]> CyberLeo.Net >> Repos - FreeBSD/releng/8.0.git/blob - sys/dev/wpi/if_wpi.c
Adjust to reflect 8.0-RELEASE.
[FreeBSD/releng/8.0.git] / sys / dev / wpi / if_wpi.c
1 /*-
2  * Copyright (c) 2006,2007
3  *      Damien Bergamini <damien.bergamini@free.fr>
4  *      Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18
19 #define VERSION "20071127"
20
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_radiotap.h>
95 #include <net80211/ieee80211_regdomain.h>
96
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/in_var.h>
100 #include <netinet/ip.h>
101 #include <netinet/if_ether.h>
102
103 #include <dev/wpi/if_wpireg.h>
104 #include <dev/wpi/if_wpivar.h>
105
106 #define WPI_DEBUG
107
108 #ifdef WPI_DEBUG
109 #define DPRINTF(x)      do { if (wpi_debug != 0) printf x; } while (0)
110 #define DPRINTFN(n, x)  do { if (wpi_debug & n) printf x; } while (0)
111 #define WPI_DEBUG_SET   (wpi_debug != 0)
112
113 enum {
114         WPI_DEBUG_UNUSED        = 0x00000001,   /* Unused */
115         WPI_DEBUG_HW            = 0x00000002,   /* Stage 1 (eeprom) debugging */
116         WPI_DEBUG_TX            = 0x00000004,   /* Stage 2 TX intrp debugging*/
117         WPI_DEBUG_RX            = 0x00000008,   /* Stage 2 RX intrp debugging */
118         WPI_DEBUG_CMD           = 0x00000010,   /* Stage 2 CMD intrp debugging*/
119         WPI_DEBUG_FIRMWARE      = 0x00000020,   /* firmware(9) loading debug  */
120         WPI_DEBUG_DMA           = 0x00000040,   /* DMA (de)allocations/syncs  */
121         WPI_DEBUG_SCANNING      = 0x00000080,   /* Stage 2 Scanning debugging */
122         WPI_DEBUG_NOTIFY        = 0x00000100,   /* State 2 Noftif intr debug */
123         WPI_DEBUG_TEMP          = 0x00000200,   /* TXPower/Temp Calibration */
124         WPI_DEBUG_OPS           = 0x00000400,   /* wpi_ops taskq debug */
125         WPI_DEBUG_WATCHDOG      = 0x00000800,   /* Watch dog debug */
126         WPI_DEBUG_ANY           = 0xffffffff
127 };
128
129 static int wpi_debug = 1;
130 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
131 TUNABLE_INT("debug.wpi", &wpi_debug);
132
133 #else
134 #define DPRINTF(x)
135 #define DPRINTFN(n, x)
136 #define WPI_DEBUG_SET   0
137 #endif
138
139 struct wpi_ident {
140         uint16_t        vendor;
141         uint16_t        device;
142         uint16_t        subdevice;
143         const char      *name;
144 };
145
146 static const struct wpi_ident wpi_ident_table[] = {
147         /* The below entries support ABG regardless of the subid */
148         { 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
149         { 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150         /* The below entries only support BG */
151         { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
152         { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
153         { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
154         { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
155         { 0, 0, 0, NULL }
156 };
157
158 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
159                     const char name[IFNAMSIZ], int unit, int opmode,
160                     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
161                     const uint8_t mac[IEEE80211_ADDR_LEN]);
162 static void     wpi_vap_delete(struct ieee80211vap *);
163 static int      wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
164                     void **, bus_size_t, bus_size_t, int);
165 static void     wpi_dma_contig_free(struct wpi_dma_info *);
166 static void     wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
167 static int      wpi_alloc_shared(struct wpi_softc *);
168 static void     wpi_free_shared(struct wpi_softc *);
169 static int      wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
170 static void     wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171 static void     wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172 static int      wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
173                     int, int);
174 static void     wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
175 static void     wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
177                             const uint8_t mac[IEEE80211_ADDR_LEN]);
178 static int      wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
179 static void     wpi_mem_lock(struct wpi_softc *);
180 static void     wpi_mem_unlock(struct wpi_softc *);
181 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
182 static void     wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
183 static void     wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
184                     const uint32_t *, int);
185 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
186 static int      wpi_alloc_fwmem(struct wpi_softc *);
187 static void     wpi_free_fwmem(struct wpi_softc *);
188 static int      wpi_load_firmware(struct wpi_softc *);
189 static void     wpi_unload_firmware(struct wpi_softc *);
190 static int      wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
191 static void     wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
192                     struct wpi_rx_data *);
193 static void     wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
194 static void     wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
195 static void     wpi_notif_intr(struct wpi_softc *);
196 static void     wpi_intr(void *);
197 static uint8_t  wpi_plcp_signal(int);
198 static void     wpi_watchdog(void *);
199 static int      wpi_tx_data(struct wpi_softc *, struct mbuf *,
200                     struct ieee80211_node *, int);
201 static void     wpi_start(struct ifnet *);
202 static void     wpi_start_locked(struct ifnet *);
203 static int      wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
204                     const struct ieee80211_bpf_params *);
205 static void     wpi_scan_start(struct ieee80211com *);
206 static void     wpi_scan_end(struct ieee80211com *);
207 static void     wpi_set_channel(struct ieee80211com *);
208 static void     wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
209 static void     wpi_scan_mindwell(struct ieee80211_scan_state *);
210 static int      wpi_ioctl(struct ifnet *, u_long, caddr_t);
211 static void     wpi_read_eeprom(struct wpi_softc *,
212                     uint8_t macaddr[IEEE80211_ADDR_LEN]);
213 static void     wpi_read_eeprom_channels(struct wpi_softc *, int);
214 static void     wpi_read_eeprom_group(struct wpi_softc *, int);
215 static int      wpi_cmd(struct wpi_softc *, int, const void *, int, int);
216 static int      wpi_wme_update(struct ieee80211com *);
217 static int      wpi_mrr_setup(struct wpi_softc *);
218 static void     wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
219 static void     wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
220 #if 0
221 static int      wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
222 #endif
223 static int      wpi_auth(struct wpi_softc *, struct ieee80211vap *);
224 static int      wpi_run(struct wpi_softc *, struct ieee80211vap *);
225 static int      wpi_scan(struct wpi_softc *);
226 static int      wpi_config(struct wpi_softc *);
227 static void     wpi_stop_master(struct wpi_softc *);
228 static int      wpi_power_up(struct wpi_softc *);
229 static int      wpi_reset(struct wpi_softc *);
230 static void     wpi_hwreset(void *, int);
231 static void     wpi_rfreset(void *, int);
232 static void     wpi_hw_config(struct wpi_softc *);
233 static void     wpi_init(void *);
234 static void     wpi_init_locked(struct wpi_softc *, int);
235 static void     wpi_stop(struct wpi_softc *);
236 static void     wpi_stop_locked(struct wpi_softc *);
237
238 static void     wpi_newassoc(struct ieee80211_node *, int);
239 static int      wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
240                     int);
241 static void     wpi_calib_timeout(void *);
242 static void     wpi_power_calibration(struct wpi_softc *, int);
243 static int      wpi_get_power_index(struct wpi_softc *,
244                     struct wpi_power_group *, struct ieee80211_channel *, int);
245 #ifdef WPI_DEBUG
246 static const char *wpi_cmd_str(int);
247 #endif
248 static int wpi_probe(device_t);
249 static int wpi_attach(device_t);
250 static int wpi_detach(device_t);
251 static int wpi_shutdown(device_t);
252 static int wpi_suspend(device_t);
253 static int wpi_resume(device_t);
254
255
256 static device_method_t wpi_methods[] = {
257         /* Device interface */
258         DEVMETHOD(device_probe,         wpi_probe),
259         DEVMETHOD(device_attach,        wpi_attach),
260         DEVMETHOD(device_detach,        wpi_detach),
261         DEVMETHOD(device_shutdown,      wpi_shutdown),
262         DEVMETHOD(device_suspend,       wpi_suspend),
263         DEVMETHOD(device_resume,        wpi_resume),
264
265         { 0, 0 }
266 };
267
268 static driver_t wpi_driver = {
269         "wpi",
270         wpi_methods,
271         sizeof (struct wpi_softc)
272 };
273
274 static devclass_t wpi_devclass;
275
276 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
277
278 static const uint8_t wpi_ridx_to_plcp[] = {
279         /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
280         /* R1-R4 (ral/ural is R4-R1) */
281         0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
282         /* CCK: device-dependent */
283         10, 20, 55, 110
284 };
285 static const uint8_t wpi_ridx_to_rate[] = {
286         12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
287         2, 4, 11, 22 /*CCK */
288 };
289
290
291 static int
292 wpi_probe(device_t dev)
293 {
294         const struct wpi_ident *ident;
295
296         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
297                 if (pci_get_vendor(dev) == ident->vendor &&
298                     pci_get_device(dev) == ident->device) {
299                         device_set_desc(dev, ident->name);
300                         return 0;
301                 }
302         }
303         return ENXIO;
304 }
305
306 /**
307  * Load the firmare image from disk to the allocated dma buffer.
308  * we also maintain the reference to the firmware pointer as there
309  * is times where we may need to reload the firmware but we are not
310  * in a context that can access the filesystem (ie taskq cause by restart)
311  *
312  * @return 0 on success, an errno on failure
313  */
314 static int
315 wpi_load_firmware(struct wpi_softc *sc)
316 {
317         const struct firmware *fp;
318         struct wpi_dma_info *dma = &sc->fw_dma;
319         const struct wpi_firmware_hdr *hdr;
320         const uint8_t *itext, *idata, *rtext, *rdata, *btext;
321         uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
322         int error;
323
324         DPRINTFN(WPI_DEBUG_FIRMWARE,
325             ("Attempting Loading Firmware from wpi_fw module\n"));
326
327         WPI_UNLOCK(sc);
328
329         if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
330                 device_printf(sc->sc_dev,
331                     "could not load firmware image 'wpifw'\n");
332                 error = ENOENT;
333                 WPI_LOCK(sc);
334                 goto fail;
335         }
336
337         fp = sc->fw_fp;
338
339         WPI_LOCK(sc);
340
341         /* Validate the firmware is minimum a particular version */
342         if (fp->version < WPI_FW_MINVERSION) {
343             device_printf(sc->sc_dev,
344                            "firmware version is too old. Need %d, got %d\n",
345                            WPI_FW_MINVERSION,
346                            fp->version);
347             error = ENXIO;
348             goto fail;
349         }
350
351         if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
352                 device_printf(sc->sc_dev,
353                     "firmware file too short: %zu bytes\n", fp->datasize);
354                 error = ENXIO;
355                 goto fail;
356         }
357
358         hdr = (const struct wpi_firmware_hdr *)fp->data;
359
360         /*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
361            |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
362
363         rtextsz = le32toh(hdr->rtextsz);
364         rdatasz = le32toh(hdr->rdatasz);
365         itextsz = le32toh(hdr->itextsz);
366         idatasz = le32toh(hdr->idatasz);
367         btextsz = le32toh(hdr->btextsz);
368
369         /* check that all firmware segments are present */
370         if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
371                 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
372                 device_printf(sc->sc_dev,
373                     "firmware file too short: %zu bytes\n", fp->datasize);
374                 error = ENXIO; /* XXX appropriate error code? */
375                 goto fail;
376         }
377
378         /* get pointers to firmware segments */
379         rtext = (const uint8_t *)(hdr + 1);
380         rdata = rtext + rtextsz;
381         itext = rdata + rdatasz;
382         idata = itext + itextsz;
383         btext = idata + idatasz;
384
385         DPRINTFN(WPI_DEBUG_FIRMWARE,
386             ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
387              "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
388              (le32toh(hdr->version) & 0xff000000) >> 24,
389              (le32toh(hdr->version) & 0x00ff0000) >> 16,
390              (le32toh(hdr->version) & 0x0000ffff),
391              rtextsz, rdatasz,
392              itextsz, idatasz, btextsz));
393
394         DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
395         DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
396         DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
397         DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
398         DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
399
400         /* sanity checks */
401         if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
402             rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
403             itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
404             idatasz > WPI_FW_INIT_DATA_MAXSZ ||
405             btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
406             (btextsz & 3) != 0) {
407                 device_printf(sc->sc_dev, "firmware invalid\n");
408                 error = EINVAL;
409                 goto fail;
410         }
411
412         /* copy initialization images into pre-allocated DMA-safe memory */
413         memcpy(dma->vaddr, idata, idatasz);
414         memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
415
416         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
417
418         /* tell adapter where to find initialization images */
419         wpi_mem_lock(sc);
420         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
421         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
422         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
423             dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
424         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
425         wpi_mem_unlock(sc);
426
427         /* load firmware boot code */
428         if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
429             device_printf(sc->sc_dev, "Failed to load microcode\n");
430             goto fail;
431         }
432
433         /* now press "execute" */
434         WPI_WRITE(sc, WPI_RESET, 0);
435
436         /* wait at most one second for the first alive notification */
437         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
438                 device_printf(sc->sc_dev,
439                     "timeout waiting for adapter to initialize\n");
440                 goto fail;
441         }
442
443         /* copy runtime images into pre-allocated DMA-sage memory */
444         memcpy(dma->vaddr, rdata, rdatasz);
445         memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
446         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
447
448         /* tell adapter where to find runtime images */
449         wpi_mem_lock(sc);
450         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
451         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
452         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
453             dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
454         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
455         wpi_mem_unlock(sc);
456
457         /* wait at most one second for the first alive notification */
458         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
459                 device_printf(sc->sc_dev,
460                     "timeout waiting for adapter to initialize2\n");
461                 goto fail;
462         }
463
464         DPRINTFN(WPI_DEBUG_FIRMWARE,
465             ("Firmware loaded to driver successfully\n"));
466         return error;
467 fail:
468         wpi_unload_firmware(sc);
469         return error;
470 }
471
472 /**
473  * Free the referenced firmware image
474  */
475 static void
476 wpi_unload_firmware(struct wpi_softc *sc)
477 {
478
479         if (sc->fw_fp) {
480                 WPI_UNLOCK(sc);
481                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
482                 WPI_LOCK(sc);
483                 sc->fw_fp = NULL;
484         }
485 }
486
487 static int
488 wpi_attach(device_t dev)
489 {
490         struct wpi_softc *sc = device_get_softc(dev);
491         struct ifnet *ifp;
492         struct ieee80211com *ic;
493         int ac, error, supportsa = 1;
494         uint32_t tmp;
495         const struct wpi_ident *ident;
496         uint8_t macaddr[IEEE80211_ADDR_LEN];
497
498         sc->sc_dev = dev;
499
500         if (bootverbose || WPI_DEBUG_SET)
501             device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
502
503         /*
504          * Some card's only support 802.11b/g not a, check to see if
505          * this is one such card. A 0x0 in the subdevice table indicates
506          * the entire subdevice range is to be ignored.
507          */
508         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
509                 if (ident->subdevice &&
510                     pci_get_subdevice(dev) == ident->subdevice) {
511                     supportsa = 0;
512                     break;
513                 }
514         }
515
516         /* Create the tasks that can be queued */
517         TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
518         TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
519
520         WPI_LOCK_INIT(sc);
521
522         callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
523         callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
524
525         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
526                 device_printf(dev, "chip is in D%d power mode "
527                     "-- setting to D0\n", pci_get_powerstate(dev));
528                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
529         }
530
531         /* disable the retry timeout register */
532         pci_write_config(dev, 0x41, 0, 1);
533
534         /* enable bus-mastering */
535         pci_enable_busmaster(dev);
536
537         sc->mem_rid = PCIR_BAR(0);
538         sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
539             RF_ACTIVE);
540         if (sc->mem == NULL) {
541                 device_printf(dev, "could not allocate memory resource\n");
542                 error = ENOMEM;
543                 goto fail;
544         }
545
546         sc->sc_st = rman_get_bustag(sc->mem);
547         sc->sc_sh = rman_get_bushandle(sc->mem);
548
549         sc->irq_rid = 0;
550         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
551             RF_ACTIVE | RF_SHAREABLE);
552         if (sc->irq == NULL) {
553                 device_printf(dev, "could not allocate interrupt resource\n");
554                 error = ENOMEM;
555                 goto fail;
556         }
557
558         /*
559          * Allocate DMA memory for firmware transfers.
560          */
561         if ((error = wpi_alloc_fwmem(sc)) != 0) {
562                 printf(": could not allocate firmware memory\n");
563                 error = ENOMEM;
564                 goto fail;
565         }
566
567         /*
568          * Put adapter into a known state.
569          */
570         if ((error = wpi_reset(sc)) != 0) {
571                 device_printf(dev, "could not reset adapter\n");
572                 goto fail;
573         }
574
575         wpi_mem_lock(sc);
576         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
577         if (bootverbose || WPI_DEBUG_SET)
578             device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
579
580         wpi_mem_unlock(sc);
581
582         /* Allocate shared page */
583         if ((error = wpi_alloc_shared(sc)) != 0) {
584                 device_printf(dev, "could not allocate shared page\n");
585                 goto fail;
586         }
587
588         /* tx data queues  - 4 for QoS purposes */
589         for (ac = 0; ac < WME_NUM_AC; ac++) {
590                 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
591                 if (error != 0) {
592                     device_printf(dev, "could not allocate Tx ring %d\n",ac);
593                     goto fail;
594                 }
595         }
596
597         /* command queue to talk to the card's firmware */
598         error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
599         if (error != 0) {
600                 device_printf(dev, "could not allocate command ring\n");
601                 goto fail;
602         }
603
604         /* receive data queue */
605         error = wpi_alloc_rx_ring(sc, &sc->rxq);
606         if (error != 0) {
607                 device_printf(dev, "could not allocate Rx ring\n");
608                 goto fail;
609         }
610
611         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
612         if (ifp == NULL) {
613                 device_printf(dev, "can not if_alloc()\n");
614                 error = ENOMEM;
615                 goto fail;
616         }
617         ic = ifp->if_l2com;
618
619         ic->ic_ifp = ifp;
620         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
621         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
622
623         /* set device capabilities */
624         ic->ic_caps =
625                   IEEE80211_C_STA               /* station mode supported */
626                 | IEEE80211_C_MONITOR           /* monitor mode supported */
627                 | IEEE80211_C_TXPMGT            /* tx power management */
628                 | IEEE80211_C_SHSLOT            /* short slot time supported */
629                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
630                 | IEEE80211_C_WPA               /* 802.11i */
631 /* XXX looks like WME is partly supported? */
632 #if 0
633                 | IEEE80211_C_IBSS              /* IBSS mode support */
634                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
635                 | IEEE80211_C_WME               /* 802.11e */
636                 | IEEE80211_C_HOSTAP            /* Host access point mode */
637 #endif
638                 ;
639
640         /*
641          * Read in the eeprom and also setup the channels for
642          * net80211. We don't set the rates as net80211 does this for us
643          */
644         wpi_read_eeprom(sc, macaddr);
645
646         if (bootverbose || WPI_DEBUG_SET) {
647             device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
648             device_printf(sc->sc_dev, "Hardware Type: %c\n",
649                           sc->type > 1 ? 'B': '?');
650             device_printf(sc->sc_dev, "Hardware Revision: %c\n",
651                           ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
652             device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
653                           supportsa ? "does" : "does not");
654
655             /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
656                what sc->rev really represents - benjsc 20070615 */
657         }
658
659         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
660         ifp->if_softc = sc;
661         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
662         ifp->if_init = wpi_init;
663         ifp->if_ioctl = wpi_ioctl;
664         ifp->if_start = wpi_start;
665         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
666         ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
667         IFQ_SET_READY(&ifp->if_snd);
668
669         ieee80211_ifattach(ic, macaddr);
670         /* override default methods */
671         ic->ic_node_alloc = wpi_node_alloc;
672         ic->ic_newassoc = wpi_newassoc;
673         ic->ic_raw_xmit = wpi_raw_xmit;
674         ic->ic_wme.wme_update = wpi_wme_update;
675         ic->ic_scan_start = wpi_scan_start;
676         ic->ic_scan_end = wpi_scan_end;
677         ic->ic_set_channel = wpi_set_channel;
678         ic->ic_scan_curchan = wpi_scan_curchan;
679         ic->ic_scan_mindwell = wpi_scan_mindwell;
680
681         ic->ic_vap_create = wpi_vap_create;
682         ic->ic_vap_delete = wpi_vap_delete;
683
684         ieee80211_radiotap_attach(ic,
685             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
686                 WPI_TX_RADIOTAP_PRESENT,
687             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
688                 WPI_RX_RADIOTAP_PRESENT);
689
690         /*
691          * Hook our interrupt after all initialization is complete.
692          */
693         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
694             NULL, wpi_intr, sc, &sc->sc_ih);
695         if (error != 0) {
696                 device_printf(dev, "could not set up interrupt\n");
697                 goto fail;
698         }
699
700         if (bootverbose)
701                 ieee80211_announce(ic);
702 #ifdef XXX_DEBUG
703         ieee80211_announce_channels(ic);
704 #endif
705         return 0;
706
707 fail:   wpi_detach(dev);
708         return ENXIO;
709 }
710
711 static int
712 wpi_detach(device_t dev)
713 {
714         struct wpi_softc *sc = device_get_softc(dev);
715         struct ifnet *ifp = sc->sc_ifp;
716         struct ieee80211com *ic = ifp->if_l2com;
717         int ac;
718
719         ieee80211_draintask(ic, &sc->sc_restarttask);
720         ieee80211_draintask(ic, &sc->sc_radiotask);
721
722         if (ifp != NULL) {
723                 wpi_stop(sc);
724                 callout_drain(&sc->watchdog_to);
725                 callout_drain(&sc->calib_to);
726                 ieee80211_ifdetach(ic);
727         }
728
729         WPI_LOCK(sc);
730         if (sc->txq[0].data_dmat) {
731                 for (ac = 0; ac < WME_NUM_AC; ac++)
732                         wpi_free_tx_ring(sc, &sc->txq[ac]);
733
734                 wpi_free_tx_ring(sc, &sc->cmdq);
735                 wpi_free_rx_ring(sc, &sc->rxq);
736                 wpi_free_shared(sc);
737         }
738
739         if (sc->fw_fp != NULL) {
740                 wpi_unload_firmware(sc);
741         }
742
743         if (sc->fw_dma.tag)
744                 wpi_free_fwmem(sc);
745         WPI_UNLOCK(sc);
746
747         if (sc->irq != NULL) {
748                 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
749                 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
750         }
751
752         if (sc->mem != NULL)
753                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
754
755         if (ifp != NULL)
756                 if_free(ifp);
757
758         WPI_LOCK_DESTROY(sc);
759
760         return 0;
761 }
762
763 static struct ieee80211vap *
764 wpi_vap_create(struct ieee80211com *ic,
765         const char name[IFNAMSIZ], int unit, int opmode, int flags,
766         const uint8_t bssid[IEEE80211_ADDR_LEN],
767         const uint8_t mac[IEEE80211_ADDR_LEN])
768 {
769         struct wpi_vap *wvp;
770         struct ieee80211vap *vap;
771
772         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
773                 return NULL;
774         wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
775             M_80211_VAP, M_NOWAIT | M_ZERO);
776         if (wvp == NULL)
777                 return NULL;
778         vap = &wvp->vap;
779         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
780         /* override with driver methods */
781         wvp->newstate = vap->iv_newstate;
782         vap->iv_newstate = wpi_newstate;
783
784         ieee80211_amrr_init(&wvp->amrr, vap,
785             IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
786             IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
787             500 /*ms*/);
788
789         /* complete setup */
790         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
791         ic->ic_opmode = opmode;
792         return vap;
793 }
794
795 static void
796 wpi_vap_delete(struct ieee80211vap *vap)
797 {
798         struct wpi_vap *wvp = WPI_VAP(vap);
799
800         ieee80211_amrr_cleanup(&wvp->amrr);
801         ieee80211_vap_detach(vap);
802         free(wvp, M_80211_VAP);
803 }
804
805 static void
806 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
807 {
808         if (error != 0)
809                 return;
810
811         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
812
813         *(bus_addr_t *)arg = segs[0].ds_addr;
814 }
815
816 /*
817  * Allocates a contiguous block of dma memory of the requested size and
818  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
819  * allocations greater than 4096 may fail. Hence if the requested alignment is
820  * greater we allocate 'alignment' size extra memory and shift the vaddr and
821  * paddr after the dma load. This bypasses the problem at the cost of a little
822  * more memory.
823  */
824 static int
825 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
826     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
827 {
828         int error;
829         bus_size_t align;
830         bus_size_t reqsize;
831
832         DPRINTFN(WPI_DEBUG_DMA,
833             ("Size: %zd - alignment %zd\n", size, alignment));
834
835         dma->size = size;
836         dma->tag = NULL;
837
838         if (alignment > 4096) {
839                 align = PAGE_SIZE;
840                 reqsize = size + alignment;
841         } else {
842                 align = alignment;
843                 reqsize = size;
844         }
845         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
846             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
847             NULL, NULL, reqsize,
848             1, reqsize, flags,
849             NULL, NULL, &dma->tag);
850         if (error != 0) {
851                 device_printf(sc->sc_dev,
852                     "could not create shared page DMA tag\n");
853                 goto fail;
854         }
855         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
856             flags | BUS_DMA_ZERO, &dma->map);
857         if (error != 0) {
858                 device_printf(sc->sc_dev,
859                     "could not allocate shared page DMA memory\n");
860                 goto fail;
861         }
862
863         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
864             reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
865
866         /* Save the original pointers so we can free all the memory */
867         dma->paddr = dma->paddr_start;
868         dma->vaddr = dma->vaddr_start;
869
870         /*
871          * Check the alignment and increment by 4096 until we get the
872          * requested alignment. Fail if can't obtain the alignment
873          * we requested.
874          */
875         if ((dma->paddr & (alignment -1 )) != 0) {
876                 int i;
877
878                 for (i = 0; i < alignment / 4096; i++) {
879                         if ((dma->paddr & (alignment - 1 )) == 0)
880                                 break;
881                         dma->paddr += 4096;
882                         dma->vaddr += 4096;
883                 }
884                 if (i == alignment / 4096) {
885                         device_printf(sc->sc_dev,
886                             "alignment requirement was not satisfied\n");
887                         goto fail;
888                 }
889         }
890
891         if (error != 0) {
892                 device_printf(sc->sc_dev,
893                     "could not load shared page DMA map\n");
894                 goto fail;
895         }
896
897         if (kvap != NULL)
898                 *kvap = dma->vaddr;
899
900         return 0;
901
902 fail:
903         wpi_dma_contig_free(dma);
904         return error;
905 }
906
907 static void
908 wpi_dma_contig_free(struct wpi_dma_info *dma)
909 {
910         if (dma->tag) {
911                 if (dma->map != NULL) {
912                         if (dma->paddr_start != 0) {
913                                 bus_dmamap_sync(dma->tag, dma->map,
914                                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
915                                 bus_dmamap_unload(dma->tag, dma->map);
916                         }
917                         bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
918                 }
919                 bus_dma_tag_destroy(dma->tag);
920         }
921 }
922
923 /*
924  * Allocate a shared page between host and NIC.
925  */
926 static int
927 wpi_alloc_shared(struct wpi_softc *sc)
928 {
929         int error;
930
931         error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
932             (void **)&sc->shared, sizeof (struct wpi_shared),
933             PAGE_SIZE,
934             BUS_DMA_NOWAIT);
935
936         if (error != 0) {
937                 device_printf(sc->sc_dev,
938                     "could not allocate shared area DMA memory\n");
939         }
940
941         return error;
942 }
943
944 static void
945 wpi_free_shared(struct wpi_softc *sc)
946 {
947         wpi_dma_contig_free(&sc->shared_dma);
948 }
949
950 static int
951 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
952 {
953
954         int i, error;
955
956         ring->cur = 0;
957
958         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
959             (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
960             WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
961
962         if (error != 0) {
963                 device_printf(sc->sc_dev,
964                     "%s: could not allocate rx ring DMA memory, error %d\n",
965                     __func__, error);
966                 goto fail;
967         }
968
969         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 
970             BUS_SPACE_MAXADDR_32BIT,
971             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
972             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
973         if (error != 0) {
974                 device_printf(sc->sc_dev,
975                     "%s: bus_dma_tag_create_failed, error %d\n",
976                     __func__, error);
977                 goto fail;
978         }
979
980         /*
981          * Setup Rx buffers.
982          */
983         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
984                 struct wpi_rx_data *data = &ring->data[i];
985                 struct mbuf *m;
986                 bus_addr_t paddr;
987
988                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
989                 if (error != 0) {
990                         device_printf(sc->sc_dev,
991                             "%s: bus_dmamap_create failed, error %d\n",
992                             __func__, error);
993                         goto fail;
994                 }
995                 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
996                 if (m == NULL) {
997                         device_printf(sc->sc_dev,
998                            "%s: could not allocate rx mbuf\n", __func__);
999                         error = ENOMEM;
1000                         goto fail;
1001                 }
1002                 /* map page */
1003                 error = bus_dmamap_load(ring->data_dmat, data->map,
1004                     mtod(m, caddr_t), MJUMPAGESIZE,
1005                     wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1006                 if (error != 0 && error != EFBIG) {
1007                         device_printf(sc->sc_dev,
1008                             "%s: bus_dmamap_load failed, error %d\n",
1009                             __func__, error);
1010                         m_freem(m);
1011                         error = ENOMEM; /* XXX unique code */
1012                         goto fail;
1013                 }
1014                 bus_dmamap_sync(ring->data_dmat, data->map, 
1015                     BUS_DMASYNC_PREWRITE);
1016
1017                 data->m = m;
1018                 ring->desc[i] = htole32(paddr);
1019         }
1020         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1021             BUS_DMASYNC_PREWRITE);
1022         return 0;
1023 fail:
1024         wpi_free_rx_ring(sc, ring);
1025         return error;
1026 }
1027
1028 static void
1029 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1030 {
1031         int ntries;
1032
1033         wpi_mem_lock(sc);
1034
1035         WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1036
1037         for (ntries = 0; ntries < 100; ntries++) {
1038                 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1039                         break;
1040                 DELAY(10);
1041         }
1042
1043         wpi_mem_unlock(sc);
1044
1045 #ifdef WPI_DEBUG
1046         if (ntries == 100 && wpi_debug > 0)
1047                 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1048 #endif
1049
1050         ring->cur = 0;
1051 }
1052
1053 static void
1054 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1055 {
1056         int i;
1057
1058         wpi_dma_contig_free(&ring->desc_dma);
1059
1060         for (i = 0; i < WPI_RX_RING_COUNT; i++)
1061                 if (ring->data[i].m != NULL)
1062                         m_freem(ring->data[i].m);
1063 }
1064
1065 static int
1066 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1067         int qid)
1068 {
1069         struct wpi_tx_data *data;
1070         int i, error;
1071
1072         ring->qid = qid;
1073         ring->count = count;
1074         ring->queued = 0;
1075         ring->cur = 0;
1076         ring->data = NULL;
1077
1078         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1079                 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1080                 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1081
1082         if (error != 0) {
1083             device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1084             goto fail;
1085         }
1086
1087         /* update shared page with ring's base address */
1088         sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1089
1090         error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1091                 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1092                 BUS_DMA_NOWAIT);
1093
1094         if (error != 0) {
1095                 device_printf(sc->sc_dev,
1096                     "could not allocate tx command DMA memory\n");
1097                 goto fail;
1098         }
1099
1100         ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1101             M_NOWAIT | M_ZERO);
1102         if (ring->data == NULL) {
1103                 device_printf(sc->sc_dev,
1104                     "could not allocate tx data slots\n");
1105                 goto fail;
1106         }
1107
1108         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1109             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1110             WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1111             &ring->data_dmat);
1112         if (error != 0) {
1113                 device_printf(sc->sc_dev, "could not create data DMA tag\n");
1114                 goto fail;
1115         }
1116
1117         for (i = 0; i < count; i++) {
1118                 data = &ring->data[i];
1119
1120                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1121                 if (error != 0) {
1122                         device_printf(sc->sc_dev,
1123                             "could not create tx buf DMA map\n");
1124                         goto fail;
1125                 }
1126                 bus_dmamap_sync(ring->data_dmat, data->map,
1127                     BUS_DMASYNC_PREWRITE);
1128         }
1129
1130         return 0;
1131
1132 fail:
1133         wpi_free_tx_ring(sc, ring);
1134         return error;
1135 }
1136
1137 static void
1138 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1139 {
1140         struct wpi_tx_data *data;
1141         int i, ntries;
1142
1143         wpi_mem_lock(sc);
1144
1145         WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1146         for (ntries = 0; ntries < 100; ntries++) {
1147                 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1148                         break;
1149                 DELAY(10);
1150         }
1151 #ifdef WPI_DEBUG
1152         if (ntries == 100 && wpi_debug > 0)
1153                 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1154                     ring->qid);
1155 #endif
1156         wpi_mem_unlock(sc);
1157
1158         for (i = 0; i < ring->count; i++) {
1159                 data = &ring->data[i];
1160
1161                 if (data->m != NULL) {
1162                         bus_dmamap_unload(ring->data_dmat, data->map);
1163                         m_freem(data->m);
1164                         data->m = NULL;
1165                 }
1166         }
1167
1168         ring->queued = 0;
1169         ring->cur = 0;
1170 }
1171
1172 static void
1173 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1174 {
1175         struct wpi_tx_data *data;
1176         int i;
1177
1178         wpi_dma_contig_free(&ring->desc_dma);
1179         wpi_dma_contig_free(&ring->cmd_dma);
1180
1181         if (ring->data != NULL) {
1182                 for (i = 0; i < ring->count; i++) {
1183                         data = &ring->data[i];
1184
1185                         if (data->m != NULL) {
1186                                 bus_dmamap_sync(ring->data_dmat, data->map,
1187                                     BUS_DMASYNC_POSTWRITE);
1188                                 bus_dmamap_unload(ring->data_dmat, data->map);
1189                                 m_freem(data->m);
1190                                 data->m = NULL;
1191                         }
1192                 }
1193                 free(ring->data, M_DEVBUF);
1194         }
1195
1196         if (ring->data_dmat != NULL)
1197                 bus_dma_tag_destroy(ring->data_dmat);
1198 }
1199
1200 static int
1201 wpi_shutdown(device_t dev)
1202 {
1203         struct wpi_softc *sc = device_get_softc(dev);
1204
1205         WPI_LOCK(sc);
1206         wpi_stop_locked(sc);
1207         wpi_unload_firmware(sc);
1208         WPI_UNLOCK(sc);
1209
1210         return 0;
1211 }
1212
1213 static int
1214 wpi_suspend(device_t dev)
1215 {
1216         struct wpi_softc *sc = device_get_softc(dev);
1217
1218         wpi_stop(sc);
1219         return 0;
1220 }
1221
1222 static int
1223 wpi_resume(device_t dev)
1224 {
1225         struct wpi_softc *sc = device_get_softc(dev);
1226         struct ifnet *ifp = sc->sc_ifp;
1227
1228         pci_write_config(dev, 0x41, 0, 1);
1229
1230         if (ifp->if_flags & IFF_UP) {
1231                 wpi_init(ifp->if_softc);
1232                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1233                         wpi_start(ifp);
1234         }
1235         return 0;
1236 }
1237
1238 /* ARGSUSED */
1239 static struct ieee80211_node *
1240 wpi_node_alloc(struct ieee80211vap *vap __unused,
1241         const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1242 {
1243         struct wpi_node *wn;
1244
1245         wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1246
1247         return &wn->ni;
1248 }
1249
1250 /**
1251  * Called by net80211 when ever there is a change to 80211 state machine
1252  */
1253 static int
1254 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1255 {
1256         struct wpi_vap *wvp = WPI_VAP(vap);
1257         struct ieee80211com *ic = vap->iv_ic;
1258         struct ifnet *ifp = ic->ic_ifp;
1259         struct wpi_softc *sc = ifp->if_softc;
1260         int error;
1261
1262         DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1263                 ieee80211_state_name[vap->iv_state],
1264                 ieee80211_state_name[nstate], sc->flags));
1265
1266         IEEE80211_UNLOCK(ic);
1267         WPI_LOCK(sc);
1268         if (nstate == IEEE80211_S_AUTH) {
1269                 /* The node must be registered in the firmware before auth */
1270                 error = wpi_auth(sc, vap);
1271                 if (error != 0) {
1272                         device_printf(sc->sc_dev,
1273                             "%s: could not move to auth state, error %d\n",
1274                             __func__, error);
1275                 }
1276         }
1277         if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1278                 error = wpi_run(sc, vap);
1279                 if (error != 0) {
1280                         device_printf(sc->sc_dev,
1281                             "%s: could not move to run state, error %d\n",
1282                             __func__, error);
1283                 }
1284         }
1285         if (nstate == IEEE80211_S_RUN) {
1286                 /* RUN -> RUN transition; just restart the timers */
1287                 wpi_calib_timeout(sc);
1288                 /* XXX split out rate control timer */
1289         }
1290         WPI_UNLOCK(sc);
1291         IEEE80211_LOCK(ic);
1292         return wvp->newstate(vap, nstate, arg);
1293 }
1294
1295 /*
1296  * Grab exclusive access to NIC memory.
1297  */
1298 static void
1299 wpi_mem_lock(struct wpi_softc *sc)
1300 {
1301         int ntries;
1302         uint32_t tmp;
1303
1304         tmp = WPI_READ(sc, WPI_GPIO_CTL);
1305         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1306
1307         /* spin until we actually get the lock */
1308         for (ntries = 0; ntries < 100; ntries++) {
1309                 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1310                         (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1311                         break;
1312                 DELAY(10);
1313         }
1314         if (ntries == 100)
1315                 device_printf(sc->sc_dev, "could not lock memory\n");
1316 }
1317
1318 /*
1319  * Release lock on NIC memory.
1320  */
1321 static void
1322 wpi_mem_unlock(struct wpi_softc *sc)
1323 {
1324         uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1325         WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1326 }
1327
1328 static uint32_t
1329 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1330 {
1331         WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1332         return WPI_READ(sc, WPI_READ_MEM_DATA);
1333 }
1334
1335 static void
1336 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1337 {
1338         WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1339         WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1340 }
1341
1342 static void
1343 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1344     const uint32_t *data, int wlen)
1345 {
1346         for (; wlen > 0; wlen--, data++, addr+=4)
1347                 wpi_mem_write(sc, addr, *data);
1348 }
1349
1350 /*
1351  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1352  * using the traditional bit-bang method. Data is read up until len bytes have
1353  * been obtained.
1354  */
1355 static uint16_t
1356 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1357 {
1358         int ntries;
1359         uint32_t val;
1360         uint8_t *out = data;
1361
1362         wpi_mem_lock(sc);
1363
1364         for (; len > 0; len -= 2, addr++) {
1365                 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1366
1367                 for (ntries = 0; ntries < 10; ntries++) {
1368                         if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1369                                 break;
1370                         DELAY(5);
1371                 }
1372
1373                 if (ntries == 10) {
1374                         device_printf(sc->sc_dev, "could not read EEPROM\n");
1375                         return ETIMEDOUT;
1376                 }
1377
1378                 *out++= val >> 16;
1379                 if (len > 1)
1380                         *out ++= val >> 24;
1381         }
1382
1383         wpi_mem_unlock(sc);
1384
1385         return 0;
1386 }
1387
1388 /*
1389  * The firmware text and data segments are transferred to the NIC using DMA.
1390  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1391  * where to find it.  Once the NIC has copied the firmware into its internal
1392  * memory, we can free our local copy in the driver.
1393  */
1394 static int
1395 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1396 {
1397         int error, ntries;
1398
1399         DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1400
1401         size /= sizeof(uint32_t);
1402
1403         wpi_mem_lock(sc);
1404
1405         wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1406             (const uint32_t *)fw, size);
1407
1408         wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1409         wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1410         wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1411
1412         /* run microcode */
1413         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1414
1415         /* wait while the adapter is busy copying the firmware */
1416         for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1417                 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1418                 DPRINTFN(WPI_DEBUG_HW,
1419                     ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1420                      WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1421                 if (status & WPI_TX_IDLE(6)) {
1422                         DPRINTFN(WPI_DEBUG_HW,
1423                             ("Status Match! - ntries = %d\n", ntries));
1424                         break;
1425                 }
1426                 DELAY(10);
1427         }
1428         if (ntries == 1000) {
1429                 device_printf(sc->sc_dev, "timeout transferring firmware\n");
1430                 error = ETIMEDOUT;
1431         }
1432
1433         /* start the microcode executing */
1434         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1435
1436         wpi_mem_unlock(sc);
1437
1438         return (error);
1439 }
1440
1441 static void
1442 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1443         struct wpi_rx_data *data)
1444 {
1445         struct ifnet *ifp = sc->sc_ifp;
1446         struct ieee80211com *ic = ifp->if_l2com;
1447         struct wpi_rx_ring *ring = &sc->rxq;
1448         struct wpi_rx_stat *stat;
1449         struct wpi_rx_head *head;
1450         struct wpi_rx_tail *tail;
1451         struct ieee80211_node *ni;
1452         struct mbuf *m, *mnew;
1453         bus_addr_t paddr;
1454         int error;
1455
1456         stat = (struct wpi_rx_stat *)(desc + 1);
1457
1458         if (stat->len > WPI_STAT_MAXLEN) {
1459                 device_printf(sc->sc_dev, "invalid rx statistic header\n");
1460                 ifp->if_ierrors++;
1461                 return;
1462         }
1463
1464         head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1465         tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1466
1467         DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1468             "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1469             le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1470             (uintmax_t)le64toh(tail->tstamp)));
1471
1472         /* discard Rx frames with bad CRC early */
1473         if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1474                 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1475                     le32toh(tail->flags)));
1476                 ifp->if_ierrors++;
1477                 return;
1478         }
1479         if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1480                 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1481                     le16toh(head->len)));
1482                 ifp->if_ierrors++;
1483                 return;
1484         }
1485
1486         /* XXX don't need mbuf, just dma buffer */
1487         mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1488         if (mnew == NULL) {
1489                 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1490                     __func__));
1491                 ifp->if_ierrors++;
1492                 return;
1493         }
1494         error = bus_dmamap_load(ring->data_dmat, data->map,
1495             mtod(mnew, caddr_t), MJUMPAGESIZE,
1496             wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1497         if (error != 0 && error != EFBIG) {
1498                 device_printf(sc->sc_dev,
1499                     "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1500                 m_freem(mnew);
1501                 ifp->if_ierrors++;
1502                 return;
1503         }
1504         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1505
1506         /* finalize mbuf and swap in new one */
1507         m = data->m;
1508         m->m_pkthdr.rcvif = ifp;
1509         m->m_data = (caddr_t)(head + 1);
1510         m->m_pkthdr.len = m->m_len = le16toh(head->len);
1511
1512         data->m = mnew;
1513         /* update Rx descriptor */
1514         ring->desc[ring->cur] = htole32(paddr);
1515
1516         if (ieee80211_radiotap_active(ic)) {
1517                 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1518
1519                 tap->wr_flags = 0;
1520                 tap->wr_chan_freq =
1521                         htole16(ic->ic_channels[head->chan].ic_freq);
1522                 tap->wr_chan_flags =
1523                         htole16(ic->ic_channels[head->chan].ic_flags);
1524                 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1525                 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1526                 tap->wr_tsft = tail->tstamp;
1527                 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1528                 switch (head->rate) {
1529                 /* CCK rates */
1530                 case  10: tap->wr_rate =   2; break;
1531                 case  20: tap->wr_rate =   4; break;
1532                 case  55: tap->wr_rate =  11; break;
1533                 case 110: tap->wr_rate =  22; break;
1534                 /* OFDM rates */
1535                 case 0xd: tap->wr_rate =  12; break;
1536                 case 0xf: tap->wr_rate =  18; break;
1537                 case 0x5: tap->wr_rate =  24; break;
1538                 case 0x7: tap->wr_rate =  36; break;
1539                 case 0x9: tap->wr_rate =  48; break;
1540                 case 0xb: tap->wr_rate =  72; break;
1541                 case 0x1: tap->wr_rate =  96; break;
1542                 case 0x3: tap->wr_rate = 108; break;
1543                 /* unknown rate: should not happen */
1544                 default:  tap->wr_rate =   0;
1545                 }
1546                 if (le16toh(head->flags) & 0x4)
1547                         tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1548         }
1549
1550         WPI_UNLOCK(sc);
1551
1552         ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1553         if (ni != NULL) {
1554                 (void) ieee80211_input(ni, m, stat->rssi, 0);
1555                 ieee80211_free_node(ni);
1556         } else
1557                 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
1558
1559         WPI_LOCK(sc);
1560 }
1561
1562 static void
1563 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1564 {
1565         struct ifnet *ifp = sc->sc_ifp;
1566         struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1567         struct wpi_tx_data *txdata = &ring->data[desc->idx];
1568         struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1569         struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1570
1571         DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1572             "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1573             stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1574             le32toh(stat->status)));
1575
1576         /*
1577          * Update rate control statistics for the node.
1578          * XXX we should not count mgmt frames since they're always sent at
1579          * the lowest available bit-rate.
1580          * XXX frames w/o ACK shouldn't be used either
1581          */
1582         wn->amn.amn_txcnt++;
1583         if (stat->ntries > 0) {
1584                 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1585                 wn->amn.amn_retrycnt++;
1586         }
1587
1588         /* XXX oerrors should only count errors !maxtries */
1589         if ((le32toh(stat->status) & 0xff) != 1)
1590                 ifp->if_oerrors++;
1591         else
1592                 ifp->if_opackets++;
1593
1594         bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1595         bus_dmamap_unload(ring->data_dmat, txdata->map);
1596         /* XXX handle M_TXCB? */
1597         m_freem(txdata->m);
1598         txdata->m = NULL;
1599         ieee80211_free_node(txdata->ni);
1600         txdata->ni = NULL;
1601
1602         ring->queued--;
1603
1604         sc->sc_tx_timer = 0;
1605         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1606         wpi_start_locked(ifp);
1607 }
1608
1609 static void
1610 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1611 {
1612         struct wpi_tx_ring *ring = &sc->cmdq;
1613         struct wpi_tx_data *data;
1614
1615         DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1616                                  "type=%s len=%d\n", desc->qid, desc->idx,
1617                                  desc->flags, wpi_cmd_str(desc->type),
1618                                  le32toh(desc->len)));
1619
1620         if ((desc->qid & 7) != 4)
1621                 return; /* not a command ack */
1622
1623         data = &ring->data[desc->idx];
1624
1625         /* if the command was mapped in a mbuf, free it */
1626         if (data->m != NULL) {
1627                 bus_dmamap_unload(ring->data_dmat, data->map);
1628                 m_freem(data->m);
1629                 data->m = NULL;
1630         }
1631
1632         sc->flags &= ~WPI_FLAG_BUSY;
1633         wakeup(&ring->cmd[desc->idx]);
1634 }
1635
1636 static void
1637 wpi_notif_intr(struct wpi_softc *sc)
1638 {
1639         struct ifnet *ifp = sc->sc_ifp;
1640         struct ieee80211com *ic = ifp->if_l2com;
1641         struct wpi_rx_desc *desc;
1642         struct wpi_rx_data *data;
1643         uint32_t hw;
1644
1645         hw = le32toh(sc->shared->next);
1646         while (sc->rxq.cur != hw) {
1647                 data = &sc->rxq.data[sc->rxq.cur];
1648                 desc = (void *)data->m->m_ext.ext_buf;
1649
1650                 DPRINTFN(WPI_DEBUG_NOTIFY,
1651                          ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1652                           desc->qid,
1653                           desc->idx,
1654                           desc->flags,
1655                           desc->type,
1656                           le32toh(desc->len)));
1657
1658                 if (!(desc->qid & 0x80))        /* reply to a command */
1659                         wpi_cmd_intr(sc, desc);
1660
1661                 switch (desc->type) {
1662                 case WPI_RX_DONE:
1663                         /* a 802.11 frame was received */
1664                         wpi_rx_intr(sc, desc, data);
1665                         break;
1666
1667                 case WPI_TX_DONE:
1668                         /* a 802.11 frame has been transmitted */
1669                         wpi_tx_intr(sc, desc);
1670                         break;
1671
1672                 case WPI_UC_READY:
1673                 {
1674                         struct wpi_ucode_info *uc =
1675                                 (struct wpi_ucode_info *)(desc + 1);
1676
1677                         /* the microcontroller is ready */
1678                         DPRINTF(("microcode alive notification version %x "
1679                                 "alive %x\n", le32toh(uc->version),
1680                                 le32toh(uc->valid)));
1681
1682                         if (le32toh(uc->valid) != 1) {
1683                                 device_printf(sc->sc_dev,
1684                                     "microcontroller initialization failed\n");
1685                                 wpi_stop_locked(sc);
1686                         }
1687                         break;
1688                 }
1689                 case WPI_STATE_CHANGED:
1690                 {
1691                         uint32_t *status = (uint32_t *)(desc + 1);
1692
1693                         /* enabled/disabled notification */
1694                         DPRINTF(("state changed to %x\n", le32toh(*status)));
1695
1696                         if (le32toh(*status) & 1) {
1697                                 device_printf(sc->sc_dev,
1698                                     "Radio transmitter is switched off\n");
1699                                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1700                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1701                                 /* Disable firmware commands */
1702                                 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1703                         }
1704                         break;
1705                 }
1706                 case WPI_START_SCAN:
1707                 {
1708 #ifdef WPI_DEBUG
1709                         struct wpi_start_scan *scan =
1710                                 (struct wpi_start_scan *)(desc + 1);
1711 #endif
1712
1713                         DPRINTFN(WPI_DEBUG_SCANNING,
1714                                  ("scanning channel %d status %x\n",
1715                             scan->chan, le32toh(scan->status)));
1716                         break;
1717                 }
1718                 case WPI_STOP_SCAN:
1719                 {
1720 #ifdef WPI_DEBUG
1721                         struct wpi_stop_scan *scan =
1722                                 (struct wpi_stop_scan *)(desc + 1);
1723 #endif
1724                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1725
1726                         DPRINTFN(WPI_DEBUG_SCANNING,
1727                             ("scan finished nchan=%d status=%d chan=%d\n",
1728                              scan->nchan, scan->status, scan->chan));
1729
1730                         sc->sc_scan_timer = 0;
1731                         ieee80211_scan_next(vap);
1732                         break;
1733                 }
1734                 case WPI_MISSED_BEACON:
1735                 {
1736                         struct wpi_missed_beacon *beacon =
1737                                 (struct wpi_missed_beacon *)(desc + 1);
1738                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1739
1740                         if (le32toh(beacon->consecutive) >=
1741                             vap->iv_bmissthreshold) {
1742                                 DPRINTF(("Beacon miss: %u >= %u\n",
1743                                          le32toh(beacon->consecutive),
1744                                          vap->iv_bmissthreshold));
1745                                 ieee80211_beacon_miss(ic);
1746                         }
1747                         break;
1748                 }
1749                 }
1750
1751                 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1752         }
1753
1754         /* tell the firmware what we have processed */
1755         hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1756         WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1757 }
1758
1759 static void
1760 wpi_intr(void *arg)
1761 {
1762         struct wpi_softc *sc = arg;
1763         uint32_t r;
1764
1765         WPI_LOCK(sc);
1766
1767         r = WPI_READ(sc, WPI_INTR);
1768         if (r == 0 || r == 0xffffffff) {
1769                 WPI_UNLOCK(sc);
1770                 return;
1771         }
1772
1773         /* disable interrupts */
1774         WPI_WRITE(sc, WPI_MASK, 0);
1775         /* ack interrupts */
1776         WPI_WRITE(sc, WPI_INTR, r);
1777
1778         if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1779                 struct ifnet *ifp = sc->sc_ifp;
1780                 struct ieee80211com *ic = ifp->if_l2com;
1781                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1782
1783                 device_printf(sc->sc_dev, "fatal firmware error\n");
1784                 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1785                                 "(Hardware Error)"));
1786                 if (vap != NULL)
1787                         ieee80211_cancel_scan(vap);
1788                 ieee80211_runtask(ic, &sc->sc_restarttask);
1789                 sc->flags &= ~WPI_FLAG_BUSY;
1790                 WPI_UNLOCK(sc);
1791                 return;
1792         }
1793
1794         if (r & WPI_RX_INTR)
1795                 wpi_notif_intr(sc);
1796
1797         if (r & WPI_ALIVE_INTR) /* firmware initialized */
1798                 wakeup(sc);
1799
1800         /* re-enable interrupts */
1801         if (sc->sc_ifp->if_flags & IFF_UP)
1802                 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1803
1804         WPI_UNLOCK(sc);
1805 }
1806
1807 static uint8_t
1808 wpi_plcp_signal(int rate)
1809 {
1810         switch (rate) {
1811         /* CCK rates (returned values are device-dependent) */
1812         case 2:         return 10;
1813         case 4:         return 20;
1814         case 11:        return 55;
1815         case 22:        return 110;
1816
1817         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1818         /* R1-R4 (ral/ural is R4-R1) */
1819         case 12:        return 0xd;
1820         case 18:        return 0xf;
1821         case 24:        return 0x5;
1822         case 36:        return 0x7;
1823         case 48:        return 0x9;
1824         case 72:        return 0xb;
1825         case 96:        return 0x1;
1826         case 108:       return 0x3;
1827
1828         /* unsupported rates (should not get there) */
1829         default:        return 0;
1830         }
1831 }
1832
1833 /* quickly determine if a given rate is CCK or OFDM */
1834 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1835
1836 /*
1837  * Construct the data packet for a transmit buffer and acutally put
1838  * the buffer onto the transmit ring, kicking the card to process the
1839  * the buffer.
1840  */
1841 static int
1842 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1843         int ac)
1844 {
1845         struct ieee80211vap *vap = ni->ni_vap;
1846         struct ifnet *ifp = sc->sc_ifp;
1847         struct ieee80211com *ic = ifp->if_l2com;
1848         const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1849         struct wpi_tx_ring *ring = &sc->txq[ac];
1850         struct wpi_tx_desc *desc;
1851         struct wpi_tx_data *data;
1852         struct wpi_tx_cmd *cmd;
1853         struct wpi_cmd_data *tx;
1854         struct ieee80211_frame *wh;
1855         const struct ieee80211_txparam *tp;
1856         struct ieee80211_key *k;
1857         struct mbuf *mnew;
1858         int i, error, nsegs, rate, hdrlen, ismcast;
1859         bus_dma_segment_t segs[WPI_MAX_SCATTER];
1860
1861         desc = &ring->desc[ring->cur];
1862         data = &ring->data[ring->cur];
1863
1864         wh = mtod(m0, struct ieee80211_frame *);
1865
1866         hdrlen = ieee80211_hdrsize(wh);
1867         ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1868
1869         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1870                 k = ieee80211_crypto_encap(ni, m0);
1871                 if (k == NULL) {
1872                         m_freem(m0);
1873                         return ENOBUFS;
1874                 }
1875                 /* packet header may have moved, reset our local pointer */
1876                 wh = mtod(m0, struct ieee80211_frame *);
1877         }
1878
1879         cmd = &ring->cmd[ring->cur];
1880         cmd->code = WPI_CMD_TX_DATA;
1881         cmd->flags = 0;
1882         cmd->qid = ring->qid;
1883         cmd->idx = ring->cur;
1884
1885         tx = (struct wpi_cmd_data *)cmd->data;
1886         tx->flags = htole32(WPI_TX_AUTO_SEQ);
1887         tx->timeout = htole16(0);
1888         tx->ofdm_mask = 0xff;
1889         tx->cck_mask = 0x0f;
1890         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1891         tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1892         tx->len = htole16(m0->m_pkthdr.len);
1893
1894         if (!ismcast) {
1895                 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1896                     !cap->cap_wmeParams[ac].wmep_noackPolicy)
1897                         tx->flags |= htole32(WPI_TX_NEED_ACK);
1898                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1899                         tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1900                         tx->rts_ntries = 7;
1901                 }
1902         }
1903         /* pick a rate */
1904         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1905         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1906                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1907                 /* tell h/w to set timestamp in probe responses */
1908                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1909                         tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1910                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1911                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1912                         tx->timeout = htole16(3);
1913                 else
1914                         tx->timeout = htole16(2);
1915                 rate = tp->mgmtrate;
1916         } else if (ismcast) {
1917                 rate = tp->mcastrate;
1918         } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1919                 rate = tp->ucastrate;
1920         } else {
1921                 (void) ieee80211_amrr_choose(ni, &WPI_NODE(ni)->amn);
1922                 rate = ni->ni_txrate;
1923         }
1924         tx->rate = wpi_plcp_signal(rate);
1925
1926         /* be very persistant at sending frames out */
1927 #if 0
1928         tx->data_ntries = tp->maxretry;
1929 #else
1930         tx->data_ntries = 15;           /* XXX way too high */
1931 #endif
1932
1933         if (ieee80211_radiotap_active_vap(vap)) {
1934                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1935                 tap->wt_flags = 0;
1936                 tap->wt_rate = rate;
1937                 tap->wt_hwqueue = ac;
1938                 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1939                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1940
1941                 ieee80211_radiotap_tx(vap, m0);
1942         }
1943
1944         /* save and trim IEEE802.11 header */
1945         m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1946         m_adj(m0, hdrlen);
1947
1948         error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1949             &nsegs, BUS_DMA_NOWAIT);
1950         if (error != 0 && error != EFBIG) {
1951                 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1952                     error);
1953                 m_freem(m0);
1954                 return error;
1955         }
1956         if (error != 0) {
1957                 /* XXX use m_collapse */
1958                 mnew = m_defrag(m0, M_DONTWAIT);
1959                 if (mnew == NULL) {
1960                         device_printf(sc->sc_dev,
1961                             "could not defragment mbuf\n");
1962                         m_freem(m0);
1963                         return ENOBUFS;
1964                 }
1965                 m0 = mnew;
1966
1967                 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1968                     m0, segs, &nsegs, BUS_DMA_NOWAIT);
1969                 if (error != 0) {
1970                         device_printf(sc->sc_dev,
1971                             "could not map mbuf (error %d)\n", error);
1972                         m_freem(m0);
1973                         return error;
1974                 }
1975         }
1976
1977         data->m = m0;
1978         data->ni = ni;
1979
1980         DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1981             ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1982
1983         /* first scatter/gather segment is used by the tx data command */
1984         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1985             (1 + nsegs) << 24);
1986         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1987             ring->cur * sizeof (struct wpi_tx_cmd));
1988         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1989         for (i = 1; i <= nsegs; i++) {
1990                 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1991                 desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1992         }
1993
1994         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1995         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1996             BUS_DMASYNC_PREWRITE);
1997
1998         ring->queued++;
1999
2000         /* kick ring */
2001         ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2002         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2003
2004         return 0;
2005 }
2006
2007 /**
2008  * Process data waiting to be sent on the IFNET output queue
2009  */
2010 static void
2011 wpi_start(struct ifnet *ifp)
2012 {
2013         struct wpi_softc *sc = ifp->if_softc;
2014
2015         WPI_LOCK(sc);
2016         wpi_start_locked(ifp);
2017         WPI_UNLOCK(sc);
2018 }
2019
2020 static void
2021 wpi_start_locked(struct ifnet *ifp)
2022 {
2023         struct wpi_softc *sc = ifp->if_softc;
2024         struct ieee80211_node *ni;
2025         struct mbuf *m;
2026         int ac;
2027
2028         WPI_LOCK_ASSERT(sc);
2029
2030         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2031                 return;
2032
2033         for (;;) {
2034                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2035                 if (m == NULL)
2036                         break;
2037                 ac = M_WME_GETAC(m);
2038                 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2039                         /* there is no place left in this ring */
2040                         IFQ_DRV_PREPEND(&ifp->if_snd, m);
2041                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2042                         break;
2043                 }
2044                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2045                 if (wpi_tx_data(sc, m, ni, ac) != 0) {
2046                         ieee80211_free_node(ni);
2047                         ifp->if_oerrors++;
2048                         break;
2049                 }
2050                 sc->sc_tx_timer = 5;
2051         }
2052 }
2053
2054 static int
2055 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2056         const struct ieee80211_bpf_params *params)
2057 {
2058         struct ieee80211com *ic = ni->ni_ic;
2059         struct ifnet *ifp = ic->ic_ifp;
2060         struct wpi_softc *sc = ifp->if_softc;
2061
2062         /* prevent management frames from being sent if we're not ready */
2063         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2064                 m_freem(m);
2065                 ieee80211_free_node(ni);
2066                 return ENETDOWN;
2067         }
2068         WPI_LOCK(sc);
2069
2070         /* management frames go into ring 0 */
2071         if (sc->txq[0].queued > sc->txq[0].count - 8) {
2072                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2073                 m_freem(m);
2074                 WPI_UNLOCK(sc);
2075                 ieee80211_free_node(ni);
2076                 return ENOBUFS;         /* XXX */
2077         }
2078
2079         ifp->if_opackets++;
2080         if (wpi_tx_data(sc, m, ni, 0) != 0)
2081                 goto bad;
2082         sc->sc_tx_timer = 5;
2083         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2084
2085         WPI_UNLOCK(sc);
2086         return 0;
2087 bad:
2088         ifp->if_oerrors++;
2089         WPI_UNLOCK(sc);
2090         ieee80211_free_node(ni);
2091         return EIO;             /* XXX */
2092 }
2093
2094 static int
2095 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2096 {
2097         struct wpi_softc *sc = ifp->if_softc;
2098         struct ieee80211com *ic = ifp->if_l2com;
2099         struct ifreq *ifr = (struct ifreq *) data;
2100         int error = 0, startall = 0;
2101
2102         switch (cmd) {
2103         case SIOCSIFFLAGS:
2104                 WPI_LOCK(sc);
2105                 if ((ifp->if_flags & IFF_UP)) {
2106                         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2107                                 wpi_init_locked(sc, 0);
2108                                 startall = 1;
2109                         }
2110                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2111                            (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2112                         wpi_stop_locked(sc);
2113                 WPI_UNLOCK(sc);
2114                 if (startall)
2115                         ieee80211_start_all(ic);
2116                 break;
2117         case SIOCGIFMEDIA:
2118                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2119                 break;
2120         case SIOCGIFADDR:
2121                 error = ether_ioctl(ifp, cmd, data);
2122                 break;
2123         default:
2124                 error = EINVAL;
2125                 break;
2126         }
2127         return error;
2128 }
2129
2130 /*
2131  * Extract various information from EEPROM.
2132  */
2133 static void
2134 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2135 {
2136         int i;
2137
2138         /* read the hardware capabilities, revision and SKU type */
2139         wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2140         wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2141         wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2142
2143         /* read the regulatory domain */
2144         wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2145
2146         /* read in the hw MAC address */
2147         wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2148
2149         /* read the list of authorized channels */
2150         for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2151                 wpi_read_eeprom_channels(sc,i);
2152
2153         /* read the power level calibration info for each group */
2154         for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2155                 wpi_read_eeprom_group(sc,i);
2156 }
2157
2158 /*
2159  * Send a command to the firmware.
2160  */
2161 static int
2162 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2163 {
2164         struct wpi_tx_ring *ring = &sc->cmdq;
2165         struct wpi_tx_desc *desc;
2166         struct wpi_tx_cmd *cmd;
2167
2168 #ifdef WPI_DEBUG
2169         if (!async) {
2170                 WPI_LOCK_ASSERT(sc);
2171         }
2172 #endif
2173
2174         DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2175                     async));
2176
2177         if (sc->flags & WPI_FLAG_BUSY) {
2178                 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2179                     __func__, code);
2180                 return EAGAIN;
2181         }
2182         sc->flags|= WPI_FLAG_BUSY;
2183
2184         KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2185             code, size));
2186
2187         desc = &ring->desc[ring->cur];
2188         cmd = &ring->cmd[ring->cur];
2189
2190         cmd->code = code;
2191         cmd->flags = 0;
2192         cmd->qid = ring->qid;
2193         cmd->idx = ring->cur;
2194         memcpy(cmd->data, buf, size);
2195
2196         desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2197         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2198                 ring->cur * sizeof (struct wpi_tx_cmd));
2199         desc->segs[0].len  = htole32(4 + size);
2200
2201         /* kick cmd ring */
2202         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2203         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2204
2205         if (async) {
2206                 sc->flags &= ~ WPI_FLAG_BUSY;
2207                 return 0;
2208         }
2209
2210         return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2211 }
2212
2213 static int
2214 wpi_wme_update(struct ieee80211com *ic)
2215 {
2216 #define WPI_EXP2(v)     htole16((1 << (v)) - 1)
2217 #define WPI_USEC(v)     htole16(IEEE80211_TXOP_TO_US(v))
2218         struct wpi_softc *sc = ic->ic_ifp->if_softc;
2219         const struct wmeParams *wmep;
2220         struct wpi_wme_setup wme;
2221         int ac;
2222
2223         /* don't override default WME values if WME is not actually enabled */
2224         if (!(ic->ic_flags & IEEE80211_F_WME))
2225                 return 0;
2226
2227         wme.flags = 0;
2228         for (ac = 0; ac < WME_NUM_AC; ac++) {
2229                 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2230                 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2231                 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2232                 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2233                 wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2234
2235                 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2236                     "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2237                     wme.ac[ac].cwmax, wme.ac[ac].txop));
2238         }
2239         return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2240 #undef WPI_USEC
2241 #undef WPI_EXP2
2242 }
2243
2244 /*
2245  * Configure h/w multi-rate retries.
2246  */
2247 static int
2248 wpi_mrr_setup(struct wpi_softc *sc)
2249 {
2250         struct ifnet *ifp = sc->sc_ifp;
2251         struct ieee80211com *ic = ifp->if_l2com;
2252         struct wpi_mrr_setup mrr;
2253         int i, error;
2254
2255         memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2256
2257         /* CCK rates (not used with 802.11a) */
2258         for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2259                 mrr.rates[i].flags = 0;
2260                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2261                 /* fallback to the immediate lower CCK rate (if any) */
2262                 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2263                 /* try one time at this rate before falling back to "next" */
2264                 mrr.rates[i].ntries = 1;
2265         }
2266
2267         /* OFDM rates (not used with 802.11b) */
2268         for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2269                 mrr.rates[i].flags = 0;
2270                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2271                 /* fallback to the immediate lower OFDM rate (if any) */
2272                 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2273                 mrr.rates[i].next = (i == WPI_OFDM6) ?
2274                     ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2275                         WPI_OFDM6 : WPI_CCK2) :
2276                     i - 1;
2277                 /* try one time at this rate before falling back to "next" */
2278                 mrr.rates[i].ntries = 1;
2279         }
2280
2281         /* setup MRR for control frames */
2282         mrr.which = htole32(WPI_MRR_CTL);
2283         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2284         if (error != 0) {
2285                 device_printf(sc->sc_dev,
2286                     "could not setup MRR for control frames\n");
2287                 return error;
2288         }
2289
2290         /* setup MRR for data frames */
2291         mrr.which = htole32(WPI_MRR_DATA);
2292         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2293         if (error != 0) {
2294                 device_printf(sc->sc_dev,
2295                     "could not setup MRR for data frames\n");
2296                 return error;
2297         }
2298
2299         return 0;
2300 }
2301
2302 static void
2303 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2304 {
2305         struct wpi_cmd_led led;
2306
2307         led.which = which;
2308         led.unit = htole32(100000);     /* on/off in unit of 100ms */
2309         led.off = off;
2310         led.on = on;
2311
2312         (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2313 }
2314
2315 static void
2316 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2317 {
2318         struct wpi_cmd_tsf tsf;
2319         uint64_t val, mod;
2320
2321         memset(&tsf, 0, sizeof tsf);
2322         memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2323         tsf.bintval = htole16(ni->ni_intval);
2324         tsf.lintval = htole16(10);
2325
2326         /* compute remaining time until next beacon */
2327         val = (uint64_t)ni->ni_intval  * 1024;  /* msec -> usec */
2328         mod = le64toh(tsf.tstamp) % val;
2329         tsf.binitval = htole32((uint32_t)(val - mod));
2330
2331         if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2332                 device_printf(sc->sc_dev, "could not enable TSF\n");
2333 }
2334
2335 #if 0
2336 /*
2337  * Build a beacon frame that the firmware will broadcast periodically in
2338  * IBSS or HostAP modes.
2339  */
2340 static int
2341 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2342 {
2343         struct ifnet *ifp = sc->sc_ifp;
2344         struct ieee80211com *ic = ifp->if_l2com;
2345         struct wpi_tx_ring *ring = &sc->cmdq;
2346         struct wpi_tx_desc *desc;
2347         struct wpi_tx_data *data;
2348         struct wpi_tx_cmd *cmd;
2349         struct wpi_cmd_beacon *bcn;
2350         struct ieee80211_beacon_offsets bo;
2351         struct mbuf *m0;
2352         bus_addr_t physaddr;
2353         int error;
2354
2355         desc = &ring->desc[ring->cur];
2356         data = &ring->data[ring->cur];
2357
2358         m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2359         if (m0 == NULL) {
2360                 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2361                 return ENOMEM;
2362         }
2363
2364         cmd = &ring->cmd[ring->cur];
2365         cmd->code = WPI_CMD_SET_BEACON;
2366         cmd->flags = 0;
2367         cmd->qid = ring->qid;
2368         cmd->idx = ring->cur;
2369
2370         bcn = (struct wpi_cmd_beacon *)cmd->data;
2371         memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2372         bcn->id = WPI_ID_BROADCAST;
2373         bcn->ofdm_mask = 0xff;
2374         bcn->cck_mask = 0x0f;
2375         bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2376         bcn->len = htole16(m0->m_pkthdr.len);
2377         bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2378                 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2379         bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2380
2381         /* save and trim IEEE802.11 header */
2382         m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2383         m_adj(m0, sizeof (struct ieee80211_frame));
2384
2385         /* assume beacon frame is contiguous */
2386         error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2387             m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2388         if (error != 0) {
2389                 device_printf(sc->sc_dev, "could not map beacon\n");
2390                 m_freem(m0);
2391                 return error;
2392         }
2393
2394         data->m = m0;
2395
2396         /* first scatter/gather segment is used by the beacon command */
2397         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2398         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2399                 ring->cur * sizeof (struct wpi_tx_cmd));
2400         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2401         desc->segs[1].addr = htole32(physaddr);
2402         desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2403
2404         /* kick cmd ring */
2405         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2406         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2407
2408         return 0;
2409 }
2410 #endif
2411
2412 static int
2413 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2414 {
2415         struct ieee80211com *ic = vap->iv_ic;
2416         struct ieee80211_node *ni = vap->iv_bss;
2417         struct wpi_node_info node;
2418         int error;
2419
2420
2421         /* update adapter's configuration */
2422         sc->config.associd = 0;
2423         sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2424         IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2425         sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2426         if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2427                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2428                     WPI_CONFIG_24GHZ);
2429         }
2430         if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2431                 sc->config.cck_mask  = 0;
2432                 sc->config.ofdm_mask = 0x15;
2433         } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2434                 sc->config.cck_mask  = 0x03;
2435                 sc->config.ofdm_mask = 0;
2436         } else {
2437                 /* XXX assume 802.11b/g */
2438                 sc->config.cck_mask  = 0x0f;
2439                 sc->config.ofdm_mask = 0x15;
2440         }
2441
2442         DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2443                 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2444         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2445                 sizeof (struct wpi_config), 1);
2446         if (error != 0) {
2447                 device_printf(sc->sc_dev, "could not configure\n");
2448                 return error;
2449         }
2450
2451         /* configuration has changed, set Tx power accordingly */
2452         if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2453                 device_printf(sc->sc_dev, "could not set Tx power\n");
2454                 return error;
2455         }
2456
2457         /* add default node */
2458         memset(&node, 0, sizeof node);
2459         IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2460         node.id = WPI_ID_BSS;
2461         node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2462             wpi_plcp_signal(12) : wpi_plcp_signal(2);
2463         node.action = htole32(WPI_ACTION_SET_RATE);
2464         node.antenna = WPI_ANTENNA_BOTH;
2465         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2466         if (error != 0)
2467                 device_printf(sc->sc_dev, "could not add BSS node\n");
2468
2469         return (error);
2470 }
2471
2472 static int
2473 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2474 {
2475         struct ieee80211com *ic = vap->iv_ic;
2476         struct ieee80211_node *ni = vap->iv_bss;
2477         int error;
2478
2479         if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2480                 /* link LED blinks while monitoring */
2481                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2482                 return 0;
2483         }
2484
2485         wpi_enable_tsf(sc, ni);
2486
2487         /* update adapter's configuration */
2488         sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2489         /* short preamble/slot time are negotiated when associating */
2490         sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2491             WPI_CONFIG_SHSLOT);
2492         if (ic->ic_flags & IEEE80211_F_SHSLOT)
2493                 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2494         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2495                 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2496         sc->config.filter |= htole32(WPI_FILTER_BSS);
2497
2498         /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2499
2500         DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2501                     sc->config.flags));
2502         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2503                     wpi_config), 1);
2504         if (error != 0) {
2505                 device_printf(sc->sc_dev, "could not update configuration\n");
2506                 return error;
2507         }
2508
2509         error = wpi_set_txpower(sc, ni->ni_chan, 1);
2510         if (error != 0) {
2511                 device_printf(sc->sc_dev, "could set txpower\n");
2512                 return error;
2513         }
2514
2515         /* link LED always on while associated */
2516         wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2517
2518         /* start automatic rate control timer */
2519         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2520
2521         return (error);
2522 }
2523
2524 /*
2525  * Send a scan request to the firmware.  Since this command is huge, we map it
2526  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2527  * much of this code is similar to that in wpi_cmd but because we must manually
2528  * construct the probe & channels, we duplicate what's needed here. XXX In the
2529  * future, this function should be modified to use wpi_cmd to help cleanup the
2530  * code base.
2531  */
2532 static int
2533 wpi_scan(struct wpi_softc *sc)
2534 {
2535         struct ifnet *ifp = sc->sc_ifp;
2536         struct ieee80211com *ic = ifp->if_l2com;
2537         struct ieee80211_scan_state *ss = ic->ic_scan;
2538         struct wpi_tx_ring *ring = &sc->cmdq;
2539         struct wpi_tx_desc *desc;
2540         struct wpi_tx_data *data;
2541         struct wpi_tx_cmd *cmd;
2542         struct wpi_scan_hdr *hdr;
2543         struct wpi_scan_chan *chan;
2544         struct ieee80211_frame *wh;
2545         struct ieee80211_rateset *rs;
2546         struct ieee80211_channel *c;
2547         enum ieee80211_phymode mode;
2548         uint8_t *frm;
2549         int nrates, pktlen, error, i, nssid;
2550         bus_addr_t physaddr;
2551
2552         desc = &ring->desc[ring->cur];
2553         data = &ring->data[ring->cur];
2554
2555         data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2556         if (data->m == NULL) {
2557                 device_printf(sc->sc_dev,
2558                     "could not allocate mbuf for scan command\n");
2559                 return ENOMEM;
2560         }
2561
2562         cmd = mtod(data->m, struct wpi_tx_cmd *);
2563         cmd->code = WPI_CMD_SCAN;
2564         cmd->flags = 0;
2565         cmd->qid = ring->qid;
2566         cmd->idx = ring->cur;
2567
2568         hdr = (struct wpi_scan_hdr *)cmd->data;
2569         memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2570
2571         /*
2572          * Move to the next channel if no packets are received within 5 msecs
2573          * after sending the probe request (this helps to reduce the duration
2574          * of active scans).
2575          */
2576         hdr->quiet = htole16(5);
2577         hdr->threshold = htole16(1);
2578
2579         if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2580                 /* send probe requests at 6Mbps */
2581                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2582
2583                 /* Enable crc checking */
2584                 hdr->promotion = htole16(1);
2585         } else {
2586                 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2587                 /* send probe requests at 1Mbps */
2588                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2589         }
2590         hdr->tx.id = WPI_ID_BROADCAST;
2591         hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2592         hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2593
2594         memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2595         nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2596         for (i = 0; i < nssid; i++) {
2597                 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2598                 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2599                 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2600                     hdr->scan_essids[i].esslen);
2601 #ifdef WPI_DEBUG
2602                 if (wpi_debug & WPI_DEBUG_SCANNING) {
2603                         printf("Scanning Essid: ");
2604                         ieee80211_print_essid(hdr->scan_essids[i].essid,
2605                             hdr->scan_essids[i].esslen);
2606                         printf("\n");
2607                 }
2608 #endif
2609         }
2610
2611         /*
2612          * Build a probe request frame.  Most of the following code is a
2613          * copy & paste of what is done in net80211.
2614          */
2615         wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2616         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2617                 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2618         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2619         IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2620         IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2621         IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2622         *(u_int16_t *)&wh->i_dur[0] = 0;        /* filled by h/w */
2623         *(u_int16_t *)&wh->i_seq[0] = 0;        /* filled by h/w */
2624
2625         frm = (uint8_t *)(wh + 1);
2626
2627         /* add essid IE, the hardware will fill this in for us */
2628         *frm++ = IEEE80211_ELEMID_SSID;
2629         *frm++ = 0;
2630
2631         mode = ieee80211_chan2mode(ic->ic_curchan);
2632         rs = &ic->ic_sup_rates[mode];
2633
2634         /* add supported rates IE */
2635         *frm++ = IEEE80211_ELEMID_RATES;
2636         nrates = rs->rs_nrates;
2637         if (nrates > IEEE80211_RATE_SIZE)
2638                 nrates = IEEE80211_RATE_SIZE;
2639         *frm++ = nrates;
2640         memcpy(frm, rs->rs_rates, nrates);
2641         frm += nrates;
2642
2643         /* add supported xrates IE */
2644         if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2645                 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2646                 *frm++ = IEEE80211_ELEMID_XRATES;
2647                 *frm++ = nrates;
2648                 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2649                 frm += nrates;
2650         }
2651
2652         /* setup length of probe request */
2653         hdr->tx.len = htole16(frm - (uint8_t *)wh);
2654
2655         /*
2656          * Construct information about the channel that we
2657          * want to scan. The firmware expects this to be directly
2658          * after the scan probe request
2659          */
2660         c = ic->ic_curchan;
2661         chan = (struct wpi_scan_chan *)frm;
2662         chan->chan = ieee80211_chan2ieee(ic, c);
2663         chan->flags = 0;
2664         if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2665                 chan->flags |= WPI_CHAN_ACTIVE;
2666                 if (nssid != 0)
2667                         chan->flags |= WPI_CHAN_DIRECT;
2668         }
2669         chan->gain_dsp = 0x6e; /* Default level */
2670         if (IEEE80211_IS_CHAN_5GHZ(c)) {
2671                 chan->active = htole16(10);
2672                 chan->passive = htole16(ss->ss_maxdwell);
2673                 chan->gain_radio = 0x3b;
2674         } else {
2675                 chan->active = htole16(20);
2676                 chan->passive = htole16(ss->ss_maxdwell);
2677                 chan->gain_radio = 0x28;
2678         }
2679
2680         DPRINTFN(WPI_DEBUG_SCANNING,
2681             ("Scanning %u Passive: %d\n",
2682              chan->chan,
2683              c->ic_flags & IEEE80211_CHAN_PASSIVE));
2684
2685         hdr->nchan++;
2686         chan++;
2687
2688         frm += sizeof (struct wpi_scan_chan);
2689 #if 0
2690         // XXX All Channels....
2691         for (c  = &ic->ic_channels[1];
2692              c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2693                 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2694                         continue;
2695
2696                 chan->chan = ieee80211_chan2ieee(ic, c);
2697                 chan->flags = 0;
2698                 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2699                     chan->flags |= WPI_CHAN_ACTIVE;
2700                     if (ic->ic_des_ssid[0].len != 0)
2701                         chan->flags |= WPI_CHAN_DIRECT;
2702                 }
2703                 chan->gain_dsp = 0x6e; /* Default level */
2704                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2705                         chan->active = htole16(10);
2706                         chan->passive = htole16(110);
2707                         chan->gain_radio = 0x3b;
2708                 } else {
2709                         chan->active = htole16(20);
2710                         chan->passive = htole16(120);
2711                         chan->gain_radio = 0x28;
2712                 }
2713
2714                 DPRINTFN(WPI_DEBUG_SCANNING,
2715                          ("Scanning %u Passive: %d\n",
2716                           chan->chan,
2717                           c->ic_flags & IEEE80211_CHAN_PASSIVE));
2718
2719                 hdr->nchan++;
2720                 chan++;
2721
2722                 frm += sizeof (struct wpi_scan_chan);
2723         }
2724 #endif
2725
2726         hdr->len = htole16(frm - (uint8_t *)hdr);
2727         pktlen = frm - (uint8_t *)cmd;
2728
2729         error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2730             wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2731         if (error != 0) {
2732                 device_printf(sc->sc_dev, "could not map scan command\n");
2733                 m_freem(data->m);
2734                 data->m = NULL;
2735                 return error;
2736         }
2737
2738         desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2739         desc->segs[0].addr = htole32(physaddr);
2740         desc->segs[0].len  = htole32(pktlen);
2741
2742         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2743             BUS_DMASYNC_PREWRITE);
2744         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2745
2746         /* kick cmd ring */
2747         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2748         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2749
2750         sc->sc_scan_timer = 5;
2751         return 0;       /* will be notified async. of failure/success */
2752 }
2753
2754 /**
2755  * Configure the card to listen to a particular channel, this transisions the
2756  * card in to being able to receive frames from remote devices.
2757  */
2758 static int
2759 wpi_config(struct wpi_softc *sc)
2760 {
2761         struct ifnet *ifp = sc->sc_ifp;
2762         struct ieee80211com *ic = ifp->if_l2com;
2763         struct wpi_power power;
2764         struct wpi_bluetooth bluetooth;
2765         struct wpi_node_info node;
2766         int error;
2767
2768         /* set power mode */
2769         memset(&power, 0, sizeof power);
2770         power.flags = htole32(WPI_POWER_CAM|0x8);
2771         error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2772         if (error != 0) {
2773                 device_printf(sc->sc_dev, "could not set power mode\n");
2774                 return error;
2775         }
2776
2777         /* configure bluetooth coexistence */
2778         memset(&bluetooth, 0, sizeof bluetooth);
2779         bluetooth.flags = 3;
2780         bluetooth.lead = 0xaa;
2781         bluetooth.kill = 1;
2782         error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2783             0);
2784         if (error != 0) {
2785                 device_printf(sc->sc_dev,
2786                     "could not configure bluetooth coexistence\n");
2787                 return error;
2788         }
2789
2790         /* configure adapter */
2791         memset(&sc->config, 0, sizeof (struct wpi_config));
2792         IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2793         /*set default channel*/
2794         sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2795         sc->config.flags = htole32(WPI_CONFIG_TSF);
2796         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2797                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2798                     WPI_CONFIG_24GHZ);
2799         }
2800         sc->config.filter = 0;
2801         switch (ic->ic_opmode) {
2802         case IEEE80211_M_STA:
2803         case IEEE80211_M_WDS:   /* No know setup, use STA for now */
2804                 sc->config.mode = WPI_MODE_STA;
2805                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2806                 break;
2807         case IEEE80211_M_IBSS:
2808         case IEEE80211_M_AHDEMO:
2809                 sc->config.mode = WPI_MODE_IBSS;
2810                 sc->config.filter |= htole32(WPI_FILTER_BEACON |
2811                                              WPI_FILTER_MULTICAST);
2812                 break;
2813         case IEEE80211_M_HOSTAP:
2814                 sc->config.mode = WPI_MODE_HOSTAP;
2815                 break;
2816         case IEEE80211_M_MONITOR:
2817                 sc->config.mode = WPI_MODE_MONITOR;
2818                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2819                         WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2820                 break;
2821         default:
2822                 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2823                 return EINVAL;
2824         }
2825         sc->config.cck_mask  = 0x0f;    /* not yet negotiated */
2826         sc->config.ofdm_mask = 0xff;    /* not yet negotiated */
2827         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2828                 sizeof (struct wpi_config), 0);
2829         if (error != 0) {
2830                 device_printf(sc->sc_dev, "configure command failed\n");
2831                 return error;
2832         }
2833
2834         /* configuration has changed, set Tx power accordingly */
2835         if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2836             device_printf(sc->sc_dev, "could not set Tx power\n");
2837             return error;
2838         }
2839
2840         /* add broadcast node */
2841         memset(&node, 0, sizeof node);
2842         IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2843         node.id = WPI_ID_BROADCAST;
2844         node.rate = wpi_plcp_signal(2);
2845         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2846         if (error != 0) {
2847                 device_printf(sc->sc_dev, "could not add broadcast node\n");
2848                 return error;
2849         }
2850
2851         /* Setup rate scalling */
2852         error = wpi_mrr_setup(sc);
2853         if (error != 0) {
2854                 device_printf(sc->sc_dev, "could not setup MRR\n");
2855                 return error;
2856         }
2857
2858         return 0;
2859 }
2860
2861 static void
2862 wpi_stop_master(struct wpi_softc *sc)
2863 {
2864         uint32_t tmp;
2865         int ntries;
2866
2867         DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2868
2869         tmp = WPI_READ(sc, WPI_RESET);
2870         WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2871
2872         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2873         if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2874                 return; /* already asleep */
2875
2876         for (ntries = 0; ntries < 100; ntries++) {
2877                 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2878                         break;
2879                 DELAY(10);
2880         }
2881         if (ntries == 100) {
2882                 device_printf(sc->sc_dev, "timeout waiting for master\n");
2883         }
2884 }
2885
2886 static int
2887 wpi_power_up(struct wpi_softc *sc)
2888 {
2889         uint32_t tmp;
2890         int ntries;
2891
2892         wpi_mem_lock(sc);
2893         tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2894         wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2895         wpi_mem_unlock(sc);
2896
2897         for (ntries = 0; ntries < 5000; ntries++) {
2898                 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2899                         break;
2900                 DELAY(10);
2901         }
2902         if (ntries == 5000) {
2903                 device_printf(sc->sc_dev,
2904                     "timeout waiting for NIC to power up\n");
2905                 return ETIMEDOUT;
2906         }
2907         return 0;
2908 }
2909
2910 static int
2911 wpi_reset(struct wpi_softc *sc)
2912 {
2913         uint32_t tmp;
2914         int ntries;
2915
2916         DPRINTFN(WPI_DEBUG_HW,
2917             ("Resetting the card - clearing any uploaded firmware\n"));
2918
2919         /* clear any pending interrupts */
2920         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2921
2922         tmp = WPI_READ(sc, WPI_PLL_CTL);
2923         WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2924
2925         tmp = WPI_READ(sc, WPI_CHICKEN);
2926         WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2927
2928         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2929         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2930
2931         /* wait for clock stabilization */
2932         for (ntries = 0; ntries < 25000; ntries++) {
2933                 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2934                         break;
2935                 DELAY(10);
2936         }
2937         if (ntries == 25000) {
2938                 device_printf(sc->sc_dev,
2939                     "timeout waiting for clock stabilization\n");
2940                 return ETIMEDOUT;
2941         }
2942
2943         /* initialize EEPROM */
2944         tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2945
2946         if ((tmp & WPI_EEPROM_VERSION) == 0) {
2947                 device_printf(sc->sc_dev, "EEPROM not found\n");
2948                 return EIO;
2949         }
2950         WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2951
2952         return 0;
2953 }
2954
2955 static void
2956 wpi_hw_config(struct wpi_softc *sc)
2957 {
2958         uint32_t rev, hw;
2959
2960         /* voodoo from the Linux "driver".. */
2961         hw = WPI_READ(sc, WPI_HWCONFIG);
2962
2963         rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2964         if ((rev & 0xc0) == 0x40)
2965                 hw |= WPI_HW_ALM_MB;
2966         else if (!(rev & 0x80))
2967                 hw |= WPI_HW_ALM_MM;
2968
2969         if (sc->cap == 0x80)
2970                 hw |= WPI_HW_SKU_MRC;
2971
2972         hw &= ~WPI_HW_REV_D;
2973         if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2974                 hw |= WPI_HW_REV_D;
2975
2976         if (sc->type > 1)
2977                 hw |= WPI_HW_TYPE_B;
2978
2979         WPI_WRITE(sc, WPI_HWCONFIG, hw);
2980 }
2981
2982 static void
2983 wpi_rfkill_resume(struct wpi_softc *sc)
2984 {
2985         struct ifnet *ifp = sc->sc_ifp;
2986         struct ieee80211com *ic = ifp->if_l2com;
2987         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2988         int ntries;
2989
2990         /* enable firmware again */
2991         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2992         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2993
2994         /* wait for thermal sensors to calibrate */
2995         for (ntries = 0; ntries < 1000; ntries++) {
2996                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
2997                         break;
2998                 DELAY(10);
2999         }
3000
3001         if (ntries == 1000) {
3002                 device_printf(sc->sc_dev,
3003                     "timeout waiting for thermal calibration\n");
3004                 WPI_UNLOCK(sc);
3005                 return;
3006         }
3007         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3008
3009         if (wpi_config(sc) != 0) {
3010                 device_printf(sc->sc_dev, "device config failed\n");
3011                 WPI_UNLOCK(sc);
3012                 return;
3013         }
3014
3015         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3016         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3017         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3018
3019         if (vap != NULL) {
3020                 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3021                         if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3022                                 ieee80211_beacon_miss(ic);
3023                                 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3024                         } else
3025                                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3026                 } else {
3027                         ieee80211_scan_next(vap);
3028                         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3029                 }
3030         }
3031
3032         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3033 }
3034
3035 static void
3036 wpi_init_locked(struct wpi_softc *sc, int force)
3037 {
3038         struct ifnet *ifp = sc->sc_ifp;
3039         uint32_t tmp;
3040         int ntries, qid;
3041
3042         wpi_stop_locked(sc);
3043         (void)wpi_reset(sc);
3044
3045         wpi_mem_lock(sc);
3046         wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3047         DELAY(20);
3048         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3049         wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3050         wpi_mem_unlock(sc);
3051
3052         (void)wpi_power_up(sc);
3053         wpi_hw_config(sc);
3054
3055         /* init Rx ring */
3056         wpi_mem_lock(sc);
3057         WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3058         WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3059             offsetof(struct wpi_shared, next));
3060         WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3061         WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3062         wpi_mem_unlock(sc);
3063
3064         /* init Tx rings */
3065         wpi_mem_lock(sc);
3066         wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3067         wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3068         wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3069         wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3070         wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3071         wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3072         wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3073
3074         WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3075         WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3076
3077         for (qid = 0; qid < 6; qid++) {
3078                 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3079                 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3080                 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3081         }
3082         wpi_mem_unlock(sc);
3083
3084         /* clear "radio off" and "disable command" bits (reversed logic) */
3085         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3086         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3087         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3088
3089         /* clear any pending interrupts */
3090         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3091
3092         /* enable interrupts */
3093         WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3094
3095         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3096         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3097
3098         if ((wpi_load_firmware(sc)) != 0) {
3099             device_printf(sc->sc_dev,
3100                 "A problem occurred loading the firmware to the driver\n");
3101             return;
3102         }
3103
3104         /* At this point the firmware is up and running. If the hardware
3105          * RF switch is turned off thermal calibration will fail, though
3106          * the card is still happy to continue to accept commands, catch
3107          * this case and schedule a task to watch for it to be turned on.
3108          */
3109         wpi_mem_lock(sc);
3110         tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3111         wpi_mem_unlock(sc);
3112
3113         if (!(tmp & 0x1)) {
3114                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3115                 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3116                 goto out;
3117         }
3118
3119         /* wait for thermal sensors to calibrate */
3120         for (ntries = 0; ntries < 1000; ntries++) {
3121                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3122                         break;
3123                 DELAY(10);
3124         }
3125
3126         if (ntries == 1000) {
3127                 device_printf(sc->sc_dev,
3128                     "timeout waiting for thermal sensors calibration\n");
3129                 return;
3130         }
3131         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3132
3133         if (wpi_config(sc) != 0) {
3134                 device_printf(sc->sc_dev, "device config failed\n");
3135                 return;
3136         }
3137
3138         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3139         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3140 out:
3141         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3142 }
3143
3144 static void
3145 wpi_init(void *arg)
3146 {
3147         struct wpi_softc *sc = arg;
3148         struct ifnet *ifp = sc->sc_ifp;
3149         struct ieee80211com *ic = ifp->if_l2com;
3150
3151         WPI_LOCK(sc);
3152         wpi_init_locked(sc, 0);
3153         WPI_UNLOCK(sc);
3154
3155         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3156                 ieee80211_start_all(ic);                /* start all vaps */
3157 }
3158
3159 static void
3160 wpi_stop_locked(struct wpi_softc *sc)
3161 {
3162         struct ifnet *ifp = sc->sc_ifp;
3163         uint32_t tmp;
3164         int ac;
3165
3166         sc->sc_tx_timer = 0;
3167         sc->sc_scan_timer = 0;
3168         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3169         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3170         callout_stop(&sc->watchdog_to);
3171         callout_stop(&sc->calib_to);
3172
3173
3174         /* disable interrupts */
3175         WPI_WRITE(sc, WPI_MASK, 0);
3176         WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3177         WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3178         WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3179
3180         wpi_mem_lock(sc);
3181         wpi_mem_write(sc, WPI_MEM_MODE, 0);
3182         wpi_mem_unlock(sc);
3183
3184         /* reset all Tx rings */
3185         for (ac = 0; ac < 4; ac++)
3186                 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3187         wpi_reset_tx_ring(sc, &sc->cmdq);
3188
3189         /* reset Rx ring */
3190         wpi_reset_rx_ring(sc, &sc->rxq);
3191
3192         wpi_mem_lock(sc);
3193         wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3194         wpi_mem_unlock(sc);
3195
3196         DELAY(5);
3197
3198         wpi_stop_master(sc);
3199
3200         tmp = WPI_READ(sc, WPI_RESET);
3201         WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3202         sc->flags &= ~WPI_FLAG_BUSY;
3203 }
3204
3205 static void
3206 wpi_stop(struct wpi_softc *sc)
3207 {
3208         WPI_LOCK(sc);
3209         wpi_stop_locked(sc);
3210         WPI_UNLOCK(sc);
3211 }
3212
3213 static void
3214 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3215 {
3216         struct ieee80211vap *vap = ni->ni_vap;
3217         struct wpi_vap *wvp = WPI_VAP(vap);
3218
3219         ieee80211_amrr_node_init(&wvp->amrr, &WPI_NODE(ni)->amn, ni);
3220 }
3221
3222 static void
3223 wpi_calib_timeout(void *arg)
3224 {
3225         struct wpi_softc *sc = arg;
3226         struct ifnet *ifp = sc->sc_ifp;
3227         struct ieee80211com *ic = ifp->if_l2com;
3228         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3229         int temp;
3230
3231         if (vap->iv_state != IEEE80211_S_RUN)
3232                 return;
3233
3234         /* update sensor data */
3235         temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3236         DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3237
3238         wpi_power_calibration(sc, temp);
3239
3240         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3241 }
3242
3243 /*
3244  * This function is called periodically (every 60 seconds) to adjust output
3245  * power to temperature changes.
3246  */
3247 static void
3248 wpi_power_calibration(struct wpi_softc *sc, int temp)
3249 {
3250         struct ifnet *ifp = sc->sc_ifp;
3251         struct ieee80211com *ic = ifp->if_l2com;
3252         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3253
3254         /* sanity-check read value */
3255         if (temp < -260 || temp > 25) {
3256                 /* this can't be correct, ignore */
3257                 DPRINTFN(WPI_DEBUG_TEMP,
3258                     ("out-of-range temperature reported: %d\n", temp));
3259                 return;
3260         }
3261
3262         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3263
3264         /* adjust Tx power if need be */
3265         if (abs(temp - sc->temp) <= 6)
3266                 return;
3267
3268         sc->temp = temp;
3269
3270         if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3271                 /* just warn, too bad for the automatic calibration... */
3272                 device_printf(sc->sc_dev,"could not adjust Tx power\n");
3273         }
3274 }
3275
3276 /**
3277  * Read the eeprom to find out what channels are valid for the given
3278  * band and update net80211 with what we find.
3279  */
3280 static void
3281 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3282 {
3283         struct ifnet *ifp = sc->sc_ifp;
3284         struct ieee80211com *ic = ifp->if_l2com;
3285         const struct wpi_chan_band *band = &wpi_bands[n];
3286         struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3287         struct ieee80211_channel *c;
3288         int chan, i, passive;
3289
3290         wpi_read_prom_data(sc, band->addr, channels,
3291             band->nchan * sizeof (struct wpi_eeprom_chan));
3292
3293         for (i = 0; i < band->nchan; i++) {
3294                 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3295                         DPRINTFN(WPI_DEBUG_HW,
3296                             ("Channel Not Valid: %d, band %d\n",
3297                              band->chan[i],n));
3298                         continue;
3299                 }
3300
3301                 passive = 0;
3302                 chan = band->chan[i];
3303                 c = &ic->ic_channels[ic->ic_nchans++];
3304
3305                 /* is active scan allowed on this channel? */
3306                 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3307                         passive = IEEE80211_CHAN_PASSIVE;
3308                 }
3309
3310                 if (n == 0) {   /* 2GHz band */
3311                         c->ic_ieee = chan;
3312                         c->ic_freq = ieee80211_ieee2mhz(chan,
3313                             IEEE80211_CHAN_2GHZ);
3314                         c->ic_flags = IEEE80211_CHAN_B | passive;
3315
3316                         c = &ic->ic_channels[ic->ic_nchans++];
3317                         c->ic_ieee = chan;
3318                         c->ic_freq = ieee80211_ieee2mhz(chan,
3319                             IEEE80211_CHAN_2GHZ);
3320                         c->ic_flags = IEEE80211_CHAN_G | passive;
3321
3322                 } else {        /* 5GHz band */
3323                         /*
3324                          * Some 3945ABG adapters support channels 7, 8, 11
3325                          * and 12 in the 2GHz *and* 5GHz bands.
3326                          * Because of limitations in our net80211(9) stack,
3327                          * we can't support these channels in 5GHz band.
3328                          * XXX not true; just need to map to proper frequency
3329                          */
3330                         if (chan <= 14)
3331                                 continue;
3332
3333                         c->ic_ieee = chan;
3334                         c->ic_freq = ieee80211_ieee2mhz(chan,
3335                             IEEE80211_CHAN_5GHZ);
3336                         c->ic_flags = IEEE80211_CHAN_A | passive;
3337                 }
3338
3339                 /* save maximum allowed power for this channel */
3340                 sc->maxpwr[chan] = channels[i].maxpwr;
3341
3342 #if 0
3343                 // XXX We can probably use this an get rid of maxpwr - ben 20070617
3344                 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3345                 //ic->ic_channels[chan].ic_minpower...
3346                 //ic->ic_channels[chan].ic_maxregtxpower...
3347 #endif
3348
3349                 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3350                     " passive=%d, offset %d\n", chan, c->ic_freq,
3351                     channels[i].flags, sc->maxpwr[chan],
3352                     (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3353                     ic->ic_nchans));
3354         }
3355 }
3356
3357 static void
3358 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3359 {
3360         struct wpi_power_group *group = &sc->groups[n];
3361         struct wpi_eeprom_group rgroup;
3362         int i;
3363
3364         wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3365             sizeof rgroup);
3366
3367         /* save power group information */
3368         group->chan   = rgroup.chan;
3369         group->maxpwr = rgroup.maxpwr;
3370         /* temperature at which the samples were taken */
3371         group->temp   = (int16_t)le16toh(rgroup.temp);
3372
3373         DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3374                     group->chan, group->maxpwr, group->temp));
3375
3376         for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3377                 group->samples[i].index = rgroup.samples[i].index;
3378                 group->samples[i].power = rgroup.samples[i].power;
3379
3380                 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3381                             group->samples[i].index, group->samples[i].power));
3382         }
3383 }
3384
3385 /*
3386  * Update Tx power to match what is defined for channel `c'.
3387  */
3388 static int
3389 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3390 {
3391         struct ifnet *ifp = sc->sc_ifp;
3392         struct ieee80211com *ic = ifp->if_l2com;
3393         struct wpi_power_group *group;
3394         struct wpi_cmd_txpower txpower;
3395         u_int chan;
3396         int i;
3397
3398         /* get channel number */
3399         chan = ieee80211_chan2ieee(ic, c);
3400
3401         /* find the power group to which this channel belongs */
3402         if (IEEE80211_IS_CHAN_5GHZ(c)) {
3403                 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3404                         if (chan <= group->chan)
3405                                 break;
3406         } else
3407                 group = &sc->groups[0];
3408
3409         memset(&txpower, 0, sizeof txpower);
3410         txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3411         txpower.channel = htole16(chan);
3412
3413         /* set Tx power for all OFDM and CCK rates */
3414         for (i = 0; i <= 11 ; i++) {
3415                 /* retrieve Tx power for this channel/rate combination */
3416                 int idx = wpi_get_power_index(sc, group, c,
3417                     wpi_ridx_to_rate[i]);
3418
3419                 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3420
3421                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3422                         txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3423                         txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3424                 } else {
3425                         txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3426                         txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3427                 }
3428                 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3429                             chan, wpi_ridx_to_rate[i], idx));
3430         }
3431
3432         return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3433 }
3434
3435 /*
3436  * Determine Tx power index for a given channel/rate combination.
3437  * This takes into account the regulatory information from EEPROM and the
3438  * current temperature.
3439  */
3440 static int
3441 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3442     struct ieee80211_channel *c, int rate)
3443 {
3444 /* fixed-point arithmetic division using a n-bit fractional part */
3445 #define fdivround(a, b, n)      \
3446         ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3447
3448 /* linear interpolation */
3449 #define interpolate(x, x1, y1, x2, y2, n)       \
3450         ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3451
3452         struct ifnet *ifp = sc->sc_ifp;
3453         struct ieee80211com *ic = ifp->if_l2com;
3454         struct wpi_power_sample *sample;
3455         int pwr, idx;
3456         u_int chan;
3457
3458         /* get channel number */
3459         chan = ieee80211_chan2ieee(ic, c);
3460
3461         /* default power is group's maximum power - 3dB */
3462         pwr = group->maxpwr / 2;
3463
3464         /* decrease power for highest OFDM rates to reduce distortion */
3465         switch (rate) {
3466                 case 72:        /* 36Mb/s */
3467                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3468                         break;
3469                 case 96:        /* 48Mb/s */
3470                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3471                         break;
3472                 case 108:       /* 54Mb/s */
3473                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3474                         break;
3475         }
3476
3477         /* never exceed channel's maximum allowed Tx power */
3478         pwr = min(pwr, sc->maxpwr[chan]);
3479
3480         /* retrieve power index into gain tables from samples */
3481         for (sample = group->samples; sample < &group->samples[3]; sample++)
3482                 if (pwr > sample[1].power)
3483                         break;
3484         /* fixed-point linear interpolation using a 19-bit fractional part */
3485         idx = interpolate(pwr, sample[0].power, sample[0].index,
3486             sample[1].power, sample[1].index, 19);
3487
3488         /*
3489          *  Adjust power index based on current temperature
3490          *      - if colder than factory-calibrated: decreate output power
3491          *      - if warmer than factory-calibrated: increase output power
3492          */
3493         idx -= (sc->temp - group->temp) * 11 / 100;
3494
3495         /* decrease power for CCK rates (-5dB) */
3496         if (!WPI_RATE_IS_OFDM(rate))
3497                 idx += 10;
3498
3499         /* keep power index in a valid range */
3500         if (idx < 0)
3501                 return 0;
3502         if (idx > WPI_MAX_PWR_INDEX)
3503                 return WPI_MAX_PWR_INDEX;
3504         return idx;
3505
3506 #undef interpolate
3507 #undef fdivround
3508 }
3509
3510 /**
3511  * Called by net80211 framework to indicate that a scan
3512  * is starting. This function doesn't actually do the scan,
3513  * wpi_scan_curchan starts things off. This function is more
3514  * of an early warning from the framework we should get ready
3515  * for the scan.
3516  */
3517 static void
3518 wpi_scan_start(struct ieee80211com *ic)
3519 {
3520         struct ifnet *ifp = ic->ic_ifp;
3521         struct wpi_softc *sc = ifp->if_softc;
3522
3523         WPI_LOCK(sc);
3524         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3525         WPI_UNLOCK(sc);
3526 }
3527
3528 /**
3529  * Called by the net80211 framework, indicates that the
3530  * scan has ended. If there is a scan in progress on the card
3531  * then it should be aborted.
3532  */
3533 static void
3534 wpi_scan_end(struct ieee80211com *ic)
3535 {
3536         /* XXX ignore */
3537 }
3538
3539 /**
3540  * Called by the net80211 framework to indicate to the driver
3541  * that the channel should be changed
3542  */
3543 static void
3544 wpi_set_channel(struct ieee80211com *ic)
3545 {
3546         struct ifnet *ifp = ic->ic_ifp;
3547         struct wpi_softc *sc = ifp->if_softc;
3548         int error;
3549
3550         /*
3551          * Only need to set the channel in Monitor mode. AP scanning and auth
3552          * are already taken care of by their respective firmware commands.
3553          */
3554         if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3555                 error = wpi_config(sc);
3556                 if (error != 0)
3557                         device_printf(sc->sc_dev,
3558                             "error %d settting channel\n", error);
3559         }
3560 }
3561
3562 /**
3563  * Called by net80211 to indicate that we need to scan the current
3564  * channel. The channel is previously be set via the wpi_set_channel
3565  * callback.
3566  */
3567 static void
3568 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3569 {
3570         struct ieee80211vap *vap = ss->ss_vap;
3571         struct ifnet *ifp = vap->iv_ic->ic_ifp;
3572         struct wpi_softc *sc = ifp->if_softc;
3573
3574         WPI_LOCK(sc);
3575         if (wpi_scan(sc))
3576                 ieee80211_cancel_scan(vap);
3577         WPI_UNLOCK(sc);
3578 }
3579
3580 /**
3581  * Called by the net80211 framework to indicate
3582  * the minimum dwell time has been met, terminate the scan.
3583  * We don't actually terminate the scan as the firmware will notify
3584  * us when it's finished and we have no way to interrupt it.
3585  */
3586 static void
3587 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3588 {
3589         /* NB: don't try to abort scan; wait for firmware to finish */
3590 }
3591
3592 static void
3593 wpi_hwreset(void *arg, int pending)
3594 {
3595         struct wpi_softc *sc = arg;
3596
3597         WPI_LOCK(sc);
3598         wpi_init_locked(sc, 0);
3599         WPI_UNLOCK(sc);
3600 }
3601
3602 static void
3603 wpi_rfreset(void *arg, int pending)
3604 {
3605         struct wpi_softc *sc = arg;
3606
3607         WPI_LOCK(sc);
3608         wpi_rfkill_resume(sc);
3609         WPI_UNLOCK(sc);
3610 }
3611
3612 /*
3613  * Allocate DMA-safe memory for firmware transfer.
3614  */
3615 static int
3616 wpi_alloc_fwmem(struct wpi_softc *sc)
3617 {
3618         /* allocate enough contiguous space to store text and data */
3619         return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3620             WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3621             BUS_DMA_NOWAIT);
3622 }
3623
3624 static void
3625 wpi_free_fwmem(struct wpi_softc *sc)
3626 {
3627         wpi_dma_contig_free(&sc->fw_dma);
3628 }
3629
3630 /**
3631  * Called every second, wpi_watchdog used by the watch dog timer
3632  * to check that the card is still alive
3633  */
3634 static void
3635 wpi_watchdog(void *arg)
3636 {
3637         struct wpi_softc *sc = arg;
3638         struct ifnet *ifp = sc->sc_ifp;
3639         struct ieee80211com *ic = ifp->if_l2com;
3640         uint32_t tmp;
3641
3642         DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3643
3644         if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3645                 /* No need to lock firmware memory */
3646                 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3647
3648                 if ((tmp & 0x1) == 0) {
3649                         /* Radio kill switch is still off */
3650                         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3651                         return;
3652                 }
3653
3654                 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3655                 ieee80211_runtask(ic, &sc->sc_radiotask);
3656                 return;
3657         }
3658
3659         if (sc->sc_tx_timer > 0) {
3660                 if (--sc->sc_tx_timer == 0) {
3661                         device_printf(sc->sc_dev,"device timeout\n");
3662                         ifp->if_oerrors++;
3663                         ieee80211_runtask(ic, &sc->sc_restarttask);
3664                 }
3665         }
3666         if (sc->sc_scan_timer > 0) {
3667                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3668                 if (--sc->sc_scan_timer == 0 && vap != NULL) {
3669                         device_printf(sc->sc_dev,"scan timeout\n");
3670                         ieee80211_cancel_scan(vap);
3671                         ieee80211_runtask(ic, &sc->sc_restarttask);
3672                 }
3673         }
3674
3675         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3676                 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3677 }
3678
3679 #ifdef WPI_DEBUG
3680 static const char *wpi_cmd_str(int cmd)
3681 {
3682         switch (cmd) {
3683         case WPI_DISABLE_CMD:   return "WPI_DISABLE_CMD";
3684         case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
3685         case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
3686         case WPI_CMD_SET_WME:   return "WPI_CMD_SET_WME";
3687         case WPI_CMD_TSF:       return "WPI_CMD_TSF";
3688         case WPI_CMD_ADD_NODE:  return "WPI_CMD_ADD_NODE";
3689         case WPI_CMD_TX_DATA:   return "WPI_CMD_TX_DATA";
3690         case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
3691         case WPI_CMD_SET_LED:   return "WPI_CMD_SET_LED";
3692         case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3693         case WPI_CMD_SCAN:      return "WPI_CMD_SCAN";
3694         case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3695         case WPI_CMD_TXPOWER:   return "WPI_CMD_TXPOWER";
3696         case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
3697
3698         default:
3699                 KASSERT(1, ("Unknown Command: %d\n", cmd));
3700                 return "UNKNOWN CMD";   /* Make the compiler happy */
3701         }
3702 }
3703 #endif
3704
3705 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3706 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3707 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3708 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);