]> CyberLeo.Net >> Repos - FreeBSD/releng/8.0.git/blob - sys/geom/part/g_part_gpt.c
Adjust to reflect 8.0-RELEASE.
[FreeBSD/releng/8.0.git] / sys / geom / part / g_part_gpt.c
1 /*-
2  * Copyright (c) 2002, 2005, 2006, 2007 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/bio.h>
32 #include <sys/diskmbr.h>
33 #include <sys/endian.h>
34 #include <sys/gpt.h>
35 #include <sys/kernel.h>
36 #include <sys/kobj.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mutex.h>
41 #include <sys/queue.h>
42 #include <sys/sbuf.h>
43 #include <sys/systm.h>
44 #include <sys/uuid.h>
45 #include <geom/geom.h>
46 #include <geom/part/g_part.h>
47
48 #include "g_part_if.h"
49
50 CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
51 CTASSERT(sizeof(struct gpt_ent) == 128);
52
53 #define EQUUID(a,b)     (memcmp(a, b, sizeof(struct uuid)) == 0)
54
55 #define MBRSIZE         512
56
57 enum gpt_elt {
58         GPT_ELT_PRIHDR,
59         GPT_ELT_PRITBL,
60         GPT_ELT_SECHDR,
61         GPT_ELT_SECTBL,
62         GPT_ELT_COUNT
63 };
64
65 enum gpt_state {
66         GPT_STATE_UNKNOWN,      /* Not determined. */
67         GPT_STATE_MISSING,      /* No signature found. */
68         GPT_STATE_CORRUPT,      /* Checksum mismatch. */
69         GPT_STATE_INVALID,      /* Nonconformant/invalid. */
70         GPT_STATE_OK            /* Perfectly fine. */
71 };
72
73 struct g_part_gpt_table {
74         struct g_part_table     base;
75         u_char                  mbr[MBRSIZE];
76         struct gpt_hdr          hdr;
77         quad_t                  lba[GPT_ELT_COUNT];
78         enum gpt_state          state[GPT_ELT_COUNT];
79 };
80
81 struct g_part_gpt_entry {
82         struct g_part_entry     base;
83         struct gpt_ent          ent;
84 };
85
86 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
87 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
88
89 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
90     struct g_part_parms *);
91 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
92 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
93 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
94 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
95     struct sbuf *, const char *);
96 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
97 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,  
98     struct g_part_parms *);
99 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
100     char *, size_t);
101 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
102 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
103 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
104     char *, size_t);
105 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
106
107 static kobj_method_t g_part_gpt_methods[] = {
108         KOBJMETHOD(g_part_add,          g_part_gpt_add),
109         KOBJMETHOD(g_part_bootcode,     g_part_gpt_bootcode),
110         KOBJMETHOD(g_part_create,       g_part_gpt_create),
111         KOBJMETHOD(g_part_destroy,      g_part_gpt_destroy),
112         KOBJMETHOD(g_part_dumpconf,     g_part_gpt_dumpconf),
113         KOBJMETHOD(g_part_dumpto,       g_part_gpt_dumpto),
114         KOBJMETHOD(g_part_modify,       g_part_gpt_modify),
115         KOBJMETHOD(g_part_name,         g_part_gpt_name),
116         KOBJMETHOD(g_part_probe,        g_part_gpt_probe),
117         KOBJMETHOD(g_part_read,         g_part_gpt_read),
118         KOBJMETHOD(g_part_type,         g_part_gpt_type),
119         KOBJMETHOD(g_part_write,        g_part_gpt_write),
120         { 0, 0 }
121 };
122
123 static struct g_part_scheme g_part_gpt_scheme = {
124         "GPT",
125         g_part_gpt_methods,
126         sizeof(struct g_part_gpt_table),
127         .gps_entrysz = sizeof(struct g_part_gpt_entry),
128         .gps_minent = 128,
129         .gps_maxent = INT_MAX,
130         .gps_bootcodesz = MBRSIZE,
131 };
132 G_PART_SCHEME_DECLARE(g_part_gpt);
133
134 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
135 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
136 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
137 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
138 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
139 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
140 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
141 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
142 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
143 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
144 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
145
146 static void
147 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
148     enum gpt_elt elt, struct gpt_hdr *hdr)
149 {
150         struct uuid uuid;
151         struct g_provider *pp;
152         char *buf;
153         quad_t lba, last;
154         int error;
155         uint32_t crc, sz;
156
157         pp = cp->provider;
158         last = (pp->mediasize / pp->sectorsize) - 1;
159         table->lba[elt] = (elt == GPT_ELT_PRIHDR) ? 1 : last;
160         table->state[elt] = GPT_STATE_MISSING;
161         buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
162             &error);
163         if (buf == NULL)
164                 return;
165         bcopy(buf, hdr, sizeof(*hdr));
166         if (memcmp(hdr->hdr_sig, GPT_HDR_SIG, sizeof(hdr->hdr_sig)) != 0)
167                 return;
168
169         table->state[elt] = GPT_STATE_CORRUPT;
170         sz = le32toh(hdr->hdr_size);
171         if (sz < 92 || sz > pp->sectorsize)
172                 return;
173         crc = le32toh(hdr->hdr_crc_self);
174         hdr->hdr_crc_self = 0;
175         if (crc32(hdr, sz) != crc)
176                 return;
177         hdr->hdr_size = sz;
178         hdr->hdr_crc_self = crc;
179
180         table->state[elt] = GPT_STATE_INVALID;
181         hdr->hdr_revision = le32toh(hdr->hdr_revision);
182         if (hdr->hdr_revision < 0x00010000)
183                 return;
184         hdr->hdr_lba_self = le64toh(hdr->hdr_lba_self);
185         if (hdr->hdr_lba_self != table->lba[elt])
186                 return;
187         hdr->hdr_lba_alt = le64toh(hdr->hdr_lba_alt);
188
189         /* Check the managed area. */
190         hdr->hdr_lba_start = le64toh(hdr->hdr_lba_start);
191         if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
192                 return;
193         hdr->hdr_lba_end = le64toh(hdr->hdr_lba_end);
194         if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
195                 return;
196
197         /* Check the table location and size of the table. */
198         hdr->hdr_entries = le32toh(hdr->hdr_entries);
199         hdr->hdr_entsz = le32toh(hdr->hdr_entsz);
200         if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
201             (hdr->hdr_entsz & 7) != 0)
202                 return;
203         hdr->hdr_lba_table = le64toh(hdr->hdr_lba_table);
204         if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
205                 return;
206         if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
207             hdr->hdr_lba_table <= hdr->hdr_lba_end)
208                 return;
209         lba = hdr->hdr_lba_table +
210             (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) /
211             pp->sectorsize - 1;
212         if (lba >= last)
213                 return;
214         if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
215                 return;
216
217         table->state[elt] = GPT_STATE_OK;
218         le_uuid_dec(&hdr->hdr_uuid, &uuid);
219         hdr->hdr_uuid = uuid;
220         hdr->hdr_crc_table = le32toh(hdr->hdr_crc_table);
221 }
222
223 static struct gpt_ent *
224 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
225     enum gpt_elt elt, struct gpt_hdr *hdr)
226 {
227         struct g_provider *pp;
228         struct gpt_ent *ent, *tbl;
229         char *buf, *p;
230         unsigned int idx, sectors, tblsz;
231         int error;
232
233         pp = cp->provider;
234         table->lba[elt] = hdr->hdr_lba_table;
235
236         table->state[elt] = GPT_STATE_MISSING;
237         tblsz = hdr->hdr_entries * hdr->hdr_entsz;
238         sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize;
239         buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, 
240             sectors * pp->sectorsize, &error);
241         if (buf == NULL)
242                 return (NULL);
243
244         table->state[elt] = GPT_STATE_CORRUPT;
245         if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
246                 g_free(buf);
247                 return (NULL);
248         }
249
250         table->state[elt] = GPT_STATE_OK;
251         tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
252             M_WAITOK | M_ZERO);
253
254         for (idx = 0, ent = tbl, p = buf;
255              idx < hdr->hdr_entries;
256              idx++, ent++, p += hdr->hdr_entsz) {
257                 le_uuid_dec(p, &ent->ent_type);
258                 le_uuid_dec(p + 16, &ent->ent_uuid);
259                 ent->ent_lba_start = le64dec(p + 32);
260                 ent->ent_lba_end = le64dec(p + 40);
261                 ent->ent_attr = le64dec(p + 48);
262                 /* Keep UTF-16 in little-endian. */
263                 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
264         }
265
266         g_free(buf);
267         return (tbl);
268 }
269
270 static int
271 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
272 {
273
274         if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
275                 return (0);
276         return ((pri->hdr_revision == sec->hdr_revision &&
277             pri->hdr_size == sec->hdr_size &&
278             pri->hdr_lba_start == sec->hdr_lba_start &&
279             pri->hdr_lba_end == sec->hdr_lba_end &&
280             pri->hdr_entries == sec->hdr_entries &&
281             pri->hdr_entsz == sec->hdr_entsz &&
282             pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
283 }
284
285 static int
286 gpt_parse_type(const char *type, struct uuid *uuid)
287 {
288         struct uuid tmp;
289         const char *alias;
290         int error;
291
292         if (type[0] == '!') {
293                 error = parse_uuid(type + 1, &tmp);
294                 if (error)
295                         return (error);
296                 if (EQUUID(&tmp, &gpt_uuid_unused))
297                         return (EINVAL);
298                 *uuid = tmp;
299                 return (0);
300         }
301         alias = g_part_alias_name(G_PART_ALIAS_EFI);
302         if (!strcasecmp(type, alias)) {
303                 *uuid = gpt_uuid_efi;
304                 return (0);
305         }
306         alias = g_part_alias_name(G_PART_ALIAS_FREEBSD);
307         if (!strcasecmp(type, alias)) {
308                 *uuid = gpt_uuid_freebsd;
309                 return (0);
310         }
311         alias = g_part_alias_name(G_PART_ALIAS_FREEBSD_BOOT);
312         if (!strcasecmp(type, alias)) {
313                 *uuid = gpt_uuid_freebsd_boot;
314                 return (0);
315         }
316         alias = g_part_alias_name(G_PART_ALIAS_FREEBSD_SWAP);
317         if (!strcasecmp(type, alias)) {
318                 *uuid = gpt_uuid_freebsd_swap;
319                 return (0);
320         }
321         alias = g_part_alias_name(G_PART_ALIAS_FREEBSD_UFS);
322         if (!strcasecmp(type, alias)) {
323                 *uuid = gpt_uuid_freebsd_ufs;
324                 return (0);
325         }
326         alias = g_part_alias_name(G_PART_ALIAS_FREEBSD_VINUM);
327         if (!strcasecmp(type, alias)) {
328                 *uuid = gpt_uuid_freebsd_vinum;
329                 return (0);
330         }
331         alias = g_part_alias_name(G_PART_ALIAS_FREEBSD_ZFS);
332         if (!strcasecmp(type, alias)) {
333                 *uuid = gpt_uuid_freebsd_zfs;
334                 return (0);
335         }
336         alias = g_part_alias_name(G_PART_ALIAS_MBR);
337         if (!strcasecmp(type, alias)) {
338                 *uuid = gpt_uuid_mbr;
339                 return (0);
340         }
341         alias = g_part_alias_name(G_PART_ALIAS_APPLE_HFS);
342         if (!strcasecmp(type, alias)) {
343                 *uuid = gpt_uuid_apple_hfs;
344                 return (0);
345         }
346         return (EINVAL);
347 }
348
349 static int
350 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
351     struct g_part_parms *gpp)
352 {
353         struct g_part_gpt_entry *entry;
354         int error;
355
356         entry = (struct g_part_gpt_entry *)baseentry;
357         error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
358         if (error)
359                 return (error);
360         kern_uuidgen(&entry->ent.ent_uuid, 1);
361         entry->ent.ent_lba_start = baseentry->gpe_start;
362         entry->ent.ent_lba_end = baseentry->gpe_end;
363         if (baseentry->gpe_deleted) {
364                 entry->ent.ent_attr = 0;
365                 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
366         }
367         if (gpp->gpp_parms & G_PART_PARM_LABEL)
368                 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
369                     sizeof(entry->ent.ent_name));
370         return (0);
371 }
372
373 static int
374 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
375 {
376         struct g_part_gpt_table *table;
377         size_t codesz;
378
379         codesz = DOSPARTOFF;
380         table = (struct g_part_gpt_table *)basetable;
381         bzero(table->mbr, codesz);
382         codesz = MIN(codesz, gpp->gpp_codesize);
383         if (codesz > 0)
384                 bcopy(gpp->gpp_codeptr, table->mbr, codesz);
385         return (0);
386 }
387
388 static int
389 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
390 {
391         struct g_provider *pp;
392         struct g_part_gpt_table *table;
393         quad_t last;
394         size_t tblsz;
395
396         /* We don't nest, which means that our depth should be 0. */
397         if (basetable->gpt_depth != 0)
398                 return (ENXIO);
399
400         table = (struct g_part_gpt_table *)basetable;
401         pp = gpp->gpp_provider;
402         tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
403             pp->sectorsize - 1) / pp->sectorsize;
404         if (pp->sectorsize < MBRSIZE ||
405             pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
406             pp->sectorsize)
407                 return (ENOSPC);
408
409         last = (pp->mediasize / pp->sectorsize) - 1;
410
411         le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
412         table->mbr[DOSPARTOFF + 1] = 0x01;              /* shd */
413         table->mbr[DOSPARTOFF + 2] = 0x01;              /* ssect */
414         table->mbr[DOSPARTOFF + 3] = 0x00;              /* scyl */
415         table->mbr[DOSPARTOFF + 4] = 0xee;              /* typ */
416         table->mbr[DOSPARTOFF + 5] = 0xff;              /* ehd */
417         table->mbr[DOSPARTOFF + 6] = 0xff;              /* esect */
418         table->mbr[DOSPARTOFF + 7] = 0xff;              /* ecyl */
419         le32enc(table->mbr + DOSPARTOFF + 8, 1);        /* start */
420         le32enc(table->mbr + DOSPARTOFF + 12, MIN(last, 0xffffffffLL));
421
422         table->lba[GPT_ELT_PRIHDR] = 1;
423         table->lba[GPT_ELT_PRITBL] = 2;
424         table->lba[GPT_ELT_SECHDR] = last;
425         table->lba[GPT_ELT_SECTBL] = last - tblsz;
426
427         bcopy(GPT_HDR_SIG, table->hdr.hdr_sig, sizeof(table->hdr.hdr_sig));
428         table->hdr.hdr_revision = GPT_HDR_REVISION;
429         table->hdr.hdr_size = offsetof(struct gpt_hdr, padding);
430         table->hdr.hdr_lba_start = 2 + tblsz;
431         table->hdr.hdr_lba_end = last - tblsz - 1;
432         kern_uuidgen(&table->hdr.hdr_uuid, 1);
433         table->hdr.hdr_entries = basetable->gpt_entries;
434         table->hdr.hdr_entsz = sizeof(struct gpt_ent);
435
436         basetable->gpt_first = table->hdr.hdr_lba_start;
437         basetable->gpt_last = table->hdr.hdr_lba_end;
438         return (0);
439 }
440
441 static int
442 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
443 {
444
445         /*
446          * Wipe the first 2 sectors as well as the last to clear the
447          * partitioning.
448          */
449         basetable->gpt_smhead |= 3;
450         basetable->gpt_smtail |= 1;
451         return (0);
452 }
453
454 static void
455 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 
456     struct sbuf *sb, const char *indent)
457 {
458         struct g_part_gpt_entry *entry;
459  
460         entry = (struct g_part_gpt_entry *)baseentry;
461         if (indent == NULL) {
462                 /* conftxt: libdisk compatibility */
463                 sbuf_printf(sb, " xs GPT xt ");
464                 sbuf_printf_uuid(sb, &entry->ent.ent_type);
465         } else if (entry != NULL) {
466                 /* confxml: partition entry information */
467                 sbuf_printf(sb, "%s<label>", indent);
468                 g_gpt_printf_utf16(sb, entry->ent.ent_name,
469                     sizeof(entry->ent.ent_name) >> 1);
470                 sbuf_printf(sb, "</label>\n");
471                 sbuf_printf(sb, "%s<rawtype>", indent);
472                 sbuf_printf_uuid(sb, &entry->ent.ent_type);
473                 sbuf_printf(sb, "</rawtype>\n");
474         } else {
475                 /* confxml: scheme information */
476         }
477 }
478
479 static int
480 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)  
481 {
482         struct g_part_gpt_entry *entry;
483
484         entry = (struct g_part_gpt_entry *)baseentry;
485         return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
486             EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap)) ? 1 : 0);
487 }
488
489 static int
490 g_part_gpt_modify(struct g_part_table *basetable,
491     struct g_part_entry *baseentry, struct g_part_parms *gpp)
492 {
493         struct g_part_gpt_entry *entry;
494         int error;
495
496         entry = (struct g_part_gpt_entry *)baseentry;
497         if (gpp->gpp_parms & G_PART_PARM_TYPE) {
498                 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
499                 if (error)
500                         return (error);
501         }
502         if (gpp->gpp_parms & G_PART_PARM_LABEL)
503                 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
504                     sizeof(entry->ent.ent_name));
505         return (0);
506 }
507
508 static const char *
509 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
510     char *buf, size_t bufsz)
511 {
512         struct g_part_gpt_entry *entry;
513         char c;
514
515         entry = (struct g_part_gpt_entry *)baseentry;
516         c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
517         snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
518         return (buf);
519 }
520
521 static int
522 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
523 {
524         struct g_provider *pp;
525         char *buf;
526         int error, res;
527
528         /* We don't nest, which means that our depth should be 0. */
529         if (table->gpt_depth != 0)
530                 return (ENXIO);
531
532         pp = cp->provider;
533
534         /*
535          * Sanity-check the provider. Since the first sector on the provider
536          * must be a PMBR and a PMBR is 512 bytes large, the sector size
537          * must be at least 512 bytes.  Also, since the theoretical minimum
538          * number of sectors needed by GPT is 6, any medium that has less
539          * than 6 sectors is never going to be able to hold a GPT. The
540          * number 6 comes from:
541          *      1 sector for the PMBR
542          *      2 sectors for the GPT headers (each 1 sector)
543          *      2 sectors for the GPT tables (each 1 sector)
544          *      1 sector for an actual partition
545          * It's better to catch this pathological case early than behaving
546          * pathologically later on...
547          */
548         if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
549                 return (ENOSPC);
550
551         /* Check that there's a MBR. */
552         buf = g_read_data(cp, 0L, pp->sectorsize, &error);
553         if (buf == NULL)
554                 return (error);
555         res = le16dec(buf + DOSMAGICOFFSET);
556         g_free(buf);
557         if (res != DOSMAGIC) 
558                 return (ENXIO);
559
560         /* Check that there's a primary header. */
561         buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
562         if (buf == NULL)
563                 return (error);
564         res = memcmp(buf, GPT_HDR_SIG, 8);
565         g_free(buf);
566         if (res == 0)
567                 return (G_PART_PROBE_PRI_HIGH);
568
569         /* No primary? Check that there's a secondary. */
570         buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
571             &error);
572         if (buf == NULL)
573                 return (error);
574         res = memcmp(buf, GPT_HDR_SIG, 8); 
575         g_free(buf);
576         return ((res == 0) ? G_PART_PROBE_PRI_HIGH : ENXIO);
577 }
578
579 static int
580 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
581 {
582         struct gpt_hdr prihdr, sechdr;
583         struct gpt_ent *tbl, *pritbl, *sectbl;
584         struct g_provider *pp;
585         struct g_part_gpt_table *table;
586         struct g_part_gpt_entry *entry;
587         u_char *buf;
588         int error, index;
589
590         table = (struct g_part_gpt_table *)basetable;
591         pp = cp->provider;
592
593         /* Read the PMBR */
594         buf = g_read_data(cp, 0, pp->sectorsize, &error);
595         if (buf == NULL)
596                 return (error);
597         bcopy(buf, table->mbr, MBRSIZE);
598         g_free(buf);
599
600         /* Read the primary header and table. */
601         gpt_read_hdr(table, cp, GPT_ELT_PRIHDR, &prihdr);
602         if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
603                 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, &prihdr);
604         } else {
605                 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
606                 pritbl = NULL;
607         }
608
609         /* Read the secondary header and table. */
610         gpt_read_hdr(table, cp, GPT_ELT_SECHDR, &sechdr);
611         if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
612                 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, &sechdr);
613         } else {
614                 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
615                 sectbl = NULL;
616         }
617
618         /* Fail if we haven't got any good tables at all. */
619         if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
620             table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
621                 printf("GEOM: %s: corrupt or invalid GPT detected.\n",
622                     pp->name);
623                 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n",
624                     pp->name);
625                 return (EINVAL);
626         }
627
628         /*
629          * If both headers are good but they disagree with each other,
630          * then invalidate one. We prefer to keep the primary header,
631          * unless the primary table is corrupt.
632          */
633         if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
634             table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
635             !gpt_matched_hdrs(&prihdr, &sechdr)) {
636                 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
637                         table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
638                         table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
639                 } else {
640                         table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
641                         table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
642                 }
643         }
644
645         if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
646                 printf("GEOM: %s: the primary GPT table is corrupt or "
647                     "invalid.\n", pp->name);
648                 printf("GEOM: %s: using the secondary instead -- recovery "
649                     "strongly advised.\n", pp->name);
650                 table->hdr = sechdr;
651                 tbl = sectbl;
652                 if (pritbl != NULL)
653                         g_free(pritbl);
654         } else {
655                 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
656                         printf("GEOM: %s: the secondary GPT table is corrupt "
657                             "or invalid.\n", pp->name);
658                         printf("GEOM: %s: using the primary only -- recovery "
659                             "suggested.\n", pp->name);
660                 }
661                 table->hdr = prihdr;
662                 tbl = pritbl;
663                 if (sectbl != NULL)
664                         g_free(sectbl);
665         }
666
667         basetable->gpt_first = table->hdr.hdr_lba_start;
668         basetable->gpt_last = table->hdr.hdr_lba_end;
669         basetable->gpt_entries = table->hdr.hdr_entries;
670
671         for (index = basetable->gpt_entries - 1; index >= 0; index--) {
672                 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
673                         continue;
674                 entry = (struct g_part_gpt_entry *)g_part_new_entry(basetable,  
675                     index+1, tbl[index].ent_lba_start, tbl[index].ent_lba_end);
676                 entry->ent = tbl[index];
677         }
678
679         g_free(tbl);
680         return (0);
681 }
682
683 static const char *
684 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 
685     char *buf, size_t bufsz)
686 {
687         struct g_part_gpt_entry *entry;
688         struct uuid *type;
689  
690         entry = (struct g_part_gpt_entry *)baseentry;
691         type = &entry->ent.ent_type;
692         if (EQUUID(type, &gpt_uuid_efi))
693                 return (g_part_alias_name(G_PART_ALIAS_EFI));
694         if (EQUUID(type, &gpt_uuid_freebsd))
695                 return (g_part_alias_name(G_PART_ALIAS_FREEBSD));
696         if (EQUUID(type, &gpt_uuid_freebsd_boot))
697                 return (g_part_alias_name(G_PART_ALIAS_FREEBSD_BOOT));
698         if (EQUUID(type, &gpt_uuid_freebsd_swap))
699                 return (g_part_alias_name(G_PART_ALIAS_FREEBSD_SWAP));
700         if (EQUUID(type, &gpt_uuid_freebsd_ufs))
701                 return (g_part_alias_name(G_PART_ALIAS_FREEBSD_UFS));
702         if (EQUUID(type, &gpt_uuid_freebsd_vinum))
703                 return (g_part_alias_name(G_PART_ALIAS_FREEBSD_VINUM));
704         if (EQUUID(type, &gpt_uuid_freebsd_zfs))
705                 return (g_part_alias_name(G_PART_ALIAS_FREEBSD_ZFS));
706         if (EQUUID(type, &gpt_uuid_mbr))
707                 return (g_part_alias_name(G_PART_ALIAS_MBR));
708         buf[0] = '!';
709         snprintf_uuid(buf + 1, bufsz - 1, type);
710         return (buf);
711 }
712
713 static int
714 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
715 {
716         unsigned char *buf, *bp;
717         struct g_provider *pp;
718         struct g_part_entry *baseentry;
719         struct g_part_gpt_entry *entry;
720         struct g_part_gpt_table *table;
721         size_t tlbsz;
722         uint32_t crc;
723         int error, index;
724
725         pp = cp->provider;
726         table = (struct g_part_gpt_table *)basetable;
727         tlbsz = (table->hdr.hdr_entries * table->hdr.hdr_entsz +
728             pp->sectorsize - 1) / pp->sectorsize;
729
730         /* Write the PMBR */
731         buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
732         bcopy(table->mbr, buf, MBRSIZE);
733         error = g_write_data(cp, 0, buf, pp->sectorsize);
734         g_free(buf);
735         if (error)
736                 return (error);
737
738         /* Allocate space for the header and entries. */
739         buf = g_malloc((tlbsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
740
741         memcpy(buf, table->hdr.hdr_sig, sizeof(table->hdr.hdr_sig));
742         le32enc(buf + 8, table->hdr.hdr_revision);
743         le32enc(buf + 12, table->hdr.hdr_size);
744         le64enc(buf + 40, table->hdr.hdr_lba_start);
745         le64enc(buf + 48, table->hdr.hdr_lba_end);
746         le_uuid_enc(buf + 56, &table->hdr.hdr_uuid);
747         le32enc(buf + 80, table->hdr.hdr_entries);
748         le32enc(buf + 84, table->hdr.hdr_entsz);
749
750         LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
751                 if (baseentry->gpe_deleted)
752                         continue;
753                 entry = (struct g_part_gpt_entry *)baseentry;
754                 index = baseentry->gpe_index - 1;
755                 bp = buf + pp->sectorsize + table->hdr.hdr_entsz * index;
756                 le_uuid_enc(bp, &entry->ent.ent_type);
757                 le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
758                 le64enc(bp + 32, entry->ent.ent_lba_start);
759                 le64enc(bp + 40, entry->ent.ent_lba_end);
760                 le64enc(bp + 48, entry->ent.ent_attr);
761                 memcpy(bp + 56, entry->ent.ent_name,
762                     sizeof(entry->ent.ent_name));
763         }
764
765         crc = crc32(buf + pp->sectorsize,
766             table->hdr.hdr_entries * table->hdr.hdr_entsz);
767         le32enc(buf + 88, crc);
768
769         /* Write primary meta-data. */
770         le32enc(buf + 16, 0);   /* hdr_crc_self. */
771         le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);  /* hdr_lba_self. */
772         le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);  /* hdr_lba_alt. */
773         le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);  /* hdr_lba_table. */
774         crc = crc32(buf, table->hdr.hdr_size);
775         le32enc(buf + 16, crc);
776
777         error = g_write_data(cp, table->lba[GPT_ELT_PRITBL] * pp->sectorsize,
778             buf + pp->sectorsize, tlbsz * pp->sectorsize);
779         if (error)
780                 goto out;
781         error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
782             buf, pp->sectorsize);
783         if (error)
784                 goto out;
785
786         /* Write secondary meta-data. */
787         le32enc(buf + 16, 0);   /* hdr_crc_self. */
788         le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);  /* hdr_lba_self. */
789         le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);  /* hdr_lba_alt. */
790         le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);  /* hdr_lba_table. */
791         crc = crc32(buf, table->hdr.hdr_size);
792         le32enc(buf + 16, crc);
793
794         error = g_write_data(cp, table->lba[GPT_ELT_SECTBL] * pp->sectorsize,
795             buf + pp->sectorsize, tlbsz * pp->sectorsize);
796         if (error)
797                 goto out;
798         error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
799             buf, pp->sectorsize);
800
801  out:
802         g_free(buf);
803         return (error);
804 }
805
806 static void
807 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
808 {
809         u_int bo;
810         uint32_t ch;
811         uint16_t c;
812
813         bo = LITTLE_ENDIAN;     /* GPT is little-endian */
814         while (len > 0 && *str != 0) {
815                 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
816                 str++, len--;
817                 if ((ch & 0xf800) == 0xd800) {
818                         if (len > 0) {
819                                 c = (bo == BIG_ENDIAN) ? be16toh(*str)
820                                     : le16toh(*str);
821                                 str++, len--;
822                         } else
823                                 c = 0xfffd;
824                         if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
825                                 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
826                                 ch += 0x10000;
827                         } else
828                                 ch = 0xfffd;
829                 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
830                         bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
831                         continue;
832                 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
833                         continue;
834
835                 /* Write the Unicode character in UTF-8 */
836                 if (ch < 0x80)
837                         sbuf_printf(sb, "%c", ch);
838                 else if (ch < 0x800)
839                         sbuf_printf(sb, "%c%c", 0xc0 | (ch >> 6),
840                             0x80 | (ch & 0x3f));
841                 else if (ch < 0x10000)
842                         sbuf_printf(sb, "%c%c%c", 0xe0 | (ch >> 12),
843                             0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
844                 else if (ch < 0x200000)
845                         sbuf_printf(sb, "%c%c%c%c", 0xf0 | (ch >> 18),
846                             0x80 | ((ch >> 12) & 0x3f),
847                             0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
848         }
849 }
850
851 static void
852 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
853 {
854         size_t s16idx, s8idx;
855         uint32_t utfchar;
856         unsigned int c, utfbytes;
857
858         s8idx = s16idx = 0;
859         utfchar = 0;
860         utfbytes = 0;
861         bzero(s16, s16len << 1);
862         while (s8[s8idx] != 0 && s16idx < s16len) {
863                 c = s8[s8idx++];
864                 if ((c & 0xc0) != 0x80) {
865                         /* Initial characters. */
866                         if (utfbytes != 0) {
867                                 /* Incomplete encoding of previous char. */
868                                 s16[s16idx++] = htole16(0xfffd);
869                         }
870                         if ((c & 0xf8) == 0xf0) {
871                                 utfchar = c & 0x07;
872                                 utfbytes = 3;
873                         } else if ((c & 0xf0) == 0xe0) {
874                                 utfchar = c & 0x0f;
875                                 utfbytes = 2;
876                         } else if ((c & 0xe0) == 0xc0) {
877                                 utfchar = c & 0x1f;
878                                 utfbytes = 1;
879                         } else {
880                                 utfchar = c & 0x7f;
881                                 utfbytes = 0;
882                         }
883                 } else {
884                         /* Followup characters. */
885                         if (utfbytes > 0) {
886                                 utfchar = (utfchar << 6) + (c & 0x3f);
887                                 utfbytes--;
888                         } else if (utfbytes == 0)
889                                 utfbytes = ~0;
890                 }
891                 /*
892                  * Write the complete Unicode character as UTF-16 when we
893                  * have all the UTF-8 charactars collected.
894                  */
895                 if (utfbytes == 0) {
896                         /*
897                          * If we need to write 2 UTF-16 characters, but
898                          * we only have room for 1, then we truncate the
899                          * string by writing a 0 instead.
900                          */
901                         if (utfchar >= 0x10000 && s16idx < s16len - 1) {
902                                 s16[s16idx++] =
903                                     htole16(0xd800 | ((utfchar >> 10) - 0x40));
904                                 s16[s16idx++] =
905                                     htole16(0xdc00 | (utfchar & 0x3ff));
906                         } else
907                                 s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
908                                     htole16(utfchar);
909                 }
910         }
911         /*
912          * If our input string was truncated, append an invalid encoding
913          * character to the output string.
914          */
915         if (utfbytes != 0 && s16idx < s16len)
916                 s16[s16idx++] = htole16(0xfffd);
917 }