]> CyberLeo.Net >> Repos - FreeBSD/releng/8.0.git/blob - sbin/newfs/mkfs.c
Adjust to reflect 8.0-RELEASE.
[FreeBSD/releng/8.0.git] / sbin / newfs / mkfs.c
1 /*
2  * Copyright (c) 2002 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program.
10  *
11  * Copyright (c) 1980, 1989, 1993
12  *      The Regents of the University of California.  All rights reserved.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38
39 #if 0
40 #ifndef lint
41 static char sccsid[] = "@(#)mkfs.c      8.11 (Berkeley) 5/3/95";
42 #endif /* not lint */
43 #endif
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46
47 #include <err.h>
48 #include <grp.h>
49 #include <limits.h>
50 #include <signal.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <stdint.h>
54 #include <stdio.h>
55 #include <unistd.h>
56 #include <sys/param.h>
57 #include <sys/time.h>
58 #include <sys/types.h>
59 #include <sys/wait.h>
60 #include <sys/resource.h>
61 #include <sys/stat.h>
62 #include <ufs/ufs/dinode.h>
63 #include <ufs/ufs/dir.h>
64 #include <ufs/ffs/fs.h>
65 #include <sys/disklabel.h>
66 #include <sys/file.h>
67 #include <sys/mman.h>
68 #include <sys/ioctl.h>
69 #include "newfs.h"
70
71 /*
72  * make file system for cylinder-group style file systems
73  */
74 #define UMASK           0755
75 #define POWEROF2(num)   (((num) & ((num) - 1)) == 0)
76
77 static struct   csum *fscs;
78 #define sblock  disk.d_fs
79 #define acg     disk.d_cg
80
81 union dinode {
82         struct ufs1_dinode dp1;
83         struct ufs2_dinode dp2;
84 };
85 #define DIP(dp, field) \
86         ((sblock.fs_magic == FS_UFS1_MAGIC) ? \
87         (dp)->dp1.field : (dp)->dp2.field)
88
89 static caddr_t iobuf;
90 static long iobufsize;
91 static ufs2_daddr_t alloc(int size, int mode);
92 static int charsperline(void);
93 static void clrblock(struct fs *, unsigned char *, int);
94 static void fsinit(time_t);
95 static int ilog2(int);
96 static void initcg(int, time_t);
97 static int isblock(struct fs *, unsigned char *, int);
98 static void iput(union dinode *, ino_t);
99 static int makedir(struct direct *, int);
100 static void setblock(struct fs *, unsigned char *, int);
101 static void wtfs(ufs2_daddr_t, int, char *);
102 static u_int32_t newfs_random(void);
103
104 static int
105 do_sbwrite(struct uufsd *disk)
106 {
107         if (!disk->d_sblock)
108                 disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize;
109         return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs +
110             disk->d_sblock) * disk->d_bsize)));
111 }
112
113 void
114 mkfs(struct partition *pp, char *fsys)
115 {
116         int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
117         long i, j, cylno, csfrags;
118         time_t utime;
119         quad_t sizepb;
120         int width;
121         char tmpbuf[100];       /* XXX this will break in about 2,500 years */
122         union {
123                 struct fs fdummy;
124                 char cdummy[SBLOCKSIZE];
125         } dummy;
126 #define fsdummy dummy.fdummy
127 #define chdummy dummy.cdummy
128
129         /*
130          * Our blocks == sector size, and the version of UFS we are using is
131          * specified by Oflag.
132          */
133         disk.d_bsize = sectorsize;
134         disk.d_ufs = Oflag;
135         if (Rflag) {
136                 utime = 1000000000;
137         } else {
138                 time(&utime);
139                 arc4random_stir();
140         }
141         sblock.fs_old_flags = FS_FLAGS_UPDATED;
142         sblock.fs_flags = 0;
143         if (Uflag)
144                 sblock.fs_flags |= FS_DOSOFTDEP;
145         if (Lflag)
146                 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
147         if (Jflag)
148                 sblock.fs_flags |= FS_GJOURNAL;
149         if (lflag)
150                 sblock.fs_flags |= FS_MULTILABEL;
151         /*
152          * Validate the given file system size.
153          * Verify that its last block can actually be accessed.
154          * Convert to file system fragment sized units.
155          */
156         if (fssize <= 0) {
157                 printf("preposterous size %jd\n", (intmax_t)fssize);
158                 exit(13);
159         }
160         wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
161             (char *)&sblock);
162         /*
163          * collect and verify the file system density info
164          */
165         sblock.fs_avgfilesize = avgfilesize;
166         sblock.fs_avgfpdir = avgfilesperdir;
167         if (sblock.fs_avgfilesize <= 0)
168                 printf("illegal expected average file size %d\n",
169                     sblock.fs_avgfilesize), exit(14);
170         if (sblock.fs_avgfpdir <= 0)
171                 printf("illegal expected number of files per directory %d\n",
172                     sblock.fs_avgfpdir), exit(15);
173         /*
174          * collect and verify the block and fragment sizes
175          */
176         sblock.fs_bsize = bsize;
177         sblock.fs_fsize = fsize;
178         if (!POWEROF2(sblock.fs_bsize)) {
179                 printf("block size must be a power of 2, not %d\n",
180                     sblock.fs_bsize);
181                 exit(16);
182         }
183         if (!POWEROF2(sblock.fs_fsize)) {
184                 printf("fragment size must be a power of 2, not %d\n",
185                     sblock.fs_fsize);
186                 exit(17);
187         }
188         if (sblock.fs_fsize < sectorsize) {
189                 printf("increasing fragment size from %d to sector size (%d)\n",
190                     sblock.fs_fsize, sectorsize);
191                 sblock.fs_fsize = sectorsize;
192         }
193         if (sblock.fs_bsize > MAXBSIZE) {
194                 printf("decreasing block size from %d to maximum (%d)\n",
195                     sblock.fs_bsize, MAXBSIZE);
196                 sblock.fs_bsize = MAXBSIZE;
197         }
198         if (sblock.fs_bsize < MINBSIZE) {
199                 printf("increasing block size from %d to minimum (%d)\n",
200                     sblock.fs_bsize, MINBSIZE);
201                 sblock.fs_bsize = MINBSIZE;
202         }
203         if (sblock.fs_fsize > MAXBSIZE) {
204                 printf("decreasing fragment size from %d to maximum (%d)\n",
205                     sblock.fs_fsize, MAXBSIZE);
206                 sblock.fs_fsize = MAXBSIZE;
207         }
208         if (sblock.fs_bsize < sblock.fs_fsize) {
209                 printf("increasing block size from %d to fragment size (%d)\n",
210                     sblock.fs_bsize, sblock.fs_fsize);
211                 sblock.fs_bsize = sblock.fs_fsize;
212         }
213         if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
214                 printf(
215                 "increasing fragment size from %d to block size / %d (%d)\n",
216                     sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
217                 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
218         }
219         if (maxbsize < bsize || !POWEROF2(maxbsize)) {
220                 sblock.fs_maxbsize = sblock.fs_bsize;
221                 printf("Extent size set to %d\n", sblock.fs_maxbsize);
222         } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
223                 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
224                 printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
225         } else {
226                 sblock.fs_maxbsize = maxbsize;
227         }
228         sblock.fs_maxcontig = maxcontig;
229         if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
230                 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
231                 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
232         }
233         if (sblock.fs_maxcontig > 1)
234                 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
235         sblock.fs_bmask = ~(sblock.fs_bsize - 1);
236         sblock.fs_fmask = ~(sblock.fs_fsize - 1);
237         sblock.fs_qbmask = ~sblock.fs_bmask;
238         sblock.fs_qfmask = ~sblock.fs_fmask;
239         sblock.fs_bshift = ilog2(sblock.fs_bsize);
240         sblock.fs_fshift = ilog2(sblock.fs_fsize);
241         sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
242         sblock.fs_fragshift = ilog2(sblock.fs_frag);
243         if (sblock.fs_frag > MAXFRAG) {
244                 printf("fragment size %d is still too small (can't happen)\n",
245                     sblock.fs_bsize / MAXFRAG);
246                 exit(21);
247         }
248         sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
249         sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
250
251         /*
252          * Before the filesystem is finally initialized, mark it
253          * as incompletely initialized.
254          */
255         sblock.fs_magic = FS_BAD_MAGIC;
256
257         if (Oflag == 1) {
258                 sblock.fs_sblockloc = SBLOCK_UFS1;
259                 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
260                 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
261                 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
262                     sizeof(ufs1_daddr_t));
263                 sblock.fs_old_inodefmt = FS_44INODEFMT;
264                 sblock.fs_old_cgoffset = 0;
265                 sblock.fs_old_cgmask = 0xffffffff;
266                 sblock.fs_old_size = sblock.fs_size;
267                 sblock.fs_old_rotdelay = 0;
268                 sblock.fs_old_rps = 60;
269                 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
270                 sblock.fs_old_cpg = 1;
271                 sblock.fs_old_interleave = 1;
272                 sblock.fs_old_trackskew = 0;
273                 sblock.fs_old_cpc = 0;
274                 sblock.fs_old_postblformat = 1;
275                 sblock.fs_old_nrpos = 1;
276         } else {
277                 sblock.fs_sblockloc = SBLOCK_UFS2;
278                 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
279                 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
280                 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
281                     sizeof(ufs2_daddr_t));
282         }
283         sblock.fs_sblkno =
284             roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
285                 sblock.fs_frag);
286         sblock.fs_cblkno = sblock.fs_sblkno +
287             roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
288         sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
289         sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
290         for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
291                 sizepb *= NINDIR(&sblock);
292                 sblock.fs_maxfilesize += sizepb;
293         }
294
295         /*
296          * It's impossible to create a snapshot in case that fs_maxfilesize
297          * is smaller than the fssize.
298          */
299         if (sblock.fs_maxfilesize < (u_quad_t)fssize) {
300                 warnx("WARNING: You will be unable to create snapshots on this "
301                       "file system.  Correct by using a larger blocksize.");
302         }
303
304         /*
305          * Calculate the number of blocks to put into each cylinder group.
306          *
307          * This algorithm selects the number of blocks per cylinder
308          * group. The first goal is to have at least enough data blocks
309          * in each cylinder group to meet the density requirement. Once
310          * this goal is achieved we try to expand to have at least
311          * MINCYLGRPS cylinder groups. Once this goal is achieved, we
312          * pack as many blocks into each cylinder group map as will fit.
313          *
314          * We start by calculating the smallest number of blocks that we
315          * can put into each cylinder group. If this is too big, we reduce
316          * the density until it fits.
317          */
318         origdensity = density;
319         for (;;) {
320                 fragsperinode = MAX(numfrags(&sblock, density), 1);
321                 minfpg = fragsperinode * INOPB(&sblock);
322                 if (minfpg > sblock.fs_size)
323                         minfpg = sblock.fs_size;
324                 sblock.fs_ipg = INOPB(&sblock);
325                 sblock.fs_fpg = roundup(sblock.fs_iblkno +
326                     sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
327                 if (sblock.fs_fpg < minfpg)
328                         sblock.fs_fpg = minfpg;
329                 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
330                     INOPB(&sblock));
331                 sblock.fs_fpg = roundup(sblock.fs_iblkno +
332                     sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
333                 if (sblock.fs_fpg < minfpg)
334                         sblock.fs_fpg = minfpg;
335                 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
336                     INOPB(&sblock));
337                 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
338                         break;
339                 density -= sblock.fs_fsize;
340         }
341         if (density != origdensity)
342                 printf("density reduced from %d to %d\n", origdensity, density);
343         /*
344          * Start packing more blocks into the cylinder group until
345          * it cannot grow any larger, the number of cylinder groups
346          * drops below MINCYLGRPS, or we reach the size requested.
347          */
348         for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
349                 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
350                     INOPB(&sblock));
351                 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
352                         break;
353                 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
354                         continue;
355                 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
356                         break;
357                 sblock.fs_fpg -= sblock.fs_frag;
358                 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
359                     INOPB(&sblock));
360                 break;
361         }
362         /*
363          * Check to be sure that the last cylinder group has enough blocks
364          * to be viable. If it is too small, reduce the number of blocks
365          * per cylinder group which will have the effect of moving more
366          * blocks into the last cylinder group.
367          */
368         optimalfpg = sblock.fs_fpg;
369         for (;;) {
370                 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
371                 lastminfpg = roundup(sblock.fs_iblkno +
372                     sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
373                 if (sblock.fs_size < lastminfpg) {
374                         printf("Filesystem size %jd < minimum size of %d\n",
375                             (intmax_t)sblock.fs_size, lastminfpg);
376                         exit(28);
377                 }
378                 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
379                     sblock.fs_size % sblock.fs_fpg == 0)
380                         break;
381                 sblock.fs_fpg -= sblock.fs_frag;
382                 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
383                     INOPB(&sblock));
384         }
385         if (optimalfpg != sblock.fs_fpg)
386                 printf("Reduced frags per cylinder group from %d to %d %s\n",
387                    optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
388         sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
389         sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
390         if (Oflag == 1) {
391                 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
392                 sblock.fs_old_nsect = sblock.fs_old_spc;
393                 sblock.fs_old_npsect = sblock.fs_old_spc;
394                 sblock.fs_old_ncyl = sblock.fs_ncg;
395         }
396         /*
397          * fill in remaining fields of the super block
398          */
399         sblock.fs_csaddr = cgdmin(&sblock, 0);
400         sblock.fs_cssize =
401             fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
402         fscs = (struct csum *)calloc(1, sblock.fs_cssize);
403         if (fscs == NULL)
404                 errx(31, "calloc failed");
405         sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
406         if (sblock.fs_sbsize > SBLOCKSIZE)
407                 sblock.fs_sbsize = SBLOCKSIZE;
408         sblock.fs_minfree = minfree;
409         sblock.fs_maxbpg = maxbpg;
410         sblock.fs_optim = opt;
411         sblock.fs_cgrotor = 0;
412         sblock.fs_pendingblocks = 0;
413         sblock.fs_pendinginodes = 0;
414         sblock.fs_fmod = 0;
415         sblock.fs_ronly = 0;
416         sblock.fs_state = 0;
417         sblock.fs_clean = 1;
418         sblock.fs_id[0] = (long)utime;
419         sblock.fs_id[1] = newfs_random();
420         sblock.fs_fsmnt[0] = '\0';
421         csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
422         sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
423             sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
424         sblock.fs_cstotal.cs_nbfree =
425             fragstoblks(&sblock, sblock.fs_dsize) -
426             howmany(csfrags, sblock.fs_frag);
427         sblock.fs_cstotal.cs_nffree =
428             fragnum(&sblock, sblock.fs_size) +
429             (fragnum(&sblock, csfrags) > 0 ?
430              sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
431         sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
432         sblock.fs_cstotal.cs_ndir = 0;
433         sblock.fs_dsize -= csfrags;
434         sblock.fs_time = utime;
435         if (Oflag == 1) {
436                 sblock.fs_old_time = utime;
437                 sblock.fs_old_dsize = sblock.fs_dsize;
438                 sblock.fs_old_csaddr = sblock.fs_csaddr;
439                 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
440                 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
441                 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
442                 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
443         }
444
445         /*
446          * Dump out summary information about file system.
447          */
448 #       define B2MBFACTOR (1 / (1024.0 * 1024.0))
449         printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
450             fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
451             (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
452             sblock.fs_fsize);
453         printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
454             sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
455             sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
456         if (sblock.fs_flags & FS_DOSOFTDEP)
457                 printf("\twith soft updates\n");
458 #       undef B2MBFACTOR
459
460         if (Eflag && !Nflag) {
461                 printf("Erasing sectors [%jd...%jd]\n", 
462                     sblock.fs_sblockloc / disk.d_bsize,
463                     fsbtodb(&sblock, sblock.fs_size) - 1);
464                 berase(&disk, sblock.fs_sblockloc / disk.d_bsize,
465                     sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc);
466         }
467         /*
468          * Wipe out old UFS1 superblock(s) if necessary.
469          */
470         if (!Nflag && Oflag != 1) {
471                 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE);
472                 if (i == -1)
473                         err(1, "can't read old UFS1 superblock: %s", disk.d_error);
474
475                 if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
476                         fsdummy.fs_magic = 0;
477                         bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize,
478                             chdummy, SBLOCKSIZE);
479                         for (i = 0; i < fsdummy.fs_ncg; i++)
480                                 bwrite(&disk, part_ofs + fsbtodb(&fsdummy,
481                                     cgsblock(&fsdummy, i)), chdummy, SBLOCKSIZE);
482                 }
483         }
484         if (!Nflag)
485                 do_sbwrite(&disk);
486         if (Xflag == 1) {
487                 printf("** Exiting on Xflag 1\n");
488                 exit(0);
489         }
490         if (Xflag == 2)
491                 printf("** Leaving BAD MAGIC on Xflag 2\n");
492         else
493                 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC;
494
495         /*
496          * Now build the cylinders group blocks and
497          * then print out indices of cylinder groups.
498          */
499         printf("super-block backups (for fsck -b #) at:\n");
500         i = 0;
501         width = charsperline();
502         /*
503          * allocate space for superblock, cylinder group map, and
504          * two sets of inode blocks.
505          */
506         if (sblock.fs_bsize < SBLOCKSIZE)
507                 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
508         else
509                 iobufsize = 4 * sblock.fs_bsize;
510         if ((iobuf = calloc(1, iobufsize)) == 0) {
511                 printf("Cannot allocate I/O buffer\n");
512                 exit(38);
513         }
514         /*
515          * Make a copy of the superblock into the buffer that we will be
516          * writing out in each cylinder group.
517          */
518         bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
519         for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
520                 initcg(cylno, utime);
521                 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
522                     (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
523                     cylno < (sblock.fs_ncg-1) ? "," : "");
524                 if (j < 0)
525                         tmpbuf[j = 0] = '\0';
526                 if (i + j >= width) {
527                         printf("\n");
528                         i = 0;
529                 }
530                 i += j;
531                 printf("%s", tmpbuf);
532                 fflush(stdout);
533         }
534         printf("\n");
535         if (Nflag)
536                 exit(0);
537         /*
538          * Now construct the initial file system,
539          * then write out the super-block.
540          */
541         fsinit(utime);
542         if (Oflag == 1) {
543                 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
544                 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
545                 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
546                 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
547         }
548         if (Xflag == 3) {
549                 printf("** Exiting on Xflag 3\n");
550                 exit(0);
551         }
552         if (!Nflag)
553                 do_sbwrite(&disk);
554         for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
555                 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
556                         sblock.fs_cssize - i < sblock.fs_bsize ?
557                         sblock.fs_cssize - i : sblock.fs_bsize,
558                         ((char *)fscs) + i);
559         /*
560          * Update information about this partion in pack
561          * label, to that it may be updated on disk.
562          */
563         if (pp != NULL) {
564                 pp->p_fstype = FS_BSDFFS;
565                 pp->p_fsize = sblock.fs_fsize;
566                 pp->p_frag = sblock.fs_frag;
567                 pp->p_cpg = sblock.fs_fpg;
568         }
569 }
570
571 /*
572  * Initialize a cylinder group.
573  */
574 void
575 initcg(int cylno, time_t utime)
576 {
577         long i, j, d, dlower, dupper, blkno, start;
578         ufs2_daddr_t cbase, dmax;
579         struct ufs1_dinode *dp1;
580         struct ufs2_dinode *dp2;
581         struct csum *cs;
582
583         /*
584          * Determine block bounds for cylinder group.
585          * Allow space for super block summary information in first
586          * cylinder group.
587          */
588         cbase = cgbase(&sblock, cylno);
589         dmax = cbase + sblock.fs_fpg;
590         if (dmax > sblock.fs_size)
591                 dmax = sblock.fs_size;
592         dlower = cgsblock(&sblock, cylno) - cbase;
593         dupper = cgdmin(&sblock, cylno) - cbase;
594         if (cylno == 0)
595                 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
596         cs = &fscs[cylno];
597         memset(&acg, 0, sblock.fs_cgsize);
598         acg.cg_time = utime;
599         acg.cg_magic = CG_MAGIC;
600         acg.cg_cgx = cylno;
601         acg.cg_niblk = sblock.fs_ipg;
602         acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
603             sblock.fs_ipg : 2 * INOPB(&sblock);
604         acg.cg_ndblk = dmax - cbase;
605         if (sblock.fs_contigsumsize > 0)
606                 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
607         start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
608         if (Oflag == 2) {
609                 acg.cg_iusedoff = start;
610         } else {
611                 acg.cg_old_ncyl = sblock.fs_old_cpg;
612                 acg.cg_old_time = acg.cg_time;
613                 acg.cg_time = 0;
614                 acg.cg_old_niblk = acg.cg_niblk;
615                 acg.cg_niblk = 0;
616                 acg.cg_initediblk = 0;
617                 acg.cg_old_btotoff = start;
618                 acg.cg_old_boff = acg.cg_old_btotoff +
619                     sblock.fs_old_cpg * sizeof(int32_t);
620                 acg.cg_iusedoff = acg.cg_old_boff +
621                     sblock.fs_old_cpg * sizeof(u_int16_t);
622         }
623         acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
624         acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
625         if (sblock.fs_contigsumsize > 0) {
626                 acg.cg_clustersumoff =
627                     roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
628                 acg.cg_clustersumoff -= sizeof(u_int32_t);
629                 acg.cg_clusteroff = acg.cg_clustersumoff +
630                     (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
631                 acg.cg_nextfreeoff = acg.cg_clusteroff +
632                     howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
633         }
634         if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
635                 printf("Panic: cylinder group too big\n");
636                 exit(37);
637         }
638         acg.cg_cs.cs_nifree += sblock.fs_ipg;
639         if (cylno == 0)
640                 for (i = 0; i < (long)ROOTINO; i++) {
641                         setbit(cg_inosused(&acg), i);
642                         acg.cg_cs.cs_nifree--;
643                 }
644         if (cylno > 0) {
645                 /*
646                  * In cylno 0, beginning space is reserved
647                  * for boot and super blocks.
648                  */
649                 for (d = 0; d < dlower; d += sblock.fs_frag) {
650                         blkno = d / sblock.fs_frag;
651                         setblock(&sblock, cg_blksfree(&acg), blkno);
652                         if (sblock.fs_contigsumsize > 0)
653                                 setbit(cg_clustersfree(&acg), blkno);
654                         acg.cg_cs.cs_nbfree++;
655                 }
656         }
657         if ((i = dupper % sblock.fs_frag)) {
658                 acg.cg_frsum[sblock.fs_frag - i]++;
659                 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
660                         setbit(cg_blksfree(&acg), dupper);
661                         acg.cg_cs.cs_nffree++;
662                 }
663         }
664         for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
665              d += sblock.fs_frag) {
666                 blkno = d / sblock.fs_frag;
667                 setblock(&sblock, cg_blksfree(&acg), blkno);
668                 if (sblock.fs_contigsumsize > 0)
669                         setbit(cg_clustersfree(&acg), blkno);
670                 acg.cg_cs.cs_nbfree++;
671         }
672         if (d < acg.cg_ndblk) {
673                 acg.cg_frsum[acg.cg_ndblk - d]++;
674                 for (; d < acg.cg_ndblk; d++) {
675                         setbit(cg_blksfree(&acg), d);
676                         acg.cg_cs.cs_nffree++;
677                 }
678         }
679         if (sblock.fs_contigsumsize > 0) {
680                 int32_t *sump = cg_clustersum(&acg);
681                 u_char *mapp = cg_clustersfree(&acg);
682                 int map = *mapp++;
683                 int bit = 1;
684                 int run = 0;
685
686                 for (i = 0; i < acg.cg_nclusterblks; i++) {
687                         if ((map & bit) != 0)
688                                 run++;
689                         else if (run != 0) {
690                                 if (run > sblock.fs_contigsumsize)
691                                         run = sblock.fs_contigsumsize;
692                                 sump[run]++;
693                                 run = 0;
694                         }
695                         if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
696                                 bit <<= 1;
697                         else {
698                                 map = *mapp++;
699                                 bit = 1;
700                         }
701                 }
702                 if (run != 0) {
703                         if (run > sblock.fs_contigsumsize)
704                                 run = sblock.fs_contigsumsize;
705                         sump[run]++;
706                 }
707         }
708         *cs = acg.cg_cs;
709         /*
710          * Write out the duplicate super block, the cylinder group map
711          * and two blocks worth of inodes in a single write.
712          */
713         start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
714         bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize);
715         start += sblock.fs_bsize;
716         dp1 = (struct ufs1_dinode *)(&iobuf[start]);
717         dp2 = (struct ufs2_dinode *)(&iobuf[start]);
718         for (i = 0; i < acg.cg_initediblk; i++) {
719                 if (sblock.fs_magic == FS_UFS1_MAGIC) {
720                         dp1->di_gen = newfs_random();
721                         dp1++;
722                 } else {
723                         dp2->di_gen = newfs_random();
724                         dp2++;
725                 }
726         }
727         wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
728         /*
729          * For the old file system, we have to initialize all the inodes.
730          */
731         if (Oflag == 1) {
732                 for (i = 2 * sblock.fs_frag;
733                      i < sblock.fs_ipg / INOPF(&sblock);
734                      i += sblock.fs_frag) {
735                         dp1 = (struct ufs1_dinode *)(&iobuf[start]);
736                         for (j = 0; j < INOPB(&sblock); j++) {
737                                 dp1->di_gen = newfs_random();
738                                 dp1++;
739                         }
740                         wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
741                             sblock.fs_bsize, &iobuf[start]);
742                 }
743         }
744 }
745
746 /*
747  * initialize the file system
748  */
749 #define ROOTLINKCNT 3
750
751 struct direct root_dir[] = {
752         { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
753         { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
754         { ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" },
755 };
756
757 #define SNAPLINKCNT 2
758
759 struct direct snap_dir[] = {
760         { ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." },
761         { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
762 };
763
764 void
765 fsinit(time_t utime)
766 {
767         union dinode node;
768         struct group *grp;
769         gid_t gid;
770         int entries;
771
772         memset(&node, 0, sizeof node);
773         if ((grp = getgrnam("operator")) != NULL) {
774                 gid = grp->gr_gid;
775         } else {
776                 warnx("Cannot retrieve operator gid, using gid 0.");
777                 gid = 0;
778         }
779         entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT;
780         if (sblock.fs_magic == FS_UFS1_MAGIC) {
781                 /*
782                  * initialize the node
783                  */
784                 node.dp1.di_atime = utime;
785                 node.dp1.di_mtime = utime;
786                 node.dp1.di_ctime = utime;
787                 /*
788                  * create the root directory
789                  */
790                 node.dp1.di_mode = IFDIR | UMASK;
791                 node.dp1.di_nlink = entries;
792                 node.dp1.di_size = makedir(root_dir, entries);
793                 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
794                 node.dp1.di_blocks =
795                     btodb(fragroundup(&sblock, node.dp1.di_size));
796                 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
797                     iobuf);
798                 iput(&node, ROOTINO);
799                 if (!nflag) {
800                         /*
801                          * create the .snap directory
802                          */
803                         node.dp1.di_mode |= 020;
804                         node.dp1.di_gid = gid;
805                         node.dp1.di_nlink = SNAPLINKCNT;
806                         node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
807                                 node.dp1.di_db[0] =
808                                     alloc(sblock.fs_fsize, node.dp1.di_mode);
809                         node.dp1.di_blocks =
810                             btodb(fragroundup(&sblock, node.dp1.di_size));
811                                 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]),
812                                     sblock.fs_fsize, iobuf);
813                         iput(&node, ROOTINO + 1);
814                 }
815         } else {
816                 /*
817                  * initialize the node
818                  */
819                 node.dp2.di_atime = utime;
820                 node.dp2.di_mtime = utime;
821                 node.dp2.di_ctime = utime;
822                 node.dp2.di_birthtime = utime;
823                 /*
824                  * create the root directory
825                  */
826                 node.dp2.di_mode = IFDIR | UMASK;
827                 node.dp2.di_nlink = entries;
828                 node.dp2.di_size = makedir(root_dir, entries);
829                 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
830                 node.dp2.di_blocks =
831                     btodb(fragroundup(&sblock, node.dp2.di_size));
832                 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
833                     iobuf);
834                 iput(&node, ROOTINO);
835                 if (!nflag) {
836                         /*
837                          * create the .snap directory
838                          */
839                         node.dp2.di_mode |= 020;
840                         node.dp2.di_gid = gid;
841                         node.dp2.di_nlink = SNAPLINKCNT;
842                         node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
843                                 node.dp2.di_db[0] =
844                                     alloc(sblock.fs_fsize, node.dp2.di_mode);
845                         node.dp2.di_blocks =
846                             btodb(fragroundup(&sblock, node.dp2.di_size));
847                                 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 
848                                     sblock.fs_fsize, iobuf);
849                         iput(&node, ROOTINO + 1);
850                 }
851         }
852 }
853
854 /*
855  * construct a set of directory entries in "iobuf".
856  * return size of directory.
857  */
858 int
859 makedir(struct direct *protodir, int entries)
860 {
861         char *cp;
862         int i, spcleft;
863
864         spcleft = DIRBLKSIZ;
865         memset(iobuf, 0, DIRBLKSIZ);
866         for (cp = iobuf, i = 0; i < entries - 1; i++) {
867                 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
868                 memmove(cp, &protodir[i], protodir[i].d_reclen);
869                 cp += protodir[i].d_reclen;
870                 spcleft -= protodir[i].d_reclen;
871         }
872         protodir[i].d_reclen = spcleft;
873         memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
874         return (DIRBLKSIZ);
875 }
876
877 /*
878  * allocate a block or frag
879  */
880 ufs2_daddr_t
881 alloc(int size, int mode)
882 {
883         int i, d, blkno, frag;
884
885         bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
886             sblock.fs_cgsize);
887         if (acg.cg_magic != CG_MAGIC) {
888                 printf("cg 0: bad magic number\n");
889                 exit(38);
890         }
891         if (acg.cg_cs.cs_nbfree == 0) {
892                 printf("first cylinder group ran out of space\n");
893                 exit(39);
894         }
895         for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
896                 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
897                         goto goth;
898         printf("internal error: can't find block in cyl 0\n");
899         exit(40);
900 goth:
901         blkno = fragstoblks(&sblock, d);
902         clrblock(&sblock, cg_blksfree(&acg), blkno);
903         if (sblock.fs_contigsumsize > 0)
904                 clrbit(cg_clustersfree(&acg), blkno);
905         acg.cg_cs.cs_nbfree--;
906         sblock.fs_cstotal.cs_nbfree--;
907         fscs[0].cs_nbfree--;
908         if (mode & IFDIR) {
909                 acg.cg_cs.cs_ndir++;
910                 sblock.fs_cstotal.cs_ndir++;
911                 fscs[0].cs_ndir++;
912         }
913         if (size != sblock.fs_bsize) {
914                 frag = howmany(size, sblock.fs_fsize);
915                 fscs[0].cs_nffree += sblock.fs_frag - frag;
916                 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
917                 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
918                 acg.cg_frsum[sblock.fs_frag - frag]++;
919                 for (i = frag; i < sblock.fs_frag; i++)
920                         setbit(cg_blksfree(&acg), d + i);
921         }
922         /* XXX cgwrite(&disk, 0)??? */
923         wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
924             (char *)&acg);
925         return ((ufs2_daddr_t)d);
926 }
927
928 /*
929  * Allocate an inode on the disk
930  */
931 void
932 iput(union dinode *ip, ino_t ino)
933 {
934         ufs2_daddr_t d;
935         int c;
936
937         c = ino_to_cg(&sblock, ino);
938         bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
939             sblock.fs_cgsize);
940         if (acg.cg_magic != CG_MAGIC) {
941                 printf("cg 0: bad magic number\n");
942                 exit(31);
943         }
944         acg.cg_cs.cs_nifree--;
945         setbit(cg_inosused(&acg), ino);
946         wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
947             (char *)&acg);
948         sblock.fs_cstotal.cs_nifree--;
949         fscs[0].cs_nifree--;
950         if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) {
951                 printf("fsinit: inode value out of range (%d).\n", ino);
952                 exit(32);
953         }
954         d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
955         bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize);
956         if (sblock.fs_magic == FS_UFS1_MAGIC)
957                 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
958                     ip->dp1;
959         else
960                 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
961                     ip->dp2;
962         wtfs(d, sblock.fs_bsize, (char *)iobuf);
963 }
964
965 /*
966  * possibly write to disk
967  */
968 static void
969 wtfs(ufs2_daddr_t bno, int size, char *bf)
970 {
971         if (Nflag)
972                 return;
973         if (bwrite(&disk, part_ofs + bno, bf, size) < 0)
974                 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
975 }
976
977 /*
978  * check if a block is available
979  */
980 static int
981 isblock(struct fs *fs, unsigned char *cp, int h)
982 {
983         unsigned char mask;
984
985         switch (fs->fs_frag) {
986         case 8:
987                 return (cp[h] == 0xff);
988         case 4:
989                 mask = 0x0f << ((h & 0x1) << 2);
990                 return ((cp[h >> 1] & mask) == mask);
991         case 2:
992                 mask = 0x03 << ((h & 0x3) << 1);
993                 return ((cp[h >> 2] & mask) == mask);
994         case 1:
995                 mask = 0x01 << (h & 0x7);
996                 return ((cp[h >> 3] & mask) == mask);
997         default:
998                 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
999                 return (0);
1000         }
1001 }
1002
1003 /*
1004  * take a block out of the map
1005  */
1006 static void
1007 clrblock(struct fs *fs, unsigned char *cp, int h)
1008 {
1009         switch ((fs)->fs_frag) {
1010         case 8:
1011                 cp[h] = 0;
1012                 return;
1013         case 4:
1014                 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1015                 return;
1016         case 2:
1017                 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1018                 return;
1019         case 1:
1020                 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1021                 return;
1022         default:
1023                 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1024                 return;
1025         }
1026 }
1027
1028 /*
1029  * put a block into the map
1030  */
1031 static void
1032 setblock(struct fs *fs, unsigned char *cp, int h)
1033 {
1034         switch (fs->fs_frag) {
1035         case 8:
1036                 cp[h] = 0xff;
1037                 return;
1038         case 4:
1039                 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1040                 return;
1041         case 2:
1042                 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1043                 return;
1044         case 1:
1045                 cp[h >> 3] |= (0x01 << (h & 0x7));
1046                 return;
1047         default:
1048                 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1049                 return;
1050         }
1051 }
1052
1053 /*
1054  * Determine the number of characters in a
1055  * single line.
1056  */
1057
1058 static int
1059 charsperline(void)
1060 {
1061         int columns;
1062         char *cp;
1063         struct winsize ws;
1064
1065         columns = 0;
1066         if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1067                 columns = ws.ws_col;
1068         if (columns == 0 && (cp = getenv("COLUMNS")))
1069                 columns = atoi(cp);
1070         if (columns == 0)
1071                 columns = 80;   /* last resort */
1072         return (columns);
1073 }
1074
1075 static int
1076 ilog2(int val)
1077 {
1078         u_int n;
1079
1080         for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1081                 if (1 << n == val)
1082                         return (n);
1083         errx(1, "ilog2: %d is not a power of 2\n", val);
1084 }
1085
1086 /*
1087  * For the regression test, return predictable random values.
1088  * Otherwise use a true random number generator.
1089  */
1090 static u_int32_t
1091 newfs_random(void)
1092 {
1093         static int nextnum = 1;
1094
1095         if (Rflag)
1096                 return (nextnum++);
1097         return (arc4random());
1098 }