio *csio = &ccb->csio;
2006         struct storvsc_softc *sc = reqp->softc;
2007         struct vmscsi_req *vm_srb = &reqp->vstor_packet.u.vm_srb;
2008         bus_dma_segment_t *ori_sglist = NULL;
2009         int ori_sg_count = 0;
2010
2011         /* destroy bounce buffer if it is used */
2012         if (reqp->bounce_sgl_count) {
2013                 ori_sglist = (bus_dma_segment_t *)ccb->csio.data_ptr;
2014                 ori_sg_count = ccb->csio.sglist_cnt;
2015
2016                 /*
2017                  * If it is READ operation, we should copy back the data
2018                  * to original SG list.
2019                  */
2020                 if (READ_TYPE == reqp->vstor_packet.u.vm_srb.data_in) {
2021                         storvsc_copy_from_bounce_buf_to_sgl(ori_sglist,
2022                             ori_sg_count,
2023                             reqp->bounce_sgl,
2024                             reqp->not_aligned_seg_bits);
2025                 }
2026
2027                 storvsc_destroy_bounce_buffer(reqp->bounce_sgl);
2028                 reqp->bounce_sgl_count = 0;
2029         }
2030                 
2031         if (reqp->retries > 0) {
2032                 mtx_lock(&sc->hs_lock);
2033 #if HVS_TIMEOUT_TEST
2034                 xpt_print(ccb->ccb_h.path,
2035                         "%u: IO returned after timeout, "
2036                         "waking up timer handler if any.\n", ticks);
2037                 mtx_lock(&reqp->event.mtx);
2038                 cv_signal(&reqp->event.cv);
2039                 mtx_unlock(&reqp->event.mtx);
2040 #endif
2041                 reqp->retries = 0;
2042                 xpt_print(ccb->ccb_h.path,
2043                         "%u: IO returned after timeout, "
2044                         "stopping timer if any.\n", ticks);
2045                 mtx_unlock(&sc->hs_lock);
2046         }
2047
2048 #ifdef notyet
2049         /*
2050          * callout_drain() will wait for the timer handler to finish
2051          * if it is running. So we don't need any lock to synchronize
2052          * between this routine and the timer handler.
2053          * Note that we need to make sure reqp is not freed when timer
2054          * handler is using or will use it.
2055          */
2056         if (ccb->ccb_h.timeout != CAM_TIME_INFINITY) {
2057                 callout_drain(&reqp->callout);
2058         }
2059 #endif
2060
2061         ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2062         ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2063         if (vm_srb->scsi_status == SCSI_STATUS_OK) {
2064                 const struct scsi_generic *cmd;
2065                 /*
2066                  * Check whether the data for INQUIRY cmd is valid or
2067                  * not.  Windows 10 and Windows 2016 send all zero
2068                  * inquiry data to VM even for unpopulated slots.
2069                  */
2070                 cmd = (const struct scsi_generic *)
2071                     ((ccb->ccb_h.flags & CAM_CDB_POINTER) ?
2072                      csio->cdb_io.cdb_ptr : csio->cdb_io.cdb_bytes);
2073                 if (cmd->opcode == INQUIRY) {
2074                     /*
2075                      * The host of Windows 10 or 2016 server will response
2076                      * the inquiry request with invalid data for unexisted device:
2077                         [0x7f 0x0 0x5 0x2 0x1f ... ]
2078                      * But on windows 2012 R2, the response is:
2079                         [0x7f 0x0 0x0 0x0 0x0 ]
2080                      * That is why here wants to validate the inquiry response.
2081                      * The validation will skip the INQUIRY whose response is short,
2082                      * which is less than SHORT_INQUIRY_LENGTH (36).
2083                      *
2084                      * For more information about INQUIRY, please refer to:
2085                      *  ftp://ftp.avc-pioneer.com/Mtfuji_7/Proposal/Jun09/INQUIRY.pdf
2086                      */
2087                     const struct scsi_inquiry_data *inq_data =
2088                         (const struct scsi_inquiry_data *)csio->data_ptr;
2089                     uint8_t* resp_buf = (uint8_t*)csio->data_ptr;
2090                     /* Get the buffer length reported by host */
2091                     int resp_xfer_len = vm_srb->transfer_len;
2092                     /* Get the available buffer length */
2093                     int resp_buf_len = resp_xfer_len >= 5 ? resp_buf[4] + 5 : 0;
2094                     int data_len = (resp_buf_len < resp_xfer_len) ? resp_buf_len : resp_xfer_len;
2095                     if (data_len < SHORT_INQUIRY_LENGTH) {
2096                         ccb->ccb_h.status |= CAM_REQ_CMP;
2097                         if (bootverbose && data_len >= 5) {
2098                                 mtx_lock(&sc->hs_lock);
2099                                 xpt_print(ccb->ccb_h.path,
2100                                     "storvsc skips the validation for short inquiry (%d)"
2101                                     " [%x %x %x %x %x]\n",
2102                                     data_len,resp_buf[0],resp_buf[1],resp_buf[2],
2103                                     resp_buf[3],resp_buf[4]);
2104                                 mtx_unlock(&sc->hs_lock);
2105                         }
2106                     } else if (is_inquiry_valid(inq_data) == 0) {
2107                         ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
2108                         if (bootverbose && data_len >= 5) {
2109                                 mtx_lock(&sc->hs_lock);
2110                                 xpt_print(ccb->ccb_h.path,
2111                                     "storvsc uninstalled invalid device"
2112                                     " [%x %x %x %x %x]\n",
2113                                 resp_buf[0],resp_buf[1],resp_buf[2],resp_buf[3],resp_buf[4]);
2114                                 mtx_unlock(&sc->hs_lock);
2115                         }
2116                     } else {
2117                         ccb->ccb_h.status |= CAM_REQ_CMP;
2118                         if (bootverbose) {
2119                                 mtx_lock(&sc->hs_lock);
2120                                 xpt_print(ccb->ccb_h.path,
2121                                     "storvsc has passed inquiry response (%d) validation\n",
2122                                     data_len);
2123                                 mtx_unlock(&sc->hs_lock);
2124                         }
2125                     }
2126                 } else {
2127                         ccb->ccb_h.status |= CAM_REQ_CMP;
2128                 }
2129         } else {
2130                 mtx_lock(&sc->hs_lock);
2131                 xpt_print(ccb->ccb_h.path,
2132                         "storvsc scsi_status = %d\n",
2133                         vm_srb->scsi_status);
2134                 mtx_unlock(&sc->hs_lock);
2135                 ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR;
2136         }
2137
2138         ccb->csio.scsi_status = (vm_srb->scsi_status & 0xFF);
2139         ccb->csio.resid = ccb->csio.dxfer_len - vm_srb->transfer_len;
2140
2141         if (reqp->sense_info_len != 0) {
2142                 csio->sense_resid = csio->sense_len - reqp->sense_info_len;
2143                 ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
2144         }
2145
2146         mtx_lock(&sc->hs_lock);
2147         if (reqp->softc->hs_frozen == 1) {
2148                 xpt_print(ccb->ccb_h.path,
2149                         "%u: storvsc unfreezing softc 0x%p.\n",
2150                         ticks, reqp->softc);
2151                 ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
2152                 reqp->softc->hs_frozen = 0;
2153         }
2154         storvsc_free_request(sc, reqp);
2155         xpt_done(ccb);
2156         mtx_unlock(&sc->hs_lock);
2157 }
2158
2159 /**
2160  * @brief Free a request structure
2161  *
2162  * Free a request structure by returning it to the free list
2163  *
2164  * @param sc pointer to a softc
2165  * @param reqp pointer to a request structure
2166  */     
2167 static void
2168 storvsc_free_request(struct storvsc_softc *sc, struct hv_storvsc_request *reqp)
2169 {
2170
2171         LIST_INSERT_HEAD(&sc->hs_free_list, reqp, link);
2172 }
2173
2174 /**
2175  * @brief Determine type of storage device from GUID
2176  *
2177  * Using the type GUID, determine if this is a StorVSC (paravirtual
2178  * SCSI or BlkVSC (paravirtual IDE) device.
2179  *
2180  * @param dev a device
2181  * returns an enum
2182  */
2183 static enum hv_storage_type
2184 storvsc_get_storage_type(device_t dev)
2185 {
2186         const char *p = vmbus_get_type(dev);
2187
2188         if (!memcmp(p, &gBlkVscDeviceType, sizeof(hv_guid))) {
2189                 return DRIVER_BLKVSC;
2190         } else if (!memcmp(p, &gStorVscDeviceType, sizeof(hv_guid))) {
2191                 return DRIVER_STORVSC;
2192         }
2193         return (DRIVER_UNKNOWN);
2194 }
2195