]> CyberLeo.Net >> Repos - FreeBSD/releng/10.3.git/blob - sys/netinet/in_pcb.c
- Copy stable/10@296371 to releng/10.3 in preparation for 10.3-RC1
[FreeBSD/releng/10.3.git] / sys / netinet / in_pcb.c
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *      The Regents of the University of California.
4  * Copyright (c) 2007-2009 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Robert N. M. Watson under
9  * contract to Juniper Networks, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      @(#)in_pcb.c    8.4 (Berkeley) 5/24/95
36  */
37
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40
41 #include "opt_ddb.h"
42 #include "opt_ipsec.h"
43 #include "opt_inet.h"
44 #include "opt_inet6.h"
45 #include "opt_pcbgroup.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/callout.h>
52 #include <sys/domain.h>
53 #include <sys/protosw.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/refcount.h>
59 #include <sys/jail.h>
60 #include <sys/kernel.h>
61 #include <sys/sysctl.h>
62
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66
67 #include <vm/uma.h>
68
69 #include <net/if.h>
70 #include <net/if_types.h>
71 #include <net/route.h>
72 #include <net/vnet.h>
73
74 #if defined(INET) || defined(INET6)
75 #include <netinet/in.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/ip_var.h>
78 #include <netinet/tcp_var.h>
79 #include <netinet/udp.h>
80 #include <netinet/udp_var.h>
81 #endif
82 #ifdef INET
83 #include <netinet/in_var.h>
84 #endif
85 #ifdef INET6
86 #include <netinet/ip6.h>
87 #include <netinet6/in6_pcb.h>
88 #include <netinet6/in6_var.h>
89 #include <netinet6/ip6_var.h>
90 #endif /* INET6 */
91
92
93 #ifdef IPSEC
94 #include <netipsec/ipsec.h>
95 #include <netipsec/key.h>
96 #endif /* IPSEC */
97
98 #include <security/mac/mac_framework.h>
99
100 static struct callout   ipport_tick_callout;
101
102 /*
103  * These configure the range of local port addresses assigned to
104  * "unspecified" outgoing connections/packets/whatever.
105  */
106 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;    /* 1023 */
107 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;    /* 600 */
108 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;     /* 10000 */
109 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;       /* 65535 */
110 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;      /* 49152 */
111 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;        /* 65535 */
112
113 /*
114  * Reserved ports accessible only to root. There are significant
115  * security considerations that must be accounted for when changing these,
116  * but the security benefits can be great. Please be careful.
117  */
118 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;    /* 1023 */
119 VNET_DEFINE(int, ipport_reservedlow);
120
121 /* Variables dealing with random ephemeral port allocation. */
122 VNET_DEFINE(int, ipport_randomized) = 1;        /* user controlled via sysctl */
123 VNET_DEFINE(int, ipport_randomcps) = 10;        /* user controlled via sysctl */
124 VNET_DEFINE(int, ipport_randomtime) = 45;       /* user controlled via sysctl */
125 VNET_DEFINE(int, ipport_stoprandom);            /* toggled by ipport_tick */
126 VNET_DEFINE(int, ipport_tcpallocs);
127 static VNET_DEFINE(int, ipport_tcplastcount);
128
129 #define V_ipport_tcplastcount           VNET(ipport_tcplastcount)
130
131 static void     in_pcbremlists(struct inpcb *inp);
132 #ifdef INET
133 static struct inpcb     *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
134                             struct in_addr faddr, u_int fport_arg,
135                             struct in_addr laddr, u_int lport_arg,
136                             int lookupflags, struct ifnet *ifp);
137
138 #define RANGECHK(var, min, max) \
139         if ((var) < (min)) { (var) = (min); } \
140         else if ((var) > (max)) { (var) = (max); }
141
142 static int
143 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
144 {
145         int error;
146
147         error = sysctl_handle_int(oidp, arg1, arg2, req);
148         if (error == 0) {
149                 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
150                 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
151                 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
152                 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
153                 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
154                 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
155         }
156         return (error);
157 }
158
159 #undef RANGECHK
160
161 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
162     "IP Ports");
163
164 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
165         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0,
166         &sysctl_net_ipport_check, "I", "");
167 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
168         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0,
169         &sysctl_net_ipport_check, "I", "");
170 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, first,
171         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0,
172         &sysctl_net_ipport_check, "I", "");
173 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, last,
174         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0,
175         &sysctl_net_ipport_check, "I", "");
176 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
177         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0,
178         &sysctl_net_ipport_check, "I", "");
179 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
180         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0,
181         &sysctl_net_ipport_check, "I", "");
182 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
183         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, "");
184 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
185         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
186 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
187         &VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
188 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
189         &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
190         "allocations before switching to a sequental one");
191 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
192         &VNET_NAME(ipport_randomtime), 0,
193         "Minimum time to keep sequental port "
194         "allocation before switching to a random one");
195 #endif /* INET */
196
197 /*
198  * in_pcb.c: manage the Protocol Control Blocks.
199  *
200  * NOTE: It is assumed that most of these functions will be called with
201  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
202  * functions often modify hash chains or addresses in pcbs.
203  */
204
205 /*
206  * Initialize an inpcbinfo -- we should be able to reduce the number of
207  * arguments in time.
208  */
209 void
210 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
211     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
212     char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini,
213     uint32_t inpcbzone_flags, u_int hashfields)
214 {
215
216         INP_INFO_LOCK_INIT(pcbinfo, name);
217         INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");     /* XXXRW: argument? */
218 #ifdef VIMAGE
219         pcbinfo->ipi_vnet = curvnet;
220 #endif
221         pcbinfo->ipi_listhead = listhead;
222         LIST_INIT(pcbinfo->ipi_listhead);
223         pcbinfo->ipi_count = 0;
224         pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
225             &pcbinfo->ipi_hashmask);
226         pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
227             &pcbinfo->ipi_porthashmask);
228 #ifdef PCBGROUP
229         in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
230 #endif
231         pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
232             NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR,
233             inpcbzone_flags);
234         uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
235         uma_zone_set_warning(pcbinfo->ipi_zone,
236             "kern.ipc.maxsockets limit reached");
237 }
238
239 /*
240  * Destroy an inpcbinfo.
241  */
242 void
243 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
244 {
245
246         KASSERT(pcbinfo->ipi_count == 0,
247             ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
248
249         hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
250         hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
251             pcbinfo->ipi_porthashmask);
252 #ifdef PCBGROUP
253         in_pcbgroup_destroy(pcbinfo);
254 #endif
255         uma_zdestroy(pcbinfo->ipi_zone);
256         INP_HASH_LOCK_DESTROY(pcbinfo);
257         INP_INFO_LOCK_DESTROY(pcbinfo);
258 }
259
260 /*
261  * Allocate a PCB and associate it with the socket.
262  * On success return with the PCB locked.
263  */
264 int
265 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
266 {
267         struct inpcb *inp;
268         int error;
269
270         INP_INFO_WLOCK_ASSERT(pcbinfo);
271         error = 0;
272         inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
273         if (inp == NULL)
274                 return (ENOBUFS);
275         bzero(inp, inp_zero_size);
276         inp->inp_pcbinfo = pcbinfo;
277         inp->inp_socket = so;
278         inp->inp_cred = crhold(so->so_cred);
279         inp->inp_inc.inc_fibnum = so->so_fibnum;
280 #ifdef MAC
281         error = mac_inpcb_init(inp, M_NOWAIT);
282         if (error != 0)
283                 goto out;
284         mac_inpcb_create(so, inp);
285 #endif
286 #ifdef IPSEC
287         error = ipsec_init_policy(so, &inp->inp_sp);
288         if (error != 0) {
289 #ifdef MAC
290                 mac_inpcb_destroy(inp);
291 #endif
292                 goto out;
293         }
294 #endif /*IPSEC*/
295 #ifdef INET6
296         if (INP_SOCKAF(so) == AF_INET6) {
297                 inp->inp_vflag |= INP_IPV6PROTO;
298                 if (V_ip6_v6only)
299                         inp->inp_flags |= IN6P_IPV6_V6ONLY;
300         }
301 #endif
302         LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
303         pcbinfo->ipi_count++;
304         so->so_pcb = (caddr_t)inp;
305 #ifdef INET6
306         if (V_ip6_auto_flowlabel)
307                 inp->inp_flags |= IN6P_AUTOFLOWLABEL;
308 #endif
309         INP_WLOCK(inp);
310         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
311         refcount_init(&inp->inp_refcount, 1);   /* Reference from inpcbinfo */
312 #if defined(IPSEC) || defined(MAC)
313 out:
314         if (error != 0) {
315                 crfree(inp->inp_cred);
316                 uma_zfree(pcbinfo->ipi_zone, inp);
317         }
318 #endif
319         return (error);
320 }
321
322 #ifdef INET
323 int
324 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
325 {
326         int anonport, error;
327
328         INP_WLOCK_ASSERT(inp);
329         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
330
331         if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
332                 return (EINVAL);
333         anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
334         error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
335             &inp->inp_lport, cred);
336         if (error)
337                 return (error);
338         if (in_pcbinshash(inp) != 0) {
339                 inp->inp_laddr.s_addr = INADDR_ANY;
340                 inp->inp_lport = 0;
341                 return (EAGAIN);
342         }
343         if (anonport)
344                 inp->inp_flags |= INP_ANONPORT;
345         return (0);
346 }
347 #endif
348
349 #if defined(INET) || defined(INET6)
350 int
351 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
352     struct ucred *cred, int lookupflags)
353 {
354         struct inpcbinfo *pcbinfo;
355         struct inpcb *tmpinp;
356         unsigned short *lastport;
357         int count, dorandom, error;
358         u_short aux, first, last, lport;
359 #ifdef INET
360         struct in_addr laddr;
361 #endif
362
363         pcbinfo = inp->inp_pcbinfo;
364
365         /*
366          * Because no actual state changes occur here, a global write lock on
367          * the pcbinfo isn't required.
368          */
369         INP_LOCK_ASSERT(inp);
370         INP_HASH_LOCK_ASSERT(pcbinfo);
371
372         if (inp->inp_flags & INP_HIGHPORT) {
373                 first = V_ipport_hifirstauto;   /* sysctl */
374                 last  = V_ipport_hilastauto;
375                 lastport = &pcbinfo->ipi_lasthi;
376         } else if (inp->inp_flags & INP_LOWPORT) {
377                 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
378                 if (error)
379                         return (error);
380                 first = V_ipport_lowfirstauto;  /* 1023 */
381                 last  = V_ipport_lowlastauto;   /* 600 */
382                 lastport = &pcbinfo->ipi_lastlow;
383         } else {
384                 first = V_ipport_firstauto;     /* sysctl */
385                 last  = V_ipport_lastauto;
386                 lastport = &pcbinfo->ipi_lastport;
387         }
388         /*
389          * For UDP(-Lite), use random port allocation as long as the user
390          * allows it.  For TCP (and as of yet unknown) connections,
391          * use random port allocation only if the user allows it AND
392          * ipport_tick() allows it.
393          */
394         if (V_ipport_randomized &&
395                 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
396                 pcbinfo == &V_ulitecbinfo))
397                 dorandom = 1;
398         else
399                 dorandom = 0;
400         /*
401          * It makes no sense to do random port allocation if
402          * we have the only port available.
403          */
404         if (first == last)
405                 dorandom = 0;
406         /* Make sure to not include UDP(-Lite) packets in the count. */
407         if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
408                 V_ipport_tcpallocs++;
409         /*
410          * Instead of having two loops further down counting up or down
411          * make sure that first is always <= last and go with only one
412          * code path implementing all logic.
413          */
414         if (first > last) {
415                 aux = first;
416                 first = last;
417                 last = aux;
418         }
419
420 #ifdef INET
421         /* Make the compiler happy. */
422         laddr.s_addr = 0;
423         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
424                 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
425                     __func__, inp));
426                 laddr = *laddrp;
427         }
428 #endif
429         tmpinp = NULL;  /* Make compiler happy. */
430         lport = *lportp;
431
432         if (dorandom)
433                 *lastport = first + (arc4random() % (last - first));
434
435         count = last - first;
436
437         do {
438                 if (count-- < 0)        /* completely used? */
439                         return (EADDRNOTAVAIL);
440                 ++*lastport;
441                 if (*lastport < first || *lastport > last)
442                         *lastport = first;
443                 lport = htons(*lastport);
444
445 #ifdef INET6
446                 if ((inp->inp_vflag & INP_IPV6) != 0)
447                         tmpinp = in6_pcblookup_local(pcbinfo,
448                             &inp->in6p_laddr, lport, lookupflags, cred);
449 #endif
450 #if defined(INET) && defined(INET6)
451                 else
452 #endif
453 #ifdef INET
454                         tmpinp = in_pcblookup_local(pcbinfo, laddr,
455                             lport, lookupflags, cred);
456 #endif
457         } while (tmpinp != NULL);
458
459 #ifdef INET
460         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
461                 laddrp->s_addr = laddr.s_addr;
462 #endif                 
463         *lportp = lport;
464
465         return (0);
466 }
467
468 /*
469  * Return cached socket options.
470  */
471 short
472 inp_so_options(const struct inpcb *inp)
473 {
474    short so_options;
475
476    so_options = 0;
477
478    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
479            so_options |= SO_REUSEPORT;
480    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
481            so_options |= SO_REUSEADDR;
482    return (so_options);
483 }
484 #endif /* INET || INET6 */
485
486 #ifdef INET
487 /*
488  * Set up a bind operation on a PCB, performing port allocation
489  * as required, but do not actually modify the PCB. Callers can
490  * either complete the bind by setting inp_laddr/inp_lport and
491  * calling in_pcbinshash(), or they can just use the resulting
492  * port and address to authorise the sending of a once-off packet.
493  *
494  * On error, the values of *laddrp and *lportp are not changed.
495  */
496 int
497 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
498     u_short *lportp, struct ucred *cred)
499 {
500         struct socket *so = inp->inp_socket;
501         struct sockaddr_in *sin;
502         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
503         struct in_addr laddr;
504         u_short lport = 0;
505         int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
506         int error;
507
508         /*
509          * No state changes, so read locks are sufficient here.
510          */
511         INP_LOCK_ASSERT(inp);
512         INP_HASH_LOCK_ASSERT(pcbinfo);
513
514         if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
515                 return (EADDRNOTAVAIL);
516         laddr.s_addr = *laddrp;
517         if (nam != NULL && laddr.s_addr != INADDR_ANY)
518                 return (EINVAL);
519         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
520                 lookupflags = INPLOOKUP_WILDCARD;
521         if (nam == NULL) {
522                 if ((error = prison_local_ip4(cred, &laddr)) != 0)
523                         return (error);
524         } else {
525                 sin = (struct sockaddr_in *)nam;
526                 if (nam->sa_len != sizeof (*sin))
527                         return (EINVAL);
528 #ifdef notdef
529                 /*
530                  * We should check the family, but old programs
531                  * incorrectly fail to initialize it.
532                  */
533                 if (sin->sin_family != AF_INET)
534                         return (EAFNOSUPPORT);
535 #endif
536                 error = prison_local_ip4(cred, &sin->sin_addr);
537                 if (error)
538                         return (error);
539                 if (sin->sin_port != *lportp) {
540                         /* Don't allow the port to change. */
541                         if (*lportp != 0)
542                                 return (EINVAL);
543                         lport = sin->sin_port;
544                 }
545                 /* NB: lport is left as 0 if the port isn't being changed. */
546                 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
547                         /*
548                          * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
549                          * allow complete duplication of binding if
550                          * SO_REUSEPORT is set, or if SO_REUSEADDR is set
551                          * and a multicast address is bound on both
552                          * new and duplicated sockets.
553                          */
554                         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
555                                 reuseport = SO_REUSEADDR|SO_REUSEPORT;
556                 } else if (sin->sin_addr.s_addr != INADDR_ANY) {
557                         sin->sin_port = 0;              /* yech... */
558                         bzero(&sin->sin_zero, sizeof(sin->sin_zero));
559                         /*
560                          * Is the address a local IP address? 
561                          * If INP_BINDANY is set, then the socket may be bound
562                          * to any endpoint address, local or not.
563                          */
564                         if ((inp->inp_flags & INP_BINDANY) == 0 &&
565                             ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 
566                                 return (EADDRNOTAVAIL);
567                 }
568                 laddr = sin->sin_addr;
569                 if (lport) {
570                         struct inpcb *t;
571                         struct tcptw *tw;
572
573                         /* GROSS */
574                         if (ntohs(lport) <= V_ipport_reservedhigh &&
575                             ntohs(lport) >= V_ipport_reservedlow &&
576                             priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
577                             0))
578                                 return (EACCES);
579                         if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
580                             priv_check_cred(inp->inp_cred,
581                             PRIV_NETINET_REUSEPORT, 0) != 0) {
582                                 t = in_pcblookup_local(pcbinfo, sin->sin_addr,
583                                     lport, INPLOOKUP_WILDCARD, cred);
584         /*
585          * XXX
586          * This entire block sorely needs a rewrite.
587          */
588                                 if (t &&
589                                     ((t->inp_flags & INP_TIMEWAIT) == 0) &&
590                                     (so->so_type != SOCK_STREAM ||
591                                      ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
592                                     (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
593                                      ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
594                                      (t->inp_flags2 & INP_REUSEPORT) == 0) &&
595                                     (inp->inp_cred->cr_uid !=
596                                      t->inp_cred->cr_uid))
597                                         return (EADDRINUSE);
598                         }
599                         t = in_pcblookup_local(pcbinfo, sin->sin_addr,
600                             lport, lookupflags, cred);
601                         if (t && (t->inp_flags & INP_TIMEWAIT)) {
602                                 /*
603                                  * XXXRW: If an incpb has had its timewait
604                                  * state recycled, we treat the address as
605                                  * being in use (for now).  This is better
606                                  * than a panic, but not desirable.
607                                  */
608                                 tw = intotw(t);
609                                 if (tw == NULL ||
610                                     (reuseport & tw->tw_so_options) == 0)
611                                         return (EADDRINUSE);
612                         } else if (t && (reuseport & inp_so_options(t)) == 0) {
613 #ifdef INET6
614                                 if (ntohl(sin->sin_addr.s_addr) !=
615                                     INADDR_ANY ||
616                                     ntohl(t->inp_laddr.s_addr) !=
617                                     INADDR_ANY ||
618                                     (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
619                                     (t->inp_vflag & INP_IPV6PROTO) == 0)
620 #endif
621                                 return (EADDRINUSE);
622                         }
623                 }
624         }
625         if (*lportp != 0)
626                 lport = *lportp;
627         if (lport == 0) {
628                 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
629                 if (error != 0)
630                         return (error);
631
632         }
633         *laddrp = laddr.s_addr;
634         *lportp = lport;
635         return (0);
636 }
637
638 /*
639  * Connect from a socket to a specified address.
640  * Both address and port must be specified in argument sin.
641  * If don't have a local address for this socket yet,
642  * then pick one.
643  */
644 int
645 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
646     struct ucred *cred, struct mbuf *m)
647 {
648         u_short lport, fport;
649         in_addr_t laddr, faddr;
650         int anonport, error;
651
652         INP_WLOCK_ASSERT(inp);
653         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
654
655         lport = inp->inp_lport;
656         laddr = inp->inp_laddr.s_addr;
657         anonport = (lport == 0);
658         error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
659             NULL, cred);
660         if (error)
661                 return (error);
662
663         /* Do the initial binding of the local address if required. */
664         if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
665                 inp->inp_lport = lport;
666                 inp->inp_laddr.s_addr = laddr;
667                 if (in_pcbinshash(inp) != 0) {
668                         inp->inp_laddr.s_addr = INADDR_ANY;
669                         inp->inp_lport = 0;
670                         return (EAGAIN);
671                 }
672         }
673
674         /* Commit the remaining changes. */
675         inp->inp_lport = lport;
676         inp->inp_laddr.s_addr = laddr;
677         inp->inp_faddr.s_addr = faddr;
678         inp->inp_fport = fport;
679         in_pcbrehash_mbuf(inp, m);
680
681         if (anonport)
682                 inp->inp_flags |= INP_ANONPORT;
683         return (0);
684 }
685
686 int
687 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
688 {
689
690         return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
691 }
692
693 /*
694  * Do proper source address selection on an unbound socket in case
695  * of connect. Take jails into account as well.
696  */
697 int
698 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
699     struct ucred *cred)
700 {
701         struct ifaddr *ifa;
702         struct sockaddr *sa;
703         struct sockaddr_in *sin;
704         struct route sro;
705         int error;
706
707         KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
708
709         /*
710          * Bypass source address selection and use the primary jail IP
711          * if requested.
712          */
713         if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
714                 return (0);
715
716         error = 0;
717         bzero(&sro, sizeof(sro));
718
719         sin = (struct sockaddr_in *)&sro.ro_dst;
720         sin->sin_family = AF_INET;
721         sin->sin_len = sizeof(struct sockaddr_in);
722         sin->sin_addr.s_addr = faddr->s_addr;
723
724         /*
725          * If route is known our src addr is taken from the i/f,
726          * else punt.
727          *
728          * Find out route to destination.
729          */
730         if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
731                 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
732
733         /*
734          * If we found a route, use the address corresponding to
735          * the outgoing interface.
736          * 
737          * Otherwise assume faddr is reachable on a directly connected
738          * network and try to find a corresponding interface to take
739          * the source address from.
740          */
741         if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
742                 struct in_ifaddr *ia;
743                 struct ifnet *ifp;
744
745                 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
746                 if (ia == NULL)
747                         ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0));
748                 if (ia == NULL) {
749                         error = ENETUNREACH;
750                         goto done;
751                 }
752
753                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
754                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
755                         ifa_free(&ia->ia_ifa);
756                         goto done;
757                 }
758
759                 ifp = ia->ia_ifp;
760                 ifa_free(&ia->ia_ifa);
761                 ia = NULL;
762                 IF_ADDR_RLOCK(ifp);
763                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
764
765                         sa = ifa->ifa_addr;
766                         if (sa->sa_family != AF_INET)
767                                 continue;
768                         sin = (struct sockaddr_in *)sa;
769                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
770                                 ia = (struct in_ifaddr *)ifa;
771                                 break;
772                         }
773                 }
774                 if (ia != NULL) {
775                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
776                         IF_ADDR_RUNLOCK(ifp);
777                         goto done;
778                 }
779                 IF_ADDR_RUNLOCK(ifp);
780
781                 /* 3. As a last resort return the 'default' jail address. */
782                 error = prison_get_ip4(cred, laddr);
783                 goto done;
784         }
785
786         /*
787          * If the outgoing interface on the route found is not
788          * a loopback interface, use the address from that interface.
789          * In case of jails do those three steps:
790          * 1. check if the interface address belongs to the jail. If so use it.
791          * 2. check if we have any address on the outgoing interface
792          *    belonging to this jail. If so use it.
793          * 3. as a last resort return the 'default' jail address.
794          */
795         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
796                 struct in_ifaddr *ia;
797                 struct ifnet *ifp;
798
799                 /* If not jailed, use the default returned. */
800                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
801                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
802                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
803                         goto done;
804                 }
805
806                 /* Jailed. */
807                 /* 1. Check if the iface address belongs to the jail. */
808                 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
809                 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
810                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
811                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
812                         goto done;
813                 }
814
815                 /*
816                  * 2. Check if we have any address on the outgoing interface
817                  *    belonging to this jail.
818                  */
819                 ia = NULL;
820                 ifp = sro.ro_rt->rt_ifp;
821                 IF_ADDR_RLOCK(ifp);
822                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
823                         sa = ifa->ifa_addr;
824                         if (sa->sa_family != AF_INET)
825                                 continue;
826                         sin = (struct sockaddr_in *)sa;
827                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
828                                 ia = (struct in_ifaddr *)ifa;
829                                 break;
830                         }
831                 }
832                 if (ia != NULL) {
833                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
834                         IF_ADDR_RUNLOCK(ifp);
835                         goto done;
836                 }
837                 IF_ADDR_RUNLOCK(ifp);
838
839                 /* 3. As a last resort return the 'default' jail address. */
840                 error = prison_get_ip4(cred, laddr);
841                 goto done;
842         }
843
844         /*
845          * The outgoing interface is marked with 'loopback net', so a route
846          * to ourselves is here.
847          * Try to find the interface of the destination address and then
848          * take the address from there. That interface is not necessarily
849          * a loopback interface.
850          * In case of jails, check that it is an address of the jail
851          * and if we cannot find, fall back to the 'default' jail address.
852          */
853         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
854                 struct sockaddr_in sain;
855                 struct in_ifaddr *ia;
856
857                 bzero(&sain, sizeof(struct sockaddr_in));
858                 sain.sin_family = AF_INET;
859                 sain.sin_len = sizeof(struct sockaddr_in);
860                 sain.sin_addr.s_addr = faddr->s_addr;
861
862                 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
863                 if (ia == NULL)
864                         ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0));
865                 if (ia == NULL)
866                         ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
867
868                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
869                         if (ia == NULL) {
870                                 error = ENETUNREACH;
871                                 goto done;
872                         }
873                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
874                         ifa_free(&ia->ia_ifa);
875                         goto done;
876                 }
877
878                 /* Jailed. */
879                 if (ia != NULL) {
880                         struct ifnet *ifp;
881
882                         ifp = ia->ia_ifp;
883                         ifa_free(&ia->ia_ifa);
884                         ia = NULL;
885                         IF_ADDR_RLOCK(ifp);
886                         TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
887
888                                 sa = ifa->ifa_addr;
889                                 if (sa->sa_family != AF_INET)
890                                         continue;
891                                 sin = (struct sockaddr_in *)sa;
892                                 if (prison_check_ip4(cred,
893                                     &sin->sin_addr) == 0) {
894                                         ia = (struct in_ifaddr *)ifa;
895                                         break;
896                                 }
897                         }
898                         if (ia != NULL) {
899                                 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
900                                 IF_ADDR_RUNLOCK(ifp);
901                                 goto done;
902                         }
903                         IF_ADDR_RUNLOCK(ifp);
904                 }
905
906                 /* 3. As a last resort return the 'default' jail address. */
907                 error = prison_get_ip4(cred, laddr);
908                 goto done;
909         }
910
911 done:
912         if (sro.ro_rt != NULL)
913                 RTFREE(sro.ro_rt);
914         return (error);
915 }
916
917 /*
918  * Set up for a connect from a socket to the specified address.
919  * On entry, *laddrp and *lportp should contain the current local
920  * address and port for the PCB; these are updated to the values
921  * that should be placed in inp_laddr and inp_lport to complete
922  * the connect.
923  *
924  * On success, *faddrp and *fportp will be set to the remote address
925  * and port. These are not updated in the error case.
926  *
927  * If the operation fails because the connection already exists,
928  * *oinpp will be set to the PCB of that connection so that the
929  * caller can decide to override it. In all other cases, *oinpp
930  * is set to NULL.
931  */
932 int
933 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
934     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
935     struct inpcb **oinpp, struct ucred *cred)
936 {
937         struct sockaddr_in *sin = (struct sockaddr_in *)nam;
938         struct in_ifaddr *ia;
939         struct inpcb *oinp;
940         struct in_addr laddr, faddr;
941         u_short lport, fport;
942         int error;
943
944         /*
945          * Because a global state change doesn't actually occur here, a read
946          * lock is sufficient.
947          */
948         INP_LOCK_ASSERT(inp);
949         INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
950
951         if (oinpp != NULL)
952                 *oinpp = NULL;
953         if (nam->sa_len != sizeof (*sin))
954                 return (EINVAL);
955         if (sin->sin_family != AF_INET)
956                 return (EAFNOSUPPORT);
957         if (sin->sin_port == 0)
958                 return (EADDRNOTAVAIL);
959         laddr.s_addr = *laddrp;
960         lport = *lportp;
961         faddr = sin->sin_addr;
962         fport = sin->sin_port;
963
964         if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
965                 /*
966                  * If the destination address is INADDR_ANY,
967                  * use the primary local address.
968                  * If the supplied address is INADDR_BROADCAST,
969                  * and the primary interface supports broadcast,
970                  * choose the broadcast address for that interface.
971                  */
972                 if (faddr.s_addr == INADDR_ANY) {
973                         IN_IFADDR_RLOCK();
974                         faddr =
975                             IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
976                         IN_IFADDR_RUNLOCK();
977                         if (cred != NULL &&
978                             (error = prison_get_ip4(cred, &faddr)) != 0)
979                                 return (error);
980                 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
981                         IN_IFADDR_RLOCK();
982                         if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
983                             IFF_BROADCAST)
984                                 faddr = satosin(&TAILQ_FIRST(
985                                     &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
986                         IN_IFADDR_RUNLOCK();
987                 }
988         }
989         if (laddr.s_addr == INADDR_ANY) {
990                 error = in_pcbladdr(inp, &faddr, &laddr, cred);
991                 /*
992                  * If the destination address is multicast and an outgoing
993                  * interface has been set as a multicast option, prefer the
994                  * address of that interface as our source address.
995                  */
996                 if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
997                     inp->inp_moptions != NULL) {
998                         struct ip_moptions *imo;
999                         struct ifnet *ifp;
1000
1001                         imo = inp->inp_moptions;
1002                         if (imo->imo_multicast_ifp != NULL) {
1003                                 ifp = imo->imo_multicast_ifp;
1004                                 IN_IFADDR_RLOCK();
1005                                 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1006                                         if ((ia->ia_ifp == ifp) &&
1007                                             (cred == NULL ||
1008                                             prison_check_ip4(cred,
1009                                             &ia->ia_addr.sin_addr) == 0))
1010                                                 break;
1011                                 }
1012                                 if (ia == NULL)
1013                                         error = EADDRNOTAVAIL;
1014                                 else {
1015                                         laddr = ia->ia_addr.sin_addr;
1016                                         error = 0;
1017                                 }
1018                                 IN_IFADDR_RUNLOCK();
1019                         }
1020                 }
1021                 if (error)
1022                         return (error);
1023         }
1024         oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1025             laddr, lport, 0, NULL);
1026         if (oinp != NULL) {
1027                 if (oinpp != NULL)
1028                         *oinpp = oinp;
1029                 return (EADDRINUSE);
1030         }
1031         if (lport == 0) {
1032                 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1033                     cred);
1034                 if (error)
1035                         return (error);
1036         }
1037         *laddrp = laddr.s_addr;
1038         *lportp = lport;
1039         *faddrp = faddr.s_addr;
1040         *fportp = fport;
1041         return (0);
1042 }
1043
1044 void
1045 in_pcbdisconnect(struct inpcb *inp)
1046 {
1047
1048         INP_WLOCK_ASSERT(inp);
1049         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1050
1051         inp->inp_faddr.s_addr = INADDR_ANY;
1052         inp->inp_fport = 0;
1053         in_pcbrehash(inp);
1054 }
1055 #endif /* INET */
1056
1057 /*
1058  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1059  * For most protocols, this will be invoked immediately prior to calling
1060  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1061  * socket, in which case in_pcbfree() is deferred.
1062  */
1063 void
1064 in_pcbdetach(struct inpcb *inp)
1065 {
1066
1067         KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1068
1069         inp->inp_socket->so_pcb = NULL;
1070         inp->inp_socket = NULL;
1071 }
1072
1073 /*
1074  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1075  * stability of an inpcb pointer despite the inpcb lock being released.  This
1076  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1077  * but where the inpcb lock may already held, or when acquiring a reference
1078  * via a pcbgroup.
1079  *
1080  * in_pcbref() should be used only to provide brief memory stability, and
1081  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1082  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1083  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1084  * lock and rele are the *only* safe operations that may be performed on the
1085  * inpcb.
1086  *
1087  * While the inpcb will not be freed, releasing the inpcb lock means that the
1088  * connection's state may change, so the caller should be careful to
1089  * revalidate any cached state on reacquiring the lock.  Drop the reference
1090  * using in_pcbrele().
1091  */
1092 void
1093 in_pcbref(struct inpcb *inp)
1094 {
1095
1096         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1097
1098         refcount_acquire(&inp->inp_refcount);
1099 }
1100
1101 /*
1102  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1103  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1104  * return a flag indicating whether or not the inpcb remains valid.  If it is
1105  * valid, we return with the inpcb lock held.
1106  *
1107  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1108  * reference on an inpcb.  Historically more work was done here (actually, in
1109  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1110  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1111  * about memory stability (and continued use of the write lock).
1112  */
1113 int
1114 in_pcbrele_rlocked(struct inpcb *inp)
1115 {
1116         struct inpcbinfo *pcbinfo;
1117
1118         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1119
1120         INP_RLOCK_ASSERT(inp);
1121
1122         if (refcount_release(&inp->inp_refcount) == 0) {
1123                 /*
1124                  * If the inpcb has been freed, let the caller know, even if
1125                  * this isn't the last reference.
1126                  */
1127                 if (inp->inp_flags2 & INP_FREED) {
1128                         INP_RUNLOCK(inp);
1129                         return (1);
1130                 }
1131                 return (0);
1132         }
1133
1134         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1135
1136         INP_RUNLOCK(inp);
1137         pcbinfo = inp->inp_pcbinfo;
1138         uma_zfree(pcbinfo->ipi_zone, inp);
1139         return (1);
1140 }
1141
1142 int
1143 in_pcbrele_wlocked(struct inpcb *inp)
1144 {
1145         struct inpcbinfo *pcbinfo;
1146
1147         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1148
1149         INP_WLOCK_ASSERT(inp);
1150
1151         if (refcount_release(&inp->inp_refcount) == 0) {
1152                 /*
1153                  * If the inpcb has been freed, let the caller know, even if
1154                  * this isn't the last reference.
1155                  */
1156                 if (inp->inp_flags2 & INP_FREED) {
1157                         INP_WUNLOCK(inp);
1158                         return (1);
1159                 }
1160                 return (0);
1161         }
1162
1163         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1164
1165         INP_WUNLOCK(inp);
1166         pcbinfo = inp->inp_pcbinfo;
1167         uma_zfree(pcbinfo->ipi_zone, inp);
1168         return (1);
1169 }
1170
1171 /*
1172  * Temporary wrapper.
1173  */
1174 int
1175 in_pcbrele(struct inpcb *inp)
1176 {
1177
1178         return (in_pcbrele_wlocked(inp));
1179 }
1180
1181 /*
1182  * Unconditionally schedule an inpcb to be freed by decrementing its
1183  * reference count, which should occur only after the inpcb has been detached
1184  * from its socket.  If another thread holds a temporary reference (acquired
1185  * using in_pcbref()) then the free is deferred until that reference is
1186  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1187  * work, including removal from global lists, is done in this context, where
1188  * the pcbinfo lock is held.
1189  */
1190 void
1191 in_pcbfree(struct inpcb *inp)
1192 {
1193         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1194
1195         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1196
1197         INP_INFO_WLOCK_ASSERT(pcbinfo);
1198         INP_WLOCK_ASSERT(inp);
1199
1200         /* XXXRW: Do as much as possible here. */
1201 #ifdef IPSEC
1202         if (inp->inp_sp != NULL)
1203                 ipsec_delete_pcbpolicy(inp);
1204 #endif
1205         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1206         in_pcbremlists(inp);
1207 #ifdef INET6
1208         if (inp->inp_vflag & INP_IPV6PROTO) {
1209                 ip6_freepcbopts(inp->in6p_outputopts);
1210                 if (inp->in6p_moptions != NULL)
1211                         ip6_freemoptions(inp->in6p_moptions);
1212         }
1213 #endif
1214         if (inp->inp_options)
1215                 (void)m_free(inp->inp_options);
1216 #ifdef INET
1217         if (inp->inp_moptions != NULL)
1218                 inp_freemoptions(inp->inp_moptions);
1219 #endif
1220         inp->inp_vflag = 0;
1221         inp->inp_flags2 |= INP_FREED;
1222         crfree(inp->inp_cred);
1223 #ifdef MAC
1224         mac_inpcb_destroy(inp);
1225 #endif
1226         if (!in_pcbrele_wlocked(inp))
1227                 INP_WUNLOCK(inp);
1228 }
1229
1230 /*
1231  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1232  * port reservation, and preventing it from being returned by inpcb lookups.
1233  *
1234  * It is used by TCP to mark an inpcb as unused and avoid future packet
1235  * delivery or event notification when a socket remains open but TCP has
1236  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1237  * or a RST on the wire, and allows the port binding to be reused while still
1238  * maintaining the invariant that so_pcb always points to a valid inpcb until
1239  * in_pcbdetach().
1240  *
1241  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1242  * in_pcbnotifyall() and in_pcbpurgeif0()?
1243  */
1244 void
1245 in_pcbdrop(struct inpcb *inp)
1246 {
1247
1248         INP_WLOCK_ASSERT(inp);
1249
1250         /*
1251          * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1252          * the hash lock...?
1253          */
1254         inp->inp_flags |= INP_DROPPED;
1255         if (inp->inp_flags & INP_INHASHLIST) {
1256                 struct inpcbport *phd = inp->inp_phd;
1257
1258                 INP_HASH_WLOCK(inp->inp_pcbinfo);
1259                 LIST_REMOVE(inp, inp_hash);
1260                 LIST_REMOVE(inp, inp_portlist);
1261                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1262                         LIST_REMOVE(phd, phd_hash);
1263                         free(phd, M_PCB);
1264                 }
1265                 INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1266                 inp->inp_flags &= ~INP_INHASHLIST;
1267 #ifdef PCBGROUP
1268                 in_pcbgroup_remove(inp);
1269 #endif
1270         }
1271 }
1272
1273 #ifdef INET
1274 /*
1275  * Common routines to return the socket addresses associated with inpcbs.
1276  */
1277 struct sockaddr *
1278 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1279 {
1280         struct sockaddr_in *sin;
1281
1282         sin = malloc(sizeof *sin, M_SONAME,
1283                 M_WAITOK | M_ZERO);
1284         sin->sin_family = AF_INET;
1285         sin->sin_len = sizeof(*sin);
1286         sin->sin_addr = *addr_p;
1287         sin->sin_port = port;
1288
1289         return (struct sockaddr *)sin;
1290 }
1291
1292 int
1293 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1294 {
1295         struct inpcb *inp;
1296         struct in_addr addr;
1297         in_port_t port;
1298
1299         inp = sotoinpcb(so);
1300         KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1301
1302         INP_RLOCK(inp);
1303         port = inp->inp_lport;
1304         addr = inp->inp_laddr;
1305         INP_RUNLOCK(inp);
1306
1307         *nam = in_sockaddr(port, &addr);
1308         return 0;
1309 }
1310
1311 int
1312 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1313 {
1314         struct inpcb *inp;
1315         struct in_addr addr;
1316         in_port_t port;
1317
1318         inp = sotoinpcb(so);
1319         KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1320
1321         INP_RLOCK(inp);
1322         port = inp->inp_fport;
1323         addr = inp->inp_faddr;
1324         INP_RUNLOCK(inp);
1325
1326         *nam = in_sockaddr(port, &addr);
1327         return 0;
1328 }
1329
1330 void
1331 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1332     struct inpcb *(*notify)(struct inpcb *, int))
1333 {
1334         struct inpcb *inp, *inp_temp;
1335
1336         INP_INFO_WLOCK(pcbinfo);
1337         LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1338                 INP_WLOCK(inp);
1339 #ifdef INET6
1340                 if ((inp->inp_vflag & INP_IPV4) == 0) {
1341                         INP_WUNLOCK(inp);
1342                         continue;
1343                 }
1344 #endif
1345                 if (inp->inp_faddr.s_addr != faddr.s_addr ||
1346                     inp->inp_socket == NULL) {
1347                         INP_WUNLOCK(inp);
1348                         continue;
1349                 }
1350                 if ((*notify)(inp, errno))
1351                         INP_WUNLOCK(inp);
1352         }
1353         INP_INFO_WUNLOCK(pcbinfo);
1354 }
1355
1356 void
1357 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1358 {
1359         struct inpcb *inp;
1360         struct ip_moptions *imo;
1361         int i, gap;
1362
1363         INP_INFO_RLOCK(pcbinfo);
1364         LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1365                 INP_WLOCK(inp);
1366                 imo = inp->inp_moptions;
1367                 if ((inp->inp_vflag & INP_IPV4) &&
1368                     imo != NULL) {
1369                         /*
1370                          * Unselect the outgoing interface if it is being
1371                          * detached.
1372                          */
1373                         if (imo->imo_multicast_ifp == ifp)
1374                                 imo->imo_multicast_ifp = NULL;
1375
1376                         /*
1377                          * Drop multicast group membership if we joined
1378                          * through the interface being detached.
1379                          */
1380                         for (i = 0, gap = 0; i < imo->imo_num_memberships;
1381                             i++) {
1382                                 if (imo->imo_membership[i]->inm_ifp == ifp) {
1383                                         in_delmulti(imo->imo_membership[i]);
1384                                         gap++;
1385                                 } else if (gap != 0)
1386                                         imo->imo_membership[i - gap] =
1387                                             imo->imo_membership[i];
1388                         }
1389                         imo->imo_num_memberships -= gap;
1390                 }
1391                 INP_WUNLOCK(inp);
1392         }
1393         INP_INFO_RUNLOCK(pcbinfo);
1394 }
1395
1396 /*
1397  * Lookup a PCB based on the local address and port.  Caller must hold the
1398  * hash lock.  No inpcb locks or references are acquired.
1399  */
1400 #define INP_LOOKUP_MAPPED_PCB_COST      3
1401 struct inpcb *
1402 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1403     u_short lport, int lookupflags, struct ucred *cred)
1404 {
1405         struct inpcb *inp;
1406 #ifdef INET6
1407         int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1408 #else
1409         int matchwild = 3;
1410 #endif
1411         int wildcard;
1412
1413         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1414             ("%s: invalid lookup flags %d", __func__, lookupflags));
1415
1416         INP_HASH_LOCK_ASSERT(pcbinfo);
1417
1418         if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1419                 struct inpcbhead *head;
1420                 /*
1421                  * Look for an unconnected (wildcard foreign addr) PCB that
1422                  * matches the local address and port we're looking for.
1423                  */
1424                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1425                     0, pcbinfo->ipi_hashmask)];
1426                 LIST_FOREACH(inp, head, inp_hash) {
1427 #ifdef INET6
1428                         /* XXX inp locking */
1429                         if ((inp->inp_vflag & INP_IPV4) == 0)
1430                                 continue;
1431 #endif
1432                         if (inp->inp_faddr.s_addr == INADDR_ANY &&
1433                             inp->inp_laddr.s_addr == laddr.s_addr &&
1434                             inp->inp_lport == lport) {
1435                                 /*
1436                                  * Found?
1437                                  */
1438                                 if (cred == NULL ||
1439                                     prison_equal_ip4(cred->cr_prison,
1440                                         inp->inp_cred->cr_prison))
1441                                         return (inp);
1442                         }
1443                 }
1444                 /*
1445                  * Not found.
1446                  */
1447                 return (NULL);
1448         } else {
1449                 struct inpcbporthead *porthash;
1450                 struct inpcbport *phd;
1451                 struct inpcb *match = NULL;
1452                 /*
1453                  * Best fit PCB lookup.
1454                  *
1455                  * First see if this local port is in use by looking on the
1456                  * port hash list.
1457                  */
1458                 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1459                     pcbinfo->ipi_porthashmask)];
1460                 LIST_FOREACH(phd, porthash, phd_hash) {
1461                         if (phd->phd_port == lport)
1462                                 break;
1463                 }
1464                 if (phd != NULL) {
1465                         /*
1466                          * Port is in use by one or more PCBs. Look for best
1467                          * fit.
1468                          */
1469                         LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1470                                 wildcard = 0;
1471                                 if (cred != NULL &&
1472                                     !prison_equal_ip4(inp->inp_cred->cr_prison,
1473                                         cred->cr_prison))
1474                                         continue;
1475 #ifdef INET6
1476                                 /* XXX inp locking */
1477                                 if ((inp->inp_vflag & INP_IPV4) == 0)
1478                                         continue;
1479                                 /*
1480                                  * We never select the PCB that has
1481                                  * INP_IPV6 flag and is bound to :: if
1482                                  * we have another PCB which is bound
1483                                  * to 0.0.0.0.  If a PCB has the
1484                                  * INP_IPV6 flag, then we set its cost
1485                                  * higher than IPv4 only PCBs.
1486                                  *
1487                                  * Note that the case only happens
1488                                  * when a socket is bound to ::, under
1489                                  * the condition that the use of the
1490                                  * mapped address is allowed.
1491                                  */
1492                                 if ((inp->inp_vflag & INP_IPV6) != 0)
1493                                         wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1494 #endif
1495                                 if (inp->inp_faddr.s_addr != INADDR_ANY)
1496                                         wildcard++;
1497                                 if (inp->inp_laddr.s_addr != INADDR_ANY) {
1498                                         if (laddr.s_addr == INADDR_ANY)
1499                                                 wildcard++;
1500                                         else if (inp->inp_laddr.s_addr != laddr.s_addr)
1501                                                 continue;
1502                                 } else {
1503                                         if (laddr.s_addr != INADDR_ANY)
1504                                                 wildcard++;
1505                                 }
1506                                 if (wildcard < matchwild) {
1507                                         match = inp;
1508                                         matchwild = wildcard;
1509                                         if (matchwild == 0)
1510                                                 break;
1511                                 }
1512                         }
1513                 }
1514                 return (match);
1515         }
1516 }
1517 #undef INP_LOOKUP_MAPPED_PCB_COST
1518
1519 #ifdef PCBGROUP
1520 /*
1521  * Lookup PCB in hash list, using pcbgroup tables.
1522  */
1523 static struct inpcb *
1524 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1525     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1526     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1527 {
1528         struct inpcbhead *head;
1529         struct inpcb *inp, *tmpinp;
1530         u_short fport = fport_arg, lport = lport_arg;
1531
1532         /*
1533          * First look for an exact match.
1534          */
1535         tmpinp = NULL;
1536         INP_GROUP_LOCK(pcbgroup);
1537         head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1538             pcbgroup->ipg_hashmask)];
1539         LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1540 #ifdef INET6
1541                 /* XXX inp locking */
1542                 if ((inp->inp_vflag & INP_IPV4) == 0)
1543                         continue;
1544 #endif
1545                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
1546                     inp->inp_laddr.s_addr == laddr.s_addr &&
1547                     inp->inp_fport == fport &&
1548                     inp->inp_lport == lport) {
1549                         /*
1550                          * XXX We should be able to directly return
1551                          * the inp here, without any checks.
1552                          * Well unless both bound with SO_REUSEPORT?
1553                          */
1554                         if (prison_flag(inp->inp_cred, PR_IP4))
1555                                 goto found;
1556                         if (tmpinp == NULL)
1557                                 tmpinp = inp;
1558                 }
1559         }
1560         if (tmpinp != NULL) {
1561                 inp = tmpinp;
1562                 goto found;
1563         }
1564
1565         /*
1566          * Then look for a wildcard match, if requested.
1567          */
1568         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1569                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1570 #ifdef INET6
1571                 struct inpcb *local_wild_mapped = NULL;
1572 #endif
1573                 struct inpcb *jail_wild = NULL;
1574                 struct inpcbhead *head;
1575                 int injail;
1576
1577                 /*
1578                  * Order of socket selection - we always prefer jails.
1579                  *      1. jailed, non-wild.
1580                  *      2. jailed, wild.
1581                  *      3. non-jailed, non-wild.
1582                  *      4. non-jailed, wild.
1583                  */
1584                 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1585                     0, pcbinfo->ipi_wildmask)];
1586                 LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1587 #ifdef INET6
1588                         /* XXX inp locking */
1589                         if ((inp->inp_vflag & INP_IPV4) == 0)
1590                                 continue;
1591 #endif
1592                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1593                             inp->inp_lport != lport)
1594                                 continue;
1595
1596                         /* XXX inp locking */
1597                         if (ifp && ifp->if_type == IFT_FAITH &&
1598                             (inp->inp_flags & INP_FAITH) == 0)
1599                                 continue;
1600
1601                         injail = prison_flag(inp->inp_cred, PR_IP4);
1602                         if (injail) {
1603                                 if (prison_check_ip4(inp->inp_cred,
1604                                     &laddr) != 0)
1605                                         continue;
1606                         } else {
1607                                 if (local_exact != NULL)
1608                                         continue;
1609                         }
1610
1611                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1612                                 if (injail)
1613                                         goto found;
1614                                 else
1615                                         local_exact = inp;
1616                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1617 #ifdef INET6
1618                                 /* XXX inp locking, NULL check */
1619                                 if (inp->inp_vflag & INP_IPV6PROTO)
1620                                         local_wild_mapped = inp;
1621                                 else
1622 #endif
1623                                         if (injail)
1624                                                 jail_wild = inp;
1625                                         else
1626                                                 local_wild = inp;
1627                         }
1628                 } /* LIST_FOREACH */
1629                 inp = jail_wild;
1630                 if (inp == NULL)
1631                         inp = local_exact;
1632                 if (inp == NULL)
1633                         inp = local_wild;
1634 #ifdef INET6
1635                 if (inp == NULL)
1636                         inp = local_wild_mapped;
1637 #endif
1638                 if (inp != NULL)
1639                         goto found;
1640         } /* if (lookupflags & INPLOOKUP_WILDCARD) */
1641         INP_GROUP_UNLOCK(pcbgroup);
1642         return (NULL);
1643
1644 found:
1645         in_pcbref(inp);
1646         INP_GROUP_UNLOCK(pcbgroup);
1647         if (lookupflags & INPLOOKUP_WLOCKPCB) {
1648                 INP_WLOCK(inp);
1649                 if (in_pcbrele_wlocked(inp))
1650                         return (NULL);
1651         } else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1652                 INP_RLOCK(inp);
1653                 if (in_pcbrele_rlocked(inp))
1654                         return (NULL);
1655         } else
1656                 panic("%s: locking bug", __func__);
1657         return (inp);
1658 }
1659 #endif /* PCBGROUP */
1660
1661 /*
1662  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1663  * that the caller has locked the hash list, and will not perform any further
1664  * locking or reference operations on either the hash list or the connection.
1665  */
1666 static struct inpcb *
1667 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1668     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1669     struct ifnet *ifp)
1670 {
1671         struct inpcbhead *head;
1672         struct inpcb *inp, *tmpinp;
1673         u_short fport = fport_arg, lport = lport_arg;
1674
1675         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1676             ("%s: invalid lookup flags %d", __func__, lookupflags));
1677
1678         INP_HASH_LOCK_ASSERT(pcbinfo);
1679
1680         /*
1681          * First look for an exact match.
1682          */
1683         tmpinp = NULL;
1684         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1685             pcbinfo->ipi_hashmask)];
1686         LIST_FOREACH(inp, head, inp_hash) {
1687 #ifdef INET6
1688                 /* XXX inp locking */
1689                 if ((inp->inp_vflag & INP_IPV4) == 0)
1690                         continue;
1691 #endif
1692                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
1693                     inp->inp_laddr.s_addr == laddr.s_addr &&
1694                     inp->inp_fport == fport &&
1695                     inp->inp_lport == lport) {
1696                         /*
1697                          * XXX We should be able to directly return
1698                          * the inp here, without any checks.
1699                          * Well unless both bound with SO_REUSEPORT?
1700                          */
1701                         if (prison_flag(inp->inp_cred, PR_IP4))
1702                                 return (inp);
1703                         if (tmpinp == NULL)
1704                                 tmpinp = inp;
1705                 }
1706         }
1707         if (tmpinp != NULL)
1708                 return (tmpinp);
1709
1710         /*
1711          * Then look for a wildcard match, if requested.
1712          */
1713         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1714                 struct inpcb *local_wild = NULL, *local_exact = NULL;
1715 #ifdef INET6
1716                 struct inpcb *local_wild_mapped = NULL;
1717 #endif
1718                 struct inpcb *jail_wild = NULL;
1719                 int injail;
1720
1721                 /*
1722                  * Order of socket selection - we always prefer jails.
1723                  *      1. jailed, non-wild.
1724                  *      2. jailed, wild.
1725                  *      3. non-jailed, non-wild.
1726                  *      4. non-jailed, wild.
1727                  */
1728
1729                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1730                     0, pcbinfo->ipi_hashmask)];
1731                 LIST_FOREACH(inp, head, inp_hash) {
1732 #ifdef INET6
1733                         /* XXX inp locking */
1734                         if ((inp->inp_vflag & INP_IPV4) == 0)
1735                                 continue;
1736 #endif
1737                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
1738                             inp->inp_lport != lport)
1739                                 continue;
1740
1741                         /* XXX inp locking */
1742                         if (ifp && ifp->if_type == IFT_FAITH &&
1743                             (inp->inp_flags & INP_FAITH) == 0)
1744                                 continue;
1745
1746                         injail = prison_flag(inp->inp_cred, PR_IP4);
1747                         if (injail) {
1748                                 if (prison_check_ip4(inp->inp_cred,
1749                                     &laddr) != 0)
1750                                         continue;
1751                         } else {
1752                                 if (local_exact != NULL)
1753                                         continue;
1754                         }
1755
1756                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
1757                                 if (injail)
1758                                         return (inp);
1759                                 else
1760                                         local_exact = inp;
1761                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1762 #ifdef INET6
1763                                 /* XXX inp locking, NULL check */
1764                                 if (inp->inp_vflag & INP_IPV6PROTO)
1765                                         local_wild_mapped = inp;
1766                                 else
1767 #endif
1768                                         if (injail)
1769                                                 jail_wild = inp;
1770                                         else
1771                                                 local_wild = inp;
1772                         }
1773                 } /* LIST_FOREACH */
1774                 if (jail_wild != NULL)
1775                         return (jail_wild);
1776                 if (local_exact != NULL)
1777                         return (local_exact);
1778                 if (local_wild != NULL)
1779                         return (local_wild);
1780 #ifdef INET6
1781                 if (local_wild_mapped != NULL)
1782                         return (local_wild_mapped);
1783 #endif
1784         } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
1785
1786         return (NULL);
1787 }
1788
1789 /*
1790  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
1791  * hash list lock, and will return the inpcb locked (i.e., requires
1792  * INPLOOKUP_LOCKPCB).
1793  */
1794 static struct inpcb *
1795 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1796     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1797     struct ifnet *ifp)
1798 {
1799         struct inpcb *inp;
1800
1801         INP_HASH_RLOCK(pcbinfo);
1802         inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
1803             (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
1804         if (inp != NULL) {
1805                 in_pcbref(inp);
1806                 INP_HASH_RUNLOCK(pcbinfo);
1807                 if (lookupflags & INPLOOKUP_WLOCKPCB) {
1808                         INP_WLOCK(inp);
1809                         if (in_pcbrele_wlocked(inp))
1810                                 return (NULL);
1811                 } else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1812                         INP_RLOCK(inp);
1813                         if (in_pcbrele_rlocked(inp))
1814                                 return (NULL);
1815                 } else
1816                         panic("%s: locking bug", __func__);
1817         } else
1818                 INP_HASH_RUNLOCK(pcbinfo);
1819         return (inp);
1820 }
1821
1822 /*
1823  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
1824  * from which a pre-calculated hash value may be extracted.
1825  *
1826  * Possibly more of this logic should be in in_pcbgroup.c.
1827  */
1828 struct inpcb *
1829 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
1830     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
1831 {
1832 #if defined(PCBGROUP)
1833         struct inpcbgroup *pcbgroup;
1834 #endif
1835
1836         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1837             ("%s: invalid lookup flags %d", __func__, lookupflags));
1838         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1839             ("%s: LOCKPCB not set", __func__));
1840
1841 #if defined(PCBGROUP)
1842         if (in_pcbgroup_enabled(pcbinfo)) {
1843                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1844                     fport);
1845                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1846                     laddr, lport, lookupflags, ifp));
1847         }
1848 #endif
1849         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1850             lookupflags, ifp));
1851 }
1852
1853 struct inpcb *
1854 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1855     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1856     struct ifnet *ifp, struct mbuf *m)
1857 {
1858 #ifdef PCBGROUP
1859         struct inpcbgroup *pcbgroup;
1860 #endif
1861
1862         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1863             ("%s: invalid lookup flags %d", __func__, lookupflags));
1864         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1865             ("%s: LOCKPCB not set", __func__));
1866
1867 #ifdef PCBGROUP
1868         if (in_pcbgroup_enabled(pcbinfo)) {
1869                 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
1870                     m->m_pkthdr.flowid);
1871                 if (pcbgroup != NULL)
1872                         return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
1873                             fport, laddr, lport, lookupflags, ifp));
1874                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1875                     fport);
1876                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1877                     laddr, lport, lookupflags, ifp));
1878         }
1879 #endif
1880         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1881             lookupflags, ifp));
1882 }
1883 #endif /* INET */
1884
1885 /*
1886  * Insert PCB onto various hash lists.
1887  */
1888 static int
1889 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
1890 {
1891         struct inpcbhead *pcbhash;
1892         struct inpcbporthead *pcbporthash;
1893         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1894         struct inpcbport *phd;
1895         u_int32_t hashkey_faddr;
1896
1897         INP_WLOCK_ASSERT(inp);
1898         INP_HASH_WLOCK_ASSERT(pcbinfo);
1899
1900         KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
1901             ("in_pcbinshash: INP_INHASHLIST"));
1902
1903 #ifdef INET6
1904         if (inp->inp_vflag & INP_IPV6)
1905                 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1906         else
1907 #endif
1908         hashkey_faddr = inp->inp_faddr.s_addr;
1909
1910         pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1911                  inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1912
1913         pcbporthash = &pcbinfo->ipi_porthashbase[
1914             INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
1915
1916         /*
1917          * Go through port list and look for a head for this lport.
1918          */
1919         LIST_FOREACH(phd, pcbporthash, phd_hash) {
1920                 if (phd->phd_port == inp->inp_lport)
1921                         break;
1922         }
1923         /*
1924          * If none exists, malloc one and tack it on.
1925          */
1926         if (phd == NULL) {
1927                 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
1928                 if (phd == NULL) {
1929                         return (ENOBUFS); /* XXX */
1930                 }
1931                 phd->phd_port = inp->inp_lport;
1932                 LIST_INIT(&phd->phd_pcblist);
1933                 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1934         }
1935         inp->inp_phd = phd;
1936         LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1937         LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
1938         inp->inp_flags |= INP_INHASHLIST;
1939 #ifdef PCBGROUP
1940         if (do_pcbgroup_update)
1941                 in_pcbgroup_update(inp);
1942 #endif
1943         return (0);
1944 }
1945
1946 /*
1947  * For now, there are two public interfaces to insert an inpcb into the hash
1948  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
1949  * is used only in the TCP syncache, where in_pcbinshash is called before the
1950  * full 4-tuple is set for the inpcb, and we don't want to install in the
1951  * pcbgroup until later.
1952  *
1953  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
1954  * connection groups, and partially initialised inpcbs should not be exposed
1955  * to either reservation hash tables or pcbgroups.
1956  */
1957 int
1958 in_pcbinshash(struct inpcb *inp)
1959 {
1960
1961         return (in_pcbinshash_internal(inp, 1));
1962 }
1963
1964 int
1965 in_pcbinshash_nopcbgroup(struct inpcb *inp)
1966 {
1967
1968         return (in_pcbinshash_internal(inp, 0));
1969 }
1970
1971 /*
1972  * Move PCB to the proper hash bucket when { faddr, fport } have  been
1973  * changed. NOTE: This does not handle the case of the lport changing (the
1974  * hashed port list would have to be updated as well), so the lport must
1975  * not change after in_pcbinshash() has been called.
1976  */
1977 void
1978 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
1979 {
1980         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1981         struct inpcbhead *head;
1982         u_int32_t hashkey_faddr;
1983
1984         INP_WLOCK_ASSERT(inp);
1985         INP_HASH_WLOCK_ASSERT(pcbinfo);
1986
1987         KASSERT(inp->inp_flags & INP_INHASHLIST,
1988             ("in_pcbrehash: !INP_INHASHLIST"));
1989
1990 #ifdef INET6
1991         if (inp->inp_vflag & INP_IPV6)
1992                 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1993         else
1994 #endif
1995         hashkey_faddr = inp->inp_faddr.s_addr;
1996
1997         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1998                 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1999
2000         LIST_REMOVE(inp, inp_hash);
2001         LIST_INSERT_HEAD(head, inp, inp_hash);
2002
2003 #ifdef PCBGROUP
2004         if (m != NULL)
2005                 in_pcbgroup_update_mbuf(inp, m);
2006         else
2007                 in_pcbgroup_update(inp);
2008 #endif
2009 }
2010
2011 void
2012 in_pcbrehash(struct inpcb *inp)
2013 {
2014
2015         in_pcbrehash_mbuf(inp, NULL);
2016 }
2017
2018 /*
2019  * Remove PCB from various lists.
2020  */
2021 static void
2022 in_pcbremlists(struct inpcb *inp)
2023 {
2024         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2025
2026         INP_INFO_WLOCK_ASSERT(pcbinfo);
2027         INP_WLOCK_ASSERT(inp);
2028
2029         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2030         if (inp->inp_flags & INP_INHASHLIST) {
2031                 struct inpcbport *phd = inp->inp_phd;
2032
2033                 INP_HASH_WLOCK(pcbinfo);
2034                 LIST_REMOVE(inp, inp_hash);
2035                 LIST_REMOVE(inp, inp_portlist);
2036                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2037                         LIST_REMOVE(phd, phd_hash);
2038                         free(phd, M_PCB);
2039                 }
2040                 INP_HASH_WUNLOCK(pcbinfo);
2041                 inp->inp_flags &= ~INP_INHASHLIST;
2042         }
2043         LIST_REMOVE(inp, inp_list);
2044         pcbinfo->ipi_count--;
2045 #ifdef PCBGROUP
2046         in_pcbgroup_remove(inp);
2047 #endif
2048 }
2049
2050 /*
2051  * A set label operation has occurred at the socket layer, propagate the
2052  * label change into the in_pcb for the socket.
2053  */
2054 void
2055 in_pcbsosetlabel(struct socket *so)
2056 {
2057 #ifdef MAC
2058         struct inpcb *inp;
2059
2060         inp = sotoinpcb(so);
2061         KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2062
2063         INP_WLOCK(inp);
2064         SOCK_LOCK(so);
2065         mac_inpcb_sosetlabel(so, inp);
2066         SOCK_UNLOCK(so);
2067         INP_WUNLOCK(inp);
2068 #endif
2069 }
2070
2071 /*
2072  * ipport_tick runs once per second, determining if random port allocation
2073  * should be continued.  If more than ipport_randomcps ports have been
2074  * allocated in the last second, then we return to sequential port
2075  * allocation. We return to random allocation only once we drop below
2076  * ipport_randomcps for at least ipport_randomtime seconds.
2077  */
2078 static void
2079 ipport_tick(void *xtp)
2080 {
2081         VNET_ITERATOR_DECL(vnet_iter);
2082
2083         VNET_LIST_RLOCK_NOSLEEP();
2084         VNET_FOREACH(vnet_iter) {
2085                 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */
2086                 if (V_ipport_tcpallocs <=
2087                     V_ipport_tcplastcount + V_ipport_randomcps) {
2088                         if (V_ipport_stoprandom > 0)
2089                                 V_ipport_stoprandom--;
2090                 } else
2091                         V_ipport_stoprandom = V_ipport_randomtime;
2092                 V_ipport_tcplastcount = V_ipport_tcpallocs;
2093                 CURVNET_RESTORE();
2094         }
2095         VNET_LIST_RUNLOCK_NOSLEEP();
2096         callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2097 }
2098
2099 static void
2100 ip_fini(void *xtp)
2101 {
2102
2103         callout_stop(&ipport_tick_callout);
2104 }
2105
2106 /* 
2107  * The ipport_callout should start running at about the time we attach the
2108  * inet or inet6 domains.
2109  */
2110 static void
2111 ipport_tick_init(const void *unused __unused)
2112 {
2113
2114         /* Start ipport_tick. */
2115         callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
2116         callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2117         EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2118                 SHUTDOWN_PRI_DEFAULT);
2119 }
2120 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 
2121     ipport_tick_init, NULL);
2122
2123 void
2124 inp_wlock(struct inpcb *inp)
2125 {
2126
2127         INP_WLOCK(inp);
2128 }
2129
2130 void
2131 inp_wunlock(struct inpcb *inp)
2132 {
2133
2134         INP_WUNLOCK(inp);
2135 }
2136
2137 void
2138 inp_rlock(struct inpcb *inp)
2139 {
2140
2141         INP_RLOCK(inp);
2142 }
2143
2144 void
2145 inp_runlock(struct inpcb *inp)
2146 {
2147
2148         INP_RUNLOCK(inp);
2149 }
2150
2151 #ifdef INVARIANTS
2152 void
2153 inp_lock_assert(struct inpcb *inp)
2154 {
2155
2156         INP_WLOCK_ASSERT(inp);
2157 }
2158
2159 void
2160 inp_unlock_assert(struct inpcb *inp)
2161 {
2162
2163         INP_UNLOCK_ASSERT(inp);
2164 }
2165 #endif
2166
2167 void
2168 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2169 {
2170         struct inpcb *inp;
2171
2172         INP_INFO_RLOCK(&V_tcbinfo);
2173         LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2174                 INP_WLOCK(inp);
2175                 func(inp, arg);
2176                 INP_WUNLOCK(inp);
2177         }
2178         INP_INFO_RUNLOCK(&V_tcbinfo);
2179 }
2180
2181 struct socket *
2182 inp_inpcbtosocket(struct inpcb *inp)
2183 {
2184
2185         INP_WLOCK_ASSERT(inp);
2186         return (inp->inp_socket);
2187 }
2188
2189 struct tcpcb *
2190 inp_inpcbtotcpcb(struct inpcb *inp)
2191 {
2192
2193         INP_WLOCK_ASSERT(inp);
2194         return ((struct tcpcb *)inp->inp_ppcb);
2195 }
2196
2197 int
2198 inp_ip_tos_get(const struct inpcb *inp)
2199 {
2200
2201         return (inp->inp_ip_tos);
2202 }
2203
2204 void
2205 inp_ip_tos_set(struct inpcb *inp, int val)
2206 {
2207
2208         inp->inp_ip_tos = val;
2209 }
2210
2211 void
2212 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2213     uint32_t *faddr, uint16_t *fp)
2214 {
2215
2216         INP_LOCK_ASSERT(inp);
2217         *laddr = inp->inp_laddr.s_addr;
2218         *faddr = inp->inp_faddr.s_addr;
2219         *lp = inp->inp_lport;
2220         *fp = inp->inp_fport;
2221 }
2222
2223 struct inpcb *
2224 so_sotoinpcb(struct socket *so)
2225 {
2226
2227         return (sotoinpcb(so));
2228 }
2229
2230 struct tcpcb *
2231 so_sototcpcb(struct socket *so)
2232 {
2233
2234         return (sototcpcb(so));
2235 }
2236
2237 #ifdef DDB
2238 static void
2239 db_print_indent(int indent)
2240 {
2241         int i;
2242
2243         for (i = 0; i < indent; i++)
2244                 db_printf(" ");
2245 }
2246
2247 static void
2248 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2249 {
2250         char faddr_str[48], laddr_str[48];
2251
2252         db_print_indent(indent);
2253         db_printf("%s at %p\n", name, inc);
2254
2255         indent += 2;
2256
2257 #ifdef INET6
2258         if (inc->inc_flags & INC_ISIPV6) {
2259                 /* IPv6. */
2260                 ip6_sprintf(laddr_str, &inc->inc6_laddr);
2261                 ip6_sprintf(faddr_str, &inc->inc6_faddr);
2262         } else
2263 #endif
2264         {
2265                 /* IPv4. */
2266                 inet_ntoa_r(inc->inc_laddr, laddr_str);
2267                 inet_ntoa_r(inc->inc_faddr, faddr_str);
2268         }
2269         db_print_indent(indent);
2270         db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2271             ntohs(inc->inc_lport));
2272         db_print_indent(indent);
2273         db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2274             ntohs(inc->inc_fport));
2275 }
2276
2277 static void
2278 db_print_inpflags(int inp_flags)
2279 {
2280         int comma;
2281
2282         comma = 0;
2283         if (inp_flags & INP_RECVOPTS) {
2284                 db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2285                 comma = 1;
2286         }
2287         if (inp_flags & INP_RECVRETOPTS) {
2288                 db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2289                 comma = 1;
2290         }
2291         if (inp_flags & INP_RECVDSTADDR) {
2292                 db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2293                 comma = 1;
2294         }
2295         if (inp_flags & INP_HDRINCL) {
2296                 db_printf("%sINP_HDRINCL", comma ? ", " : "");
2297                 comma = 1;
2298         }
2299         if (inp_flags & INP_HIGHPORT) {
2300                 db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2301                 comma = 1;
2302         }
2303         if (inp_flags & INP_LOWPORT) {
2304                 db_printf("%sINP_LOWPORT", comma ? ", " : "");
2305                 comma = 1;
2306         }
2307         if (inp_flags & INP_ANONPORT) {
2308                 db_printf("%sINP_ANONPORT", comma ? ", " : "");
2309                 comma = 1;
2310         }
2311         if (inp_flags & INP_RECVIF) {
2312                 db_printf("%sINP_RECVIF", comma ? ", " : "");
2313                 comma = 1;
2314         }
2315         if (inp_flags & INP_MTUDISC) {
2316                 db_printf("%sINP_MTUDISC", comma ? ", " : "");
2317                 comma = 1;
2318         }
2319         if (inp_flags & INP_FAITH) {
2320                 db_printf("%sINP_FAITH", comma ? ", " : "");
2321                 comma = 1;
2322         }
2323         if (inp_flags & INP_RECVTTL) {
2324                 db_printf("%sINP_RECVTTL", comma ? ", " : "");
2325                 comma = 1;
2326         }
2327         if (inp_flags & INP_DONTFRAG) {
2328                 db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2329                 comma = 1;
2330         }
2331         if (inp_flags & INP_RECVTOS) {
2332                 db_printf("%sINP_RECVTOS", comma ? ", " : "");
2333                 comma = 1;
2334         }
2335         if (inp_flags & IN6P_IPV6_V6ONLY) {
2336                 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2337                 comma = 1;
2338         }
2339         if (inp_flags & IN6P_PKTINFO) {
2340                 db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2341                 comma = 1;
2342         }
2343         if (inp_flags & IN6P_HOPLIMIT) {
2344                 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2345                 comma = 1;
2346         }
2347         if (inp_flags & IN6P_HOPOPTS) {
2348                 db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2349                 comma = 1;
2350         }
2351         if (inp_flags & IN6P_DSTOPTS) {
2352                 db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2353                 comma = 1;
2354         }
2355         if (inp_flags & IN6P_RTHDR) {
2356                 db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2357                 comma = 1;
2358         }
2359         if (inp_flags & IN6P_RTHDRDSTOPTS) {
2360                 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2361                 comma = 1;
2362         }
2363         if (inp_flags & IN6P_TCLASS) {
2364                 db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2365                 comma = 1;
2366         }
2367         if (inp_flags & IN6P_AUTOFLOWLABEL) {
2368                 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2369                 comma = 1;
2370         }
2371         if (inp_flags & INP_TIMEWAIT) {
2372                 db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2373                 comma  = 1;
2374         }
2375         if (inp_flags & INP_ONESBCAST) {
2376                 db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2377                 comma  = 1;
2378         }
2379         if (inp_flags & INP_DROPPED) {
2380                 db_printf("%sINP_DROPPED", comma ? ", " : "");
2381                 comma  = 1;
2382         }
2383         if (inp_flags & INP_SOCKREF) {
2384                 db_printf("%sINP_SOCKREF", comma ? ", " : "");
2385                 comma  = 1;
2386         }
2387         if (inp_flags & IN6P_RFC2292) {
2388                 db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2389                 comma = 1;
2390         }
2391         if (inp_flags & IN6P_MTU) {
2392                 db_printf("IN6P_MTU%s", comma ? ", " : "");
2393                 comma = 1;
2394         }
2395 }
2396
2397 static void
2398 db_print_inpvflag(u_char inp_vflag)
2399 {
2400         int comma;
2401
2402         comma = 0;
2403         if (inp_vflag & INP_IPV4) {
2404                 db_printf("%sINP_IPV4", comma ? ", " : "");
2405                 comma  = 1;
2406         }
2407         if (inp_vflag & INP_IPV6) {
2408                 db_printf("%sINP_IPV6", comma ? ", " : "");
2409                 comma  = 1;
2410         }
2411         if (inp_vflag & INP_IPV6PROTO) {
2412                 db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2413                 comma  = 1;
2414         }
2415 }
2416
2417 static void
2418 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2419 {
2420
2421         db_print_indent(indent);
2422         db_printf("%s at %p\n", name, inp);
2423
2424         indent += 2;
2425
2426         db_print_indent(indent);
2427         db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2428
2429         db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2430
2431         db_print_indent(indent);
2432         db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2433             inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2434
2435         db_print_indent(indent);
2436         db_printf("inp_label: %p   inp_flags: 0x%x (",
2437            inp->inp_label, inp->inp_flags);
2438         db_print_inpflags(inp->inp_flags);
2439         db_printf(")\n");
2440
2441         db_print_indent(indent);
2442         db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2443             inp->inp_vflag);
2444         db_print_inpvflag(inp->inp_vflag);
2445         db_printf(")\n");
2446
2447         db_print_indent(indent);
2448         db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2449             inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2450
2451         db_print_indent(indent);
2452 #ifdef INET6
2453         if (inp->inp_vflag & INP_IPV6) {
2454                 db_printf("in6p_options: %p   in6p_outputopts: %p   "
2455                     "in6p_moptions: %p\n", inp->in6p_options,
2456                     inp->in6p_outputopts, inp->in6p_moptions);
2457                 db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2458                     "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2459                     inp->in6p_hops);
2460         } else
2461 #endif
2462         {
2463                 db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2464                     "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2465                     inp->inp_options, inp->inp_moptions);
2466         }
2467
2468         db_print_indent(indent);
2469         db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2470             (uintmax_t)inp->inp_gencnt);
2471 }
2472
2473 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2474 {
2475         struct inpcb *inp;
2476
2477         if (!have_addr) {
2478                 db_printf("usage: show inpcb <addr>\n");
2479                 return;
2480         }
2481         inp = (struct inpcb *)addr;
2482
2483         db_print_inpcb(inp, "inpcb", 0);
2484 }
2485 #endif /* DDB */