]> CyberLeo.Net >> Repos - FreeBSD/releng/8.0.git/blob - cddl/contrib/opensolaris/lib/libzpool/common/taskq.c
Adjust to reflect 8.0-RELEASE.
[FreeBSD/releng/8.0.git] / cddl / contrib / opensolaris / lib / libzpool / common / taskq.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25
26 #pragma ident   "%Z%%M% %I%     %E% SMI"
27
28 #include <sys/zfs_context.h>
29
30 int taskq_now;
31
32 typedef struct task {
33         struct task     *task_next;
34         struct task     *task_prev;
35         task_func_t     *task_func;
36         void            *task_arg;
37 } task_t;
38
39 #define TASKQ_ACTIVE    0x00010000
40
41 struct taskq {
42         kmutex_t        tq_lock;
43         krwlock_t       tq_threadlock;
44         kcondvar_t      tq_dispatch_cv;
45         kcondvar_t      tq_wait_cv;
46         thread_t        *tq_threadlist;
47         int             tq_flags;
48         int             tq_active;
49         int             tq_nthreads;
50         int             tq_nalloc;
51         int             tq_minalloc;
52         int             tq_maxalloc;
53         task_t          *tq_freelist;
54         task_t          tq_task;
55 };
56
57 static task_t *
58 task_alloc(taskq_t *tq, int tqflags)
59 {
60         task_t *t;
61
62         if ((t = tq->tq_freelist) != NULL && tq->tq_nalloc >= tq->tq_minalloc) {
63                 tq->tq_freelist = t->task_next;
64         } else {
65                 mutex_exit(&tq->tq_lock);
66                 if (tq->tq_nalloc >= tq->tq_maxalloc) {
67                         if (!(tqflags & KM_SLEEP)) {
68                                 mutex_enter(&tq->tq_lock);
69                                 return (NULL);
70                         }
71                         /*
72                          * We don't want to exceed tq_maxalloc, but we can't
73                          * wait for other tasks to complete (and thus free up
74                          * task structures) without risking deadlock with
75                          * the caller.  So, we just delay for one second
76                          * to throttle the allocation rate.
77                          */
78                         delay(hz);
79                 }
80                 t = kmem_alloc(sizeof (task_t), tqflags);
81                 mutex_enter(&tq->tq_lock);
82                 if (t != NULL)
83                         tq->tq_nalloc++;
84         }
85         return (t);
86 }
87
88 static void
89 task_free(taskq_t *tq, task_t *t)
90 {
91         if (tq->tq_nalloc <= tq->tq_minalloc) {
92                 t->task_next = tq->tq_freelist;
93                 tq->tq_freelist = t;
94         } else {
95                 tq->tq_nalloc--;
96                 mutex_exit(&tq->tq_lock);
97                 kmem_free(t, sizeof (task_t));
98                 mutex_enter(&tq->tq_lock);
99         }
100 }
101
102 taskqid_t
103 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t tqflags)
104 {
105         task_t *t;
106
107         if (taskq_now) {
108                 func(arg);
109                 return (1);
110         }
111
112         mutex_enter(&tq->tq_lock);
113         ASSERT(tq->tq_flags & TASKQ_ACTIVE);
114         if ((t = task_alloc(tq, tqflags)) == NULL) {
115                 mutex_exit(&tq->tq_lock);
116                 return (0);
117         }
118         t->task_next = &tq->tq_task;
119         t->task_prev = tq->tq_task.task_prev;
120         t->task_next->task_prev = t;
121         t->task_prev->task_next = t;
122         t->task_func = func;
123         t->task_arg = arg;
124         cv_signal(&tq->tq_dispatch_cv);
125         mutex_exit(&tq->tq_lock);
126         return (1);
127 }
128
129 void
130 taskq_wait(taskq_t *tq)
131 {
132         mutex_enter(&tq->tq_lock);
133         while (tq->tq_task.task_next != &tq->tq_task || tq->tq_active != 0)
134                 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
135         mutex_exit(&tq->tq_lock);
136 }
137
138 static void *
139 taskq_thread(void *arg)
140 {
141         taskq_t *tq = arg;
142         task_t *t;
143
144         mutex_enter(&tq->tq_lock);
145         while (tq->tq_flags & TASKQ_ACTIVE) {
146                 if ((t = tq->tq_task.task_next) == &tq->tq_task) {
147                         if (--tq->tq_active == 0)
148                                 cv_broadcast(&tq->tq_wait_cv);
149                         cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
150                         tq->tq_active++;
151                         continue;
152                 }
153                 t->task_prev->task_next = t->task_next;
154                 t->task_next->task_prev = t->task_prev;
155                 mutex_exit(&tq->tq_lock);
156
157                 rw_enter(&tq->tq_threadlock, RW_READER);
158                 t->task_func(t->task_arg);
159                 rw_exit(&tq->tq_threadlock);
160
161                 mutex_enter(&tq->tq_lock);
162                 task_free(tq, t);
163         }
164         tq->tq_nthreads--;
165         cv_broadcast(&tq->tq_wait_cv);
166         mutex_exit(&tq->tq_lock);
167         return (NULL);
168 }
169
170 /*ARGSUSED*/
171 taskq_t *
172 taskq_create(const char *name, int nthreads, pri_t pri,
173         int minalloc, int maxalloc, uint_t flags)
174 {
175         taskq_t *tq = kmem_zalloc(sizeof (taskq_t), KM_SLEEP);
176         int t;
177
178         rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
179         mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
180         cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
181         cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
182         tq->tq_flags = flags | TASKQ_ACTIVE;
183         tq->tq_active = nthreads;
184         tq->tq_nthreads = nthreads;
185         tq->tq_minalloc = minalloc;
186         tq->tq_maxalloc = maxalloc;
187         tq->tq_task.task_next = &tq->tq_task;
188         tq->tq_task.task_prev = &tq->tq_task;
189         tq->tq_threadlist = kmem_alloc(nthreads * sizeof (thread_t), KM_SLEEP);
190
191         if (flags & TASKQ_PREPOPULATE) {
192                 mutex_enter(&tq->tq_lock);
193                 while (minalloc-- > 0)
194                         task_free(tq, task_alloc(tq, KM_SLEEP));
195                 mutex_exit(&tq->tq_lock);
196         }
197
198         for (t = 0; t < nthreads; t++)
199                 (void) thr_create(0, 0, taskq_thread,
200                     tq, THR_BOUND, &tq->tq_threadlist[t]);
201
202         return (tq);
203 }
204
205 void
206 taskq_destroy(taskq_t *tq)
207 {
208         int t;
209         int nthreads = tq->tq_nthreads;
210
211         taskq_wait(tq);
212
213         mutex_enter(&tq->tq_lock);
214
215         tq->tq_flags &= ~TASKQ_ACTIVE;
216         cv_broadcast(&tq->tq_dispatch_cv);
217
218         while (tq->tq_nthreads != 0)
219                 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
220
221         tq->tq_minalloc = 0;
222         while (tq->tq_nalloc != 0) {
223                 ASSERT(tq->tq_freelist != NULL);
224                 task_free(tq, task_alloc(tq, KM_SLEEP));
225         }
226
227         mutex_exit(&tq->tq_lock);
228
229         for (t = 0; t < nthreads; t++)
230                 (void) thr_join(tq->tq_threadlist[t], NULL, NULL);
231
232         kmem_free(tq->tq_threadlist, nthreads * sizeof (thread_t));
233
234         rw_destroy(&tq->tq_threadlock);
235         mutex_destroy(&tq->tq_lock);
236         cv_destroy(&tq->tq_dispatch_cv);
237         cv_destroy(&tq->tq_wait_cv);
238
239         kmem_free(tq, sizeof (taskq_t));
240 }
241
242 int
243 taskq_member(taskq_t *tq, void *t)
244 {
245         int i;
246
247         if (taskq_now)
248                 return (1);
249
250         for (i = 0; i < tq->tq_nthreads; i++)
251                 if (tq->tq_threadlist[i] == (thread_t)(uintptr_t)t)
252                         return (1);
253
254         return (0);
255 }