]> CyberLeo.Net >> Repos - FreeBSD/releng/8.0.git/blob - sys/dev/usb/wlan/if_upgt.c
Adjust to reflect 8.0-RELEASE.
[FreeBSD/releng/8.0.git] / sys / dev / usb / wlan / if_upgt.c
1 /*      $OpenBSD: if_upgt.c,v 1.35 2008/04/16 18:32:15 damien Exp $ */
2 /*      $FreeBSD$ */
3
4 /*
5  * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20 #include <sys/param.h>
21 #include <sys/systm.h>
22 #include <sys/kernel.h>
23 #include <sys/endian.h>
24 #include <sys/firmware.h>
25 #include <sys/linker.h>
26 #include <sys/mbuf.h>
27 #include <sys/malloc.h>
28 #include <sys/module.h>
29 #include <sys/socket.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32
33 #include <net/if.h>
34 #include <net/if_arp.h>
35 #include <net/ethernet.h>
36 #include <net/if_dl.h>
37 #include <net/if_media.h>
38 #include <net/if_types.h>
39
40 #include <sys/bus.h>
41 #include <machine/bus.h>
42
43 #include <net80211/ieee80211_var.h>
44 #include <net80211/ieee80211_phy.h>
45 #include <net80211/ieee80211_radiotap.h>
46 #include <net80211/ieee80211_regdomain.h>
47
48 #include <net/bpf.h>
49
50 #include <dev/usb/usb.h>
51 #include <dev/usb/usbdi.h>
52 #include "usbdevs.h"
53
54 #include <dev/usb/wlan/if_upgtvar.h>
55
56 /*
57  * Driver for the USB PrismGT devices.
58  *
59  * For now just USB 2.0 devices with the GW3887 chipset are supported.
60  * The driver has been written based on the firmware version 2.13.1.0_LM87.
61  *
62  * TODO's:
63  * - MONITOR mode test.
64  * - Add HOSTAP mode.
65  * - Add IBSS mode.
66  * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
67  *
68  * Parts of this driver has been influenced by reading the p54u driver
69  * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
70  * Sebastien Bourdeauducq <lekernel@prism54.org>.
71  */
72
73 SYSCTL_NODE(_hw, OID_AUTO, upgt, CTLFLAG_RD, 0,
74     "USB PrismGT GW3887 driver parameters");
75
76 #ifdef UPGT_DEBUG
77 int upgt_debug = 0;
78 SYSCTL_INT(_hw_upgt, OID_AUTO, debug, CTLFLAG_RW, &upgt_debug,
79             0, "control debugging printfs");
80 TUNABLE_INT("hw.upgt.debug", &upgt_debug);
81 enum {
82         UPGT_DEBUG_XMIT         = 0x00000001,   /* basic xmit operation */
83         UPGT_DEBUG_RECV         = 0x00000002,   /* basic recv operation */
84         UPGT_DEBUG_RESET        = 0x00000004,   /* reset processing */
85         UPGT_DEBUG_INTR         = 0x00000008,   /* INTR */
86         UPGT_DEBUG_TX_PROC      = 0x00000010,   /* tx ISR proc */
87         UPGT_DEBUG_RX_PROC      = 0x00000020,   /* rx ISR proc */
88         UPGT_DEBUG_STATE        = 0x00000040,   /* 802.11 state transitions */
89         UPGT_DEBUG_STAT         = 0x00000080,   /* statistic */
90         UPGT_DEBUG_FW           = 0x00000100,   /* firmware */
91         UPGT_DEBUG_ANY          = 0xffffffff
92 };
93 #define DPRINTF(sc, m, fmt, ...) do {                           \
94         if (sc->sc_debug & (m))                                 \
95                 printf(fmt, __VA_ARGS__);                       \
96 } while (0)
97 #else
98 #define DPRINTF(sc, m, fmt, ...) do {                           \
99         (void) sc;                                              \
100 } while (0)
101 #endif
102
103 /*
104  * Prototypes.
105  */
106 static device_probe_t upgt_match;
107 static device_attach_t upgt_attach;
108 static device_detach_t upgt_detach;
109 static int      upgt_alloc_tx(struct upgt_softc *);
110 static int      upgt_alloc_rx(struct upgt_softc *);
111 static int      upgt_device_reset(struct upgt_softc *);
112 static void     upgt_bulk_tx(struct upgt_softc *, struct upgt_data *);
113 static int      upgt_fw_verify(struct upgt_softc *);
114 static int      upgt_mem_init(struct upgt_softc *);
115 static int      upgt_fw_load(struct upgt_softc *);
116 static int      upgt_fw_copy(const uint8_t *, char *, int);
117 static uint32_t upgt_crc32_le(const void *, size_t);
118 static struct mbuf *
119                 upgt_rxeof(struct usb_xfer *, struct upgt_data *, int *);
120 static struct mbuf *
121                 upgt_rx(struct upgt_softc *, uint8_t *, int, int *);
122 static void     upgt_txeof(struct usb_xfer *, struct upgt_data *);
123 static int      upgt_eeprom_read(struct upgt_softc *);
124 static int      upgt_eeprom_parse(struct upgt_softc *);
125 static void     upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
126 static void     upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
127 static void     upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
128 static void     upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
129 static uint32_t upgt_chksum_le(const uint32_t *, size_t);
130 static void     upgt_tx_done(struct upgt_softc *, uint8_t *);
131 static void     upgt_init(void *);
132 static void     upgt_init_locked(struct upgt_softc *);
133 static int      upgt_ioctl(struct ifnet *, u_long, caddr_t);
134 static void     upgt_start(struct ifnet *);
135 static int      upgt_raw_xmit(struct ieee80211_node *, struct mbuf *,
136                     const struct ieee80211_bpf_params *);
137 static void     upgt_scan_start(struct ieee80211com *);
138 static void     upgt_scan_end(struct ieee80211com *);
139 static void     upgt_set_channel(struct ieee80211com *);
140 static struct ieee80211vap *upgt_vap_create(struct ieee80211com *,
141                     const char name[IFNAMSIZ], int unit, int opmode,
142                     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
143                     const uint8_t mac[IEEE80211_ADDR_LEN]);
144 static void     upgt_vap_delete(struct ieee80211vap *);
145 static void     upgt_update_mcast(struct ifnet *);
146 static uint8_t  upgt_rx_rate(struct upgt_softc *, const int);
147 static void     upgt_set_multi(void *);
148 static void     upgt_stop(struct upgt_softc *);
149 static void     upgt_setup_rates(struct ieee80211vap *, struct ieee80211com *);
150 static int      upgt_set_macfilter(struct upgt_softc *, uint8_t);
151 static int      upgt_newstate(struct ieee80211vap *, enum ieee80211_state, int);
152 static void     upgt_set_chan(struct upgt_softc *, struct ieee80211_channel *);
153 static void     upgt_set_led(struct upgt_softc *, int);
154 static void     upgt_set_led_blink(void *);
155 static void     upgt_get_stats(struct upgt_softc *);
156 static void     upgt_mem_free(struct upgt_softc *, uint32_t);
157 static uint32_t upgt_mem_alloc(struct upgt_softc *);
158 static void     upgt_free_tx(struct upgt_softc *);
159 static void     upgt_free_rx(struct upgt_softc *);
160 static void     upgt_watchdog(void *);
161 static void     upgt_abort_xfers(struct upgt_softc *);
162 static void     upgt_abort_xfers_locked(struct upgt_softc *);
163 static void     upgt_sysctl_node(struct upgt_softc *);
164 static struct upgt_data *
165                 upgt_getbuf(struct upgt_softc *);
166 static struct upgt_data *
167                 upgt_gettxbuf(struct upgt_softc *);
168 static int      upgt_tx_start(struct upgt_softc *, struct mbuf *,
169                     struct ieee80211_node *, struct upgt_data *);
170
171 static const char *upgt_fwname = "upgt-gw3887";
172
173 static const struct usb_device_id upgt_devs_2[] = {
174 #define UPGT_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
175         /* version 2 devices */
176         UPGT_DEV(ACCTON,        PRISM_GT),
177         UPGT_DEV(BELKIN,        F5D7050),
178         UPGT_DEV(CISCOLINKSYS,  WUSB54AG),
179         UPGT_DEV(CONCEPTRONIC,  PRISM_GT),
180         UPGT_DEV(DELL,          PRISM_GT_1),
181         UPGT_DEV(DELL,          PRISM_GT_2),
182         UPGT_DEV(FSC,           E5400),
183         UPGT_DEV(GLOBESPAN,     PRISM_GT_1),
184         UPGT_DEV(GLOBESPAN,     PRISM_GT_2),
185         UPGT_DEV(INTERSIL,      PRISM_GT),
186         UPGT_DEV(SMC,           2862WG),
187         UPGT_DEV(WISTRONNEWEB,  UR045G),
188         UPGT_DEV(XYRATEX,       PRISM_GT_1),
189         UPGT_DEV(XYRATEX,       PRISM_GT_2),
190         UPGT_DEV(ZCOM,          XG703A),
191         UPGT_DEV(ZCOM,          XM142)
192 };
193
194 static usb_callback_t upgt_bulk_rx_callback;
195 static usb_callback_t upgt_bulk_tx_callback;
196
197 static const struct usb_config upgt_config[UPGT_N_XFERS] = {
198         [UPGT_BULK_TX] = {
199                 .type = UE_BULK,
200                 .endpoint = UE_ADDR_ANY,
201                 .direction = UE_DIR_OUT,
202                 .bufsize = MCLBYTES,
203                 .flags = {
204                         .ext_buffer = 1,
205                         .force_short_xfer = 1,
206                         .pipe_bof = 1
207                 },
208                 .callback = upgt_bulk_tx_callback,
209                 .timeout = UPGT_USB_TIMEOUT,    /* ms */
210         },
211         [UPGT_BULK_RX] = {
212                 .type = UE_BULK,
213                 .endpoint = UE_ADDR_ANY,
214                 .direction = UE_DIR_IN,
215                 .bufsize = MCLBYTES,
216                 .flags = {
217                         .ext_buffer = 1,
218                         .pipe_bof = 1,
219                         .short_xfer_ok = 1
220                 },
221                 .callback = upgt_bulk_rx_callback,
222         },
223 };
224
225 static int
226 upgt_match(device_t dev)
227 {
228         struct usb_attach_arg *uaa = device_get_ivars(dev);
229
230         if (uaa->usb_mode != USB_MODE_HOST)
231                 return (ENXIO);
232         if (uaa->info.bConfigIndex != UPGT_CONFIG_INDEX)
233                 return (ENXIO);
234         if (uaa->info.bIfaceIndex != UPGT_IFACE_INDEX)
235                 return (ENXIO);
236
237         return (usbd_lookup_id_by_uaa(upgt_devs_2, sizeof(upgt_devs_2), uaa));
238 }
239
240 static int
241 upgt_attach(device_t dev)
242 {
243         int error;
244         struct ieee80211com *ic;
245         struct ifnet *ifp;
246         struct upgt_softc *sc = device_get_softc(dev);
247         struct usb_attach_arg *uaa = device_get_ivars(dev);
248         uint8_t bands, iface_index = UPGT_IFACE_INDEX;
249
250         sc->sc_dev = dev;
251         sc->sc_udev = uaa->device;
252 #ifdef UPGT_DEBUG
253         sc->sc_debug = upgt_debug;
254 #endif
255         device_set_usb_desc(dev);
256
257         mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK,
258             MTX_DEF);
259         callout_init(&sc->sc_led_ch, 0);
260         callout_init(&sc->sc_watchdog_ch, 0);
261
262         /* Allocate TX and RX xfers.  */
263         error = upgt_alloc_tx(sc);
264         if (error)
265                 goto fail1;
266         error = upgt_alloc_rx(sc);
267         if (error)
268                 goto fail2;
269
270         error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
271             upgt_config, UPGT_N_XFERS, sc, &sc->sc_mtx);
272         if (error) {
273                 device_printf(dev, "could not allocate USB transfers, "
274                     "err=%s\n", usbd_errstr(error));
275                 goto fail3;
276         }
277
278         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
279         if (ifp == NULL) {
280                 device_printf(dev, "can not if_alloc()\n");
281                 goto fail4;
282         }
283
284         /* Initialize the device.  */
285         error = upgt_device_reset(sc);
286         if (error)
287                 goto fail5;
288         /* Verify the firmware.  */
289         error = upgt_fw_verify(sc);
290         if (error)
291                 goto fail5;
292         /* Calculate device memory space.  */
293         if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
294                 device_printf(dev,
295                     "could not find memory space addresses on FW!\n");
296                 error = EIO;
297                 goto fail5;
298         }
299         sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
300         sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
301
302         DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame start=0x%08x\n",
303             sc->sc_memaddr_frame_start);
304         DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame end=0x%08x\n",
305             sc->sc_memaddr_frame_end);
306         DPRINTF(sc, UPGT_DEBUG_FW, "memory address rx start=0x%08x\n",
307             sc->sc_memaddr_rx_start);
308
309         upgt_mem_init(sc);
310
311         /* Load the firmware.  */
312         error = upgt_fw_load(sc);
313         if (error)
314                 goto fail5;
315
316         /* Read the whole EEPROM content and parse it.  */
317         error = upgt_eeprom_read(sc);
318         if (error)
319                 goto fail5;
320         error = upgt_eeprom_parse(sc);
321         if (error)
322                 goto fail5;
323
324         /* all works related with the device have done here. */
325         upgt_abort_xfers(sc);
326
327         /* Setup the 802.11 device.  */
328         ifp->if_softc = sc;
329         if_initname(ifp, "upgt", device_get_unit(sc->sc_dev));
330         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
331         ifp->if_init = upgt_init;
332         ifp->if_ioctl = upgt_ioctl;
333         ifp->if_start = upgt_start;
334         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
335         IFQ_SET_READY(&ifp->if_snd);
336
337         ic = ifp->if_l2com;
338         ic->ic_ifp = ifp;
339         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
340         ic->ic_opmode = IEEE80211_M_STA;
341         /* set device capabilities */
342         ic->ic_caps =
343                   IEEE80211_C_STA               /* station mode */
344                 | IEEE80211_C_MONITOR           /* monitor mode */
345                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
346                 | IEEE80211_C_SHSLOT            /* short slot time supported */
347                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
348                 | IEEE80211_C_WPA               /* 802.11i */
349                 ;
350
351         bands = 0;
352         setbit(&bands, IEEE80211_MODE_11B);
353         setbit(&bands, IEEE80211_MODE_11G);
354         ieee80211_init_channels(ic, NULL, &bands);
355
356         ieee80211_ifattach(ic, sc->sc_myaddr);
357         ic->ic_raw_xmit = upgt_raw_xmit;
358         ic->ic_scan_start = upgt_scan_start;
359         ic->ic_scan_end = upgt_scan_end;
360         ic->ic_set_channel = upgt_set_channel;
361
362         ic->ic_vap_create = upgt_vap_create;
363         ic->ic_vap_delete = upgt_vap_delete;
364         ic->ic_update_mcast = upgt_update_mcast;
365
366         ieee80211_radiotap_attach(ic,
367             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
368                 UPGT_TX_RADIOTAP_PRESENT,
369             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
370                 UPGT_RX_RADIOTAP_PRESENT);
371
372         upgt_sysctl_node(sc);
373
374         if (bootverbose)
375                 ieee80211_announce(ic);
376
377         return (0);
378
379 fail5:  if_free(ifp);
380 fail4:  usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
381 fail3:  upgt_free_rx(sc);
382 fail2:  upgt_free_tx(sc);
383 fail1:  mtx_destroy(&sc->sc_mtx);
384
385         return (error);
386 }
387
388 static void
389 upgt_txeof(struct usb_xfer *xfer, struct upgt_data *data)
390 {
391         struct upgt_softc *sc = usbd_xfer_softc(xfer);
392         struct ifnet *ifp = sc->sc_ifp;
393         struct mbuf *m;
394
395         UPGT_ASSERT_LOCKED(sc);
396
397         /*
398          * Do any tx complete callback.  Note this must be done before releasing
399          * the node reference.
400          */
401         if (data->m) {
402                 m = data->m;
403                 if (m->m_flags & M_TXCB) {
404                         /* XXX status? */
405                         ieee80211_process_callback(data->ni, m, 0);
406                 }
407                 m_freem(m);
408                 data->m = NULL;
409         }
410         if (data->ni) {
411                 ieee80211_free_node(data->ni);
412                 data->ni = NULL;
413         }
414         ifp->if_opackets++;
415 }
416
417 static void
418 upgt_get_stats(struct upgt_softc *sc)
419 {
420         struct upgt_data *data_cmd;
421         struct upgt_lmac_mem *mem;
422         struct upgt_lmac_stats *stats;
423
424         data_cmd = upgt_getbuf(sc);
425         if (data_cmd == NULL) {
426                 device_printf(sc->sc_dev, "%s: out of buffer.\n", __func__);
427                 return;
428         }
429
430         /*
431          * Transmit the URB containing the CMD data.
432          */
433         bzero(data_cmd->buf, MCLBYTES);
434
435         mem = (struct upgt_lmac_mem *)data_cmd->buf;
436         mem->addr = htole32(sc->sc_memaddr_frame_start +
437             UPGT_MEMSIZE_FRAME_HEAD);
438
439         stats = (struct upgt_lmac_stats *)(mem + 1);
440
441         stats->header1.flags = 0;
442         stats->header1.type = UPGT_H1_TYPE_CTRL;
443         stats->header1.len = htole16(
444             sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header));
445
446         stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
447         stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
448         stats->header2.flags = 0;
449
450         data_cmd->buflen = sizeof(*mem) + sizeof(*stats);
451
452         mem->chksum = upgt_chksum_le((uint32_t *)stats,
453             data_cmd->buflen - sizeof(*mem));
454
455         upgt_bulk_tx(sc, data_cmd);
456 }
457
458 static int
459 upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
460 {
461         struct upgt_softc *sc = ifp->if_softc;
462         struct ieee80211com *ic = ifp->if_l2com;
463         struct ifreq *ifr = (struct ifreq *) data;
464         int error = 0, startall = 0;
465
466         switch (cmd) {
467         case SIOCSIFFLAGS:
468                 mtx_lock(&Giant);
469                 if (ifp->if_flags & IFF_UP) {
470                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
471                                 if ((ifp->if_flags ^ sc->sc_if_flags) &
472                                     (IFF_ALLMULTI | IFF_PROMISC))
473                                         upgt_set_multi(sc);
474                         } else {
475                                 upgt_init(sc);
476                                 startall = 1;
477                         }
478                 } else {
479                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
480                                 upgt_stop(sc);
481                 }
482                 sc->sc_if_flags = ifp->if_flags;
483                 if (startall)
484                         ieee80211_start_all(ic);
485                 mtx_unlock(&Giant);
486                 break;
487         case SIOCGIFMEDIA:
488                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
489                 break;
490         case SIOCGIFADDR:
491                 error = ether_ioctl(ifp, cmd, data);
492                 break;
493         default:
494                 error = EINVAL;
495                 break;
496         }
497         return error;
498 }
499
500 static void
501 upgt_stop_locked(struct upgt_softc *sc)
502 {
503         struct ifnet *ifp = sc->sc_ifp;
504
505         UPGT_ASSERT_LOCKED(sc);
506
507         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
508                 upgt_set_macfilter(sc, IEEE80211_S_INIT);
509         upgt_abort_xfers_locked(sc);
510 }
511
512 static void
513 upgt_stop(struct upgt_softc *sc)
514 {
515         struct ifnet *ifp = sc->sc_ifp;
516
517         UPGT_LOCK(sc);
518         upgt_stop_locked(sc);
519         UPGT_UNLOCK(sc);
520
521         /* device down */
522         sc->sc_tx_timer = 0;
523         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
524         sc->sc_flags &= ~UPGT_FLAG_INITDONE;
525 }
526
527 static void
528 upgt_set_led(struct upgt_softc *sc, int action)
529 {
530         struct upgt_data *data_cmd;
531         struct upgt_lmac_mem *mem;
532         struct upgt_lmac_led *led;
533
534         data_cmd = upgt_getbuf(sc);
535         if (data_cmd == NULL) {
536                 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
537                 return;
538         }
539
540         /*
541          * Transmit the URB containing the CMD data.
542          */
543         bzero(data_cmd->buf, MCLBYTES);
544
545         mem = (struct upgt_lmac_mem *)data_cmd->buf;
546         mem->addr = htole32(sc->sc_memaddr_frame_start +
547             UPGT_MEMSIZE_FRAME_HEAD);
548
549         led = (struct upgt_lmac_led *)(mem + 1);
550
551         led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
552         led->header1.type = UPGT_H1_TYPE_CTRL;
553         led->header1.len = htole16(
554             sizeof(struct upgt_lmac_led) -
555             sizeof(struct upgt_lmac_header));
556
557         led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
558         led->header2.type = htole16(UPGT_H2_TYPE_LED);
559         led->header2.flags = 0;
560
561         switch (action) {
562         case UPGT_LED_OFF:
563                 led->mode = htole16(UPGT_LED_MODE_SET);
564                 led->action_fix = 0;
565                 led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
566                 led->action_tmp_dur = 0;
567                 break;
568         case UPGT_LED_ON:
569                 led->mode = htole16(UPGT_LED_MODE_SET);
570                 led->action_fix = 0;
571                 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
572                 led->action_tmp_dur = 0;
573                 break;
574         case UPGT_LED_BLINK:
575                 if (sc->sc_state != IEEE80211_S_RUN) {
576                         STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
577                         return;
578                 }
579                 if (sc->sc_led_blink) {
580                         /* previous blink was not finished */
581                         STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
582                         return;
583                 }
584                 led->mode = htole16(UPGT_LED_MODE_SET);
585                 led->action_fix = htole16(UPGT_LED_ACTION_OFF);
586                 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
587                 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
588                 /* lock blink */
589                 sc->sc_led_blink = 1;
590                 callout_reset(&sc->sc_led_ch, hz, upgt_set_led_blink, sc);
591                 break;
592         default:
593                 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
594                 return;
595         }
596
597         data_cmd->buflen = sizeof(*mem) + sizeof(*led);
598
599         mem->chksum = upgt_chksum_le((uint32_t *)led,
600             data_cmd->buflen - sizeof(*mem));
601
602         upgt_bulk_tx(sc, data_cmd);
603 }
604
605 static void
606 upgt_set_led_blink(void *arg)
607 {
608         struct upgt_softc *sc = arg;
609
610         /* blink finished, we are ready for a next one */
611         sc->sc_led_blink = 0;
612 }
613
614 static void
615 upgt_init(void *priv)
616 {
617         struct upgt_softc *sc = priv;
618         struct ifnet *ifp = sc->sc_ifp;
619         struct ieee80211com *ic = ifp->if_l2com;
620
621         UPGT_LOCK(sc);
622         upgt_init_locked(sc);
623         UPGT_UNLOCK(sc);
624
625         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
626                 ieee80211_start_all(ic);                /* start all vap's */
627 }
628
629 static void
630 upgt_init_locked(struct upgt_softc *sc)
631 {
632         struct ifnet *ifp = sc->sc_ifp;
633
634         UPGT_ASSERT_LOCKED(sc);
635
636         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
637                 upgt_stop_locked(sc);
638
639         usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
640
641         (void)upgt_set_macfilter(sc, IEEE80211_S_SCAN);
642
643         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
644         ifp->if_drv_flags |= IFF_DRV_RUNNING;
645         sc->sc_flags |= UPGT_FLAG_INITDONE;
646
647         callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
648 }
649
650 static int
651 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
652 {
653         struct ifnet *ifp = sc->sc_ifp;
654         struct ieee80211com *ic = ifp->if_l2com;
655         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
656         struct ieee80211_node *ni = vap->iv_bss;
657         struct upgt_data *data_cmd;
658         struct upgt_lmac_mem *mem;
659         struct upgt_lmac_filter *filter;
660         uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
661
662         UPGT_ASSERT_LOCKED(sc);
663
664         data_cmd = upgt_getbuf(sc);
665         if (data_cmd == NULL) {
666                 device_printf(sc->sc_dev, "out of TX buffers.\n");
667                 return (ENOBUFS);
668         }
669
670         /*
671          * Transmit the URB containing the CMD data.
672          */
673         bzero(data_cmd->buf, MCLBYTES);
674
675         mem = (struct upgt_lmac_mem *)data_cmd->buf;
676         mem->addr = htole32(sc->sc_memaddr_frame_start +
677             UPGT_MEMSIZE_FRAME_HEAD);
678
679         filter = (struct upgt_lmac_filter *)(mem + 1);
680
681         filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
682         filter->header1.type = UPGT_H1_TYPE_CTRL;
683         filter->header1.len = htole16(
684             sizeof(struct upgt_lmac_filter) -
685             sizeof(struct upgt_lmac_header));
686
687         filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
688         filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
689         filter->header2.flags = 0;
690
691         switch (state) {
692         case IEEE80211_S_INIT:
693                 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: set MAC filter to INIT\n",
694                     __func__);
695                 filter->type = htole16(UPGT_FILTER_TYPE_RESET);
696                 break;
697         case IEEE80211_S_SCAN:
698                 DPRINTF(sc, UPGT_DEBUG_STATE,
699                     "set MAC filter to SCAN (bssid %s)\n",
700                     ether_sprintf(broadcast));
701                 filter->type = htole16(UPGT_FILTER_TYPE_NONE);
702                 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
703                 IEEE80211_ADDR_COPY(filter->src, broadcast);
704                 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
705                 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
706                 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
707                 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
708                 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
709                 break;
710         case IEEE80211_S_RUN:
711                 /* XXX monitor mode isn't tested yet.  */
712                 if (vap->iv_opmode == IEEE80211_M_MONITOR) {
713                         filter->type = htole16(UPGT_FILTER_TYPE_MONITOR);
714                         IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
715                         IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
716                         filter->unknown1 = htole16(UPGT_FILTER_MONITOR_UNKNOWN1);
717                         filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
718                         filter->unknown2 = htole16(UPGT_FILTER_MONITOR_UNKNOWN2);
719                         filter->rxhw = htole32(sc->sc_eeprom_hwrx);
720                         filter->unknown3 = htole16(UPGT_FILTER_MONITOR_UNKNOWN3);
721                 } else {
722                         DPRINTF(sc, UPGT_DEBUG_STATE,
723                             "set MAC filter to RUN (bssid %s)\n",
724                             ether_sprintf(ni->ni_bssid));
725                         filter->type = htole16(UPGT_FILTER_TYPE_STA);
726                         IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
727                         IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
728                         filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
729                         filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
730                         filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
731                         filter->rxhw = htole32(sc->sc_eeprom_hwrx);
732                         filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
733                 }
734                 break;
735         default:
736                 device_printf(sc->sc_dev,
737                     "MAC filter does not know that state!\n");
738                 break;
739         }
740
741         data_cmd->buflen = sizeof(*mem) + sizeof(*filter);
742
743         mem->chksum = upgt_chksum_le((uint32_t *)filter,
744             data_cmd->buflen - sizeof(*mem));
745
746         upgt_bulk_tx(sc, data_cmd);
747
748         return (0);
749 }
750
751 static void
752 upgt_setup_rates(struct ieee80211vap *vap, struct ieee80211com *ic)
753 {
754         struct ifnet *ifp = ic->ic_ifp;
755         struct upgt_softc *sc = ifp->if_softc;
756         const struct ieee80211_txparam *tp;
757
758         /*
759          * 0x01 = OFMD6   0x10 = DS1
760          * 0x04 = OFDM9   0x11 = DS2
761          * 0x06 = OFDM12  0x12 = DS5
762          * 0x07 = OFDM18  0x13 = DS11
763          * 0x08 = OFDM24
764          * 0x09 = OFDM36
765          * 0x0a = OFDM48
766          * 0x0b = OFDM54
767          */
768         const uint8_t rateset_auto_11b[] =
769             { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
770         const uint8_t rateset_auto_11g[] =
771             { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
772         const uint8_t rateset_fix_11bg[] =
773             { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
774               0x08, 0x09, 0x0a, 0x0b };
775
776         tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
777
778         /* XXX */
779         if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) {
780                 /*
781                  * Automatic rate control is done by the device.
782                  * We just pass the rateset from which the device
783                  * will pickup a rate.
784                  */
785                 if (ic->ic_curmode == IEEE80211_MODE_11B)
786                         bcopy(rateset_auto_11b, sc->sc_cur_rateset,
787                             sizeof(sc->sc_cur_rateset));
788                 if (ic->ic_curmode == IEEE80211_MODE_11G ||
789                     ic->ic_curmode == IEEE80211_MODE_AUTO)
790                         bcopy(rateset_auto_11g, sc->sc_cur_rateset,
791                             sizeof(sc->sc_cur_rateset));
792         } else {
793                 /* set a fixed rate */
794                 memset(sc->sc_cur_rateset, rateset_fix_11bg[tp->ucastrate],
795                     sizeof(sc->sc_cur_rateset));
796         }
797 }
798
799 static void
800 upgt_set_multi(void *arg)
801 {
802         struct upgt_softc *sc = arg;
803         struct ifnet *ifp = sc->sc_ifp;
804
805         if (!(ifp->if_flags & IFF_UP))
806                 return;
807
808         /*
809          * XXX don't know how to set a device.  Lack of docs.  Just try to set
810          * IFF_ALLMULTI flag here.
811          */
812         ifp->if_flags |= IFF_ALLMULTI;
813 }
814
815 static void
816 upgt_start(struct ifnet *ifp)
817 {
818         struct upgt_softc *sc = ifp->if_softc;
819         struct upgt_data *data_tx;
820         struct ieee80211_node *ni;
821         struct mbuf *m;
822
823         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
824                 return;
825
826         UPGT_LOCK(sc);
827         for (;;) {
828                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
829                 if (m == NULL)
830                         break;
831
832                 data_tx = upgt_gettxbuf(sc);
833                 if (data_tx == NULL) {
834                         IFQ_DRV_PREPEND(&ifp->if_snd, m);
835                         break;
836                 }
837
838                 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
839                 m->m_pkthdr.rcvif = NULL;
840
841                 if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
842                         STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
843                         UPGT_STAT_INC(sc, st_tx_inactive);
844                         ieee80211_free_node(ni);
845                         ifp->if_oerrors++;
846                         continue;
847                 }
848                 sc->sc_tx_timer = 5;
849         }
850         UPGT_UNLOCK(sc);
851 }
852
853 static int
854 upgt_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
855         const struct ieee80211_bpf_params *params)
856 {
857         struct ieee80211com *ic = ni->ni_ic;
858         struct ifnet *ifp = ic->ic_ifp;
859         struct upgt_softc *sc = ifp->if_softc;
860         struct upgt_data *data_tx = NULL;
861
862         /* prevent management frames from being sent if we're not ready */
863         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
864                 m_freem(m);
865                 ieee80211_free_node(ni);
866                 return ENETDOWN;
867         }
868
869         UPGT_LOCK(sc);
870         data_tx = upgt_gettxbuf(sc);
871         if (data_tx == NULL) {
872                 ieee80211_free_node(ni);
873                 m_freem(m);
874                 UPGT_UNLOCK(sc);
875                 return (ENOBUFS);
876         }
877
878         if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
879                 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
880                 UPGT_STAT_INC(sc, st_tx_inactive);
881                 ieee80211_free_node(ni);
882                 ifp->if_oerrors++;
883                 UPGT_UNLOCK(sc);
884                 return (EIO);
885         }
886         UPGT_UNLOCK(sc);
887
888         sc->sc_tx_timer = 5;
889         return (0);
890 }
891
892 static void
893 upgt_watchdog(void *arg)
894 {
895         struct upgt_softc *sc = arg;
896         struct ifnet *ifp = sc->sc_ifp;
897
898         if (sc->sc_tx_timer > 0) {
899                 if (--sc->sc_tx_timer == 0) {
900                         device_printf(sc->sc_dev, "watchdog timeout\n");
901                         /* upgt_init(ifp); XXX needs a process context ? */
902                         ifp->if_oerrors++;
903                         return;
904                 }
905                 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
906         }
907 }
908
909 static uint32_t
910 upgt_mem_alloc(struct upgt_softc *sc)
911 {
912         int i;
913
914         for (i = 0; i < sc->sc_memory.pages; i++) {
915                 if (sc->sc_memory.page[i].used == 0) {
916                         sc->sc_memory.page[i].used = 1;
917                         return (sc->sc_memory.page[i].addr);
918                 }
919         }
920
921         return (0);
922 }
923
924 static void
925 upgt_scan_start(struct ieee80211com *ic)
926 {
927         /* do nothing.  */
928 }
929
930 static void
931 upgt_scan_end(struct ieee80211com *ic)
932 {
933         /* do nothing.  */
934 }
935
936 static void
937 upgt_set_channel(struct ieee80211com *ic)
938 {
939         struct upgt_softc *sc = ic->ic_ifp->if_softc;
940
941         UPGT_LOCK(sc);
942         upgt_set_chan(sc, ic->ic_curchan);
943         UPGT_UNLOCK(sc);
944 }
945
946 static void
947 upgt_set_chan(struct upgt_softc *sc, struct ieee80211_channel *c)
948 {
949         struct ifnet *ifp = sc->sc_ifp;
950         struct ieee80211com *ic = ifp->if_l2com;
951         struct upgt_data *data_cmd;
952         struct upgt_lmac_mem *mem;
953         struct upgt_lmac_channel *chan;
954         int channel;
955
956         UPGT_ASSERT_LOCKED(sc);
957
958         channel = ieee80211_chan2ieee(ic, c);
959         if (channel == 0 || channel == IEEE80211_CHAN_ANY) {
960                 /* XXX should NEVER happen */
961                 device_printf(sc->sc_dev,
962                     "%s: invalid channel %x\n", __func__, channel);
963                 return;
964         }
965         
966         DPRINTF(sc, UPGT_DEBUG_STATE, "%s: channel %d\n", __func__, channel);
967
968         data_cmd = upgt_getbuf(sc);
969         if (data_cmd == NULL) {
970                 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
971                 return;
972         }
973         /*
974          * Transmit the URB containing the CMD data.
975          */
976         bzero(data_cmd->buf, MCLBYTES);
977
978         mem = (struct upgt_lmac_mem *)data_cmd->buf;
979         mem->addr = htole32(sc->sc_memaddr_frame_start +
980             UPGT_MEMSIZE_FRAME_HEAD);
981
982         chan = (struct upgt_lmac_channel *)(mem + 1);
983
984         chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
985         chan->header1.type = UPGT_H1_TYPE_CTRL;
986         chan->header1.len = htole16(
987             sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header));
988
989         chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
990         chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
991         chan->header2.flags = 0;
992
993         chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
994         chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
995         chan->freq6 = sc->sc_eeprom_freq6[channel];
996         chan->settings = sc->sc_eeprom_freq6_settings;
997         chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
998
999         bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_1,
1000             sizeof(chan->freq3_1));
1001         bcopy(&sc->sc_eeprom_freq4[channel], chan->freq4,
1002             sizeof(sc->sc_eeprom_freq4[channel]));
1003         bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_2,
1004             sizeof(chan->freq3_2));
1005
1006         data_cmd->buflen = sizeof(*mem) + sizeof(*chan);
1007
1008         mem->chksum = upgt_chksum_le((uint32_t *)chan,
1009             data_cmd->buflen - sizeof(*mem));
1010
1011         upgt_bulk_tx(sc, data_cmd);
1012 }
1013
1014 static struct ieee80211vap *
1015 upgt_vap_create(struct ieee80211com *ic,
1016         const char name[IFNAMSIZ], int unit, int opmode, int flags,
1017         const uint8_t bssid[IEEE80211_ADDR_LEN],
1018         const uint8_t mac[IEEE80211_ADDR_LEN])
1019 {
1020         struct upgt_vap *uvp;
1021         struct ieee80211vap *vap;
1022
1023         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
1024                 return NULL;
1025         uvp = (struct upgt_vap *) malloc(sizeof(struct upgt_vap),
1026             M_80211_VAP, M_NOWAIT | M_ZERO);
1027         if (uvp == NULL)
1028                 return NULL;
1029         vap = &uvp->vap;
1030         /* enable s/w bmiss handling for sta mode */
1031         ieee80211_vap_setup(ic, vap, name, unit, opmode,
1032             flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
1033
1034         /* override state transition machine */
1035         uvp->newstate = vap->iv_newstate;
1036         vap->iv_newstate = upgt_newstate;
1037
1038         /* setup device rates */
1039         upgt_setup_rates(vap, ic);
1040
1041         /* complete setup */
1042         ieee80211_vap_attach(vap, ieee80211_media_change,
1043             ieee80211_media_status);
1044         ic->ic_opmode = opmode;
1045         return vap;
1046 }
1047
1048 static int
1049 upgt_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1050 {
1051         struct upgt_vap *uvp = UPGT_VAP(vap);
1052         struct ieee80211com *ic = vap->iv_ic;
1053         struct upgt_softc *sc = ic->ic_ifp->if_softc;
1054
1055         /* do it in a process context */
1056         sc->sc_state = nstate;
1057
1058         IEEE80211_UNLOCK(ic);
1059         UPGT_LOCK(sc);
1060         callout_stop(&sc->sc_led_ch);
1061         callout_stop(&sc->sc_watchdog_ch);
1062
1063         switch (nstate) {
1064         case IEEE80211_S_INIT:
1065                 /* do not accept any frames if the device is down */
1066                 (void)upgt_set_macfilter(sc, sc->sc_state);
1067                 upgt_set_led(sc, UPGT_LED_OFF);
1068                 break;
1069         case IEEE80211_S_SCAN:
1070                 upgt_set_chan(sc, ic->ic_curchan);
1071                 break;
1072         case IEEE80211_S_AUTH:
1073                 upgt_set_chan(sc, ic->ic_curchan);
1074                 break;
1075         case IEEE80211_S_ASSOC:
1076                 break;
1077         case IEEE80211_S_RUN:
1078                 upgt_set_macfilter(sc, sc->sc_state);
1079                 upgt_set_led(sc, UPGT_LED_ON);
1080                 break;
1081         default:
1082                 break;
1083         }
1084         UPGT_UNLOCK(sc);
1085         IEEE80211_LOCK(ic);
1086         return (uvp->newstate(vap, nstate, arg));
1087 }
1088
1089 static void
1090 upgt_vap_delete(struct ieee80211vap *vap)
1091 {
1092         struct upgt_vap *uvp = UPGT_VAP(vap);
1093
1094         ieee80211_vap_detach(vap);
1095         free(uvp, M_80211_VAP);
1096 }
1097
1098 static void
1099 upgt_update_mcast(struct ifnet *ifp)
1100 {
1101         struct upgt_softc *sc = ifp->if_softc;
1102
1103         upgt_set_multi(sc);
1104 }
1105
1106 static int
1107 upgt_eeprom_parse(struct upgt_softc *sc)
1108 {
1109         struct upgt_eeprom_header *eeprom_header;
1110         struct upgt_eeprom_option *eeprom_option;
1111         uint16_t option_len;
1112         uint16_t option_type;
1113         uint16_t preamble_len;
1114         int option_end = 0;
1115
1116         /* calculate eeprom options start offset */
1117         eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1118         preamble_len = le16toh(eeprom_header->preamble_len);
1119         eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1120             (sizeof(struct upgt_eeprom_header) + preamble_len));
1121
1122         while (!option_end) {
1123                 /* the eeprom option length is stored in words */
1124                 option_len =
1125                     (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1126                 option_type =
1127                     le16toh(eeprom_option->type);
1128
1129                 switch (option_type) {
1130                 case UPGT_EEPROM_TYPE_NAME:
1131                         DPRINTF(sc, UPGT_DEBUG_FW,
1132                             "EEPROM name len=%d\n", option_len);
1133                         break;
1134                 case UPGT_EEPROM_TYPE_SERIAL:
1135                         DPRINTF(sc, UPGT_DEBUG_FW,
1136                             "EEPROM serial len=%d\n", option_len);
1137                         break;
1138                 case UPGT_EEPROM_TYPE_MAC:
1139                         DPRINTF(sc, UPGT_DEBUG_FW,
1140                             "EEPROM mac len=%d\n", option_len);
1141
1142                         IEEE80211_ADDR_COPY(sc->sc_myaddr, eeprom_option->data);
1143                         break;
1144                 case UPGT_EEPROM_TYPE_HWRX:
1145                         DPRINTF(sc, UPGT_DEBUG_FW,
1146                             "EEPROM hwrx len=%d\n", option_len);
1147
1148                         upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1149                         break;
1150                 case UPGT_EEPROM_TYPE_CHIP:
1151                         DPRINTF(sc, UPGT_DEBUG_FW,
1152                             "EEPROM chip len=%d\n", option_len);
1153                         break;
1154                 case UPGT_EEPROM_TYPE_FREQ3:
1155                         DPRINTF(sc, UPGT_DEBUG_FW,
1156                             "EEPROM freq3 len=%d\n", option_len);
1157
1158                         upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1159                             option_len);
1160                         break;
1161                 case UPGT_EEPROM_TYPE_FREQ4:
1162                         DPRINTF(sc, UPGT_DEBUG_FW,
1163                             "EEPROM freq4 len=%d\n", option_len);
1164
1165                         upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1166                             option_len);
1167                         break;
1168                 case UPGT_EEPROM_TYPE_FREQ5:
1169                         DPRINTF(sc, UPGT_DEBUG_FW,
1170                             "EEPROM freq5 len=%d\n", option_len);
1171                         break;
1172                 case UPGT_EEPROM_TYPE_FREQ6:
1173                         DPRINTF(sc, UPGT_DEBUG_FW,
1174                             "EEPROM freq6 len=%d\n", option_len);
1175
1176                         upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1177                             option_len);
1178                         break;
1179                 case UPGT_EEPROM_TYPE_END:
1180                         DPRINTF(sc, UPGT_DEBUG_FW,
1181                             "EEPROM end len=%d\n", option_len);
1182                         option_end = 1;
1183                         break;
1184                 case UPGT_EEPROM_TYPE_OFF:
1185                         DPRINTF(sc, UPGT_DEBUG_FW,
1186                             "%s: EEPROM off without end option!\n", __func__);
1187                         return (EIO);
1188                 default:
1189                         DPRINTF(sc, UPGT_DEBUG_FW,
1190                             "EEPROM unknown type 0x%04x len=%d\n",
1191                             option_type, option_len);
1192                         break;
1193                 }
1194
1195                 /* jump to next EEPROM option */
1196                 eeprom_option = (struct upgt_eeprom_option *)
1197                     (eeprom_option->data + option_len);
1198         }
1199
1200         return (0);
1201 }
1202
1203 static void
1204 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1205 {
1206         struct upgt_eeprom_freq3_header *freq3_header;
1207         struct upgt_lmac_freq3 *freq3;
1208         int i, elements, flags;
1209         unsigned channel;
1210
1211         freq3_header = (struct upgt_eeprom_freq3_header *)data;
1212         freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1213
1214         flags = freq3_header->flags;
1215         elements = freq3_header->elements;
1216
1217         DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d\n",
1218             flags, elements);
1219
1220         for (i = 0; i < elements; i++) {
1221                 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1222                 if (!(channel >= 0 && channel < IEEE80211_CHAN_MAX))
1223                         continue;
1224
1225                 sc->sc_eeprom_freq3[channel] = freq3[i];
1226
1227                 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1228                     le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1229         }
1230 }
1231
1232 void
1233 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1234 {
1235         struct upgt_eeprom_freq4_header *freq4_header;
1236         struct upgt_eeprom_freq4_1 *freq4_1;
1237         struct upgt_eeprom_freq4_2 *freq4_2;
1238         int i, j, elements, settings, flags;
1239         unsigned channel;
1240
1241         freq4_header = (struct upgt_eeprom_freq4_header *)data;
1242         freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1243         flags = freq4_header->flags;
1244         elements = freq4_header->elements;
1245         settings = freq4_header->settings;
1246
1247         /* we need this value later */
1248         sc->sc_eeprom_freq6_settings = freq4_header->settings;
1249
1250         DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d settings=%d\n",
1251             flags, elements, settings);
1252
1253         for (i = 0; i < elements; i++) {
1254                 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1255                 if (!(channel >= 0 && channel < IEEE80211_CHAN_MAX))
1256                         continue;
1257
1258                 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1259                 for (j = 0; j < settings; j++) {
1260                         sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1261                         sc->sc_eeprom_freq4[channel][j].pad = 0;
1262                 }
1263
1264                 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1265                     le16toh(freq4_1[i].freq), channel);
1266         }
1267 }
1268
1269 void
1270 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1271 {
1272         struct upgt_lmac_freq6 *freq6;
1273         int i, elements;
1274         unsigned channel;
1275
1276         freq6 = (struct upgt_lmac_freq6 *)data;
1277         elements = len / sizeof(struct upgt_lmac_freq6);
1278
1279         DPRINTF(sc, UPGT_DEBUG_FW, "elements=%d\n", elements);
1280
1281         for (i = 0; i < elements; i++) {
1282                 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1283                 if (!(channel >= 0 && channel < IEEE80211_CHAN_MAX))
1284                         continue;
1285
1286                 sc->sc_eeprom_freq6[channel] = freq6[i];
1287
1288                 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1289                     le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1290         }
1291 }
1292
1293 static void
1294 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1295 {
1296         struct upgt_eeprom_option_hwrx *option_hwrx;
1297
1298         option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1299
1300         sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1301
1302         DPRINTF(sc, UPGT_DEBUG_FW, "hwrx option value=0x%04x\n",
1303             sc->sc_eeprom_hwrx);
1304 }
1305
1306 static int
1307 upgt_eeprom_read(struct upgt_softc *sc)
1308 {
1309         struct upgt_data *data_cmd;
1310         struct upgt_lmac_mem *mem;
1311         struct upgt_lmac_eeprom *eeprom;
1312         int block, error, offset;
1313
1314         UPGT_LOCK(sc);
1315         usb_pause_mtx(&sc->sc_mtx, 100);
1316
1317         offset = 0;
1318         block = UPGT_EEPROM_BLOCK_SIZE;
1319         while (offset < UPGT_EEPROM_SIZE) {
1320                 DPRINTF(sc, UPGT_DEBUG_FW,
1321                     "request EEPROM block (offset=%d, len=%d)\n", offset, block);
1322
1323                 data_cmd = upgt_getbuf(sc);
1324                 if (data_cmd == NULL) {
1325                         UPGT_UNLOCK(sc);
1326                         return (ENOBUFS);
1327                 }
1328
1329                 /*
1330                  * Transmit the URB containing the CMD data.
1331                  */
1332                 bzero(data_cmd->buf, MCLBYTES);
1333
1334                 mem = (struct upgt_lmac_mem *)data_cmd->buf;
1335                 mem->addr = htole32(sc->sc_memaddr_frame_start +
1336                     UPGT_MEMSIZE_FRAME_HEAD);
1337
1338                 eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
1339                 eeprom->header1.flags = 0;
1340                 eeprom->header1.type = UPGT_H1_TYPE_CTRL;
1341                 eeprom->header1.len = htole16((
1342                     sizeof(struct upgt_lmac_eeprom) -
1343                     sizeof(struct upgt_lmac_header)) + block);
1344
1345                 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1346                 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
1347                 eeprom->header2.flags = 0;
1348
1349                 eeprom->offset = htole16(offset);
1350                 eeprom->len = htole16(block);
1351
1352                 data_cmd->buflen = sizeof(*mem) + sizeof(*eeprom) + block;
1353
1354                 mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1355                     data_cmd->buflen - sizeof(*mem));
1356                 upgt_bulk_tx(sc, data_cmd);
1357
1358                 error = mtx_sleep(sc, &sc->sc_mtx, 0, "eeprom_request", hz);
1359                 if (error != 0) {
1360                         device_printf(sc->sc_dev,
1361                             "timeout while waiting for EEPROM data!\n");
1362                         UPGT_UNLOCK(sc);
1363                         return (EIO);
1364                 }
1365
1366                 offset += block;
1367                 if (UPGT_EEPROM_SIZE - offset < block)
1368                         block = UPGT_EEPROM_SIZE - offset;
1369         }
1370
1371         UPGT_UNLOCK(sc);
1372         return (0);
1373 }
1374
1375 /*
1376  * When a rx data came in the function returns a mbuf and a rssi values.
1377  */
1378 static struct mbuf *
1379 upgt_rxeof(struct usb_xfer *xfer, struct upgt_data *data, int *rssi)
1380 {
1381         struct mbuf *m = NULL;
1382         struct upgt_softc *sc = usbd_xfer_softc(xfer);
1383         struct upgt_lmac_header *header;
1384         struct upgt_lmac_eeprom *eeprom;
1385         uint8_t h1_type;
1386         uint16_t h2_type;
1387         int actlen, sumlen;
1388
1389         usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
1390
1391         UPGT_ASSERT_LOCKED(sc);
1392
1393         if (actlen < 1)
1394                 return (NULL);
1395
1396         /* Check only at the very beginning.  */
1397         if (!(sc->sc_flags & UPGT_FLAG_FWLOADED) &&
1398             (memcmp(data->buf, "OK", 2) == 0)) {
1399                 sc->sc_flags |= UPGT_FLAG_FWLOADED;
1400                 wakeup_one(sc);
1401                 return (NULL);
1402         }
1403
1404         if (actlen < UPGT_RX_MINSZ)
1405                 return (NULL);
1406
1407         /*
1408          * Check what type of frame came in.
1409          */
1410         header = (struct upgt_lmac_header *)(data->buf + 4);
1411
1412         h1_type = header->header1.type;
1413         h2_type = le16toh(header->header2.type);
1414
1415         if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) {
1416                 eeprom = (struct upgt_lmac_eeprom *)(data->buf + 4);
1417                 uint16_t eeprom_offset = le16toh(eeprom->offset);
1418                 uint16_t eeprom_len = le16toh(eeprom->len);
1419
1420                 DPRINTF(sc, UPGT_DEBUG_FW,
1421                     "received EEPROM block (offset=%d, len=%d)\n",
1422                     eeprom_offset, eeprom_len);
1423
1424                 bcopy(data->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1425                         sc->sc_eeprom + eeprom_offset, eeprom_len);
1426
1427                 /* EEPROM data has arrived in time, wakeup.  */
1428                 wakeup(sc);
1429         } else if (h1_type == UPGT_H1_TYPE_CTRL &&
1430             h2_type == UPGT_H2_TYPE_TX_DONE) {
1431                 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: received 802.11 TX done\n",
1432                     __func__);
1433                 upgt_tx_done(sc, data->buf + 4);
1434         } else if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1435             h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1436                 DPRINTF(sc, UPGT_DEBUG_RECV, "%s: received 802.11 RX data\n",
1437                     __func__);
1438                 m = upgt_rx(sc, data->buf + 4, le16toh(header->header1.len),
1439                     rssi);
1440         } else if (h1_type == UPGT_H1_TYPE_CTRL &&
1441             h2_type == UPGT_H2_TYPE_STATS) {
1442                 DPRINTF(sc, UPGT_DEBUG_STAT, "%s: received statistic data\n",
1443                     __func__);
1444                 /* TODO: what could we do with the statistic data? */
1445         } else {
1446                 /* ignore unknown frame types */
1447                 DPRINTF(sc, UPGT_DEBUG_INTR,
1448                     "received unknown frame type 0x%02x\n",
1449                     header->header1.type);
1450         }
1451         return (m);
1452 }
1453
1454 /*
1455  * The firmware awaits a checksum for each frame we send to it.
1456  * The algorithm used therefor is uncommon but somehow similar to CRC32.
1457  */
1458 static uint32_t
1459 upgt_chksum_le(const uint32_t *buf, size_t size)
1460 {
1461         int i;
1462         uint32_t crc = 0;
1463
1464         for (i = 0; i < size; i += sizeof(uint32_t)) {
1465                 crc = htole32(crc ^ *buf++);
1466                 crc = htole32((crc >> 5) ^ (crc << 3));
1467         }
1468
1469         return (crc);
1470 }
1471
1472 static struct mbuf *
1473 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen, int *rssi)
1474 {
1475         struct ifnet *ifp = sc->sc_ifp;
1476         struct ieee80211com *ic = ifp->if_l2com;
1477         struct upgt_lmac_rx_desc *rxdesc;
1478         struct mbuf *m;
1479
1480         /*
1481          * don't pass packets to the ieee80211 framework if the driver isn't
1482          * RUNNING.
1483          */
1484         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1485                 return (NULL);
1486
1487         /* access RX packet descriptor */
1488         rxdesc = (struct upgt_lmac_rx_desc *)data;
1489
1490         /* create mbuf which is suitable for strict alignment archs */
1491         KASSERT((pkglen + ETHER_ALIGN) < MCLBYTES,
1492             ("A current mbuf storage is small (%d)", pkglen + ETHER_ALIGN));
1493         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1494         if (m == NULL) {
1495                 device_printf(sc->sc_dev, "could not create RX mbuf!\n");
1496                 return (NULL);
1497         }
1498         m_adj(m, ETHER_ALIGN);
1499         bcopy(rxdesc->data, mtod(m, char *), pkglen);
1500         /* trim FCS */
1501         m->m_len = m->m_pkthdr.len = pkglen - IEEE80211_CRC_LEN;
1502         m->m_pkthdr.rcvif = ifp;
1503
1504         if (ieee80211_radiotap_active(ic)) {
1505                 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1506
1507                 tap->wr_flags = 0;
1508                 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1509                 tap->wr_antsignal = rxdesc->rssi;
1510         }
1511         ifp->if_ipackets++;
1512
1513         DPRINTF(sc, UPGT_DEBUG_RX_PROC, "%s: RX done\n", __func__);
1514         *rssi = rxdesc->rssi;
1515         return (m);
1516 }
1517
1518 static uint8_t
1519 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1520 {
1521         struct ifnet *ifp = sc->sc_ifp;
1522         struct ieee80211com *ic = ifp->if_l2com;
1523         static const uint8_t cck_upgt2rate[4] = { 2, 4, 11, 22 };
1524         static const uint8_t ofdm_upgt2rate[12] =
1525             { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 };
1526         
1527         if (ic->ic_curmode == IEEE80211_MODE_11B &&
1528             !(rate < 0 || rate > 3))
1529                 return cck_upgt2rate[rate & 0xf];
1530
1531         if (ic->ic_curmode == IEEE80211_MODE_11G &&
1532             !(rate < 0 || rate > 11))
1533                 return ofdm_upgt2rate[rate & 0xf];
1534
1535         return (0);
1536 }
1537
1538 static void
1539 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1540 {
1541         struct ifnet *ifp = sc->sc_ifp;
1542         struct upgt_lmac_tx_done_desc *desc;
1543         int i, freed = 0;
1544
1545         UPGT_ASSERT_LOCKED(sc);
1546
1547         desc = (struct upgt_lmac_tx_done_desc *)data;
1548
1549         for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1550                 struct upgt_data *data_tx = &sc->sc_tx_data[i];
1551
1552                 if (data_tx->addr == le32toh(desc->header2.reqid)) {
1553                         upgt_mem_free(sc, data_tx->addr);
1554                         data_tx->ni = NULL;
1555                         data_tx->addr = 0;
1556                         data_tx->m = NULL;
1557                         data_tx->use = 0;
1558
1559                         DPRINTF(sc, UPGT_DEBUG_TX_PROC,
1560                             "TX done: memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1561                             le32toh(desc->header2.reqid),
1562                             le16toh(desc->status), le16toh(desc->rssi));
1563                         DPRINTF(sc, UPGT_DEBUG_TX_PROC, "seq=%d\n",
1564                             le16toh(desc->seq));
1565
1566                         freed++;
1567                 }
1568         }
1569
1570         if (freed != 0) {
1571                 sc->sc_tx_timer = 0;
1572                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1573                 UPGT_UNLOCK(sc);
1574                 upgt_start(ifp);
1575                 UPGT_LOCK(sc);
1576         }
1577 }
1578
1579 static void
1580 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
1581 {
1582         int i;
1583
1584         for (i = 0; i < sc->sc_memory.pages; i++) {
1585                 if (sc->sc_memory.page[i].addr == addr) {
1586                         sc->sc_memory.page[i].used = 0;
1587                         return;
1588                 }
1589         }
1590
1591         device_printf(sc->sc_dev,
1592             "could not free memory address 0x%08x!\n", addr);
1593 }
1594
1595 static int
1596 upgt_fw_load(struct upgt_softc *sc)
1597 {
1598         const struct firmware *fw;
1599         struct upgt_data *data_cmd;
1600         struct upgt_fw_x2_header *x2;
1601         char start_fwload_cmd[] = { 0x3c, 0x0d };
1602         int error = 0, offset, bsize, n;
1603         uint32_t crc32;
1604
1605         fw = firmware_get(upgt_fwname);
1606         if (fw == NULL) {
1607                 device_printf(sc->sc_dev, "could not read microcode %s!\n",
1608                     upgt_fwname);
1609                 return (EIO);
1610         }
1611
1612         UPGT_LOCK(sc);
1613
1614         /* send firmware start load command */
1615         data_cmd = upgt_getbuf(sc);
1616         if (data_cmd == NULL) {
1617                 error = ENOBUFS;
1618                 goto fail;
1619         }
1620         data_cmd->buflen = sizeof(start_fwload_cmd);
1621         bcopy(start_fwload_cmd, data_cmd->buf, data_cmd->buflen);
1622         upgt_bulk_tx(sc, data_cmd);
1623
1624         /* send X2 header */
1625         data_cmd = upgt_getbuf(sc);
1626         if (data_cmd == NULL) {
1627                 error = ENOBUFS;
1628                 goto fail;
1629         }
1630         data_cmd->buflen = sizeof(struct upgt_fw_x2_header);
1631         x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
1632         bcopy(UPGT_X2_SIGNATURE, x2->signature, UPGT_X2_SIGNATURE_SIZE);
1633         x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
1634         x2->len = htole32(fw->datasize);
1635         x2->crc = upgt_crc32_le((uint8_t *)data_cmd->buf +
1636             UPGT_X2_SIGNATURE_SIZE,
1637             sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
1638             sizeof(uint32_t));
1639         upgt_bulk_tx(sc, data_cmd);
1640
1641         /* download firmware */
1642         for (offset = 0; offset < fw->datasize; offset += bsize) {
1643                 if (fw->datasize - offset > UPGT_FW_BLOCK_SIZE)
1644                         bsize = UPGT_FW_BLOCK_SIZE;
1645                 else
1646                         bsize = fw->datasize - offset;
1647
1648                 data_cmd = upgt_getbuf(sc);
1649                 if (data_cmd == NULL) {
1650                         error = ENOBUFS;
1651                         goto fail;
1652                 }
1653                 n = upgt_fw_copy((const uint8_t *)fw->data + offset,
1654                     data_cmd->buf, bsize);
1655                 data_cmd->buflen = bsize;
1656                 upgt_bulk_tx(sc, data_cmd);
1657
1658                 DPRINTF(sc, UPGT_DEBUG_FW, "FW offset=%d, read=%d, sent=%d\n",
1659                     offset, n, bsize);
1660                 bsize = n;
1661         }
1662         DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware downloaded\n", __func__);
1663
1664         /* load firmware */
1665         data_cmd = upgt_getbuf(sc);
1666         if (data_cmd == NULL) {
1667                 error = ENOBUFS;
1668                 goto fail;
1669         }
1670         crc32 = upgt_crc32_le(fw->data, fw->datasize);
1671         *((uint32_t *)(data_cmd->buf)    ) = crc32;
1672         *((uint8_t  *)(data_cmd->buf) + 4) = 'g';
1673         *((uint8_t  *)(data_cmd->buf) + 5) = '\r';
1674         data_cmd->buflen = 6;
1675         upgt_bulk_tx(sc, data_cmd);
1676
1677         /* waiting 'OK' response.  */
1678         usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
1679         error = mtx_sleep(sc, &sc->sc_mtx, 0, "upgtfw", 2 * hz);
1680         if (error != 0) {
1681                 device_printf(sc->sc_dev, "firmware load failed!\n");
1682                 error = EIO;
1683         }
1684
1685         DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware loaded\n", __func__);
1686 fail:
1687         UPGT_UNLOCK(sc);
1688         firmware_put(fw, FIRMWARE_UNLOAD);
1689         return (error);
1690 }
1691
1692 static uint32_t
1693 upgt_crc32_le(const void *buf, size_t size)
1694 {
1695         uint32_t crc;
1696
1697         crc = ether_crc32_le(buf, size);
1698
1699         /* apply final XOR value as common for CRC-32 */
1700         crc = htole32(crc ^ 0xffffffffU);
1701
1702         return (crc);
1703 }
1704
1705 /*
1706  * While copying the version 2 firmware, we need to replace two characters:
1707  *
1708  * 0x7e -> 0x7d 0x5e
1709  * 0x7d -> 0x7d 0x5d
1710  */
1711 static int
1712 upgt_fw_copy(const uint8_t *src, char *dst, int size)
1713 {
1714         int i, j;
1715         
1716         for (i = 0, j = 0; i < size && j < size; i++) {
1717                 switch (src[i]) {
1718                 case 0x7e:
1719                         dst[j] = 0x7d;
1720                         j++;
1721                         dst[j] = 0x5e;
1722                         j++;
1723                         break;
1724                 case 0x7d:
1725                         dst[j] = 0x7d;
1726                         j++;
1727                         dst[j] = 0x5d;
1728                         j++;
1729                         break;
1730                 default:
1731                         dst[j] = src[i];
1732                         j++;
1733                         break;
1734                 }
1735         }
1736
1737         return (i);
1738 }
1739
1740 static int
1741 upgt_mem_init(struct upgt_softc *sc)
1742 {
1743         int i;
1744
1745         for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
1746                 sc->sc_memory.page[i].used = 0;
1747
1748                 if (i == 0) {
1749                         /*
1750                          * The first memory page is always reserved for
1751                          * command data.
1752                          */
1753                         sc->sc_memory.page[i].addr =
1754                             sc->sc_memaddr_frame_start + MCLBYTES;
1755                 } else {
1756                         sc->sc_memory.page[i].addr =
1757                             sc->sc_memory.page[i - 1].addr + MCLBYTES;
1758                 }
1759
1760                 if (sc->sc_memory.page[i].addr + MCLBYTES >=
1761                     sc->sc_memaddr_frame_end)
1762                         break;
1763
1764                 DPRINTF(sc, UPGT_DEBUG_FW, "memory address page %d=0x%08x\n",
1765                     i, sc->sc_memory.page[i].addr);
1766         }
1767
1768         sc->sc_memory.pages = i;
1769
1770         DPRINTF(sc, UPGT_DEBUG_FW, "memory pages=%d\n", sc->sc_memory.pages);
1771         return (0);
1772 }
1773
1774 static int
1775 upgt_fw_verify(struct upgt_softc *sc)
1776 {
1777         const struct firmware *fw;
1778         const struct upgt_fw_bra_option *bra_opt;
1779         const struct upgt_fw_bra_descr *descr;
1780         const uint8_t *p;
1781         const uint32_t *uc;
1782         uint32_t bra_option_type, bra_option_len;
1783         int offset, bra_end = 0, error = 0;
1784
1785         fw = firmware_get(upgt_fwname);
1786         if (fw == NULL) {
1787                 device_printf(sc->sc_dev, "could not read microcode %s!\n",
1788                     upgt_fwname);
1789                 return EIO;
1790         }
1791
1792         /*
1793          * Seek to beginning of Boot Record Area (BRA).
1794          */
1795         for (offset = 0; offset < fw->datasize; offset += sizeof(*uc)) {
1796                 uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1797                 if (*uc == 0)
1798                         break;
1799         }
1800         for (; offset < fw->datasize; offset += sizeof(*uc)) {
1801                 uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1802                 if (*uc != 0)
1803                         break;
1804         }
1805         if (offset == fw->datasize) { 
1806                 device_printf(sc->sc_dev,
1807                     "firmware Boot Record Area not found!\n");
1808                 error = EIO;
1809                 goto fail;
1810         }
1811
1812         DPRINTF(sc, UPGT_DEBUG_FW,
1813             "firmware Boot Record Area found at offset %d\n", offset);
1814
1815         /*
1816          * Parse Boot Record Area (BRA) options.
1817          */
1818         while (offset < fw->datasize && bra_end == 0) {
1819                 /* get current BRA option */
1820                 p = (const uint8_t *)fw->data + offset;
1821                 bra_opt = (const struct upgt_fw_bra_option *)p;
1822                 bra_option_type = le32toh(bra_opt->type);
1823                 bra_option_len = le32toh(bra_opt->len) * sizeof(*uc);
1824
1825                 switch (bra_option_type) {
1826                 case UPGT_BRA_TYPE_FW:
1827                         DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_FW len=%d\n",
1828                             bra_option_len);
1829
1830                         if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
1831                                 device_printf(sc->sc_dev,
1832                                     "wrong UPGT_BRA_TYPE_FW len!\n");
1833                                 error = EIO;
1834                                 goto fail;
1835                         }
1836                         if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_opt->data,
1837                             bra_option_len) == 0) {
1838                                 sc->sc_fw_type = UPGT_FWTYPE_LM86;
1839                                 break;
1840                         }
1841                         if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_opt->data,
1842                             bra_option_len) == 0) {
1843                                 sc->sc_fw_type = UPGT_FWTYPE_LM87;
1844                                 break;
1845                         }
1846                         device_printf(sc->sc_dev,
1847                             "unsupported firmware type!\n");
1848                         error = EIO;
1849                         goto fail;
1850                 case UPGT_BRA_TYPE_VERSION:
1851                         DPRINTF(sc, UPGT_DEBUG_FW,
1852                             "UPGT_BRA_TYPE_VERSION len=%d\n", bra_option_len);
1853                         break;
1854                 case UPGT_BRA_TYPE_DEPIF:
1855                         DPRINTF(sc, UPGT_DEBUG_FW,
1856                             "UPGT_BRA_TYPE_DEPIF len=%d\n", bra_option_len);
1857                         break;
1858                 case UPGT_BRA_TYPE_EXPIF:
1859                         DPRINTF(sc, UPGT_DEBUG_FW,
1860                             "UPGT_BRA_TYPE_EXPIF len=%d\n", bra_option_len);
1861                         break;
1862                 case UPGT_BRA_TYPE_DESCR:
1863                         DPRINTF(sc, UPGT_DEBUG_FW,
1864                             "UPGT_BRA_TYPE_DESCR len=%d\n", bra_option_len);
1865
1866                         descr = (const struct upgt_fw_bra_descr *)bra_opt->data;
1867
1868                         sc->sc_memaddr_frame_start =
1869                             le32toh(descr->memaddr_space_start);
1870                         sc->sc_memaddr_frame_end =
1871                             le32toh(descr->memaddr_space_end);
1872
1873                         DPRINTF(sc, UPGT_DEBUG_FW,
1874                             "memory address space start=0x%08x\n",
1875                             sc->sc_memaddr_frame_start);
1876                         DPRINTF(sc, UPGT_DEBUG_FW,
1877                             "memory address space end=0x%08x\n",
1878                             sc->sc_memaddr_frame_end);
1879                         break;
1880                 case UPGT_BRA_TYPE_END:
1881                         DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_END len=%d\n",
1882                             bra_option_len);
1883                         bra_end = 1;
1884                         break;
1885                 default:
1886                         DPRINTF(sc, UPGT_DEBUG_FW, "unknown BRA option len=%d\n",
1887                             bra_option_len);
1888                         error = EIO;
1889                         goto fail;
1890                 }
1891
1892                 /* jump to next BRA option */
1893                 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
1894         }
1895
1896         DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware verified", __func__);
1897 fail:
1898         firmware_put(fw, FIRMWARE_UNLOAD);
1899         return (error);
1900 }
1901
1902 static void
1903 upgt_bulk_tx(struct upgt_softc *sc, struct upgt_data *data)
1904 {
1905
1906         UPGT_ASSERT_LOCKED(sc);
1907
1908         STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next);
1909         UPGT_STAT_INC(sc, st_tx_pending);
1910         usbd_transfer_start(sc->sc_xfer[UPGT_BULK_TX]);
1911 }
1912
1913 static int
1914 upgt_device_reset(struct upgt_softc *sc)
1915 {
1916         struct upgt_data *data;
1917         char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
1918
1919         UPGT_LOCK(sc);
1920
1921         data = upgt_getbuf(sc);
1922         if (data == NULL) {
1923                 UPGT_UNLOCK(sc);
1924                 return (ENOBUFS);
1925         }
1926         bcopy(init_cmd, data->buf, sizeof(init_cmd));
1927         data->buflen = sizeof(init_cmd);
1928         upgt_bulk_tx(sc, data);
1929         usb_pause_mtx(&sc->sc_mtx, 100);
1930
1931         UPGT_UNLOCK(sc);
1932         DPRINTF(sc, UPGT_DEBUG_FW, "%s: device initialized\n", __func__);
1933         return (0);
1934 }
1935
1936 static int
1937 upgt_alloc_tx(struct upgt_softc *sc)
1938 {
1939         int i;
1940
1941         STAILQ_INIT(&sc->sc_tx_active);
1942         STAILQ_INIT(&sc->sc_tx_inactive);
1943         STAILQ_INIT(&sc->sc_tx_pending);
1944
1945         for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1946                 struct upgt_data *data = &sc->sc_tx_data[i];
1947
1948                 data->buf = malloc(MCLBYTES, M_USBDEV, M_NOWAIT | M_ZERO);
1949                 if (data->buf == NULL) {
1950                         device_printf(sc->sc_dev,
1951                             "could not allocate TX buffer!\n");
1952                         return (ENOMEM);
1953                 }
1954                 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
1955                 UPGT_STAT_INC(sc, st_tx_inactive);
1956         }
1957
1958         return (0);
1959 }
1960
1961 static int
1962 upgt_alloc_rx(struct upgt_softc *sc)
1963 {
1964         int i;
1965
1966         STAILQ_INIT(&sc->sc_rx_active);
1967         STAILQ_INIT(&sc->sc_rx_inactive);
1968
1969         for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
1970                 struct upgt_data *data = &sc->sc_rx_data[i];
1971
1972                 data->buf = malloc(MCLBYTES, M_USBDEV, M_NOWAIT | M_ZERO);
1973                 if (data->buf == NULL) {
1974                         device_printf(sc->sc_dev,
1975                             "could not allocate RX buffer!\n");
1976                         return (ENOMEM);
1977                 }
1978                 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
1979         }
1980
1981         return (0);
1982 }
1983
1984 static int
1985 upgt_detach(device_t dev)
1986 {
1987         struct upgt_softc *sc = device_get_softc(dev);
1988         struct ifnet *ifp = sc->sc_ifp;
1989         struct ieee80211com *ic = ifp->if_l2com;
1990
1991         if (!device_is_attached(dev))
1992                 return 0;
1993
1994         upgt_stop(sc);
1995
1996         callout_drain(&sc->sc_led_ch);
1997         callout_drain(&sc->sc_watchdog_ch);
1998
1999         usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
2000         ieee80211_ifdetach(ic);
2001         upgt_free_rx(sc);
2002         upgt_free_tx(sc);
2003
2004         if_free(ifp);
2005         mtx_destroy(&sc->sc_mtx);
2006
2007         return (0);
2008 }
2009
2010 static void
2011 upgt_free_rx(struct upgt_softc *sc)
2012 {
2013         int i;
2014
2015         for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
2016                 struct upgt_data *data = &sc->sc_rx_data[i];
2017
2018                 free(data->buf, M_USBDEV);
2019                 data->ni = NULL;
2020         }
2021 }
2022
2023 static void
2024 upgt_free_tx(struct upgt_softc *sc)
2025 {
2026         int i;
2027
2028         for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
2029                 struct upgt_data *data = &sc->sc_tx_data[i];
2030
2031                 free(data->buf, M_USBDEV);
2032                 data->ni = NULL;
2033         }
2034 }
2035
2036 static void
2037 upgt_abort_xfers_locked(struct upgt_softc *sc)
2038 {
2039         int i;
2040
2041         UPGT_ASSERT_LOCKED(sc);
2042         /* abort any pending transfers */
2043         for (i = 0; i < UPGT_N_XFERS; i++)
2044                 usbd_transfer_stop(sc->sc_xfer[i]);
2045 }
2046
2047 static void
2048 upgt_abort_xfers(struct upgt_softc *sc)
2049 {
2050
2051         UPGT_LOCK(sc);
2052         upgt_abort_xfers_locked(sc);
2053         UPGT_UNLOCK(sc);
2054 }
2055
2056 #define UPGT_SYSCTL_STAT_ADD32(c, h, n, p, d)   \
2057             SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2058
2059 static void
2060 upgt_sysctl_node(struct upgt_softc *sc)
2061 {
2062         struct sysctl_ctx_list *ctx;
2063         struct sysctl_oid_list *child;
2064         struct sysctl_oid *tree;
2065         struct upgt_stat *stats;
2066
2067         stats = &sc->sc_stat;
2068         ctx = device_get_sysctl_ctx(sc->sc_dev);
2069         child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev));
2070
2071         tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2072             NULL, "UPGT statistics");
2073         child = SYSCTL_CHILDREN(tree);
2074         UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_active",
2075             &stats->st_tx_active, "Active numbers in TX queue");
2076         UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive",
2077             &stats->st_tx_inactive, "Inactive numbers in TX queue");
2078         UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_pending",
2079             &stats->st_tx_pending, "Pending numbers in TX queue");
2080 }
2081
2082 #undef UPGT_SYSCTL_STAT_ADD32
2083
2084 static struct upgt_data *
2085 _upgt_getbuf(struct upgt_softc *sc)
2086 {
2087         struct upgt_data *bf;
2088
2089         bf = STAILQ_FIRST(&sc->sc_tx_inactive);
2090         if (bf != NULL) {
2091                 STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next);
2092                 UPGT_STAT_DEC(sc, st_tx_inactive);
2093         } else
2094                 bf = NULL;
2095         if (bf == NULL)
2096                 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: %s\n", __func__,
2097                     "out of xmit buffers");
2098         return (bf);
2099 }
2100
2101 static struct upgt_data *
2102 upgt_getbuf(struct upgt_softc *sc)
2103 {
2104         struct upgt_data *bf;
2105
2106         UPGT_ASSERT_LOCKED(sc);
2107
2108         bf = _upgt_getbuf(sc);
2109         if (bf == NULL) {
2110                 struct ifnet *ifp = sc->sc_ifp;
2111
2112                 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: stop queue\n", __func__);
2113                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2114         }
2115
2116         return (bf);
2117 }
2118
2119 static struct upgt_data *
2120 upgt_gettxbuf(struct upgt_softc *sc)
2121 {
2122         struct upgt_data *bf;
2123
2124         UPGT_ASSERT_LOCKED(sc);
2125
2126         bf = upgt_getbuf(sc);
2127         if (bf == NULL)
2128                 return (NULL);
2129
2130         bf->addr = upgt_mem_alloc(sc);
2131         if (bf->addr == 0) {
2132                 struct ifnet *ifp = sc->sc_ifp;
2133
2134                 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: no free prism memory!\n",
2135                     __func__);
2136                 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
2137                 UPGT_STAT_INC(sc, st_tx_inactive);
2138                 if (!(ifp->if_drv_flags & IFF_DRV_OACTIVE))
2139                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2140                 return (NULL);
2141         }
2142         return (bf);
2143 }
2144
2145 static int
2146 upgt_tx_start(struct upgt_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2147     struct upgt_data *data)
2148 {
2149         struct ieee80211vap *vap = ni->ni_vap;
2150         int error = 0, len;
2151         struct ieee80211_frame *wh;
2152         struct ieee80211_key *k;
2153         struct ifnet *ifp = sc->sc_ifp;
2154         struct upgt_lmac_mem *mem;
2155         struct upgt_lmac_tx_desc *txdesc;
2156
2157         UPGT_ASSERT_LOCKED(sc);
2158
2159         upgt_set_led(sc, UPGT_LED_BLINK);
2160
2161         /*
2162          * Software crypto.
2163          */
2164         wh = mtod(m, struct ieee80211_frame *);
2165         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2166                 k = ieee80211_crypto_encap(ni, m);
2167                 if (k == NULL) {
2168                         device_printf(sc->sc_dev,
2169                             "ieee80211_crypto_encap returns NULL.\n");
2170                         error = EIO;
2171                         goto done;
2172                 }
2173
2174                 /* in case packet header moved, reset pointer */
2175                 wh = mtod(m, struct ieee80211_frame *);
2176         }
2177
2178         /* Transmit the URB containing the TX data.  */
2179         bzero(data->buf, MCLBYTES);
2180         mem = (struct upgt_lmac_mem *)data->buf;
2181         mem->addr = htole32(data->addr);
2182         txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
2183
2184         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2185             IEEE80211_FC0_TYPE_MGT) {
2186                 /* mgmt frames  */
2187                 txdesc->header1.flags = UPGT_H1_FLAGS_TX_MGMT;
2188                 /* always send mgmt frames at lowest rate (DS1) */
2189                 memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
2190         } else {
2191                 /* data frames  */
2192                 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
2193                 bcopy(sc->sc_cur_rateset, txdesc->rates, sizeof(txdesc->rates));
2194         }
2195         txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
2196         txdesc->header1.len = htole16(m->m_pkthdr.len);
2197         txdesc->header2.reqid = htole32(data->addr);
2198         txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
2199         txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
2200         txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
2201         txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
2202
2203         if (ieee80211_radiotap_active_vap(vap)) {
2204                 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
2205
2206                 tap->wt_flags = 0;
2207                 tap->wt_rate = 0;       /* XXX where to get from? */
2208
2209                 ieee80211_radiotap_tx(vap, m);
2210         }
2211
2212         /* copy frame below our TX descriptor header */
2213         m_copydata(m, 0, m->m_pkthdr.len,
2214             data->buf + (sizeof(*mem) + sizeof(*txdesc)));
2215         /* calculate frame size */
2216         len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
2217         /* we need to align the frame to a 4 byte boundary */
2218         len = (len + 3) & ~3;
2219         /* calculate frame checksum */
2220         mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem));
2221         data->ni = ni;
2222         data->m = m;
2223         data->buflen = len;
2224
2225         DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: TX start data sending (%d bytes)\n",
2226             __func__, len);
2227         KASSERT(len <= MCLBYTES, ("mbuf is small for saving data"));
2228
2229         upgt_bulk_tx(sc, data);
2230 done:
2231         /*
2232          * If we don't regulary read the device statistics, the RX queue
2233          * will stall.  It's strange, but it works, so we keep reading
2234          * the statistics here.  *shrug*
2235          */
2236         if (!(ifp->if_opackets % UPGT_TX_STAT_INTERVAL))
2237                 upgt_get_stats(sc);
2238
2239         return (error);
2240 }
2241
2242 static void
2243 upgt_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
2244 {
2245         struct upgt_softc *sc = usbd_xfer_softc(xfer);
2246         struct ifnet *ifp = sc->sc_ifp;
2247         struct ieee80211com *ic = ifp->if_l2com;
2248         struct ieee80211_frame *wh;
2249         struct ieee80211_node *ni;
2250         struct mbuf *m = NULL;
2251         struct upgt_data *data;
2252         int8_t nf;
2253         int rssi = -1;
2254
2255         UPGT_ASSERT_LOCKED(sc);
2256
2257         switch (USB_GET_STATE(xfer)) {
2258         case USB_ST_TRANSFERRED:
2259                 data = STAILQ_FIRST(&sc->sc_rx_active);
2260                 if (data == NULL)
2261                         goto setup;
2262                 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2263                 m = upgt_rxeof(xfer, data, &rssi);
2264                 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2265                 /* FALLTHROUGH */
2266         case USB_ST_SETUP:
2267 setup:
2268                 data = STAILQ_FIRST(&sc->sc_rx_inactive);
2269                 if (data == NULL)
2270                         return;
2271                 STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next);
2272                 STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next);
2273                 usbd_xfer_set_frame_data(xfer, 0, data->buf,
2274                     usbd_xfer_max_len(xfer));
2275                 usbd_transfer_submit(xfer);
2276
2277                 /*
2278                  * To avoid LOR we should unlock our private mutex here to call
2279                  * ieee80211_input() because here is at the end of a USB
2280                  * callback and safe to unlock.
2281                  */
2282                 UPGT_UNLOCK(sc);
2283                 if (m != NULL) {
2284                         wh = mtod(m, struct ieee80211_frame *);
2285                         ni = ieee80211_find_rxnode(ic,
2286                             (struct ieee80211_frame_min *)wh);
2287                         nf = -95;       /* XXX */
2288                         if (ni != NULL) {
2289                                 (void) ieee80211_input(ni, m, rssi, nf);
2290                                 /* node is no longer needed */
2291                                 ieee80211_free_node(ni);
2292                         } else
2293                                 (void) ieee80211_input_all(ic, m, rssi, nf);
2294                         m = NULL;
2295                 }
2296                 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
2297                     !IFQ_IS_EMPTY(&ifp->if_snd))
2298                         upgt_start(ifp);
2299                 UPGT_LOCK(sc);
2300                 break;
2301         default:
2302                 /* needs it to the inactive queue due to a error.  */
2303                 data = STAILQ_FIRST(&sc->sc_rx_active);
2304                 if (data != NULL) {
2305                         STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2306                         STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2307                 }
2308                 if (error != USB_ERR_CANCELLED) {
2309                         usbd_xfer_set_stall(xfer);
2310                         ifp->if_ierrors++;
2311                         goto setup;
2312                 }
2313                 break;
2314         }
2315 }
2316
2317 static void
2318 upgt_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error)
2319 {
2320         struct upgt_softc *sc = usbd_xfer_softc(xfer);
2321         struct ifnet *ifp = sc->sc_ifp;
2322         struct upgt_data *data;
2323
2324         UPGT_ASSERT_LOCKED(sc);
2325         switch (USB_GET_STATE(xfer)) {
2326         case USB_ST_TRANSFERRED:
2327                 data = STAILQ_FIRST(&sc->sc_tx_active);
2328                 if (data == NULL)
2329                         goto setup;
2330                 STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next);
2331                 UPGT_STAT_DEC(sc, st_tx_active);
2332                 upgt_txeof(xfer, data);
2333                 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
2334                 UPGT_STAT_INC(sc, st_tx_inactive);
2335                 /* FALLTHROUGH */
2336         case USB_ST_SETUP:
2337 setup:
2338                 data = STAILQ_FIRST(&sc->sc_tx_pending);
2339                 if (data == NULL) {
2340                         DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: empty pending queue\n",
2341                             __func__);
2342                         return;
2343                 }
2344                 STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next);
2345                 UPGT_STAT_DEC(sc, st_tx_pending);
2346                 STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next);
2347                 UPGT_STAT_INC(sc, st_tx_active);
2348
2349                 usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen);
2350                 usbd_transfer_submit(xfer);
2351                 UPGT_UNLOCK(sc);
2352                 upgt_start(ifp);
2353                 UPGT_LOCK(sc);
2354                 break;
2355         default:
2356                 data = STAILQ_FIRST(&sc->sc_tx_active);
2357                 if (data == NULL)
2358                         goto setup;
2359                 if (data->ni != NULL) {
2360                         ieee80211_free_node(data->ni);
2361                         data->ni = NULL;
2362                         ifp->if_oerrors++;
2363                 }
2364                 if (error != USB_ERR_CANCELLED) {
2365                         usbd_xfer_set_stall(xfer);
2366                         goto setup;
2367                 }
2368                 break;
2369         }
2370 }
2371
2372 static device_method_t upgt_methods[] = {
2373         /* Device interface */
2374         DEVMETHOD(device_probe, upgt_match),
2375         DEVMETHOD(device_attach, upgt_attach),
2376         DEVMETHOD(device_detach, upgt_detach),
2377         
2378         { 0, 0 }
2379 };
2380
2381 static driver_t upgt_driver = {
2382         "upgt",
2383         upgt_methods,
2384         sizeof(struct upgt_softc)
2385 };
2386
2387 static devclass_t upgt_devclass;
2388
2389 DRIVER_MODULE(if_upgt, uhub, upgt_driver, upgt_devclass, NULL, 0);
2390 MODULE_VERSION(if_upgt, 1);
2391 MODULE_DEPEND(if_upgt, usb, 1, 1, 1);
2392 MODULE_DEPEND(if_upgt, wlan, 1, 1, 1);
2393 MODULE_DEPEND(if_upgt, upgtfw_fw, 1, 1, 1);