]> CyberLeo.Net >> Repos - FreeBSD/releng/8.0.git/blob - sys/dev/usb/wlan/if_ural.c
Adjust to reflect 8.0-RELEASE.
[FreeBSD/releng/8.0.git] / sys / dev / usb / wlan / if_ural.c
1 /*      $FreeBSD$       */
2
3 /*-
4  * Copyright (c) 2005, 2006
5  *      Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Copyright (c) 2006, 2008
8  *      Hans Petter Selasky <hselasky@FreeBSD.org>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25
26 /*-
27  * Ralink Technology RT2500USB chipset driver
28  * http://www.ralinktech.com/
29  */
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/lock.h>
35 #include <sys/mutex.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/module.h>
42 #include <sys/bus.h>
43 #include <sys/endian.h>
44 #include <sys/kdb.h>
45
46 #include <machine/bus.h>
47 #include <machine/resource.h>
48 #include <sys/rman.h>
49
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57
58 #ifdef INET
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 #include <netinet/in_var.h>
62 #include <netinet/if_ether.h>
63 #include <netinet/ip.h>
64 #endif
65
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_regdomain.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_amrr.h>
70
71 #include <dev/usb/usb.h>
72 #include <dev/usb/usbdi.h>
73 #include "usbdevs.h"
74
75 #define USB_DEBUG_VAR ural_debug
76 #include <dev/usb/usb_debug.h>
77
78 #include <dev/usb/wlan/if_uralreg.h>
79 #include <dev/usb/wlan/if_uralvar.h>
80
81 #if USB_DEBUG
82 static int ural_debug = 0;
83
84 SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural");
85 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RW, &ural_debug, 0,
86     "Debug level");
87 #endif
88
89 #define URAL_RSSI(rssi)                                 \
90         ((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ?   \
91          ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
92
93 /* various supported device vendors/products */
94 static const struct usb_device_id ural_devs[] = {
95         { USB_VP(USB_VENDOR_ASUS, USB_PRODUCT_ASUS_WL167G) },
96         { USB_VP(USB_VENDOR_ASUS, USB_PRODUCT_RALINK_RT2570) },
97         { USB_VP(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050) },
98         { USB_VP(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7051) },
99         { USB_VP(USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS) },
100         { USB_VP(USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G) },
101         { USB_VP(USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP) },
102         { USB_VP(USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_C54RU) },
103         { USB_VP(USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122) },
104         { USB_VP(USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GN54G) },
105         { USB_VP(USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG) },
106         { USB_VP(USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254) },
107         { USB_VP(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54) },
108         { USB_VP(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI) },
109         { USB_VP(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB) },
110         { USB_VP(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI) },
111         { USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570) },
112         { USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570_2) },
113         { USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570_3) },
114         { USB_VP(USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902) },
115         { USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570) },
116         { USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2) },
117         { USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3) },
118         { USB_VP(USB_VENDOR_SIEMENS2, USB_PRODUCT_SIEMENS2_WL54G) },
119         { USB_VP(USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG) },
120         { USB_VP(USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R) },
121         { USB_VP(USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2570) },
122         { USB_VP(USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570) },
123         { USB_VP(USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_RT2570) },
124 };
125
126 static usb_callback_t ural_bulk_read_callback;
127 static usb_callback_t ural_bulk_write_callback;
128
129 static usb_error_t      ural_do_request(struct ural_softc *sc,
130                             struct usb_device_request *req, void *data);
131 static struct ieee80211vap *ural_vap_create(struct ieee80211com *,
132                             const char name[IFNAMSIZ], int unit, int opmode,
133                             int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
134                             const uint8_t mac[IEEE80211_ADDR_LEN]);
135 static void             ural_vap_delete(struct ieee80211vap *);
136 static void             ural_tx_free(struct ural_tx_data *, int);
137 static void             ural_setup_tx_list(struct ural_softc *);
138 static void             ural_unsetup_tx_list(struct ural_softc *);
139 static int              ural_newstate(struct ieee80211vap *,
140                             enum ieee80211_state, int);
141 static void             ural_setup_tx_desc(struct ural_softc *,
142                             struct ural_tx_desc *, uint32_t, int, int);
143 static int              ural_tx_bcn(struct ural_softc *, struct mbuf *,
144                             struct ieee80211_node *);
145 static int              ural_tx_mgt(struct ural_softc *, struct mbuf *,
146                             struct ieee80211_node *);
147 static int              ural_tx_data(struct ural_softc *, struct mbuf *,
148                             struct ieee80211_node *);
149 static void             ural_start(struct ifnet *);
150 static int              ural_ioctl(struct ifnet *, u_long, caddr_t);
151 static void             ural_set_testmode(struct ural_softc *);
152 static void             ural_eeprom_read(struct ural_softc *, uint16_t, void *,
153                             int);
154 static uint16_t         ural_read(struct ural_softc *, uint16_t);
155 static void             ural_read_multi(struct ural_softc *, uint16_t, void *,
156                             int);
157 static void             ural_write(struct ural_softc *, uint16_t, uint16_t);
158 static void             ural_write_multi(struct ural_softc *, uint16_t, void *,
159                             int) __unused;
160 static void             ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
161 static uint8_t          ural_bbp_read(struct ural_softc *, uint8_t);
162 static void             ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
163 static struct ieee80211_node *ural_node_alloc(struct ieee80211vap *,
164                             const uint8_t mac[IEEE80211_ADDR_LEN]);
165 static void             ural_newassoc(struct ieee80211_node *, int);
166 static void             ural_scan_start(struct ieee80211com *);
167 static void             ural_scan_end(struct ieee80211com *);
168 static void             ural_set_channel(struct ieee80211com *);
169 static void             ural_set_chan(struct ural_softc *,
170                             struct ieee80211_channel *);
171 static void             ural_disable_rf_tune(struct ural_softc *);
172 static void             ural_enable_tsf_sync(struct ural_softc *);
173 static void             ural_enable_tsf(struct ural_softc *);
174 static void             ural_update_slot(struct ifnet *);
175 static void             ural_set_txpreamble(struct ural_softc *);
176 static void             ural_set_basicrates(struct ural_softc *,
177                             const struct ieee80211_channel *);
178 static void             ural_set_bssid(struct ural_softc *, const uint8_t *);
179 static void             ural_set_macaddr(struct ural_softc *, uint8_t *);
180 static void             ural_update_promisc(struct ifnet *);
181 static void             ural_setpromisc(struct ural_softc *);
182 static const char       *ural_get_rf(int);
183 static void             ural_read_eeprom(struct ural_softc *);
184 static int              ural_bbp_init(struct ural_softc *);
185 static void             ural_set_txantenna(struct ural_softc *, int);
186 static void             ural_set_rxantenna(struct ural_softc *, int);
187 static void             ural_init_locked(struct ural_softc *);
188 static void             ural_init(void *);
189 static void             ural_stop(struct ural_softc *);
190 static int              ural_raw_xmit(struct ieee80211_node *, struct mbuf *,
191                             const struct ieee80211_bpf_params *);
192 static void             ural_amrr_start(struct ural_softc *,
193                             struct ieee80211_node *);
194 static void             ural_amrr_timeout(void *);
195 static void             ural_amrr_task(void *, int);
196 static int              ural_pause(struct ural_softc *sc, int timeout);
197
198 /*
199  * Default values for MAC registers; values taken from the reference driver.
200  */
201 static const struct {
202         uint16_t        reg;
203         uint16_t        val;
204 } ural_def_mac[] = {
205         { RAL_TXRX_CSR5,  0x8c8d },
206         { RAL_TXRX_CSR6,  0x8b8a },
207         { RAL_TXRX_CSR7,  0x8687 },
208         { RAL_TXRX_CSR8,  0x0085 },
209         { RAL_MAC_CSR13,  0x1111 },
210         { RAL_MAC_CSR14,  0x1e11 },
211         { RAL_TXRX_CSR21, 0xe78f },
212         { RAL_MAC_CSR9,   0xff1d },
213         { RAL_MAC_CSR11,  0x0002 },
214         { RAL_MAC_CSR22,  0x0053 },
215         { RAL_MAC_CSR15,  0x0000 },
216         { RAL_MAC_CSR8,   RAL_FRAME_SIZE },
217         { RAL_TXRX_CSR19, 0x0000 },
218         { RAL_TXRX_CSR18, 0x005a },
219         { RAL_PHY_CSR2,   0x0000 },
220         { RAL_TXRX_CSR0,  0x1ec0 },
221         { RAL_PHY_CSR4,   0x000f }
222 };
223
224 /*
225  * Default values for BBP registers; values taken from the reference driver.
226  */
227 static const struct {
228         uint8_t reg;
229         uint8_t val;
230 } ural_def_bbp[] = {
231         {  3, 0x02 },
232         {  4, 0x19 },
233         { 14, 0x1c },
234         { 15, 0x30 },
235         { 16, 0xac },
236         { 17, 0x48 },
237         { 18, 0x18 },
238         { 19, 0xff },
239         { 20, 0x1e },
240         { 21, 0x08 },
241         { 22, 0x08 },
242         { 23, 0x08 },
243         { 24, 0x80 },
244         { 25, 0x50 },
245         { 26, 0x08 },
246         { 27, 0x23 },
247         { 30, 0x10 },
248         { 31, 0x2b },
249         { 32, 0xb9 },
250         { 34, 0x12 },
251         { 35, 0x50 },
252         { 39, 0xc4 },
253         { 40, 0x02 },
254         { 41, 0x60 },
255         { 53, 0x10 },
256         { 54, 0x18 },
257         { 56, 0x08 },
258         { 57, 0x10 },
259         { 58, 0x08 },
260         { 61, 0x60 },
261         { 62, 0x10 },
262         { 75, 0xff }
263 };
264
265 /*
266  * Default values for RF register R2 indexed by channel numbers.
267  */
268 static const uint32_t ural_rf2522_r2[] = {
269         0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
270         0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
271 };
272
273 static const uint32_t ural_rf2523_r2[] = {
274         0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
275         0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
276 };
277
278 static const uint32_t ural_rf2524_r2[] = {
279         0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
280         0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
281 };
282
283 static const uint32_t ural_rf2525_r2[] = {
284         0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
285         0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
286 };
287
288 static const uint32_t ural_rf2525_hi_r2[] = {
289         0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
290         0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
291 };
292
293 static const uint32_t ural_rf2525e_r2[] = {
294         0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
295         0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
296 };
297
298 static const uint32_t ural_rf2526_hi_r2[] = {
299         0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
300         0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
301 };
302
303 static const uint32_t ural_rf2526_r2[] = {
304         0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
305         0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
306 };
307
308 /*
309  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
310  * values taken from the reference driver.
311  */
312 static const struct {
313         uint8_t         chan;
314         uint32_t        r1;
315         uint32_t        r2;
316         uint32_t        r4;
317 } ural_rf5222[] = {
318         {   1, 0x08808, 0x0044d, 0x00282 },
319         {   2, 0x08808, 0x0044e, 0x00282 },
320         {   3, 0x08808, 0x0044f, 0x00282 },
321         {   4, 0x08808, 0x00460, 0x00282 },
322         {   5, 0x08808, 0x00461, 0x00282 },
323         {   6, 0x08808, 0x00462, 0x00282 },
324         {   7, 0x08808, 0x00463, 0x00282 },
325         {   8, 0x08808, 0x00464, 0x00282 },
326         {   9, 0x08808, 0x00465, 0x00282 },
327         {  10, 0x08808, 0x00466, 0x00282 },
328         {  11, 0x08808, 0x00467, 0x00282 },
329         {  12, 0x08808, 0x00468, 0x00282 },
330         {  13, 0x08808, 0x00469, 0x00282 },
331         {  14, 0x08808, 0x0046b, 0x00286 },
332
333         {  36, 0x08804, 0x06225, 0x00287 },
334         {  40, 0x08804, 0x06226, 0x00287 },
335         {  44, 0x08804, 0x06227, 0x00287 },
336         {  48, 0x08804, 0x06228, 0x00287 },
337         {  52, 0x08804, 0x06229, 0x00287 },
338         {  56, 0x08804, 0x0622a, 0x00287 },
339         {  60, 0x08804, 0x0622b, 0x00287 },
340         {  64, 0x08804, 0x0622c, 0x00287 },
341
342         { 100, 0x08804, 0x02200, 0x00283 },
343         { 104, 0x08804, 0x02201, 0x00283 },
344         { 108, 0x08804, 0x02202, 0x00283 },
345         { 112, 0x08804, 0x02203, 0x00283 },
346         { 116, 0x08804, 0x02204, 0x00283 },
347         { 120, 0x08804, 0x02205, 0x00283 },
348         { 124, 0x08804, 0x02206, 0x00283 },
349         { 128, 0x08804, 0x02207, 0x00283 },
350         { 132, 0x08804, 0x02208, 0x00283 },
351         { 136, 0x08804, 0x02209, 0x00283 },
352         { 140, 0x08804, 0x0220a, 0x00283 },
353
354         { 149, 0x08808, 0x02429, 0x00281 },
355         { 153, 0x08808, 0x0242b, 0x00281 },
356         { 157, 0x08808, 0x0242d, 0x00281 },
357         { 161, 0x08808, 0x0242f, 0x00281 }
358 };
359
360 static const struct usb_config ural_config[URAL_N_TRANSFER] = {
361         [URAL_BULK_WR] = {
362                 .type = UE_BULK,
363                 .endpoint = UE_ADDR_ANY,
364                 .direction = UE_DIR_OUT,
365                 .bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4),
366                 .flags = {.pipe_bof = 1,.force_short_xfer = 1,},
367                 .callback = ural_bulk_write_callback,
368                 .timeout = 5000,        /* ms */
369         },
370         [URAL_BULK_RD] = {
371                 .type = UE_BULK,
372                 .endpoint = UE_ADDR_ANY,
373                 .direction = UE_DIR_IN,
374                 .bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE),
375                 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
376                 .callback = ural_bulk_read_callback,
377         },
378 };
379
380 static device_probe_t ural_match;
381 static device_attach_t ural_attach;
382 static device_detach_t ural_detach;
383
384 static device_method_t ural_methods[] = {
385         /* Device interface */
386         DEVMETHOD(device_probe,         ural_match),
387         DEVMETHOD(device_attach,        ural_attach),
388         DEVMETHOD(device_detach,        ural_detach),
389
390         { 0, 0 }
391 };
392
393 static driver_t ural_driver = {
394         .name = "ural",
395         .methods = ural_methods,
396         .size = sizeof(struct ural_softc),
397 };
398
399 static devclass_t ural_devclass;
400
401 DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0);
402 MODULE_DEPEND(ural, usb, 1, 1, 1);
403 MODULE_DEPEND(ural, wlan, 1, 1, 1);
404 MODULE_DEPEND(ural, wlan_amrr, 1, 1, 1);
405
406 static int
407 ural_match(device_t self)
408 {
409         struct usb_attach_arg *uaa = device_get_ivars(self);
410
411         if (uaa->usb_mode != USB_MODE_HOST)
412                 return (ENXIO);
413         if (uaa->info.bConfigIndex != 0)
414                 return (ENXIO);
415         if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX)
416                 return (ENXIO);
417
418         return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa));
419 }
420
421 static int
422 ural_attach(device_t self)
423 {
424         struct usb_attach_arg *uaa = device_get_ivars(self);
425         struct ural_softc *sc = device_get_softc(self);
426         struct ifnet *ifp;
427         struct ieee80211com *ic;
428         uint8_t iface_index, bands;
429         int error;
430
431         device_set_usb_desc(self);
432         sc->sc_udev = uaa->device;
433         sc->sc_dev = self;
434
435         mtx_init(&sc->sc_mtx, device_get_nameunit(self),
436             MTX_NETWORK_LOCK, MTX_DEF);
437
438         iface_index = RAL_IFACE_INDEX;
439         error = usbd_transfer_setup(uaa->device,
440             &iface_index, sc->sc_xfer, ural_config,
441             URAL_N_TRANSFER, sc, &sc->sc_mtx);
442         if (error) {
443                 device_printf(self, "could not allocate USB transfers, "
444                     "err=%s\n", usbd_errstr(error));
445                 goto detach;
446         }
447
448         RAL_LOCK(sc);
449         /* retrieve RT2570 rev. no */
450         sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
451
452         /* retrieve MAC address and various other things from EEPROM */
453         ural_read_eeprom(sc);
454         RAL_UNLOCK(sc);
455
456         device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
457             sc->asic_rev, ural_get_rf(sc->rf_rev));
458
459         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
460         if (ifp == NULL) {
461                 device_printf(sc->sc_dev, "can not if_alloc()\n");
462                 goto detach;
463         }
464         ic = ifp->if_l2com;
465
466         ifp->if_softc = sc;
467         if_initname(ifp, "ural", device_get_unit(sc->sc_dev));
468         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
469         ifp->if_init = ural_init;
470         ifp->if_ioctl = ural_ioctl;
471         ifp->if_start = ural_start;
472         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
473         ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
474         IFQ_SET_READY(&ifp->if_snd);
475
476         ic->ic_ifp = ifp;
477         ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
478
479         /* set device capabilities */
480         ic->ic_caps =
481               IEEE80211_C_STA           /* station mode supported */
482             | IEEE80211_C_IBSS          /* IBSS mode supported */
483             | IEEE80211_C_MONITOR       /* monitor mode supported */
484             | IEEE80211_C_HOSTAP        /* HostAp mode supported */
485             | IEEE80211_C_TXPMGT        /* tx power management */
486             | IEEE80211_C_SHPREAMBLE    /* short preamble supported */
487             | IEEE80211_C_SHSLOT        /* short slot time supported */
488             | IEEE80211_C_BGSCAN        /* bg scanning supported */
489             | IEEE80211_C_WPA           /* 802.11i */
490             ;
491
492         bands = 0;
493         setbit(&bands, IEEE80211_MODE_11B);
494         setbit(&bands, IEEE80211_MODE_11G);
495         if (sc->rf_rev == RAL_RF_5222)
496                 setbit(&bands, IEEE80211_MODE_11A);
497         ieee80211_init_channels(ic, NULL, &bands);
498
499         ieee80211_ifattach(ic, sc->sc_bssid);
500         ic->ic_update_promisc = ural_update_promisc;
501         ic->ic_newassoc = ural_newassoc;
502         ic->ic_raw_xmit = ural_raw_xmit;
503         ic->ic_node_alloc = ural_node_alloc;
504         ic->ic_scan_start = ural_scan_start;
505         ic->ic_scan_end = ural_scan_end;
506         ic->ic_set_channel = ural_set_channel;
507
508         ic->ic_vap_create = ural_vap_create;
509         ic->ic_vap_delete = ural_vap_delete;
510
511         ieee80211_radiotap_attach(ic,
512             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
513                 RAL_TX_RADIOTAP_PRESENT,
514             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
515                 RAL_RX_RADIOTAP_PRESENT);
516
517         if (bootverbose)
518                 ieee80211_announce(ic);
519
520         return (0);
521
522 detach:
523         ural_detach(self);
524         return (ENXIO);                 /* failure */
525 }
526
527 static int
528 ural_detach(device_t self)
529 {
530         struct ural_softc *sc = device_get_softc(self);
531         struct ifnet *ifp = sc->sc_ifp;
532         struct ieee80211com *ic;
533
534         /* stop all USB transfers */
535         usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER);
536
537         /* free TX list, if any */
538         RAL_LOCK(sc);
539         ural_unsetup_tx_list(sc);
540         RAL_UNLOCK(sc);
541
542         if (ifp) {
543                 ic = ifp->if_l2com;
544                 ieee80211_ifdetach(ic);
545                 if_free(ifp);
546         }
547         mtx_destroy(&sc->sc_mtx);
548
549         return (0);
550 }
551
552 static usb_error_t
553 ural_do_request(struct ural_softc *sc,
554     struct usb_device_request *req, void *data)
555 {
556         usb_error_t err;
557         int ntries = 10;
558
559         while (ntries--) {
560                 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
561                     req, data, 0, NULL, 250 /* ms */);
562                 if (err == 0)
563                         break;
564
565                 DPRINTFN(1, "Control request failed, %s (retrying)\n",
566                     usbd_errstr(err));
567                 if (ural_pause(sc, hz / 100))
568                         break;
569         }
570         return (err);
571 }
572
573 static struct ieee80211vap *
574 ural_vap_create(struct ieee80211com *ic,
575         const char name[IFNAMSIZ], int unit, int opmode, int flags,
576         const uint8_t bssid[IEEE80211_ADDR_LEN],
577         const uint8_t mac[IEEE80211_ADDR_LEN])
578 {
579         struct ural_softc *sc = ic->ic_ifp->if_softc;
580         struct ural_vap *uvp;
581         struct ieee80211vap *vap;
582
583         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
584                 return NULL;
585         uvp = (struct ural_vap *) malloc(sizeof(struct ural_vap),
586             M_80211_VAP, M_NOWAIT | M_ZERO);
587         if (uvp == NULL)
588                 return NULL;
589         vap = &uvp->vap;
590         /* enable s/w bmiss handling for sta mode */
591         ieee80211_vap_setup(ic, vap, name, unit, opmode,
592             flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
593
594         /* override state transition machine */
595         uvp->newstate = vap->iv_newstate;
596         vap->iv_newstate = ural_newstate;
597
598         usb_callout_init_mtx(&uvp->amrr_ch, &sc->sc_mtx, 0);
599         TASK_INIT(&uvp->amrr_task, 0, ural_amrr_task, uvp);
600         ieee80211_amrr_init(&uvp->amrr, vap,
601             IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
602             IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
603             1000 /* 1 sec */);
604
605         /* complete setup */
606         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
607         ic->ic_opmode = opmode;
608         return vap;
609 }
610
611 static void
612 ural_vap_delete(struct ieee80211vap *vap)
613 {
614         struct ural_vap *uvp = URAL_VAP(vap);
615         struct ieee80211com *ic = vap->iv_ic;
616
617         usb_callout_drain(&uvp->amrr_ch);
618         ieee80211_draintask(ic, &uvp->amrr_task);
619         ieee80211_amrr_cleanup(&uvp->amrr);
620         ieee80211_vap_detach(vap);
621         free(uvp, M_80211_VAP);
622 }
623
624 static void
625 ural_tx_free(struct ural_tx_data *data, int txerr)
626 {
627         struct ural_softc *sc = data->sc;
628
629         if (data->m != NULL) {
630                 if (data->m->m_flags & M_TXCB)
631                         ieee80211_process_callback(data->ni, data->m,
632                             txerr ? ETIMEDOUT : 0);
633                 m_freem(data->m);
634                 data->m = NULL;
635
636                 ieee80211_free_node(data->ni);
637                 data->ni = NULL;
638         }
639         STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
640         sc->tx_nfree++;
641 }
642
643 static void
644 ural_setup_tx_list(struct ural_softc *sc)
645 {
646         struct ural_tx_data *data;
647         int i;
648
649         sc->tx_nfree = 0;
650         STAILQ_INIT(&sc->tx_q);
651         STAILQ_INIT(&sc->tx_free);
652
653         for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
654                 data = &sc->tx_data[i];
655
656                 data->sc = sc;
657                 STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
658                 sc->tx_nfree++;
659         }
660 }
661
662 static void
663 ural_unsetup_tx_list(struct ural_softc *sc)
664 {
665         struct ural_tx_data *data;
666         int i;
667
668         /* make sure any subsequent use of the queues will fail */
669         sc->tx_nfree = 0;
670         STAILQ_INIT(&sc->tx_q);
671         STAILQ_INIT(&sc->tx_free);
672
673         /* free up all node references and mbufs */
674         for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
675                 data = &sc->tx_data[i];
676
677                 if (data->m != NULL) {
678                         m_freem(data->m);
679                         data->m = NULL;
680                 }
681                 if (data->ni != NULL) {
682                         ieee80211_free_node(data->ni);
683                         data->ni = NULL;
684                 }
685         }
686 }
687
688 static int
689 ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
690 {
691         struct ural_vap *uvp = URAL_VAP(vap);
692         struct ieee80211com *ic = vap->iv_ic;
693         struct ural_softc *sc = ic->ic_ifp->if_softc;
694         const struct ieee80211_txparam *tp;
695         struct ieee80211_node *ni;
696         struct mbuf *m;
697
698         DPRINTF("%s -> %s\n",
699                 ieee80211_state_name[vap->iv_state],
700                 ieee80211_state_name[nstate]);
701
702         IEEE80211_UNLOCK(ic);
703         RAL_LOCK(sc);
704         usb_callout_stop(&uvp->amrr_ch);
705
706         switch (nstate) {
707         case IEEE80211_S_INIT:
708                 if (vap->iv_state == IEEE80211_S_RUN) {
709                         /* abort TSF synchronization */
710                         ural_write(sc, RAL_TXRX_CSR19, 0);
711
712                         /* force tx led to stop blinking */
713                         ural_write(sc, RAL_MAC_CSR20, 0);
714                 }
715                 break;
716
717         case IEEE80211_S_RUN:
718                 ni = vap->iv_bss;
719
720                 if (vap->iv_opmode != IEEE80211_M_MONITOR) {
721                         ural_update_slot(ic->ic_ifp);
722                         ural_set_txpreamble(sc);
723                         ural_set_basicrates(sc, ic->ic_bsschan);
724                         IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
725                         ural_set_bssid(sc, sc->sc_bssid);
726                 }
727
728                 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
729                     vap->iv_opmode == IEEE80211_M_IBSS) {
730                         m = ieee80211_beacon_alloc(ni, &uvp->bo);
731                         if (m == NULL) {
732                                 device_printf(sc->sc_dev,
733                                     "could not allocate beacon\n");
734                                 RAL_UNLOCK(sc);
735                                 IEEE80211_LOCK(ic);
736                                 return (-1);
737                         }
738                         ieee80211_ref_node(ni);
739                         if (ural_tx_bcn(sc, m, ni) != 0) {
740                                 device_printf(sc->sc_dev,
741                                     "could not send beacon\n");
742                                 RAL_UNLOCK(sc);
743                                 IEEE80211_LOCK(ic);
744                                 return (-1);
745                         }
746                 }
747
748                 /* make tx led blink on tx (controlled by ASIC) */
749                 ural_write(sc, RAL_MAC_CSR20, 1);
750
751                 if (vap->iv_opmode != IEEE80211_M_MONITOR)
752                         ural_enable_tsf_sync(sc);
753                 else
754                         ural_enable_tsf(sc);
755
756                 /* enable automatic rate adaptation */
757                 /* XXX should use ic_bsschan but not valid until after newstate call below */
758                 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
759                 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
760                         ural_amrr_start(sc, ni);
761
762                 break;
763
764         default:
765                 break;
766         }
767         RAL_UNLOCK(sc);
768         IEEE80211_LOCK(ic);
769         return (uvp->newstate(vap, nstate, arg));
770 }
771
772
773 static void
774 ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
775 {
776         struct ural_softc *sc = usbd_xfer_softc(xfer);
777         struct ifnet *ifp = sc->sc_ifp;
778         struct ieee80211vap *vap;
779         struct ural_tx_data *data;
780         struct mbuf *m;
781         struct usb_page_cache *pc;
782         int len;
783
784         usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
785
786         switch (USB_GET_STATE(xfer)) {
787         case USB_ST_TRANSFERRED:
788                 DPRINTFN(11, "transfer complete, %d bytes\n", len);
789
790                 /* free resources */
791                 data = usbd_xfer_get_priv(xfer);
792                 ural_tx_free(data, 0);
793                 usbd_xfer_set_priv(xfer, NULL);
794
795                 ifp->if_opackets++;
796                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
797
798                 /* FALLTHROUGH */
799         case USB_ST_SETUP:
800 tr_setup:
801                 data = STAILQ_FIRST(&sc->tx_q);
802                 if (data) {
803                         STAILQ_REMOVE_HEAD(&sc->tx_q, next);
804                         m = data->m;
805
806                         if (m->m_pkthdr.len > (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) {
807                                 DPRINTFN(0, "data overflow, %u bytes\n",
808                                     m->m_pkthdr.len);
809                                 m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE);
810                         }
811                         pc = usbd_xfer_get_frame(xfer, 0);
812                         usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE);
813                         usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0,
814                             m->m_pkthdr.len);
815
816                         vap = data->ni->ni_vap;
817                         if (ieee80211_radiotap_active_vap(vap)) {
818                                 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
819
820                                 tap->wt_flags = 0;
821                                 tap->wt_rate = data->rate;
822                                 tap->wt_antenna = sc->tx_ant;
823
824                                 ieee80211_radiotap_tx(vap, m);
825                         }
826
827                         /* xfer length needs to be a multiple of two! */
828                         len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1;
829                         if ((len % 64) == 0)
830                                 len += 2;
831
832                         DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
833                             m->m_pkthdr.len, len);
834
835                         usbd_xfer_set_frame_len(xfer, 0, len);
836                         usbd_xfer_set_priv(xfer, data);
837
838                         usbd_transfer_submit(xfer);
839                 }
840                 RAL_UNLOCK(sc);
841                 ural_start(ifp);
842                 RAL_LOCK(sc);
843                 break;
844
845         default:                        /* Error */
846                 DPRINTFN(11, "transfer error, %s\n",
847                     usbd_errstr(error));
848
849                 ifp->if_oerrors++;
850                 data = usbd_xfer_get_priv(xfer);
851                 if (data != NULL) {
852                         ural_tx_free(data, error);
853                         usbd_xfer_set_priv(xfer, NULL);
854                 }
855
856                 if (error == USB_ERR_STALLED) {
857                         /* try to clear stall first */
858                         usbd_xfer_set_stall(xfer);
859                         goto tr_setup;
860                 }
861                 if (error == USB_ERR_TIMEOUT)
862                         device_printf(sc->sc_dev, "device timeout\n");
863                 break;
864         }
865 }
866
867 static void
868 ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
869 {
870         struct ural_softc *sc = usbd_xfer_softc(xfer);
871         struct ifnet *ifp = sc->sc_ifp;
872         struct ieee80211com *ic = ifp->if_l2com;
873         struct ieee80211_node *ni;
874         struct mbuf *m = NULL;
875         struct usb_page_cache *pc;
876         uint32_t flags;
877         int8_t rssi = 0, nf = 0;
878         int len;
879
880         usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
881
882         switch (USB_GET_STATE(xfer)) {
883         case USB_ST_TRANSFERRED:
884
885                 DPRINTFN(15, "rx done, actlen=%d\n", len);
886
887                 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
888                         DPRINTF("%s: xfer too short %d\n",
889                             device_get_nameunit(sc->sc_dev), len);
890                         ifp->if_ierrors++;
891                         goto tr_setup;
892                 }
893
894                 len -= RAL_RX_DESC_SIZE;
895                 /* rx descriptor is located at the end */
896                 pc = usbd_xfer_get_frame(xfer, 0);
897                 usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE);
898
899                 rssi = URAL_RSSI(sc->sc_rx_desc.rssi);
900                 nf = RAL_NOISE_FLOOR;
901                 flags = le32toh(sc->sc_rx_desc.flags);
902                 if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
903                         /*
904                          * This should not happen since we did not
905                          * request to receive those frames when we
906                          * filled RAL_TXRX_CSR2:
907                          */
908                         DPRINTFN(5, "PHY or CRC error\n");
909                         ifp->if_ierrors++;
910                         goto tr_setup;
911                 }
912
913                 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
914                 if (m == NULL) {
915                         DPRINTF("could not allocate mbuf\n");
916                         ifp->if_ierrors++;
917                         goto tr_setup;
918                 }
919                 usbd_copy_out(pc, 0, mtod(m, uint8_t *), len);
920
921                 /* finalize mbuf */
922                 m->m_pkthdr.rcvif = ifp;
923                 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
924
925                 if (ieee80211_radiotap_active(ic)) {
926                         struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
927
928                         /* XXX set once */
929                         tap->wr_flags = 0;
930                         tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
931                             (flags & RAL_RX_OFDM) ?
932                             IEEE80211_T_OFDM : IEEE80211_T_CCK);
933                         tap->wr_antenna = sc->rx_ant;
934                         tap->wr_antsignal = nf + rssi;
935                         tap->wr_antnoise = nf;
936                 }
937                 /* Strip trailing 802.11 MAC FCS. */
938                 m_adj(m, -IEEE80211_CRC_LEN);
939
940                 /* FALLTHROUGH */
941         case USB_ST_SETUP:
942 tr_setup:
943                 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
944                 usbd_transfer_submit(xfer);
945
946                 /*
947                  * At the end of a USB callback it is always safe to unlock
948                  * the private mutex of a device! That is why we do the
949                  * "ieee80211_input" here, and not some lines up!
950                  */
951                 RAL_UNLOCK(sc);
952                 if (m) {
953                         ni = ieee80211_find_rxnode(ic,
954                             mtod(m, struct ieee80211_frame_min *));
955                         if (ni != NULL) {
956                                 (void) ieee80211_input(ni, m, rssi, nf);
957                                 ieee80211_free_node(ni);
958                         } else
959                                 (void) ieee80211_input_all(ic, m, rssi, nf);
960                 }
961                 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
962                     !IFQ_IS_EMPTY(&ifp->if_snd))
963                         ural_start(ifp);
964                 RAL_LOCK(sc);
965                 return;
966
967         default:                        /* Error */
968                 if (error != USB_ERR_CANCELLED) {
969                         /* try to clear stall first */
970                         usbd_xfer_set_stall(xfer);
971                         goto tr_setup;
972                 }
973                 return;
974         }
975 }
976
977 static uint8_t
978 ural_plcp_signal(int rate)
979 {
980         switch (rate) {
981         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
982         case 12:        return 0xb;
983         case 18:        return 0xf;
984         case 24:        return 0xa;
985         case 36:        return 0xe;
986         case 48:        return 0x9;
987         case 72:        return 0xd;
988         case 96:        return 0x8;
989         case 108:       return 0xc;
990
991         /* CCK rates (NB: not IEEE std, device-specific) */
992         case 2:         return 0x0;
993         case 4:         return 0x1;
994         case 11:        return 0x2;
995         case 22:        return 0x3;
996         }
997         return 0xff;            /* XXX unsupported/unknown rate */
998 }
999
1000 static void
1001 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1002     uint32_t flags, int len, int rate)
1003 {
1004         struct ifnet *ifp = sc->sc_ifp;
1005         struct ieee80211com *ic = ifp->if_l2com;
1006         uint16_t plcp_length;
1007         int remainder;
1008
1009         desc->flags = htole32(flags);
1010         desc->flags |= htole32(RAL_TX_NEWSEQ);
1011         desc->flags |= htole32(len << 16);
1012
1013         desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1014         desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1015
1016         /* setup PLCP fields */
1017         desc->plcp_signal  = ural_plcp_signal(rate);
1018         desc->plcp_service = 4;
1019
1020         len += IEEE80211_CRC_LEN;
1021         if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1022                 desc->flags |= htole32(RAL_TX_OFDM);
1023
1024                 plcp_length = len & 0xfff;
1025                 desc->plcp_length_hi = plcp_length >> 6;
1026                 desc->plcp_length_lo = plcp_length & 0x3f;
1027         } else {
1028                 plcp_length = (16 * len + rate - 1) / rate;
1029                 if (rate == 22) {
1030                         remainder = (16 * len) % 22;
1031                         if (remainder != 0 && remainder < 7)
1032                                 desc->plcp_service |= RAL_PLCP_LENGEXT;
1033                 }
1034                 desc->plcp_length_hi = plcp_length >> 8;
1035                 desc->plcp_length_lo = plcp_length & 0xff;
1036
1037                 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1038                         desc->plcp_signal |= 0x08;
1039         }
1040
1041         desc->iv = 0;
1042         desc->eiv = 0;
1043 }
1044
1045 #define RAL_TX_TIMEOUT  5000
1046
1047 static int
1048 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1049 {
1050         struct ieee80211vap *vap = ni->ni_vap;
1051         struct ieee80211com *ic = ni->ni_ic;
1052         struct ifnet *ifp = sc->sc_ifp;
1053         const struct ieee80211_txparam *tp;
1054         struct ural_tx_data *data;
1055
1056         if (sc->tx_nfree == 0) {
1057                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1058                 m_freem(m0);
1059                 ieee80211_free_node(ni);
1060                 return EIO;
1061         }
1062         data = STAILQ_FIRST(&sc->tx_free);
1063         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1064         sc->tx_nfree--;
1065         tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
1066
1067         data->m = m0;
1068         data->ni = ni;
1069         data->rate = tp->mgmtrate;
1070
1071         ural_setup_tx_desc(sc, &data->desc,
1072             RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len,
1073             tp->mgmtrate);
1074
1075         DPRINTFN(10, "sending beacon frame len=%u rate=%u\n",
1076             m0->m_pkthdr.len, tp->mgmtrate);
1077
1078         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1079         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1080
1081         return (0);
1082 }
1083
1084 static int
1085 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1086 {
1087         struct ieee80211vap *vap = ni->ni_vap;
1088         struct ieee80211com *ic = ni->ni_ic;
1089         const struct ieee80211_txparam *tp;
1090         struct ural_tx_data *data;
1091         struct ieee80211_frame *wh;
1092         struct ieee80211_key *k;
1093         uint32_t flags;
1094         uint16_t dur;
1095
1096         RAL_LOCK_ASSERT(sc, MA_OWNED);
1097
1098         data = STAILQ_FIRST(&sc->tx_free);
1099         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1100         sc->tx_nfree--;
1101
1102         tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1103
1104         wh = mtod(m0, struct ieee80211_frame *);
1105         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1106                 k = ieee80211_crypto_encap(ni, m0);
1107                 if (k == NULL) {
1108                         m_freem(m0);
1109                         return ENOBUFS;
1110                 }
1111                 wh = mtod(m0, struct ieee80211_frame *);
1112         }
1113
1114         data->m = m0;
1115         data->ni = ni;
1116         data->rate = tp->mgmtrate;
1117
1118         flags = 0;
1119         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1120                 flags |= RAL_TX_ACK;
1121
1122                 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 
1123                     ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1124                 *(uint16_t *)wh->i_dur = htole16(dur);
1125
1126                 /* tell hardware to add timestamp for probe responses */
1127                 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1128                     IEEE80211_FC0_TYPE_MGT &&
1129                     (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1130                     IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1131                         flags |= RAL_TX_TIMESTAMP;
1132         }
1133
1134         ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate);
1135
1136         DPRINTFN(10, "sending mgt frame len=%u rate=%u\n",
1137             m0->m_pkthdr.len, tp->mgmtrate);
1138
1139         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1140         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1141
1142         return 0;
1143 }
1144
1145 static int
1146 ural_sendprot(struct ural_softc *sc,
1147     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1148 {
1149         struct ieee80211com *ic = ni->ni_ic;
1150         const struct ieee80211_frame *wh;
1151         struct ural_tx_data *data;
1152         struct mbuf *mprot;
1153         int protrate, ackrate, pktlen, flags, isshort;
1154         uint16_t dur;
1155
1156         KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1157             ("protection %d", prot));
1158
1159         wh = mtod(m, const struct ieee80211_frame *);
1160         pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1161
1162         protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1163         ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
1164
1165         isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1166         dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort);
1167             + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1168         flags = RAL_TX_RETRY(7);
1169         if (prot == IEEE80211_PROT_RTSCTS) {
1170                 /* NB: CTS is the same size as an ACK */
1171                 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1172                 flags |= RAL_TX_ACK;
1173                 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1174         } else {
1175                 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1176         }
1177         if (mprot == NULL) {
1178                 /* XXX stat + msg */
1179                 return ENOBUFS;
1180         }
1181         data = STAILQ_FIRST(&sc->tx_free);
1182         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1183         sc->tx_nfree--;
1184
1185         data->m = mprot;
1186         data->ni = ieee80211_ref_node(ni);
1187         data->rate = protrate;
1188         ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate);
1189
1190         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1191         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1192
1193         return 0;
1194 }
1195
1196 static int
1197 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1198     const struct ieee80211_bpf_params *params)
1199 {
1200         struct ieee80211com *ic = ni->ni_ic;
1201         struct ural_tx_data *data;
1202         uint32_t flags;
1203         int error;
1204         int rate;
1205
1206         RAL_LOCK_ASSERT(sc, MA_OWNED);
1207         KASSERT(params != NULL, ("no raw xmit params"));
1208
1209         rate = params->ibp_rate0;
1210         if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1211                 m_freem(m0);
1212                 return EINVAL;
1213         }
1214         flags = 0;
1215         if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1216                 flags |= RAL_TX_ACK;
1217         if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1218                 error = ural_sendprot(sc, m0, ni,
1219                     params->ibp_flags & IEEE80211_BPF_RTS ?
1220                          IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1221                     rate);
1222                 if (error || sc->tx_nfree == 0) {
1223                         m_freem(m0);
1224                         return ENOBUFS;
1225                 }
1226                 flags |= RAL_TX_IFS_SIFS;
1227         }
1228
1229         data = STAILQ_FIRST(&sc->tx_free);
1230         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1231         sc->tx_nfree--;
1232
1233         data->m = m0;
1234         data->ni = ni;
1235         data->rate = rate;
1236
1237         /* XXX need to setup descriptor ourself */
1238         ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1239
1240         DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1241             m0->m_pkthdr.len, rate);
1242
1243         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1244         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1245
1246         return 0;
1247 }
1248
1249 static int
1250 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1251 {
1252         struct ieee80211vap *vap = ni->ni_vap;
1253         struct ieee80211com *ic = ni->ni_ic;
1254         struct ural_tx_data *data;
1255         struct ieee80211_frame *wh;
1256         const struct ieee80211_txparam *tp;
1257         struct ieee80211_key *k;
1258         uint32_t flags = 0;
1259         uint16_t dur;
1260         int error, rate;
1261
1262         RAL_LOCK_ASSERT(sc, MA_OWNED);
1263
1264         wh = mtod(m0, struct ieee80211_frame *);
1265
1266         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1267         if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1268                 rate = tp->mcastrate;
1269         else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1270                 rate = tp->ucastrate;
1271         else
1272                 rate = ni->ni_txrate;
1273
1274         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1275                 k = ieee80211_crypto_encap(ni, m0);
1276                 if (k == NULL) {
1277                         m_freem(m0);
1278                         return ENOBUFS;
1279                 }
1280                 /* packet header may have moved, reset our local pointer */
1281                 wh = mtod(m0, struct ieee80211_frame *);
1282         }
1283
1284         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1285                 int prot = IEEE80211_PROT_NONE;
1286                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1287                         prot = IEEE80211_PROT_RTSCTS;
1288                 else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1289                     ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1290                         prot = ic->ic_protmode;
1291                 if (prot != IEEE80211_PROT_NONE) {
1292                         error = ural_sendprot(sc, m0, ni, prot, rate);
1293                         if (error || sc->tx_nfree == 0) {
1294                                 m_freem(m0);
1295                                 return ENOBUFS;
1296                         }
1297                         flags |= RAL_TX_IFS_SIFS;
1298                 }
1299         }
1300
1301         data = STAILQ_FIRST(&sc->tx_free);
1302         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1303         sc->tx_nfree--;
1304
1305         data->m = m0;
1306         data->ni = ni;
1307         data->rate = rate;
1308
1309         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1310                 flags |= RAL_TX_ACK;
1311                 flags |= RAL_TX_RETRY(7);
1312
1313                 dur = ieee80211_ack_duration(ic->ic_rt, rate, 
1314                     ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1315                 *(uint16_t *)wh->i_dur = htole16(dur);
1316         }
1317
1318         ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1319
1320         DPRINTFN(10, "sending data frame len=%u rate=%u\n",
1321             m0->m_pkthdr.len, rate);
1322
1323         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1324         usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1325
1326         return 0;
1327 }
1328
1329 static void
1330 ural_start(struct ifnet *ifp)
1331 {
1332         struct ural_softc *sc = ifp->if_softc;
1333         struct ieee80211_node *ni;
1334         struct mbuf *m;
1335
1336         RAL_LOCK(sc);
1337         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1338                 RAL_UNLOCK(sc);
1339                 return;
1340         }
1341         for (;;) {
1342                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1343                 if (m == NULL)
1344                         break;
1345                 if (sc->tx_nfree < RAL_TX_MINFREE) {
1346                         IFQ_DRV_PREPEND(&ifp->if_snd, m);
1347                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1348                         break;
1349                 }
1350                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1351                 if (ural_tx_data(sc, m, ni) != 0) {
1352                         ieee80211_free_node(ni);
1353                         ifp->if_oerrors++;
1354                         break;
1355                 }
1356         }
1357         RAL_UNLOCK(sc);
1358 }
1359
1360 static int
1361 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1362 {
1363         struct ural_softc *sc = ifp->if_softc;
1364         struct ieee80211com *ic = ifp->if_l2com;
1365         struct ifreq *ifr = (struct ifreq *) data;
1366         int error = 0, startall = 0;
1367
1368         switch (cmd) {
1369         case SIOCSIFFLAGS:
1370                 RAL_LOCK(sc);
1371                 if (ifp->if_flags & IFF_UP) {
1372                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1373                                 ural_init_locked(sc);
1374                                 startall = 1;
1375                         } else
1376                                 ural_setpromisc(sc);
1377                 } else {
1378                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1379                                 ural_stop(sc);
1380                 }
1381                 RAL_UNLOCK(sc);
1382                 if (startall)
1383                         ieee80211_start_all(ic);
1384                 break;
1385         case SIOCGIFMEDIA:
1386         case SIOCSIFMEDIA:
1387                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1388                 break;
1389         default:
1390                 error = ether_ioctl(ifp, cmd, data);
1391                 break;
1392         }
1393         return error;
1394 }
1395
1396 static void
1397 ural_set_testmode(struct ural_softc *sc)
1398 {
1399         struct usb_device_request req;
1400         usb_error_t error;
1401
1402         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1403         req.bRequest = RAL_VENDOR_REQUEST;
1404         USETW(req.wValue, 4);
1405         USETW(req.wIndex, 1);
1406         USETW(req.wLength, 0);
1407
1408         error = ural_do_request(sc, &req, NULL);
1409         if (error != 0) {
1410                 device_printf(sc->sc_dev, "could not set test mode: %s\n",
1411                     usbd_errstr(error));
1412         }
1413 }
1414
1415 static void
1416 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1417 {
1418         struct usb_device_request req;
1419         usb_error_t error;
1420
1421         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1422         req.bRequest = RAL_READ_EEPROM;
1423         USETW(req.wValue, 0);
1424         USETW(req.wIndex, addr);
1425         USETW(req.wLength, len);
1426
1427         error = ural_do_request(sc, &req, buf);
1428         if (error != 0) {
1429                 device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1430                     usbd_errstr(error));
1431         }
1432 }
1433
1434 static uint16_t
1435 ural_read(struct ural_softc *sc, uint16_t reg)
1436 {
1437         struct usb_device_request req;
1438         usb_error_t error;
1439         uint16_t val;
1440
1441         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1442         req.bRequest = RAL_READ_MAC;
1443         USETW(req.wValue, 0);
1444         USETW(req.wIndex, reg);
1445         USETW(req.wLength, sizeof (uint16_t));
1446
1447         error = ural_do_request(sc, &req, &val);
1448         if (error != 0) {
1449                 device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1450                     usbd_errstr(error));
1451                 return 0;
1452         }
1453
1454         return le16toh(val);
1455 }
1456
1457 static void
1458 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1459 {
1460         struct usb_device_request req;
1461         usb_error_t error;
1462
1463         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1464         req.bRequest = RAL_READ_MULTI_MAC;
1465         USETW(req.wValue, 0);
1466         USETW(req.wIndex, reg);
1467         USETW(req.wLength, len);
1468
1469         error = ural_do_request(sc, &req, buf);
1470         if (error != 0) {
1471                 device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1472                     usbd_errstr(error));
1473         }
1474 }
1475
1476 static void
1477 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1478 {
1479         struct usb_device_request req;
1480         usb_error_t error;
1481
1482         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1483         req.bRequest = RAL_WRITE_MAC;
1484         USETW(req.wValue, val);
1485         USETW(req.wIndex, reg);
1486         USETW(req.wLength, 0);
1487
1488         error = ural_do_request(sc, &req, NULL);
1489         if (error != 0) {
1490                 device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1491                     usbd_errstr(error));
1492         }
1493 }
1494
1495 static void
1496 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1497 {
1498         struct usb_device_request req;
1499         usb_error_t error;
1500
1501         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1502         req.bRequest = RAL_WRITE_MULTI_MAC;
1503         USETW(req.wValue, 0);
1504         USETW(req.wIndex, reg);
1505         USETW(req.wLength, len);
1506
1507         error = ural_do_request(sc, &req, buf);
1508         if (error != 0) {
1509                 device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1510                     usbd_errstr(error));
1511         }
1512 }
1513
1514 static void
1515 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1516 {
1517         uint16_t tmp;
1518         int ntries;
1519
1520         for (ntries = 0; ntries < 100; ntries++) {
1521                 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1522                         break;
1523                 if (ural_pause(sc, hz / 100))
1524                         break;
1525         }
1526         if (ntries == 100) {
1527                 device_printf(sc->sc_dev, "could not write to BBP\n");
1528                 return;
1529         }
1530
1531         tmp = reg << 8 | val;
1532         ural_write(sc, RAL_PHY_CSR7, tmp);
1533 }
1534
1535 static uint8_t
1536 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1537 {
1538         uint16_t val;
1539         int ntries;
1540
1541         val = RAL_BBP_WRITE | reg << 8;
1542         ural_write(sc, RAL_PHY_CSR7, val);
1543
1544         for (ntries = 0; ntries < 100; ntries++) {
1545                 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1546                         break;
1547                 if (ural_pause(sc, hz / 100))
1548                         break;
1549         }
1550         if (ntries == 100) {
1551                 device_printf(sc->sc_dev, "could not read BBP\n");
1552                 return 0;
1553         }
1554
1555         return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1556 }
1557
1558 static void
1559 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1560 {
1561         uint32_t tmp;
1562         int ntries;
1563
1564         for (ntries = 0; ntries < 100; ntries++) {
1565                 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1566                         break;
1567                 if (ural_pause(sc, hz / 100))
1568                         break;
1569         }
1570         if (ntries == 100) {
1571                 device_printf(sc->sc_dev, "could not write to RF\n");
1572                 return;
1573         }
1574
1575         tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1576         ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1577         ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1578
1579         /* remember last written value in sc */
1580         sc->rf_regs[reg] = val;
1581
1582         DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
1583 }
1584
1585 /* ARGUSED */
1586 static struct ieee80211_node *
1587 ural_node_alloc(struct ieee80211vap *vap __unused,
1588         const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1589 {
1590         struct ural_node *un;
1591
1592         un = malloc(sizeof(struct ural_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1593         return un != NULL ? &un->ni : NULL;
1594 }
1595
1596 static void
1597 ural_newassoc(struct ieee80211_node *ni, int isnew)
1598 {
1599         struct ieee80211vap *vap = ni->ni_vap;
1600
1601         ieee80211_amrr_node_init(&URAL_VAP(vap)->amrr, &URAL_NODE(ni)->amn, ni);
1602 }
1603
1604 static void
1605 ural_scan_start(struct ieee80211com *ic)
1606 {
1607         struct ifnet *ifp = ic->ic_ifp;
1608         struct ural_softc *sc = ifp->if_softc;
1609
1610         RAL_LOCK(sc);
1611         ural_write(sc, RAL_TXRX_CSR19, 0);
1612         ural_set_bssid(sc, ifp->if_broadcastaddr);
1613         RAL_UNLOCK(sc);
1614 }
1615
1616 static void
1617 ural_scan_end(struct ieee80211com *ic)
1618 {
1619         struct ural_softc *sc = ic->ic_ifp->if_softc;
1620
1621         RAL_LOCK(sc);
1622         ural_enable_tsf_sync(sc);
1623         ural_set_bssid(sc, sc->sc_bssid);
1624         RAL_UNLOCK(sc);
1625
1626 }
1627
1628 static void
1629 ural_set_channel(struct ieee80211com *ic)
1630 {
1631         struct ural_softc *sc = ic->ic_ifp->if_softc;
1632
1633         RAL_LOCK(sc);
1634         ural_set_chan(sc, ic->ic_curchan);
1635         RAL_UNLOCK(sc);
1636 }
1637
1638 static void
1639 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1640 {
1641         struct ifnet *ifp = sc->sc_ifp;
1642         struct ieee80211com *ic = ifp->if_l2com;
1643         uint8_t power, tmp;
1644         int i, chan;
1645
1646         chan = ieee80211_chan2ieee(ic, c);
1647         if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1648                 return;
1649
1650         if (IEEE80211_IS_CHAN_2GHZ(c))
1651                 power = min(sc->txpow[chan - 1], 31);
1652         else
1653                 power = 31;
1654
1655         /* adjust txpower using ifconfig settings */
1656         power -= (100 - ic->ic_txpowlimit) / 8;
1657
1658         DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power);
1659
1660         switch (sc->rf_rev) {
1661         case RAL_RF_2522:
1662                 ural_rf_write(sc, RAL_RF1, 0x00814);
1663                 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1664                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1665                 break;
1666
1667         case RAL_RF_2523:
1668                 ural_rf_write(sc, RAL_RF1, 0x08804);
1669                 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1670                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1671                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1672                 break;
1673
1674         case RAL_RF_2524:
1675                 ural_rf_write(sc, RAL_RF1, 0x0c808);
1676                 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1677                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1678                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1679                 break;
1680
1681         case RAL_RF_2525:
1682                 ural_rf_write(sc, RAL_RF1, 0x08808);
1683                 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1684                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1685                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1686
1687                 ural_rf_write(sc, RAL_RF1, 0x08808);
1688                 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1689                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1690                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1691                 break;
1692
1693         case RAL_RF_2525E:
1694                 ural_rf_write(sc, RAL_RF1, 0x08808);
1695                 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1696                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1697                 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1698                 break;
1699
1700         case RAL_RF_2526:
1701                 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1702                 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1703                 ural_rf_write(sc, RAL_RF1, 0x08804);
1704
1705                 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1706                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1707                 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1708                 break;
1709
1710         /* dual-band RF */
1711         case RAL_RF_5222:
1712                 for (i = 0; ural_rf5222[i].chan != chan; i++);
1713
1714                 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1715                 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1716                 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1717                 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1718                 break;
1719         }
1720
1721         if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1722             (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1723                 /* set Japan filter bit for channel 14 */
1724                 tmp = ural_bbp_read(sc, 70);
1725
1726                 tmp &= ~RAL_JAPAN_FILTER;
1727                 if (chan == 14)
1728                         tmp |= RAL_JAPAN_FILTER;
1729
1730                 ural_bbp_write(sc, 70, tmp);
1731
1732                 /* clear CRC errors */
1733                 ural_read(sc, RAL_STA_CSR0);
1734
1735                 ural_pause(sc, hz / 100);
1736                 ural_disable_rf_tune(sc);
1737         }
1738
1739         /* XXX doesn't belong here */
1740         /* update basic rate set */
1741         ural_set_basicrates(sc, c);
1742
1743         /* give the hardware some time to do the switchover */
1744         ural_pause(sc, hz / 100);
1745 }
1746
1747 /*
1748  * Disable RF auto-tuning.
1749  */
1750 static void
1751 ural_disable_rf_tune(struct ural_softc *sc)
1752 {
1753         uint32_t tmp;
1754
1755         if (sc->rf_rev != RAL_RF_2523) {
1756                 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1757                 ural_rf_write(sc, RAL_RF1, tmp);
1758         }
1759
1760         tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1761         ural_rf_write(sc, RAL_RF3, tmp);
1762
1763         DPRINTFN(2, "disabling RF autotune\n");
1764 }
1765
1766 /*
1767  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1768  * synchronization.
1769  */
1770 static void
1771 ural_enable_tsf_sync(struct ural_softc *sc)
1772 {
1773         struct ifnet *ifp = sc->sc_ifp;
1774         struct ieee80211com *ic = ifp->if_l2com;
1775         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1776         uint16_t logcwmin, preload, tmp;
1777
1778         /* first, disable TSF synchronization */
1779         ural_write(sc, RAL_TXRX_CSR19, 0);
1780
1781         tmp = (16 * vap->iv_bss->ni_intval) << 4;
1782         ural_write(sc, RAL_TXRX_CSR18, tmp);
1783
1784         logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1785         preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1786         tmp = logcwmin << 12 | preload;
1787         ural_write(sc, RAL_TXRX_CSR20, tmp);
1788
1789         /* finally, enable TSF synchronization */
1790         tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1791         if (ic->ic_opmode == IEEE80211_M_STA)
1792                 tmp |= RAL_ENABLE_TSF_SYNC(1);
1793         else
1794                 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1795         ural_write(sc, RAL_TXRX_CSR19, tmp);
1796
1797         DPRINTF("enabling TSF synchronization\n");
1798 }
1799
1800 static void
1801 ural_enable_tsf(struct ural_softc *sc)
1802 {
1803         /* first, disable TSF synchronization */
1804         ural_write(sc, RAL_TXRX_CSR19, 0);
1805         ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2));
1806 }
1807
1808 #define RAL_RXTX_TURNAROUND     5       /* us */
1809 static void
1810 ural_update_slot(struct ifnet *ifp)
1811 {
1812         struct ural_softc *sc = ifp->if_softc;
1813         struct ieee80211com *ic = ifp->if_l2com;
1814         uint16_t slottime, sifs, eifs;
1815
1816         slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1817
1818         /*
1819          * These settings may sound a bit inconsistent but this is what the
1820          * reference driver does.
1821          */
1822         if (ic->ic_curmode == IEEE80211_MODE_11B) {
1823                 sifs = 16 - RAL_RXTX_TURNAROUND;
1824                 eifs = 364;
1825         } else {
1826                 sifs = 10 - RAL_RXTX_TURNAROUND;
1827                 eifs = 64;
1828         }
1829
1830         ural_write(sc, RAL_MAC_CSR10, slottime);
1831         ural_write(sc, RAL_MAC_CSR11, sifs);
1832         ural_write(sc, RAL_MAC_CSR12, eifs);
1833 }
1834
1835 static void
1836 ural_set_txpreamble(struct ural_softc *sc)
1837 {
1838         struct ifnet *ifp = sc->sc_ifp;
1839         struct ieee80211com *ic = ifp->if_l2com;
1840         uint16_t tmp;
1841
1842         tmp = ural_read(sc, RAL_TXRX_CSR10);
1843
1844         tmp &= ~RAL_SHORT_PREAMBLE;
1845         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1846                 tmp |= RAL_SHORT_PREAMBLE;
1847
1848         ural_write(sc, RAL_TXRX_CSR10, tmp);
1849 }
1850
1851 static void
1852 ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c)
1853 {
1854         /* XXX wrong, take from rate set */
1855         /* update basic rate set */
1856         if (IEEE80211_IS_CHAN_5GHZ(c)) {
1857                 /* 11a basic rates: 6, 12, 24Mbps */
1858                 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1859         } else if (IEEE80211_IS_CHAN_ANYG(c)) {
1860                 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1861                 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1862         } else {
1863                 /* 11b basic rates: 1, 2Mbps */
1864                 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1865         }
1866 }
1867
1868 static void
1869 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid)
1870 {
1871         uint16_t tmp;
1872
1873         tmp = bssid[0] | bssid[1] << 8;
1874         ural_write(sc, RAL_MAC_CSR5, tmp);
1875
1876         tmp = bssid[2] | bssid[3] << 8;
1877         ural_write(sc, RAL_MAC_CSR6, tmp);
1878
1879         tmp = bssid[4] | bssid[5] << 8;
1880         ural_write(sc, RAL_MAC_CSR7, tmp);
1881
1882         DPRINTF("setting BSSID to %6D\n", bssid, ":");
1883 }
1884
1885 static void
1886 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1887 {
1888         uint16_t tmp;
1889
1890         tmp = addr[0] | addr[1] << 8;
1891         ural_write(sc, RAL_MAC_CSR2, tmp);
1892
1893         tmp = addr[2] | addr[3] << 8;
1894         ural_write(sc, RAL_MAC_CSR3, tmp);
1895
1896         tmp = addr[4] | addr[5] << 8;
1897         ural_write(sc, RAL_MAC_CSR4, tmp);
1898
1899         DPRINTF("setting MAC address to %6D\n", addr, ":");
1900 }
1901
1902 static void
1903 ural_setpromisc(struct ural_softc *sc)
1904 {
1905         struct ifnet *ifp = sc->sc_ifp;
1906         uint32_t tmp;
1907
1908         tmp = ural_read(sc, RAL_TXRX_CSR2);
1909
1910         tmp &= ~RAL_DROP_NOT_TO_ME;
1911         if (!(ifp->if_flags & IFF_PROMISC))
1912                 tmp |= RAL_DROP_NOT_TO_ME;
1913
1914         ural_write(sc, RAL_TXRX_CSR2, tmp);
1915
1916         DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1917             "entering" : "leaving");
1918 }
1919
1920 static void
1921 ural_update_promisc(struct ifnet *ifp)
1922 {
1923         struct ural_softc *sc = ifp->if_softc;
1924
1925         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1926                 return;
1927
1928         RAL_LOCK(sc);
1929         ural_setpromisc(sc);
1930         RAL_UNLOCK(sc);
1931 }
1932
1933 static const char *
1934 ural_get_rf(int rev)
1935 {
1936         switch (rev) {
1937         case RAL_RF_2522:       return "RT2522";
1938         case RAL_RF_2523:       return "RT2523";
1939         case RAL_RF_2524:       return "RT2524";
1940         case RAL_RF_2525:       return "RT2525";
1941         case RAL_RF_2525E:      return "RT2525e";
1942         case RAL_RF_2526:       return "RT2526";
1943         case RAL_RF_5222:       return "RT5222";
1944         default:                return "unknown";
1945         }
1946 }
1947
1948 static void
1949 ural_read_eeprom(struct ural_softc *sc)
1950 {
1951         uint16_t val;
1952
1953         ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1954         val = le16toh(val);
1955         sc->rf_rev =   (val >> 11) & 0x7;
1956         sc->hw_radio = (val >> 10) & 0x1;
1957         sc->led_mode = (val >> 6)  & 0x7;
1958         sc->rx_ant =   (val >> 4)  & 0x3;
1959         sc->tx_ant =   (val >> 2)  & 0x3;
1960         sc->nb_ant =   val & 0x3;
1961
1962         /* read MAC address */
1963         ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, sc->sc_bssid, 6);
1964
1965         /* read default values for BBP registers */
1966         ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1967
1968         /* read Tx power for all b/g channels */
1969         ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1970 }
1971
1972 static int
1973 ural_bbp_init(struct ural_softc *sc)
1974 {
1975 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
1976         int i, ntries;
1977
1978         /* wait for BBP to be ready */
1979         for (ntries = 0; ntries < 100; ntries++) {
1980                 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1981                         break;
1982                 if (ural_pause(sc, hz / 100))
1983                         break;
1984         }
1985         if (ntries == 100) {
1986                 device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1987                 return EIO;
1988         }
1989
1990         /* initialize BBP registers to default values */
1991         for (i = 0; i < N(ural_def_bbp); i++)
1992                 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
1993
1994 #if 0
1995         /* initialize BBP registers to values stored in EEPROM */
1996         for (i = 0; i < 16; i++) {
1997                 if (sc->bbp_prom[i].reg == 0xff)
1998                         continue;
1999                 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2000         }
2001 #endif
2002
2003         return 0;
2004 #undef N
2005 }
2006
2007 static void
2008 ural_set_txantenna(struct ural_softc *sc, int antenna)
2009 {
2010         uint16_t tmp;
2011         uint8_t tx;
2012
2013         tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2014         if (antenna == 1)
2015                 tx |= RAL_BBP_ANTA;
2016         else if (antenna == 2)
2017                 tx |= RAL_BBP_ANTB;
2018         else
2019                 tx |= RAL_BBP_DIVERSITY;
2020
2021         /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2022         if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2023             sc->rf_rev == RAL_RF_5222)
2024                 tx |= RAL_BBP_FLIPIQ;
2025
2026         ural_bbp_write(sc, RAL_BBP_TX, tx);
2027
2028         /* update values in PHY_CSR5 and PHY_CSR6 */
2029         tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2030         ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2031
2032         tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2033         ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2034 }
2035
2036 static void
2037 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2038 {
2039         uint8_t rx;
2040
2041         rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2042         if (antenna == 1)
2043                 rx |= RAL_BBP_ANTA;
2044         else if (antenna == 2)
2045                 rx |= RAL_BBP_ANTB;
2046         else
2047                 rx |= RAL_BBP_DIVERSITY;
2048
2049         /* need to force no I/Q flip for RF 2525e and 2526 */
2050         if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2051                 rx &= ~RAL_BBP_FLIPIQ;
2052
2053         ural_bbp_write(sc, RAL_BBP_RX, rx);
2054 }
2055
2056 static void
2057 ural_init_locked(struct ural_softc *sc)
2058 {
2059 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
2060         struct ifnet *ifp = sc->sc_ifp;
2061         struct ieee80211com *ic = ifp->if_l2com;
2062         uint16_t tmp;
2063         int i, ntries;
2064
2065         RAL_LOCK_ASSERT(sc, MA_OWNED);
2066
2067         ural_set_testmode(sc);
2068         ural_write(sc, 0x308, 0x00f0);  /* XXX magic */
2069
2070         ural_stop(sc);
2071
2072         /* initialize MAC registers to default values */
2073         for (i = 0; i < N(ural_def_mac); i++)
2074                 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2075
2076         /* wait for BBP and RF to wake up (this can take a long time!) */
2077         for (ntries = 0; ntries < 100; ntries++) {
2078                 tmp = ural_read(sc, RAL_MAC_CSR17);
2079                 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2080                     (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2081                         break;
2082                 if (ural_pause(sc, hz / 100))
2083                         break;
2084         }
2085         if (ntries == 100) {
2086                 device_printf(sc->sc_dev,
2087                     "timeout waiting for BBP/RF to wakeup\n");
2088                 goto fail;
2089         }
2090
2091         /* we're ready! */
2092         ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2093
2094         /* set basic rate set (will be updated later) */
2095         ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2096
2097         if (ural_bbp_init(sc) != 0)
2098                 goto fail;
2099
2100         ural_set_chan(sc, ic->ic_curchan);
2101
2102         /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2103         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2104
2105         ural_set_txantenna(sc, sc->tx_ant);
2106         ural_set_rxantenna(sc, sc->rx_ant);
2107
2108         ural_set_macaddr(sc, IF_LLADDR(ifp));
2109
2110         /*
2111          * Allocate Tx and Rx xfer queues.
2112          */
2113         ural_setup_tx_list(sc);
2114
2115         /* kick Rx */
2116         tmp = RAL_DROP_PHY | RAL_DROP_CRC;
2117         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2118                 tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
2119                 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2120                         tmp |= RAL_DROP_TODS;
2121                 if (!(ifp->if_flags & IFF_PROMISC))
2122                         tmp |= RAL_DROP_NOT_TO_ME;
2123         }
2124         ural_write(sc, RAL_TXRX_CSR2, tmp);
2125
2126         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2127         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2128         usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]);
2129         usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]);
2130         return;
2131
2132 fail:   ural_stop(sc);
2133 #undef N
2134 }
2135
2136 static void
2137 ural_init(void *priv)
2138 {
2139         struct ural_softc *sc = priv;
2140         struct ifnet *ifp = sc->sc_ifp;
2141         struct ieee80211com *ic = ifp->if_l2com;
2142
2143         RAL_LOCK(sc);
2144         ural_init_locked(sc);
2145         RAL_UNLOCK(sc);
2146
2147         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2148                 ieee80211_start_all(ic);                /* start all vap's */
2149 }
2150
2151 static void
2152 ural_stop(struct ural_softc *sc)
2153 {
2154         struct ifnet *ifp = sc->sc_ifp;
2155
2156         RAL_LOCK_ASSERT(sc, MA_OWNED);
2157
2158         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2159
2160         /*
2161          * Drain all the transfers, if not already drained:
2162          */
2163         RAL_UNLOCK(sc);
2164         usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]);
2165         usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]);
2166         RAL_LOCK(sc);
2167
2168         ural_unsetup_tx_list(sc);
2169
2170         /* disable Rx */
2171         ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2172         /* reset ASIC and BBP (but won't reset MAC registers!) */
2173         ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2174         /* wait a little */
2175         ural_pause(sc, hz / 10);
2176         ural_write(sc, RAL_MAC_CSR1, 0);
2177         /* wait a little */
2178         ural_pause(sc, hz / 10);
2179 }
2180
2181 static int
2182 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2183         const struct ieee80211_bpf_params *params)
2184 {
2185         struct ieee80211com *ic = ni->ni_ic;
2186         struct ifnet *ifp = ic->ic_ifp;
2187         struct ural_softc *sc = ifp->if_softc;
2188
2189         RAL_LOCK(sc);
2190         /* prevent management frames from being sent if we're not ready */
2191         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2192                 RAL_UNLOCK(sc);
2193                 m_freem(m);
2194                 ieee80211_free_node(ni);
2195                 return ENETDOWN;
2196         }
2197         if (sc->tx_nfree < RAL_TX_MINFREE) {
2198                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2199                 RAL_UNLOCK(sc);
2200                 m_freem(m);
2201                 ieee80211_free_node(ni);
2202                 return EIO;
2203         }
2204
2205         ifp->if_opackets++;
2206
2207         if (params == NULL) {
2208                 /*
2209                  * Legacy path; interpret frame contents to decide
2210                  * precisely how to send the frame.
2211                  */
2212                 if (ural_tx_mgt(sc, m, ni) != 0)
2213                         goto bad;
2214         } else {
2215                 /*
2216                  * Caller supplied explicit parameters to use in
2217                  * sending the frame.
2218                  */
2219                 if (ural_tx_raw(sc, m, ni, params) != 0)
2220                         goto bad;
2221         }
2222         RAL_UNLOCK(sc);
2223         return 0;
2224 bad:
2225         ifp->if_oerrors++;
2226         RAL_UNLOCK(sc);
2227         ieee80211_free_node(ni);
2228         return EIO;             /* XXX */
2229 }
2230
2231 static void
2232 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2233 {
2234         struct ieee80211vap *vap = ni->ni_vap;
2235         struct ural_vap *uvp = URAL_VAP(vap);
2236
2237         /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2238         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2239
2240         ieee80211_amrr_node_init(&uvp->amrr, &URAL_NODE(ni)->amn, ni);
2241
2242         usb_callout_reset(&uvp->amrr_ch, hz, ural_amrr_timeout, uvp);
2243 }
2244
2245 static void
2246 ural_amrr_timeout(void *arg)
2247 {
2248         struct ural_vap *uvp = arg;
2249         struct ieee80211vap *vap = &uvp->vap;
2250         struct ieee80211com *ic = vap->iv_ic;
2251
2252         ieee80211_runtask(ic, &uvp->amrr_task);
2253 }
2254
2255 static void
2256 ural_amrr_task(void *arg, int pending)
2257 {
2258         struct ural_vap *uvp = arg;
2259         struct ieee80211vap *vap = &uvp->vap;
2260         struct ieee80211com *ic = vap->iv_ic;
2261         struct ifnet *ifp = ic->ic_ifp;
2262         struct ural_softc *sc = ifp->if_softc;
2263         struct ieee80211_node *ni = vap->iv_bss;
2264         int ok, fail;
2265
2266         RAL_LOCK(sc);
2267         /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2268         ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2269
2270         ok = sc->sta[7] +               /* TX ok w/o retry */
2271              sc->sta[8];                /* TX ok w/ retry */
2272         fail = sc->sta[9];              /* TX retry-fail count */
2273
2274         ieee80211_amrr_tx_update(&URAL_NODE(ni)->amn,
2275             ok+fail, ok, sc->sta[8] + fail);
2276         (void) ieee80211_amrr_choose(ni, &URAL_NODE(ni)->amn);
2277
2278         ifp->if_oerrors += fail;        /* count TX retry-fail as Tx errors */
2279
2280         usb_callout_reset(&uvp->amrr_ch, hz, ural_amrr_timeout, uvp);
2281         RAL_UNLOCK(sc);
2282 }
2283
2284 static int
2285 ural_pause(struct ural_softc *sc, int timeout)
2286 {
2287
2288         usb_pause_mtx(&sc->sc_mtx, timeout);
2289         return (0);
2290 }