]> CyberLeo.Net >> Repos - FreeBSD/releng/10.3.git/blob - sys/vm/vm_fault.c
- Copy stable/10@296371 to releng/10.3 in preparation for 10.3-RC1
[FreeBSD/releng/10.3.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/rwlock.h>
87 #include <sys/sysctl.h>
88 #include <sys/vmmeter.h>
89 #include <sys/vnode.h>
90 #ifdef KTRACE
91 #include <sys/ktrace.h>
92 #endif
93
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_kern.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_extern.h>
104 #include <vm/vm_reserv.h>
105
106 #define PFBAK 4
107 #define PFFOR 4
108
109 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
110
111 #define VM_FAULT_READ_BEHIND    8
112 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
113 #define VM_FAULT_NINCR          (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
114 #define VM_FAULT_SUM            (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
115 #define VM_FAULT_CACHE_BEHIND   (VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
116
117 struct faultstate {
118         vm_page_t m;
119         vm_object_t object;
120         vm_pindex_t pindex;
121         vm_page_t first_m;
122         vm_object_t     first_object;
123         vm_pindex_t first_pindex;
124         vm_map_t map;
125         vm_map_entry_t entry;
126         int lookup_still_valid;
127         struct vnode *vp;
128 };
129
130 static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
131 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
132             int faultcount, int reqpage);
133
134 static inline void
135 release_page(struct faultstate *fs)
136 {
137
138         vm_page_xunbusy(fs->m);
139         vm_page_lock(fs->m);
140         vm_page_deactivate(fs->m);
141         vm_page_unlock(fs->m);
142         fs->m = NULL;
143 }
144
145 static inline void
146 unlock_map(struct faultstate *fs)
147 {
148
149         if (fs->lookup_still_valid) {
150                 vm_map_lookup_done(fs->map, fs->entry);
151                 fs->lookup_still_valid = FALSE;
152         }
153 }
154
155 static void
156 unlock_and_deallocate(struct faultstate *fs)
157 {
158
159         vm_object_pip_wakeup(fs->object);
160         VM_OBJECT_WUNLOCK(fs->object);
161         if (fs->object != fs->first_object) {
162                 VM_OBJECT_WLOCK(fs->first_object);
163                 vm_page_lock(fs->first_m);
164                 vm_page_free(fs->first_m);
165                 vm_page_unlock(fs->first_m);
166                 vm_object_pip_wakeup(fs->first_object);
167                 VM_OBJECT_WUNLOCK(fs->first_object);
168                 fs->first_m = NULL;
169         }
170         vm_object_deallocate(fs->first_object);
171         unlock_map(fs); 
172         if (fs->vp != NULL) { 
173                 vput(fs->vp);
174                 fs->vp = NULL;
175         }
176 }
177
178 static void
179 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
180     vm_prot_t fault_type, int fault_flags, boolean_t set_wd)
181 {
182         boolean_t need_dirty;
183
184         if (((prot & VM_PROT_WRITE) == 0 &&
185             (fault_flags & VM_FAULT_DIRTY) == 0) ||
186             (m->oflags & VPO_UNMANAGED) != 0)
187                 return;
188
189         VM_OBJECT_ASSERT_LOCKED(m->object);
190
191         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
192             (fault_flags & VM_FAULT_WIRE) == 0) ||
193             (fault_flags & VM_FAULT_DIRTY) != 0;
194
195         if (set_wd)
196                 vm_object_set_writeable_dirty(m->object);
197         else
198                 /*
199                  * If two callers of vm_fault_dirty() with set_wd ==
200                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
201                  * flag set, other with flag clear, race, it is
202                  * possible for the no-NOSYNC thread to see m->dirty
203                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
204                  * around manipulation of VPO_NOSYNC and
205                  * vm_page_dirty() call, to avoid the race and keep
206                  * m->oflags consistent.
207                  */
208                 vm_page_lock(m);
209
210         /*
211          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
212          * if the page is already dirty to prevent data written with
213          * the expectation of being synced from not being synced.
214          * Likewise if this entry does not request NOSYNC then make
215          * sure the page isn't marked NOSYNC.  Applications sharing
216          * data should use the same flags to avoid ping ponging.
217          */
218         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
219                 if (m->dirty == 0) {
220                         m->oflags |= VPO_NOSYNC;
221                 }
222         } else {
223                 m->oflags &= ~VPO_NOSYNC;
224         }
225
226         /*
227          * If the fault is a write, we know that this page is being
228          * written NOW so dirty it explicitly to save on
229          * pmap_is_modified() calls later.
230          *
231          * Also tell the backing pager, if any, that it should remove
232          * any swap backing since the page is now dirty.
233          */
234         if (need_dirty)
235                 vm_page_dirty(m);
236         if (!set_wd)
237                 vm_page_unlock(m);
238         if (need_dirty)
239                 vm_pager_page_unswapped(m);
240 }
241
242 /*
243  *      vm_fault:
244  *
245  *      Handle a page fault occurring at the given address,
246  *      requiring the given permissions, in the map specified.
247  *      If successful, the page is inserted into the
248  *      associated physical map.
249  *
250  *      NOTE: the given address should be truncated to the
251  *      proper page address.
252  *
253  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
254  *      a standard error specifying why the fault is fatal is returned.
255  *
256  *      The map in question must be referenced, and remains so.
257  *      Caller may hold no locks.
258  */
259 int
260 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
261     int fault_flags)
262 {
263         struct thread *td;
264         int result;
265
266         td = curthread;
267         if ((td->td_pflags & TDP_NOFAULTING) != 0)
268                 return (KERN_PROTECTION_FAILURE);
269 #ifdef KTRACE
270         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
271                 ktrfault(vaddr, fault_type);
272 #endif
273         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
274             NULL);
275 #ifdef KTRACE
276         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
277                 ktrfaultend(result);
278 #endif
279         return (result);
280 }
281
282 int
283 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
284     int fault_flags, vm_page_t *m_hold)
285 {
286         vm_prot_t prot;
287         long ahead, behind;
288         int alloc_req, era, faultcount, nera, reqpage, result;
289         boolean_t growstack, is_first_object_locked, wired;
290         int map_generation;
291         vm_object_t next_object;
292         vm_page_t marray[VM_FAULT_READ_MAX];
293         int hardfault;
294         struct faultstate fs;
295         struct vnode *vp;
296         vm_page_t m;
297         int locked, error;
298
299         hardfault = 0;
300         growstack = TRUE;
301         PCPU_INC(cnt.v_vm_faults);
302         fs.vp = NULL;
303         faultcount = reqpage = 0;
304
305 RetryFault:;
306
307         /*
308          * Find the backing store object and offset into it to begin the
309          * search.
310          */
311         fs.map = map;
312         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
313             &fs.first_object, &fs.first_pindex, &prot, &wired);
314         if (result != KERN_SUCCESS) {
315                 if (growstack && result == KERN_INVALID_ADDRESS &&
316                     map != kernel_map) {
317                         result = vm_map_growstack(curproc, vaddr);
318                         if (result != KERN_SUCCESS)
319                                 return (KERN_FAILURE);
320                         growstack = FALSE;
321                         goto RetryFault;
322                 }
323                 return (result);
324         }
325
326         map_generation = fs.map->timestamp;
327
328         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
329                 panic("vm_fault: fault on nofault entry, addr: %lx",
330                     (u_long)vaddr);
331         }
332
333         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
334             fs.entry->wiring_thread != curthread) {
335                 vm_map_unlock_read(fs.map);
336                 vm_map_lock(fs.map);
337                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
338                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
339                         if (fs.vp != NULL) {
340                                 vput(fs.vp);
341                                 fs.vp = NULL;
342                         }
343                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
344                         vm_map_unlock_and_wait(fs.map, 0);
345                 } else
346                         vm_map_unlock(fs.map);
347                 goto RetryFault;
348         }
349
350         if (wired)
351                 fault_type = prot | (fault_type & VM_PROT_COPY);
352         else
353                 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
354                     ("!wired && VM_FAULT_WIRE"));
355
356         if (fs.vp == NULL /* avoid locked vnode leak */ &&
357             (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
358             /* avoid calling vm_object_set_writeable_dirty() */
359             ((prot & VM_PROT_WRITE) == 0 ||
360             (fs.first_object->type != OBJT_VNODE &&
361             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
362             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
363                 VM_OBJECT_RLOCK(fs.first_object);
364                 if ((prot & VM_PROT_WRITE) != 0 &&
365                     (fs.first_object->type == OBJT_VNODE ||
366                     (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) &&
367                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
368                         goto fast_failed;
369                 m = vm_page_lookup(fs.first_object, fs.first_pindex);
370                 /* A busy page can be mapped for read|execute access. */
371                 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
372                     vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
373                         goto fast_failed;
374                 result = pmap_enter(fs.map->pmap, vaddr, m, prot,
375                    fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
376                    0), 0);
377                 if (result != KERN_SUCCESS)
378                         goto fast_failed;
379                 if (m_hold != NULL) {
380                         *m_hold = m;
381                         vm_page_lock(m);
382                         vm_page_hold(m);
383                         vm_page_unlock(m);
384                 }
385                 vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
386                     FALSE);
387                 VM_OBJECT_RUNLOCK(fs.first_object);
388                 if (!wired)
389                         vm_fault_prefault(&fs, vaddr, 0, 0);
390                 vm_map_lookup_done(fs.map, fs.entry);
391                 curthread->td_ru.ru_minflt++;
392                 return (KERN_SUCCESS);
393 fast_failed:
394                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
395                         VM_OBJECT_RUNLOCK(fs.first_object);
396                         VM_OBJECT_WLOCK(fs.first_object);
397                 }
398         } else {
399                 VM_OBJECT_WLOCK(fs.first_object);
400         }
401
402         /*
403          * Make a reference to this object to prevent its disposal while we
404          * are messing with it.  Once we have the reference, the map is free
405          * to be diddled.  Since objects reference their shadows (and copies),
406          * they will stay around as well.
407          *
408          * Bump the paging-in-progress count to prevent size changes (e.g. 
409          * truncation operations) during I/O.  This must be done after
410          * obtaining the vnode lock in order to avoid possible deadlocks.
411          */
412         vm_object_reference_locked(fs.first_object);
413         vm_object_pip_add(fs.first_object, 1);
414
415         fs.lookup_still_valid = TRUE;
416
417         fs.first_m = NULL;
418
419         /*
420          * Search for the page at object/offset.
421          */
422         fs.object = fs.first_object;
423         fs.pindex = fs.first_pindex;
424         while (TRUE) {
425                 /*
426                  * If the object is dead, we stop here
427                  */
428                 if (fs.object->flags & OBJ_DEAD) {
429                         unlock_and_deallocate(&fs);
430                         return (KERN_PROTECTION_FAILURE);
431                 }
432
433                 /*
434                  * See if page is resident
435                  */
436                 fs.m = vm_page_lookup(fs.object, fs.pindex);
437                 if (fs.m != NULL) {
438                         /*
439                          * Wait/Retry if the page is busy.  We have to do this
440                          * if the page is either exclusive or shared busy
441                          * because the vm_pager may be using read busy for
442                          * pageouts (and even pageins if it is the vnode
443                          * pager), and we could end up trying to pagein and
444                          * pageout the same page simultaneously.
445                          *
446                          * We can theoretically allow the busy case on a read
447                          * fault if the page is marked valid, but since such
448                          * pages are typically already pmap'd, putting that
449                          * special case in might be more effort then it is 
450                          * worth.  We cannot under any circumstances mess
451                          * around with a shared busied page except, perhaps,
452                          * to pmap it.
453                          */
454                         if (vm_page_busied(fs.m)) {
455                                 /*
456                                  * Reference the page before unlocking and
457                                  * sleeping so that the page daemon is less
458                                  * likely to reclaim it. 
459                                  */
460                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
461                                 if (fs.object != fs.first_object) {
462                                         if (!VM_OBJECT_TRYWLOCK(
463                                             fs.first_object)) {
464                                                 VM_OBJECT_WUNLOCK(fs.object);
465                                                 VM_OBJECT_WLOCK(fs.first_object);
466                                                 VM_OBJECT_WLOCK(fs.object);
467                                         }
468                                         vm_page_lock(fs.first_m);
469                                         vm_page_free(fs.first_m);
470                                         vm_page_unlock(fs.first_m);
471                                         vm_object_pip_wakeup(fs.first_object);
472                                         VM_OBJECT_WUNLOCK(fs.first_object);
473                                         fs.first_m = NULL;
474                                 }
475                                 unlock_map(&fs);
476                                 if (fs.m == vm_page_lookup(fs.object,
477                                     fs.pindex)) {
478                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
479                                 }
480                                 vm_object_pip_wakeup(fs.object);
481                                 VM_OBJECT_WUNLOCK(fs.object);
482                                 PCPU_INC(cnt.v_intrans);
483                                 vm_object_deallocate(fs.first_object);
484                                 goto RetryFault;
485                         }
486                         vm_page_lock(fs.m);
487                         vm_page_remque(fs.m);
488                         vm_page_unlock(fs.m);
489
490                         /*
491                          * Mark page busy for other processes, and the 
492                          * pagedaemon.  If it still isn't completely valid
493                          * (readable), jump to readrest, else break-out ( we
494                          * found the page ).
495                          */
496                         vm_page_xbusy(fs.m);
497                         if (fs.m->valid != VM_PAGE_BITS_ALL)
498                                 goto readrest;
499                         break;
500                 }
501
502                 /*
503                  * Page is not resident.  If this is the search termination
504                  * or the pager might contain the page, allocate a new page.
505                  * Default objects are zero-fill, there is no real pager.
506                  */
507                 if (fs.object->type != OBJT_DEFAULT ||
508                     fs.object == fs.first_object) {
509                         if (fs.pindex >= fs.object->size) {
510                                 unlock_and_deallocate(&fs);
511                                 return (KERN_PROTECTION_FAILURE);
512                         }
513
514                         /*
515                          * Allocate a new page for this object/offset pair.
516                          *
517                          * Unlocked read of the p_flag is harmless. At
518                          * worst, the P_KILLED might be not observed
519                          * there, and allocation can fail, causing
520                          * restart and new reading of the p_flag.
521                          */
522                         fs.m = NULL;
523                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
524 #if VM_NRESERVLEVEL > 0
525                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
526                                         fs.object->flags |= OBJ_COLORED;
527                                         fs.object->pg_color = atop(vaddr) -
528                                             fs.pindex;
529                                 }
530 #endif
531                                 alloc_req = P_KILLED(curproc) ?
532                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
533                                 if (fs.object->type != OBJT_VNODE &&
534                                     fs.object->backing_object == NULL)
535                                         alloc_req |= VM_ALLOC_ZERO;
536                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
537                                     alloc_req);
538                         }
539                         if (fs.m == NULL) {
540                                 unlock_and_deallocate(&fs);
541                                 VM_WAITPFAULT;
542                                 goto RetryFault;
543                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
544                                 break;
545                 }
546
547 readrest:
548                 /*
549                  * We have found a valid page or we have allocated a new page.
550                  * The page thus may not be valid or may not be entirely 
551                  * valid.
552                  *
553                  * Attempt to fault-in the page if there is a chance that the
554                  * pager has it, and potentially fault in additional pages
555                  * at the same time.  For default objects simply provide
556                  * zero-filled pages.
557                  */
558                 if (fs.object->type != OBJT_DEFAULT) {
559                         int rv;
560                         u_char behavior = vm_map_entry_behavior(fs.entry);
561
562                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
563                             P_KILLED(curproc)) {
564                                 behind = 0;
565                                 ahead = 0;
566                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
567                                 behind = 0;
568                                 ahead = atop(fs.entry->end - vaddr) - 1;
569                                 if (ahead > VM_FAULT_READ_AHEAD_MAX)
570                                         ahead = VM_FAULT_READ_AHEAD_MAX;
571                                 if (fs.pindex == fs.entry->next_read)
572                                         vm_fault_cache_behind(&fs,
573                                             VM_FAULT_READ_MAX);
574                         } else {
575                                 /*
576                                  * If this is a sequential page fault, then
577                                  * arithmetically increase the number of pages
578                                  * in the read-ahead window.  Otherwise, reset
579                                  * the read-ahead window to its smallest size.
580                                  */
581                                 behind = atop(vaddr - fs.entry->start);
582                                 if (behind > VM_FAULT_READ_BEHIND)
583                                         behind = VM_FAULT_READ_BEHIND;
584                                 ahead = atop(fs.entry->end - vaddr) - 1;
585                                 era = fs.entry->read_ahead;
586                                 if (fs.pindex == fs.entry->next_read) {
587                                         nera = era + behind;
588                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
589                                                 nera = VM_FAULT_READ_AHEAD_MAX;
590                                         behind = 0;
591                                         if (ahead > nera)
592                                                 ahead = nera;
593                                         if (era == VM_FAULT_READ_AHEAD_MAX)
594                                                 vm_fault_cache_behind(&fs,
595                                                     VM_FAULT_CACHE_BEHIND);
596                                 } else if (ahead > VM_FAULT_READ_AHEAD_MIN)
597                                         ahead = VM_FAULT_READ_AHEAD_MIN;
598                                 if (era != ahead)
599                                         fs.entry->read_ahead = ahead;
600                         }
601
602                         /*
603                          * Call the pager to retrieve the data, if any, after
604                          * releasing the lock on the map.  We hold a ref on
605                          * fs.object and the pages are exclusive busied.
606                          */
607                         unlock_map(&fs);
608
609                         if (fs.object->type == OBJT_VNODE) {
610                                 vp = fs.object->handle;
611                                 if (vp == fs.vp)
612                                         goto vnode_locked;
613                                 else if (fs.vp != NULL) {
614                                         vput(fs.vp);
615                                         fs.vp = NULL;
616                                 }
617                                 locked = VOP_ISLOCKED(vp);
618
619                                 if (locked != LK_EXCLUSIVE)
620                                         locked = LK_SHARED;
621                                 /* Do not sleep for vnode lock while fs.m is busy */
622                                 error = vget(vp, locked | LK_CANRECURSE |
623                                     LK_NOWAIT, curthread);
624                                 if (error != 0) {
625                                         vhold(vp);
626                                         release_page(&fs);
627                                         unlock_and_deallocate(&fs);
628                                         error = vget(vp, locked | LK_RETRY |
629                                             LK_CANRECURSE, curthread);
630                                         vdrop(vp);
631                                         fs.vp = vp;
632                                         KASSERT(error == 0,
633                                             ("vm_fault: vget failed"));
634                                         goto RetryFault;
635                                 }
636                                 fs.vp = vp;
637                         }
638 vnode_locked:
639                         KASSERT(fs.vp == NULL || !fs.map->system_map,
640                             ("vm_fault: vnode-backed object mapped by system map"));
641
642                         /*
643                          * now we find out if any other pages should be paged
644                          * in at this time this routine checks to see if the
645                          * pages surrounding this fault reside in the same
646                          * object as the page for this fault.  If they do,
647                          * then they are faulted in also into the object.  The
648                          * array "marray" returned contains an array of
649                          * vm_page_t structs where one of them is the
650                          * vm_page_t passed to the routine.  The reqpage
651                          * return value is the index into the marray for the
652                          * vm_page_t passed to the routine.
653                          *
654                          * fs.m plus the additional pages are exclusive busied.
655                          */
656                         faultcount = vm_fault_additional_pages(
657                             fs.m, behind, ahead, marray, &reqpage);
658
659                         rv = faultcount ?
660                             vm_pager_get_pages(fs.object, marray, faultcount,
661                                 reqpage) : VM_PAGER_FAIL;
662
663                         if (rv == VM_PAGER_OK) {
664                                 /*
665                                  * Found the page. Leave it busy while we play
666                                  * with it.
667                                  */
668
669                                 /*
670                                  * Relookup in case pager changed page. Pager
671                                  * is responsible for disposition of old page
672                                  * if moved.
673                                  */
674                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
675                                 if (!fs.m) {
676                                         unlock_and_deallocate(&fs);
677                                         goto RetryFault;
678                                 }
679
680                                 hardfault++;
681                                 break; /* break to PAGE HAS BEEN FOUND */
682                         }
683                         /*
684                          * Remove the bogus page (which does not exist at this
685                          * object/offset); before doing so, we must get back
686                          * our object lock to preserve our invariant.
687                          *
688                          * Also wake up any other process that may want to bring
689                          * in this page.
690                          *
691                          * If this is the top-level object, we must leave the
692                          * busy page to prevent another process from rushing
693                          * past us, and inserting the page in that object at
694                          * the same time that we are.
695                          */
696                         if (rv == VM_PAGER_ERROR)
697                                 printf("vm_fault: pager read error, pid %d (%s)\n",
698                                     curproc->p_pid, curproc->p_comm);
699                         /*
700                          * Data outside the range of the pager or an I/O error
701                          */
702                         /*
703                          * XXX - the check for kernel_map is a kludge to work
704                          * around having the machine panic on a kernel space
705                          * fault w/ I/O error.
706                          */
707                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
708                                 (rv == VM_PAGER_BAD)) {
709                                 vm_page_lock(fs.m);
710                                 vm_page_free(fs.m);
711                                 vm_page_unlock(fs.m);
712                                 fs.m = NULL;
713                                 unlock_and_deallocate(&fs);
714                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
715                         }
716                         if (fs.object != fs.first_object) {
717                                 vm_page_lock(fs.m);
718                                 vm_page_free(fs.m);
719                                 vm_page_unlock(fs.m);
720                                 fs.m = NULL;
721                                 /*
722                                  * XXX - we cannot just fall out at this
723                                  * point, m has been freed and is invalid!
724                                  */
725                         }
726                 }
727
728                 /*
729                  * We get here if the object has default pager (or unwiring) 
730                  * or the pager doesn't have the page.
731                  */
732                 if (fs.object == fs.first_object)
733                         fs.first_m = fs.m;
734
735                 /*
736                  * Move on to the next object.  Lock the next object before
737                  * unlocking the current one.
738                  */
739                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
740                 next_object = fs.object->backing_object;
741                 if (next_object == NULL) {
742                         /*
743                          * If there's no object left, fill the page in the top
744                          * object with zeros.
745                          */
746                         if (fs.object != fs.first_object) {
747                                 vm_object_pip_wakeup(fs.object);
748                                 VM_OBJECT_WUNLOCK(fs.object);
749
750                                 fs.object = fs.first_object;
751                                 fs.pindex = fs.first_pindex;
752                                 fs.m = fs.first_m;
753                                 VM_OBJECT_WLOCK(fs.object);
754                         }
755                         fs.first_m = NULL;
756
757                         /*
758                          * Zero the page if necessary and mark it valid.
759                          */
760                         if ((fs.m->flags & PG_ZERO) == 0) {
761                                 pmap_zero_page(fs.m);
762                         } else {
763                                 PCPU_INC(cnt.v_ozfod);
764                         }
765                         PCPU_INC(cnt.v_zfod);
766                         fs.m->valid = VM_PAGE_BITS_ALL;
767                         /* Don't try to prefault neighboring pages. */
768                         faultcount = 1;
769                         break;  /* break to PAGE HAS BEEN FOUND */
770                 } else {
771                         KASSERT(fs.object != next_object,
772                             ("object loop %p", next_object));
773                         VM_OBJECT_WLOCK(next_object);
774                         vm_object_pip_add(next_object, 1);
775                         if (fs.object != fs.first_object)
776                                 vm_object_pip_wakeup(fs.object);
777                         VM_OBJECT_WUNLOCK(fs.object);
778                         fs.object = next_object;
779                 }
780         }
781
782         vm_page_assert_xbusied(fs.m);
783
784         /*
785          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
786          * is held.]
787          */
788
789         /*
790          * If the page is being written, but isn't already owned by the
791          * top-level object, we have to copy it into a new page owned by the
792          * top-level object.
793          */
794         if (fs.object != fs.first_object) {
795                 /*
796                  * We only really need to copy if we want to write it.
797                  */
798                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
799                         /*
800                          * This allows pages to be virtually copied from a 
801                          * backing_object into the first_object, where the 
802                          * backing object has no other refs to it, and cannot
803                          * gain any more refs.  Instead of a bcopy, we just 
804                          * move the page from the backing object to the 
805                          * first object.  Note that we must mark the page 
806                          * dirty in the first object so that it will go out 
807                          * to swap when needed.
808                          */
809                         is_first_object_locked = FALSE;
810                         if (
811                                 /*
812                                  * Only one shadow object
813                                  */
814                                 (fs.object->shadow_count == 1) &&
815                                 /*
816                                  * No COW refs, except us
817                                  */
818                                 (fs.object->ref_count == 1) &&
819                                 /*
820                                  * No one else can look this object up
821                                  */
822                                 (fs.object->handle == NULL) &&
823                                 /*
824                                  * No other ways to look the object up
825                                  */
826                                 ((fs.object->type == OBJT_DEFAULT) ||
827                                  (fs.object->type == OBJT_SWAP)) &&
828                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
829                                 /*
830                                  * We don't chase down the shadow chain
831                                  */
832                             fs.object == fs.first_object->backing_object) {
833                                 /*
834                                  * get rid of the unnecessary page
835                                  */
836                                 vm_page_lock(fs.first_m);
837                                 vm_page_free(fs.first_m);
838                                 vm_page_unlock(fs.first_m);
839                                 /*
840                                  * grab the page and put it into the 
841                                  * process'es object.  The page is 
842                                  * automatically made dirty.
843                                  */
844                                 if (vm_page_rename(fs.m, fs.first_object,
845                                     fs.first_pindex)) {
846                                         unlock_and_deallocate(&fs);
847                                         goto RetryFault;
848                                 }
849 #if VM_NRESERVLEVEL > 0
850                                 /*
851                                  * Rename the reservation.
852                                  */
853                                 vm_reserv_rename(fs.m, fs.first_object,
854                                     fs.object, OFF_TO_IDX(
855                                     fs.first_object->backing_object_offset));
856 #endif
857                                 vm_page_xbusy(fs.m);
858                                 fs.first_m = fs.m;
859                                 fs.m = NULL;
860                                 PCPU_INC(cnt.v_cow_optim);
861                         } else {
862                                 /*
863                                  * Oh, well, lets copy it.
864                                  */
865                                 pmap_copy_page(fs.m, fs.first_m);
866                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
867                                 if (wired && (fault_flags &
868                                     VM_FAULT_WIRE) == 0) {
869                                         vm_page_lock(fs.first_m);
870                                         vm_page_wire(fs.first_m);
871                                         vm_page_unlock(fs.first_m);
872                                         
873                                         vm_page_lock(fs.m);
874                                         vm_page_unwire(fs.m, FALSE);
875                                         vm_page_unlock(fs.m);
876                                 }
877                                 /*
878                                  * We no longer need the old page or object.
879                                  */
880                                 release_page(&fs);
881                         }
882                         /*
883                          * fs.object != fs.first_object due to above 
884                          * conditional
885                          */
886                         vm_object_pip_wakeup(fs.object);
887                         VM_OBJECT_WUNLOCK(fs.object);
888                         /*
889                          * Only use the new page below...
890                          */
891                         fs.object = fs.first_object;
892                         fs.pindex = fs.first_pindex;
893                         fs.m = fs.first_m;
894                         if (!is_first_object_locked)
895                                 VM_OBJECT_WLOCK(fs.object);
896                         PCPU_INC(cnt.v_cow_faults);
897                         curthread->td_cow++;
898                 } else {
899                         prot &= ~VM_PROT_WRITE;
900                 }
901         }
902
903         /*
904          * We must verify that the maps have not changed since our last
905          * lookup.
906          */
907         if (!fs.lookup_still_valid) {
908                 vm_object_t retry_object;
909                 vm_pindex_t retry_pindex;
910                 vm_prot_t retry_prot;
911
912                 if (!vm_map_trylock_read(fs.map)) {
913                         release_page(&fs);
914                         unlock_and_deallocate(&fs);
915                         goto RetryFault;
916                 }
917                 fs.lookup_still_valid = TRUE;
918                 if (fs.map->timestamp != map_generation) {
919                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
920                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
921
922                         /*
923                          * If we don't need the page any longer, put it on the inactive
924                          * list (the easiest thing to do here).  If no one needs it,
925                          * pageout will grab it eventually.
926                          */
927                         if (result != KERN_SUCCESS) {
928                                 release_page(&fs);
929                                 unlock_and_deallocate(&fs);
930
931                                 /*
932                                  * If retry of map lookup would have blocked then
933                                  * retry fault from start.
934                                  */
935                                 if (result == KERN_FAILURE)
936                                         goto RetryFault;
937                                 return (result);
938                         }
939                         if ((retry_object != fs.first_object) ||
940                             (retry_pindex != fs.first_pindex)) {
941                                 release_page(&fs);
942                                 unlock_and_deallocate(&fs);
943                                 goto RetryFault;
944                         }
945
946                         /*
947                          * Check whether the protection has changed or the object has
948                          * been copied while we left the map unlocked. Changing from
949                          * read to write permission is OK - we leave the page
950                          * write-protected, and catch the write fault. Changing from
951                          * write to read permission means that we can't mark the page
952                          * write-enabled after all.
953                          */
954                         prot &= retry_prot;
955                 }
956         }
957         /*
958          * If the page was filled by a pager, update the map entry's
959          * last read offset.  Since the pager does not return the
960          * actual set of pages that it read, this update is based on
961          * the requested set.  Typically, the requested and actual
962          * sets are the same.
963          *
964          * XXX The following assignment modifies the map
965          * without holding a write lock on it.
966          */
967         if (hardfault)
968                 fs.entry->next_read = fs.pindex + faultcount - reqpage;
969
970         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE);
971         vm_page_assert_xbusied(fs.m);
972
973         /*
974          * Page must be completely valid or it is not fit to
975          * map into user space.  vm_pager_get_pages() ensures this.
976          */
977         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
978             ("vm_fault: page %p partially invalid", fs.m));
979         VM_OBJECT_WUNLOCK(fs.object);
980
981         /*
982          * Put this page into the physical map.  We had to do the unlock above
983          * because pmap_enter() may sleep.  We don't put the page
984          * back on the active queue until later so that the pageout daemon
985          * won't find it (yet).
986          */
987         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
988             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
989         if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
990             wired == 0)
991                 vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
992         VM_OBJECT_WLOCK(fs.object);
993         vm_page_lock(fs.m);
994
995         /*
996          * If the page is not wired down, then put it where the pageout daemon
997          * can find it.
998          */
999         if ((fault_flags & VM_FAULT_WIRE) != 0) {
1000                 KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1001                 vm_page_wire(fs.m);
1002         } else
1003                 vm_page_activate(fs.m);
1004         if (m_hold != NULL) {
1005                 *m_hold = fs.m;
1006                 vm_page_hold(fs.m);
1007         }
1008         vm_page_unlock(fs.m);
1009         vm_page_xunbusy(fs.m);
1010
1011         /*
1012          * Unlock everything, and return
1013          */
1014         unlock_and_deallocate(&fs);
1015         if (hardfault) {
1016                 PCPU_INC(cnt.v_io_faults);
1017                 curthread->td_ru.ru_majflt++;
1018         } else 
1019                 curthread->td_ru.ru_minflt++;
1020
1021         return (KERN_SUCCESS);
1022 }
1023
1024 /*
1025  * Speed up the reclamation of up to "distance" pages that precede the
1026  * faulting pindex within the first object of the shadow chain.
1027  */
1028 static void
1029 vm_fault_cache_behind(const struct faultstate *fs, int distance)
1030 {
1031         vm_object_t first_object, object;
1032         vm_page_t m, m_prev;
1033         vm_pindex_t pindex;
1034
1035         object = fs->object;
1036         VM_OBJECT_ASSERT_WLOCKED(object);
1037         first_object = fs->first_object;
1038         if (first_object != object) {
1039                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1040                         VM_OBJECT_WUNLOCK(object);
1041                         VM_OBJECT_WLOCK(first_object);
1042                         VM_OBJECT_WLOCK(object);
1043                 }
1044         }
1045         /* Neither fictitious nor unmanaged pages can be cached. */
1046         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1047                 if (fs->first_pindex < distance)
1048                         pindex = 0;
1049                 else
1050                         pindex = fs->first_pindex - distance;
1051                 if (pindex < OFF_TO_IDX(fs->entry->offset))
1052                         pindex = OFF_TO_IDX(fs->entry->offset);
1053                 m = first_object != object ? fs->first_m : fs->m;
1054                 vm_page_assert_xbusied(m);
1055                 m_prev = vm_page_prev(m);
1056                 while ((m = m_prev) != NULL && m->pindex >= pindex &&
1057                     m->valid == VM_PAGE_BITS_ALL) {
1058                         m_prev = vm_page_prev(m);
1059                         if (vm_page_busied(m))
1060                                 continue;
1061                         vm_page_lock(m);
1062                         if (m->hold_count == 0 && m->wire_count == 0) {
1063                                 pmap_remove_all(m);
1064                                 vm_page_aflag_clear(m, PGA_REFERENCED);
1065                                 if (m->dirty != 0)
1066                                         vm_page_deactivate(m);
1067                                 else
1068                                         vm_page_cache(m);
1069                         }
1070                         vm_page_unlock(m);
1071                 }
1072         }
1073         if (first_object != object)
1074                 VM_OBJECT_WUNLOCK(first_object);
1075 }
1076
1077 /*
1078  * vm_fault_prefault provides a quick way of clustering
1079  * pagefaults into a processes address space.  It is a "cousin"
1080  * of vm_map_pmap_enter, except it runs at page fault time instead
1081  * of mmap time.
1082  */
1083 static void
1084 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1085     int faultcount, int reqpage)
1086 {
1087         pmap_t pmap;
1088         vm_map_entry_t entry;
1089         vm_object_t backing_object, lobject;
1090         vm_offset_t addr, starta;
1091         vm_pindex_t pindex;
1092         vm_page_t m;
1093         int backward, forward, i;
1094
1095         pmap = fs->map->pmap;
1096         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1097                 return;
1098
1099         if (faultcount > 0) {
1100                 backward = reqpage;
1101                 forward = faultcount - reqpage - 1;
1102         } else {
1103                 backward = PFBAK;
1104                 forward = PFFOR;
1105         }
1106         entry = fs->entry;
1107
1108         starta = addra - backward * PAGE_SIZE;
1109         if (starta < entry->start) {
1110                 starta = entry->start;
1111         } else if (starta > addra) {
1112                 starta = 0;
1113         }
1114
1115         /*
1116          * Generate the sequence of virtual addresses that are candidates for
1117          * prefaulting in an outward spiral from the faulting virtual address,
1118          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1119          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1120          * If the candidate address doesn't have a backing physical page, then
1121          * the loop immediately terminates.
1122          */
1123         for (i = 0; i < 2 * imax(backward, forward); i++) {
1124                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1125                     PAGE_SIZE);
1126                 if (addr > addra + forward * PAGE_SIZE)
1127                         addr = 0;
1128
1129                 if (addr < starta || addr >= entry->end)
1130                         continue;
1131
1132                 if (!pmap_is_prefaultable(pmap, addr))
1133                         continue;
1134
1135                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1136                 lobject = entry->object.vm_object;
1137                 VM_OBJECT_RLOCK(lobject);
1138                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1139                     lobject->type == OBJT_DEFAULT &&
1140                     (backing_object = lobject->backing_object) != NULL) {
1141                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1142                             0, ("vm_fault_prefault: unaligned object offset"));
1143                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1144                         VM_OBJECT_RLOCK(backing_object);
1145                         VM_OBJECT_RUNLOCK(lobject);
1146                         lobject = backing_object;
1147                 }
1148                 if (m == NULL) {
1149                         VM_OBJECT_RUNLOCK(lobject);
1150                         break;
1151                 }
1152                 if (m->valid == VM_PAGE_BITS_ALL &&
1153                     (m->flags & PG_FICTITIOUS) == 0)
1154                         pmap_enter_quick(pmap, addr, m, entry->protection);
1155                 VM_OBJECT_RUNLOCK(lobject);
1156         }
1157 }
1158
1159 /*
1160  * Hold each of the physical pages that are mapped by the specified range of
1161  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1162  * and allow the specified types of access, "prot".  If all of the implied
1163  * pages are successfully held, then the number of held pages is returned
1164  * together with pointers to those pages in the array "ma".  However, if any
1165  * of the pages cannot be held, -1 is returned.
1166  */
1167 int
1168 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1169     vm_prot_t prot, vm_page_t *ma, int max_count)
1170 {
1171         vm_offset_t end, va;
1172         vm_page_t *mp;
1173         int count;
1174         boolean_t pmap_failed;
1175
1176         if (len == 0)
1177                 return (0);
1178         end = round_page(addr + len);
1179         addr = trunc_page(addr);
1180
1181         /*
1182          * Check for illegal addresses.
1183          */
1184         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1185                 return (-1);
1186
1187         if (atop(end - addr) > max_count)
1188                 panic("vm_fault_quick_hold_pages: count > max_count");
1189         count = atop(end - addr);
1190
1191         /*
1192          * Most likely, the physical pages are resident in the pmap, so it is
1193          * faster to try pmap_extract_and_hold() first.
1194          */
1195         pmap_failed = FALSE;
1196         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1197                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1198                 if (*mp == NULL)
1199                         pmap_failed = TRUE;
1200                 else if ((prot & VM_PROT_WRITE) != 0 &&
1201                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1202                         /*
1203                          * Explicitly dirty the physical page.  Otherwise, the
1204                          * caller's changes may go unnoticed because they are
1205                          * performed through an unmanaged mapping or by a DMA
1206                          * operation.
1207                          *
1208                          * The object lock is not held here.
1209                          * See vm_page_clear_dirty_mask().
1210                          */
1211                         vm_page_dirty(*mp);
1212                 }
1213         }
1214         if (pmap_failed) {
1215                 /*
1216                  * One or more pages could not be held by the pmap.  Either no
1217                  * page was mapped at the specified virtual address or that
1218                  * mapping had insufficient permissions.  Attempt to fault in
1219                  * and hold these pages.
1220                  */
1221                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1222                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1223                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1224                                 goto error;
1225         }
1226         return (count);
1227 error:  
1228         for (mp = ma; mp < ma + count; mp++)
1229                 if (*mp != NULL) {
1230                         vm_page_lock(*mp);
1231                         vm_page_unhold(*mp);
1232                         vm_page_unlock(*mp);
1233                 }
1234         return (-1);
1235 }
1236
1237 /*
1238  *      Routine:
1239  *              vm_fault_copy_entry
1240  *      Function:
1241  *              Create new shadow object backing dst_entry with private copy of
1242  *              all underlying pages. When src_entry is equal to dst_entry,
1243  *              function implements COW for wired-down map entry. Otherwise,
1244  *              it forks wired entry into dst_map.
1245  *
1246  *      In/out conditions:
1247  *              The source and destination maps must be locked for write.
1248  *              The source map entry must be wired down (or be a sharing map
1249  *              entry corresponding to a main map entry that is wired down).
1250  */
1251 void
1252 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1253     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1254     vm_ooffset_t *fork_charge)
1255 {
1256         vm_object_t backing_object, dst_object, object, src_object;
1257         vm_pindex_t dst_pindex, pindex, src_pindex;
1258         vm_prot_t access, prot;
1259         vm_offset_t vaddr;
1260         vm_page_t dst_m;
1261         vm_page_t src_m;
1262         boolean_t upgrade;
1263
1264 #ifdef  lint
1265         src_map++;
1266 #endif  /* lint */
1267
1268         upgrade = src_entry == dst_entry;
1269         access = prot = dst_entry->protection;
1270
1271         src_object = src_entry->object.vm_object;
1272         src_pindex = OFF_TO_IDX(src_entry->offset);
1273
1274         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1275                 dst_object = src_object;
1276                 vm_object_reference(dst_object);
1277         } else {
1278                 /*
1279                  * Create the top-level object for the destination entry. (Doesn't
1280                  * actually shadow anything - we copy the pages directly.)
1281                  */
1282                 dst_object = vm_object_allocate(OBJT_DEFAULT,
1283                     OFF_TO_IDX(dst_entry->end - dst_entry->start));
1284 #if VM_NRESERVLEVEL > 0
1285                 dst_object->flags |= OBJ_COLORED;
1286                 dst_object->pg_color = atop(dst_entry->start);
1287 #endif
1288         }
1289
1290         VM_OBJECT_WLOCK(dst_object);
1291         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1292             ("vm_fault_copy_entry: vm_object not NULL"));
1293         if (src_object != dst_object) {
1294                 dst_entry->object.vm_object = dst_object;
1295                 dst_entry->offset = 0;
1296                 dst_object->charge = dst_entry->end - dst_entry->start;
1297         }
1298         if (fork_charge != NULL) {
1299                 KASSERT(dst_entry->cred == NULL,
1300                     ("vm_fault_copy_entry: leaked swp charge"));
1301                 dst_object->cred = curthread->td_ucred;
1302                 crhold(dst_object->cred);
1303                 *fork_charge += dst_object->charge;
1304         } else if (dst_object->cred == NULL) {
1305                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1306                     dst_entry));
1307                 dst_object->cred = dst_entry->cred;
1308                 dst_entry->cred = NULL;
1309         }
1310
1311         /*
1312          * If not an upgrade, then enter the mappings in the pmap as
1313          * read and/or execute accesses.  Otherwise, enter them as
1314          * write accesses.
1315          *
1316          * A writeable large page mapping is only created if all of
1317          * the constituent small page mappings are modified. Marking
1318          * PTEs as modified on inception allows promotion to happen
1319          * without taking potentially large number of soft faults.
1320          */
1321         if (!upgrade)
1322                 access &= ~VM_PROT_WRITE;
1323
1324         /*
1325          * Loop through all of the virtual pages within the entry's
1326          * range, copying each page from the source object to the
1327          * destination object.  Since the source is wired, those pages
1328          * must exist.  In contrast, the destination is pageable.
1329          * Since the destination object does share any backing storage
1330          * with the source object, all of its pages must be dirtied,
1331          * regardless of whether they can be written.
1332          */
1333         for (vaddr = dst_entry->start, dst_pindex = 0;
1334             vaddr < dst_entry->end;
1335             vaddr += PAGE_SIZE, dst_pindex++) {
1336 again:
1337                 /*
1338                  * Find the page in the source object, and copy it in.
1339                  * Because the source is wired down, the page will be
1340                  * in memory.
1341                  */
1342                 if (src_object != dst_object)
1343                         VM_OBJECT_RLOCK(src_object);
1344                 object = src_object;
1345                 pindex = src_pindex + dst_pindex;
1346                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1347                     (backing_object = object->backing_object) != NULL) {
1348                         /*
1349                          * Unless the source mapping is read-only or
1350                          * it is presently being upgraded from
1351                          * read-only, the first object in the shadow
1352                          * chain should provide all of the pages.  In
1353                          * other words, this loop body should never be
1354                          * executed when the source mapping is already
1355                          * read/write.
1356                          */
1357                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1358                             upgrade,
1359                             ("vm_fault_copy_entry: main object missing page"));
1360
1361                         VM_OBJECT_RLOCK(backing_object);
1362                         pindex += OFF_TO_IDX(object->backing_object_offset);
1363                         if (object != dst_object)
1364                                 VM_OBJECT_RUNLOCK(object);
1365                         object = backing_object;
1366                 }
1367                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1368
1369                 if (object != dst_object) {
1370                         /*
1371                          * Allocate a page in the destination object.
1372                          */
1373                         dst_m = vm_page_alloc(dst_object, (src_object ==
1374                             dst_object ? src_pindex : 0) + dst_pindex,
1375                             VM_ALLOC_NORMAL);
1376                         if (dst_m == NULL) {
1377                                 VM_OBJECT_WUNLOCK(dst_object);
1378                                 VM_OBJECT_RUNLOCK(object);
1379                                 VM_WAIT;
1380                                 VM_OBJECT_WLOCK(dst_object);
1381                                 goto again;
1382                         }
1383                         pmap_copy_page(src_m, dst_m);
1384                         VM_OBJECT_RUNLOCK(object);
1385                         dst_m->valid = VM_PAGE_BITS_ALL;
1386                         dst_m->dirty = VM_PAGE_BITS_ALL;
1387                 } else {
1388                         dst_m = src_m;
1389                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1390                                 goto again;
1391                         vm_page_xbusy(dst_m);
1392                         KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1393                             ("invalid dst page %p", dst_m));
1394                 }
1395                 VM_OBJECT_WUNLOCK(dst_object);
1396
1397                 /*
1398                  * Enter it in the pmap. If a wired, copy-on-write
1399                  * mapping is being replaced by a write-enabled
1400                  * mapping, then wire that new mapping.
1401                  */
1402                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1403                     access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1404
1405                 /*
1406                  * Mark it no longer busy, and put it on the active list.
1407                  */
1408                 VM_OBJECT_WLOCK(dst_object);
1409                 
1410                 if (upgrade) {
1411                         if (src_m != dst_m) {
1412                                 vm_page_lock(src_m);
1413                                 vm_page_unwire(src_m, 0);
1414                                 vm_page_unlock(src_m);
1415                                 vm_page_lock(dst_m);
1416                                 vm_page_wire(dst_m);
1417                                 vm_page_unlock(dst_m);
1418                         } else {
1419                                 KASSERT(dst_m->wire_count > 0,
1420                                     ("dst_m %p is not wired", dst_m));
1421                         }
1422                 } else {
1423                         vm_page_lock(dst_m);
1424                         vm_page_activate(dst_m);
1425                         vm_page_unlock(dst_m);
1426                 }
1427                 vm_page_xunbusy(dst_m);
1428         }
1429         VM_OBJECT_WUNLOCK(dst_object);
1430         if (upgrade) {
1431                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1432                 vm_object_deallocate(src_object);
1433         }
1434 }
1435
1436
1437 /*
1438  * This routine checks around the requested page for other pages that
1439  * might be able to be faulted in.  This routine brackets the viable
1440  * pages for the pages to be paged in.
1441  *
1442  * Inputs:
1443  *      m, rbehind, rahead
1444  *
1445  * Outputs:
1446  *  marray (array of vm_page_t), reqpage (index of requested page)
1447  *
1448  * Return value:
1449  *  number of pages in marray
1450  */
1451 static int
1452 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1453         vm_page_t m;
1454         int rbehind;
1455         int rahead;
1456         vm_page_t *marray;
1457         int *reqpage;
1458 {
1459         int i,j;
1460         vm_object_t object;
1461         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1462         vm_page_t rtm;
1463         int cbehind, cahead;
1464
1465         VM_OBJECT_ASSERT_WLOCKED(m->object);
1466
1467         object = m->object;
1468         pindex = m->pindex;
1469         cbehind = cahead = 0;
1470
1471         /*
1472          * if the requested page is not available, then give up now
1473          */
1474         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1475                 return 0;
1476         }
1477
1478         if ((cbehind == 0) && (cahead == 0)) {
1479                 *reqpage = 0;
1480                 marray[0] = m;
1481                 return 1;
1482         }
1483
1484         if (rahead > cahead) {
1485                 rahead = cahead;
1486         }
1487
1488         if (rbehind > cbehind) {
1489                 rbehind = cbehind;
1490         }
1491
1492         /*
1493          * scan backward for the read behind pages -- in memory 
1494          */
1495         if (pindex > 0) {
1496                 if (rbehind > pindex) {
1497                         rbehind = pindex;
1498                         startpindex = 0;
1499                 } else {
1500                         startpindex = pindex - rbehind;
1501                 }
1502
1503                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1504                     rtm->pindex >= startpindex)
1505                         startpindex = rtm->pindex + 1;
1506
1507                 /* tpindex is unsigned; beware of numeric underflow. */
1508                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1509                     tpindex < pindex; i++, tpindex--) {
1510
1511                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1512                             VM_ALLOC_IFNOTCACHED);
1513                         if (rtm == NULL) {
1514                                 /*
1515                                  * Shift the allocated pages to the
1516                                  * beginning of the array.
1517                                  */
1518                                 for (j = 0; j < i; j++) {
1519                                         marray[j] = marray[j + tpindex + 1 -
1520                                             startpindex];
1521                                 }
1522                                 break;
1523                         }
1524
1525                         marray[tpindex - startpindex] = rtm;
1526                 }
1527         } else {
1528                 startpindex = 0;
1529                 i = 0;
1530         }
1531
1532         marray[i] = m;
1533         /* page offset of the required page */
1534         *reqpage = i;
1535
1536         tpindex = pindex + 1;
1537         i++;
1538
1539         /*
1540          * scan forward for the read ahead pages
1541          */
1542         endpindex = tpindex + rahead;
1543         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1544                 endpindex = rtm->pindex;
1545         if (endpindex > object->size)
1546                 endpindex = object->size;
1547
1548         for (; tpindex < endpindex; i++, tpindex++) {
1549
1550                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1551                     VM_ALLOC_IFNOTCACHED);
1552                 if (rtm == NULL) {
1553                         break;
1554                 }
1555
1556                 marray[i] = rtm;
1557         }
1558
1559         /* return number of pages */
1560         return i;
1561 }
1562
1563 /*
1564  * Block entry into the machine-independent layer's page fault handler by
1565  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1566  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1567  * spurious page faults. 
1568  */
1569 int
1570 vm_fault_disable_pagefaults(void)
1571 {
1572
1573         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1574 }
1575
1576 void
1577 vm_fault_enable_pagefaults(int save)
1578 {
1579
1580         curthread_pflags_restore(save);
1581 }