]> CyberLeo.Net >> Repos - FreeBSD/releng/8.0.git/blob - sys/kern/kern_proc.c
Adjust to reflect 8.0-RELEASE.
[FreeBSD/releng/8.0.git] / sys / kern / kern_proc.c
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *      @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
30  */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include "opt_compat.h"
36 #include "opt_ddb.h"
37 #include "opt_kdtrace.h"
38 #include "opt_ktrace.h"
39 #include "opt_kstack_pages.h"
40 #include "opt_stack.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mount.h>
48 #include <sys/mutex.h>
49 #include <sys/proc.h>
50 #include <sys/refcount.h>
51 #include <sys/sbuf.h>
52 #include <sys/sysent.h>
53 #include <sys/sched.h>
54 #include <sys/smp.h>
55 #include <sys/stack.h>
56 #include <sys/sysctl.h>
57 #include <sys/filedesc.h>
58 #include <sys/tty.h>
59 #include <sys/signalvar.h>
60 #include <sys/sdt.h>
61 #include <sys/sx.h>
62 #include <sys/user.h>
63 #include <sys/jail.h>
64 #include <sys/vnode.h>
65 #include <sys/eventhandler.h>
66 #ifdef KTRACE
67 #include <sys/uio.h>
68 #include <sys/ktrace.h>
69 #endif
70
71 #ifdef DDB
72 #include <ddb/ddb.h>
73 #endif
74
75 #include <vm/vm.h>
76 #include <vm/vm_extern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_object.h>
80 #include <vm/uma.h>
81
82 SDT_PROVIDER_DEFINE(proc);
83 SDT_PROBE_DEFINE(proc, kernel, ctor, entry);
84 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *");
85 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int");
86 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *");
87 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int");
88 SDT_PROBE_DEFINE(proc, kernel, ctor, return);
89 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *");
90 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int");
91 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *");
92 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int");
93 SDT_PROBE_DEFINE(proc, kernel, dtor, entry);
94 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *");
95 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int");
96 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *");
97 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *");
98 SDT_PROBE_DEFINE(proc, kernel, dtor, return);
99 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *");
100 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int");
101 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *");
102 SDT_PROBE_DEFINE(proc, kernel, init, entry);
103 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *");
104 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int");
105 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int");
106 SDT_PROBE_DEFINE(proc, kernel, init, return);
107 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *");
108 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int");
109 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int");
110
111 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
112 MALLOC_DEFINE(M_SESSION, "session", "session header");
113 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
114 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
115
116 static void doenterpgrp(struct proc *, struct pgrp *);
117 static void orphanpg(struct pgrp *pg);
118 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
119 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
120 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
121     int preferthread);
122 static void pgadjustjobc(struct pgrp *pgrp, int entering);
123 static void pgdelete(struct pgrp *);
124 static int proc_ctor(void *mem, int size, void *arg, int flags);
125 static void proc_dtor(void *mem, int size, void *arg);
126 static int proc_init(void *mem, int size, int flags);
127 static void proc_fini(void *mem, int size);
128 static void pargs_free(struct pargs *pa);
129
130 /*
131  * Other process lists
132  */
133 struct pidhashhead *pidhashtbl;
134 u_long pidhash;
135 struct pgrphashhead *pgrphashtbl;
136 u_long pgrphash;
137 struct proclist allproc;
138 struct proclist zombproc;
139 struct sx allproc_lock;
140 struct sx proctree_lock;
141 struct mtx ppeers_lock;
142 uma_zone_t proc_zone;
143 uma_zone_t ithread_zone;
144
145 int kstack_pages = KSTACK_PAGES;
146 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, "");
147
148 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
149
150 /*
151  * Initialize global process hashing structures.
152  */
153 void
154 procinit()
155 {
156
157         sx_init(&allproc_lock, "allproc");
158         sx_init(&proctree_lock, "proctree");
159         mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
160         LIST_INIT(&allproc);
161         LIST_INIT(&zombproc);
162         pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
163         pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
164         proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
165             proc_ctor, proc_dtor, proc_init, proc_fini,
166             UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
167         uihashinit();
168 }
169
170 /*
171  * Prepare a proc for use.
172  */
173 static int
174 proc_ctor(void *mem, int size, void *arg, int flags)
175 {
176         struct proc *p;
177
178         p = (struct proc *)mem;
179         SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
180         EVENTHANDLER_INVOKE(process_ctor, p);
181         SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
182         return (0);
183 }
184
185 /*
186  * Reclaim a proc after use.
187  */
188 static void
189 proc_dtor(void *mem, int size, void *arg)
190 {
191         struct proc *p;
192         struct thread *td;
193
194         /* INVARIANTS checks go here */
195         p = (struct proc *)mem;
196         td = FIRST_THREAD_IN_PROC(p);
197         SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
198         if (td != NULL) {
199 #ifdef INVARIANTS
200                 KASSERT((p->p_numthreads == 1),
201                     ("bad number of threads in exiting process"));
202                 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
203 #endif
204                 /* Free all OSD associated to this thread. */
205                 osd_thread_exit(td);
206         }
207         EVENTHANDLER_INVOKE(process_dtor, p);
208         if (p->p_ksi != NULL)
209                 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
210         SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
211 }
212
213 /*
214  * Initialize type-stable parts of a proc (when newly created).
215  */
216 static int
217 proc_init(void *mem, int size, int flags)
218 {
219         struct proc *p;
220
221         p = (struct proc *)mem;
222         SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
223         p->p_sched = (struct p_sched *)&p[1];
224         bzero(&p->p_mtx, sizeof(struct mtx));
225         mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
226         mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
227         cv_init(&p->p_pwait, "ppwait");
228         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
229         EVENTHANDLER_INVOKE(process_init, p);
230         p->p_stats = pstats_alloc();
231         SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
232         return (0);
233 }
234
235 /*
236  * UMA should ensure that this function is never called.
237  * Freeing a proc structure would violate type stability.
238  */
239 static void
240 proc_fini(void *mem, int size)
241 {
242 #ifdef notnow
243         struct proc *p;
244
245         p = (struct proc *)mem;
246         EVENTHANDLER_INVOKE(process_fini, p);
247         pstats_free(p->p_stats);
248         thread_free(FIRST_THREAD_IN_PROC(p));
249         mtx_destroy(&p->p_mtx);
250         if (p->p_ksi != NULL)
251                 ksiginfo_free(p->p_ksi);
252 #else
253         panic("proc reclaimed");
254 #endif
255 }
256
257 /*
258  * Is p an inferior of the current process?
259  */
260 int
261 inferior(p)
262         register struct proc *p;
263 {
264
265         sx_assert(&proctree_lock, SX_LOCKED);
266         for (; p != curproc; p = p->p_pptr)
267                 if (p->p_pid == 0)
268                         return (0);
269         return (1);
270 }
271
272 /*
273  * Locate a process by number; return only "live" processes -- i.e., neither
274  * zombies nor newly born but incompletely initialized processes.  By not
275  * returning processes in the PRS_NEW state, we allow callers to avoid
276  * testing for that condition to avoid dereferencing p_ucred, et al.
277  */
278 struct proc *
279 pfind(pid)
280         register pid_t pid;
281 {
282         register struct proc *p;
283
284         sx_slock(&allproc_lock);
285         LIST_FOREACH(p, PIDHASH(pid), p_hash)
286                 if (p->p_pid == pid) {
287                         if (p->p_state == PRS_NEW) {
288                                 p = NULL;
289                                 break;
290                         }
291                         PROC_LOCK(p);
292                         break;
293                 }
294         sx_sunlock(&allproc_lock);
295         return (p);
296 }
297
298 /*
299  * Locate a process group by number.
300  * The caller must hold proctree_lock.
301  */
302 struct pgrp *
303 pgfind(pgid)
304         register pid_t pgid;
305 {
306         register struct pgrp *pgrp;
307
308         sx_assert(&proctree_lock, SX_LOCKED);
309
310         LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
311                 if (pgrp->pg_id == pgid) {
312                         PGRP_LOCK(pgrp);
313                         return (pgrp);
314                 }
315         }
316         return (NULL);
317 }
318
319 /*
320  * Create a new process group.
321  * pgid must be equal to the pid of p.
322  * Begin a new session if required.
323  */
324 int
325 enterpgrp(p, pgid, pgrp, sess)
326         register struct proc *p;
327         pid_t pgid;
328         struct pgrp *pgrp;
329         struct session *sess;
330 {
331         struct pgrp *pgrp2;
332
333         sx_assert(&proctree_lock, SX_XLOCKED);
334
335         KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
336         KASSERT(p->p_pid == pgid,
337             ("enterpgrp: new pgrp and pid != pgid"));
338
339         pgrp2 = pgfind(pgid);
340
341         KASSERT(pgrp2 == NULL,
342             ("enterpgrp: pgrp with pgid exists"));
343         KASSERT(!SESS_LEADER(p),
344             ("enterpgrp: session leader attempted setpgrp"));
345
346         mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
347
348         if (sess != NULL) {
349                 /*
350                  * new session
351                  */
352                 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
353                 PROC_LOCK(p);
354                 p->p_flag &= ~P_CONTROLT;
355                 PROC_UNLOCK(p);
356                 PGRP_LOCK(pgrp);
357                 sess->s_leader = p;
358                 sess->s_sid = p->p_pid;
359                 refcount_init(&sess->s_count, 1);
360                 sess->s_ttyvp = NULL;
361                 sess->s_ttyp = NULL;
362                 bcopy(p->p_session->s_login, sess->s_login,
363                             sizeof(sess->s_login));
364                 pgrp->pg_session = sess;
365                 KASSERT(p == curproc,
366                     ("enterpgrp: mksession and p != curproc"));
367         } else {
368                 pgrp->pg_session = p->p_session;
369                 sess_hold(pgrp->pg_session);
370                 PGRP_LOCK(pgrp);
371         }
372         pgrp->pg_id = pgid;
373         LIST_INIT(&pgrp->pg_members);
374
375         /*
376          * As we have an exclusive lock of proctree_lock,
377          * this should not deadlock.
378          */
379         LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
380         pgrp->pg_jobc = 0;
381         SLIST_INIT(&pgrp->pg_sigiolst);
382         PGRP_UNLOCK(pgrp);
383
384         doenterpgrp(p, pgrp);
385
386         return (0);
387 }
388
389 /*
390  * Move p to an existing process group
391  */
392 int
393 enterthispgrp(p, pgrp)
394         register struct proc *p;
395         struct pgrp *pgrp;
396 {
397
398         sx_assert(&proctree_lock, SX_XLOCKED);
399         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
400         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
401         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
402         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
403         KASSERT(pgrp->pg_session == p->p_session,
404                 ("%s: pgrp's session %p, p->p_session %p.\n",
405                 __func__,
406                 pgrp->pg_session,
407                 p->p_session));
408         KASSERT(pgrp != p->p_pgrp,
409                 ("%s: p belongs to pgrp.", __func__));
410
411         doenterpgrp(p, pgrp);
412
413         return (0);
414 }
415
416 /*
417  * Move p to a process group
418  */
419 static void
420 doenterpgrp(p, pgrp)
421         struct proc *p;
422         struct pgrp *pgrp;
423 {
424         struct pgrp *savepgrp;
425
426         sx_assert(&proctree_lock, SX_XLOCKED);
427         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
428         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
429         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
430         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
431
432         savepgrp = p->p_pgrp;
433
434         /*
435          * Adjust eligibility of affected pgrps to participate in job control.
436          * Increment eligibility counts before decrementing, otherwise we
437          * could reach 0 spuriously during the first call.
438          */
439         fixjobc(p, pgrp, 1);
440         fixjobc(p, p->p_pgrp, 0);
441
442         PGRP_LOCK(pgrp);
443         PGRP_LOCK(savepgrp);
444         PROC_LOCK(p);
445         LIST_REMOVE(p, p_pglist);
446         p->p_pgrp = pgrp;
447         PROC_UNLOCK(p);
448         LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
449         PGRP_UNLOCK(savepgrp);
450         PGRP_UNLOCK(pgrp);
451         if (LIST_EMPTY(&savepgrp->pg_members))
452                 pgdelete(savepgrp);
453 }
454
455 /*
456  * remove process from process group
457  */
458 int
459 leavepgrp(p)
460         register struct proc *p;
461 {
462         struct pgrp *savepgrp;
463
464         sx_assert(&proctree_lock, SX_XLOCKED);
465         savepgrp = p->p_pgrp;
466         PGRP_LOCK(savepgrp);
467         PROC_LOCK(p);
468         LIST_REMOVE(p, p_pglist);
469         p->p_pgrp = NULL;
470         PROC_UNLOCK(p);
471         PGRP_UNLOCK(savepgrp);
472         if (LIST_EMPTY(&savepgrp->pg_members))
473                 pgdelete(savepgrp);
474         return (0);
475 }
476
477 /*
478  * delete a process group
479  */
480 static void
481 pgdelete(pgrp)
482         register struct pgrp *pgrp;
483 {
484         struct session *savesess;
485         struct tty *tp;
486
487         sx_assert(&proctree_lock, SX_XLOCKED);
488         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
489         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
490
491         /*
492          * Reset any sigio structures pointing to us as a result of
493          * F_SETOWN with our pgid.
494          */
495         funsetownlst(&pgrp->pg_sigiolst);
496
497         PGRP_LOCK(pgrp);
498         tp = pgrp->pg_session->s_ttyp;
499         LIST_REMOVE(pgrp, pg_hash);
500         savesess = pgrp->pg_session;
501         PGRP_UNLOCK(pgrp);
502
503         /* Remove the reference to the pgrp before deallocating it. */
504         if (tp != NULL) {
505                 tty_lock(tp);
506                 tty_rel_pgrp(tp, pgrp);
507         }
508
509         mtx_destroy(&pgrp->pg_mtx);
510         free(pgrp, M_PGRP);
511         sess_release(savesess);
512 }
513
514 static void
515 pgadjustjobc(pgrp, entering)
516         struct pgrp *pgrp;
517         int entering;
518 {
519
520         PGRP_LOCK(pgrp);
521         if (entering)
522                 pgrp->pg_jobc++;
523         else {
524                 --pgrp->pg_jobc;
525                 if (pgrp->pg_jobc == 0)
526                         orphanpg(pgrp);
527         }
528         PGRP_UNLOCK(pgrp);
529 }
530
531 /*
532  * Adjust pgrp jobc counters when specified process changes process group.
533  * We count the number of processes in each process group that "qualify"
534  * the group for terminal job control (those with a parent in a different
535  * process group of the same session).  If that count reaches zero, the
536  * process group becomes orphaned.  Check both the specified process'
537  * process group and that of its children.
538  * entering == 0 => p is leaving specified group.
539  * entering == 1 => p is entering specified group.
540  */
541 void
542 fixjobc(p, pgrp, entering)
543         register struct proc *p;
544         register struct pgrp *pgrp;
545         int entering;
546 {
547         register struct pgrp *hispgrp;
548         register struct session *mysession;
549
550         sx_assert(&proctree_lock, SX_LOCKED);
551         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
552         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
553         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
554
555         /*
556          * Check p's parent to see whether p qualifies its own process
557          * group; if so, adjust count for p's process group.
558          */
559         mysession = pgrp->pg_session;
560         if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
561             hispgrp->pg_session == mysession)
562                 pgadjustjobc(pgrp, entering);
563
564         /*
565          * Check this process' children to see whether they qualify
566          * their process groups; if so, adjust counts for children's
567          * process groups.
568          */
569         LIST_FOREACH(p, &p->p_children, p_sibling) {
570                 hispgrp = p->p_pgrp;
571                 if (hispgrp == pgrp ||
572                     hispgrp->pg_session != mysession)
573                         continue;
574                 PROC_LOCK(p);
575                 if (p->p_state == PRS_ZOMBIE) {
576                         PROC_UNLOCK(p);
577                         continue;
578                 }
579                 PROC_UNLOCK(p);
580                 pgadjustjobc(hispgrp, entering);
581         }
582 }
583
584 /*
585  * A process group has become orphaned;
586  * if there are any stopped processes in the group,
587  * hang-up all process in that group.
588  */
589 static void
590 orphanpg(pg)
591         struct pgrp *pg;
592 {
593         register struct proc *p;
594
595         PGRP_LOCK_ASSERT(pg, MA_OWNED);
596
597         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
598                 PROC_LOCK(p);
599                 if (P_SHOULDSTOP(p)) {
600                         PROC_UNLOCK(p);
601                         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
602                                 PROC_LOCK(p);
603                                 psignal(p, SIGHUP);
604                                 psignal(p, SIGCONT);
605                                 PROC_UNLOCK(p);
606                         }
607                         return;
608                 }
609                 PROC_UNLOCK(p);
610         }
611 }
612
613 void
614 sess_hold(struct session *s)
615 {
616
617         refcount_acquire(&s->s_count);
618 }
619
620 void
621 sess_release(struct session *s)
622 {
623
624         if (refcount_release(&s->s_count)) {
625                 if (s->s_ttyp != NULL) {
626                         tty_lock(s->s_ttyp);
627                         tty_rel_sess(s->s_ttyp, s);
628                 }
629                 mtx_destroy(&s->s_mtx);
630                 free(s, M_SESSION);
631         }
632 }
633
634 #include "opt_ddb.h"
635 #ifdef DDB
636 #include <ddb/ddb.h>
637
638 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
639 {
640         register struct pgrp *pgrp;
641         register struct proc *p;
642         register int i;
643
644         for (i = 0; i <= pgrphash; i++) {
645                 if (!LIST_EMPTY(&pgrphashtbl[i])) {
646                         printf("\tindx %d\n", i);
647                         LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
648                                 printf(
649                         "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
650                                     (void *)pgrp, (long)pgrp->pg_id,
651                                     (void *)pgrp->pg_session,
652                                     pgrp->pg_session->s_count,
653                                     (void *)LIST_FIRST(&pgrp->pg_members));
654                                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
655                                         printf("\t\tpid %ld addr %p pgrp %p\n", 
656                                             (long)p->p_pid, (void *)p,
657                                             (void *)p->p_pgrp);
658                                 }
659                         }
660                 }
661         }
662 }
663 #endif /* DDB */
664
665 /*
666  * Calculate the kinfo_proc members which contain process-wide
667  * informations.
668  * Must be called with the target process locked.
669  */
670 static void
671 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
672 {
673         struct thread *td;
674
675         PROC_LOCK_ASSERT(p, MA_OWNED);
676
677         kp->ki_estcpu = 0;
678         kp->ki_pctcpu = 0;
679         kp->ki_runtime = 0;
680         FOREACH_THREAD_IN_PROC(p, td) {
681                 thread_lock(td);
682                 kp->ki_pctcpu += sched_pctcpu(td);
683                 kp->ki_runtime += cputick2usec(td->td_runtime);
684                 kp->ki_estcpu += td->td_estcpu;
685                 thread_unlock(td);
686         }
687 }
688
689 /*
690  * Clear kinfo_proc and fill in any information that is common
691  * to all threads in the process.
692  * Must be called with the target process locked.
693  */
694 static void
695 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
696 {
697         struct thread *td0;
698         struct tty *tp;
699         struct session *sp;
700         struct ucred *cred;
701         struct sigacts *ps;
702
703         PROC_LOCK_ASSERT(p, MA_OWNED);
704         bzero(kp, sizeof(*kp));
705
706         kp->ki_structsize = sizeof(*kp);
707         kp->ki_paddr = p;
708         kp->ki_addr =/* p->p_addr; */0; /* XXX */
709         kp->ki_args = p->p_args;
710         kp->ki_textvp = p->p_textvp;
711 #ifdef KTRACE
712         kp->ki_tracep = p->p_tracevp;
713         mtx_lock(&ktrace_mtx);
714         kp->ki_traceflag = p->p_traceflag;
715         mtx_unlock(&ktrace_mtx);
716 #endif
717         kp->ki_fd = p->p_fd;
718         kp->ki_vmspace = p->p_vmspace;
719         kp->ki_flag = p->p_flag;
720         cred = p->p_ucred;
721         if (cred) {
722                 kp->ki_uid = cred->cr_uid;
723                 kp->ki_ruid = cred->cr_ruid;
724                 kp->ki_svuid = cred->cr_svuid;
725                 kp->ki_cr_flags = cred->cr_flags;
726                 /* XXX bde doesn't like KI_NGROUPS */
727                 if (cred->cr_ngroups > KI_NGROUPS) {
728                         kp->ki_ngroups = KI_NGROUPS;
729                         kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
730                 } else
731                         kp->ki_ngroups = cred->cr_ngroups;
732                 bcopy(cred->cr_groups, kp->ki_groups,
733                     kp->ki_ngroups * sizeof(gid_t));
734                 kp->ki_rgid = cred->cr_rgid;
735                 kp->ki_svgid = cred->cr_svgid;
736                 /* If jailed(cred), emulate the old P_JAILED flag. */
737                 if (jailed(cred)) {
738                         kp->ki_flag |= P_JAILED;
739                         /* If inside the jail, use 0 as a jail ID. */
740                         if (cred->cr_prison != curthread->td_ucred->cr_prison)
741                                 kp->ki_jid = cred->cr_prison->pr_id;
742                 }
743         }
744         ps = p->p_sigacts;
745         if (ps) {
746                 mtx_lock(&ps->ps_mtx);
747                 kp->ki_sigignore = ps->ps_sigignore;
748                 kp->ki_sigcatch = ps->ps_sigcatch;
749                 mtx_unlock(&ps->ps_mtx);
750         }
751         PROC_SLOCK(p);
752         if (p->p_state != PRS_NEW &&
753             p->p_state != PRS_ZOMBIE &&
754             p->p_vmspace != NULL) {
755                 struct vmspace *vm = p->p_vmspace;
756
757                 kp->ki_size = vm->vm_map.size;
758                 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
759                 FOREACH_THREAD_IN_PROC(p, td0) {
760                         if (!TD_IS_SWAPPED(td0))
761                                 kp->ki_rssize += td0->td_kstack_pages;
762                 }
763                 kp->ki_swrss = vm->vm_swrss;
764                 kp->ki_tsize = vm->vm_tsize;
765                 kp->ki_dsize = vm->vm_dsize;
766                 kp->ki_ssize = vm->vm_ssize;
767         } else if (p->p_state == PRS_ZOMBIE)
768                 kp->ki_stat = SZOMB;
769         if (kp->ki_flag & P_INMEM)
770                 kp->ki_sflag = PS_INMEM;
771         else
772                 kp->ki_sflag = 0;
773         /* Calculate legacy swtime as seconds since 'swtick'. */
774         kp->ki_swtime = (ticks - p->p_swtick) / hz;
775         kp->ki_pid = p->p_pid;
776         kp->ki_nice = p->p_nice;
777         rufetch(p, &kp->ki_rusage);
778         kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
779         PROC_SUNLOCK(p);
780         if ((p->p_flag & P_INMEM) && p->p_stats != NULL) {
781                 kp->ki_start = p->p_stats->p_start;
782                 timevaladd(&kp->ki_start, &boottime);
783                 PROC_SLOCK(p);
784                 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
785                 PROC_SUNLOCK(p);
786                 calccru(p, &kp->ki_childutime, &kp->ki_childstime);
787
788                 /* Some callers want child-times in a single value */
789                 kp->ki_childtime = kp->ki_childstime;
790                 timevaladd(&kp->ki_childtime, &kp->ki_childutime);
791         }
792         tp = NULL;
793         if (p->p_pgrp) {
794                 kp->ki_pgid = p->p_pgrp->pg_id;
795                 kp->ki_jobc = p->p_pgrp->pg_jobc;
796                 sp = p->p_pgrp->pg_session;
797
798                 if (sp != NULL) {
799                         kp->ki_sid = sp->s_sid;
800                         SESS_LOCK(sp);
801                         strlcpy(kp->ki_login, sp->s_login,
802                             sizeof(kp->ki_login));
803                         if (sp->s_ttyvp)
804                                 kp->ki_kiflag |= KI_CTTY;
805                         if (SESS_LEADER(p))
806                                 kp->ki_kiflag |= KI_SLEADER;
807                         /* XXX proctree_lock */
808                         tp = sp->s_ttyp;
809                         SESS_UNLOCK(sp);
810                 }
811         }
812         if ((p->p_flag & P_CONTROLT) && tp != NULL) {
813                 kp->ki_tdev = tty_udev(tp);
814                 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
815                 if (tp->t_session)
816                         kp->ki_tsid = tp->t_session->s_sid;
817         } else
818                 kp->ki_tdev = NODEV;
819         if (p->p_comm[0] != '\0')
820                 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
821         if (p->p_sysent && p->p_sysent->sv_name != NULL &&
822             p->p_sysent->sv_name[0] != '\0')
823                 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
824         kp->ki_siglist = p->p_siglist;
825         kp->ki_xstat = p->p_xstat;
826         kp->ki_acflag = p->p_acflag;
827         kp->ki_lock = p->p_lock;
828         if (p->p_pptr)
829                 kp->ki_ppid = p->p_pptr->p_pid;
830 }
831
832 /*
833  * Fill in information that is thread specific.  Must be called with p_slock
834  * locked.  If 'preferthread' is set, overwrite certain process-related
835  * fields that are maintained for both threads and processes.
836  */
837 static void
838 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
839 {
840         struct proc *p;
841
842         p = td->td_proc;
843         PROC_LOCK_ASSERT(p, MA_OWNED);
844
845         thread_lock(td);
846         if (td->td_wmesg != NULL)
847                 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
848         else
849                 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
850         if (td->td_name[0] != '\0')
851                 strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm));
852         if (TD_ON_LOCK(td)) {
853                 kp->ki_kiflag |= KI_LOCKBLOCK;
854                 strlcpy(kp->ki_lockname, td->td_lockname,
855                     sizeof(kp->ki_lockname));
856         } else {
857                 kp->ki_kiflag &= ~KI_LOCKBLOCK;
858                 bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
859         }
860
861         if (p->p_state == PRS_NORMAL) { /* approximate. */
862                 if (TD_ON_RUNQ(td) ||
863                     TD_CAN_RUN(td) ||
864                     TD_IS_RUNNING(td)) {
865                         kp->ki_stat = SRUN;
866                 } else if (P_SHOULDSTOP(p)) {
867                         kp->ki_stat = SSTOP;
868                 } else if (TD_IS_SLEEPING(td)) {
869                         kp->ki_stat = SSLEEP;
870                 } else if (TD_ON_LOCK(td)) {
871                         kp->ki_stat = SLOCK;
872                 } else {
873                         kp->ki_stat = SWAIT;
874                 }
875         } else if (p->p_state == PRS_ZOMBIE) {
876                 kp->ki_stat = SZOMB;
877         } else {
878                 kp->ki_stat = SIDL;
879         }
880
881         /* Things in the thread */
882         kp->ki_wchan = td->td_wchan;
883         kp->ki_pri.pri_level = td->td_priority;
884         kp->ki_pri.pri_native = td->td_base_pri;
885         kp->ki_lastcpu = td->td_lastcpu;
886         kp->ki_oncpu = td->td_oncpu;
887         kp->ki_tdflags = td->td_flags;
888         kp->ki_tid = td->td_tid;
889         kp->ki_numthreads = p->p_numthreads;
890         kp->ki_pcb = td->td_pcb;
891         kp->ki_kstack = (void *)td->td_kstack;
892         kp->ki_slptime = (ticks - td->td_slptick) / hz;
893         kp->ki_pri.pri_class = td->td_pri_class;
894         kp->ki_pri.pri_user = td->td_user_pri;
895
896         if (preferthread) {
897                 kp->ki_runtime = cputick2usec(td->td_runtime);
898                 kp->ki_pctcpu = sched_pctcpu(td);
899                 kp->ki_estcpu = td->td_estcpu;
900         }
901
902         /* We can't get this anymore but ps etc never used it anyway. */
903         kp->ki_rqindex = 0;
904
905         SIGSETOR(kp->ki_siglist, td->td_siglist);
906         kp->ki_sigmask = td->td_sigmask;
907         thread_unlock(td);
908 }
909
910 /*
911  * Fill in a kinfo_proc structure for the specified process.
912  * Must be called with the target process locked.
913  */
914 void
915 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
916 {
917
918         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
919
920         fill_kinfo_proc_only(p, kp);
921         fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
922         fill_kinfo_aggregate(p, kp);
923 }
924
925 struct pstats *
926 pstats_alloc(void)
927 {
928
929         return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
930 }
931
932 /*
933  * Copy parts of p_stats; zero the rest of p_stats (statistics).
934  */
935 void
936 pstats_fork(struct pstats *src, struct pstats *dst)
937 {
938
939         bzero(&dst->pstat_startzero,
940             __rangeof(struct pstats, pstat_startzero, pstat_endzero));
941         bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
942             __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
943 }
944
945 void
946 pstats_free(struct pstats *ps)
947 {
948
949         free(ps, M_SUBPROC);
950 }
951
952 /*
953  * Locate a zombie process by number
954  */
955 struct proc *
956 zpfind(pid_t pid)
957 {
958         struct proc *p;
959
960         sx_slock(&allproc_lock);
961         LIST_FOREACH(p, &zombproc, p_list)
962                 if (p->p_pid == pid) {
963                         PROC_LOCK(p);
964                         break;
965                 }
966         sx_sunlock(&allproc_lock);
967         return (p);
968 }
969
970 #define KERN_PROC_ZOMBMASK      0x3
971 #define KERN_PROC_NOTHREADS     0x4
972
973 /*
974  * Must be called with the process locked and will return with it unlocked.
975  */
976 static int
977 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
978 {
979         struct thread *td;
980         struct kinfo_proc kinfo_proc;
981         int error = 0;
982         struct proc *np;
983         pid_t pid = p->p_pid;
984
985         PROC_LOCK_ASSERT(p, MA_OWNED);
986         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
987
988         fill_kinfo_proc(p, &kinfo_proc);
989         if (flags & KERN_PROC_NOTHREADS)
990                 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
991                     sizeof(kinfo_proc));
992         else {
993                 FOREACH_THREAD_IN_PROC(p, td) {
994                         fill_kinfo_thread(td, &kinfo_proc, 1);
995                         error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
996                             sizeof(kinfo_proc));
997                         if (error)
998                                 break;
999                 }
1000         }
1001         PROC_UNLOCK(p);
1002         if (error)
1003                 return (error);
1004         if (flags & KERN_PROC_ZOMBMASK)
1005                 np = zpfind(pid);
1006         else {
1007                 if (pid == 0)
1008                         return (0);
1009                 np = pfind(pid);
1010         }
1011         if (np == NULL)
1012                 return (ESRCH);
1013         if (np != p) {
1014                 PROC_UNLOCK(np);
1015                 return (ESRCH);
1016         }
1017         PROC_UNLOCK(np);
1018         return (0);
1019 }
1020
1021 static int
1022 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1023 {
1024         int *name = (int*) arg1;
1025         u_int namelen = arg2;
1026         struct proc *p;
1027         int flags, doingzomb, oid_number;
1028         int error = 0;
1029
1030         oid_number = oidp->oid_number;
1031         if (oid_number != KERN_PROC_ALL &&
1032             (oid_number & KERN_PROC_INC_THREAD) == 0)
1033                 flags = KERN_PROC_NOTHREADS;
1034         else {
1035                 flags = 0;
1036                 oid_number &= ~KERN_PROC_INC_THREAD;
1037         }
1038         if (oid_number == KERN_PROC_PID) {
1039                 if (namelen != 1) 
1040                         return (EINVAL);
1041                 error = sysctl_wire_old_buffer(req, 0);
1042                 if (error)
1043                         return (error);         
1044                 p = pfind((pid_t)name[0]);
1045                 if (!p)
1046                         return (ESRCH);
1047                 if ((error = p_cansee(curthread, p))) {
1048                         PROC_UNLOCK(p);
1049                         return (error);
1050                 }
1051                 error = sysctl_out_proc(p, req, flags);
1052                 return (error);
1053         }
1054
1055         switch (oid_number) {
1056         case KERN_PROC_ALL:
1057                 if (namelen != 0)
1058                         return (EINVAL);
1059                 break;
1060         case KERN_PROC_PROC:
1061                 if (namelen != 0 && namelen != 1)
1062                         return (EINVAL);
1063                 break;
1064         default:
1065                 if (namelen != 1)
1066                         return (EINVAL);
1067                 break;
1068         }
1069         
1070         if (!req->oldptr) {
1071                 /* overestimate by 5 procs */
1072                 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1073                 if (error)
1074                         return (error);
1075         }
1076         error = sysctl_wire_old_buffer(req, 0);
1077         if (error != 0)
1078                 return (error);
1079         sx_slock(&allproc_lock);
1080         for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1081                 if (!doingzomb)
1082                         p = LIST_FIRST(&allproc);
1083                 else
1084                         p = LIST_FIRST(&zombproc);
1085                 for (; p != 0; p = LIST_NEXT(p, p_list)) {
1086                         /*
1087                          * Skip embryonic processes.
1088                          */
1089                         PROC_SLOCK(p);
1090                         if (p->p_state == PRS_NEW) {
1091                                 PROC_SUNLOCK(p);
1092                                 continue;
1093                         }
1094                         PROC_SUNLOCK(p);
1095                         PROC_LOCK(p);
1096                         KASSERT(p->p_ucred != NULL,
1097                             ("process credential is NULL for non-NEW proc"));
1098                         /*
1099                          * Show a user only appropriate processes.
1100                          */
1101                         if (p_cansee(curthread, p)) {
1102                                 PROC_UNLOCK(p);
1103                                 continue;
1104                         }
1105                         /*
1106                          * TODO - make more efficient (see notes below).
1107                          * do by session.
1108                          */
1109                         switch (oid_number) {
1110
1111                         case KERN_PROC_GID:
1112                                 if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1113                                         PROC_UNLOCK(p);
1114                                         continue;
1115                                 }
1116                                 break;
1117
1118                         case KERN_PROC_PGRP:
1119                                 /* could do this by traversing pgrp */
1120                                 if (p->p_pgrp == NULL ||
1121                                     p->p_pgrp->pg_id != (pid_t)name[0]) {
1122                                         PROC_UNLOCK(p);
1123                                         continue;
1124                                 }
1125                                 break;
1126
1127                         case KERN_PROC_RGID:
1128                                 if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1129                                         PROC_UNLOCK(p);
1130                                         continue;
1131                                 }
1132                                 break;
1133
1134                         case KERN_PROC_SESSION:
1135                                 if (p->p_session == NULL ||
1136                                     p->p_session->s_sid != (pid_t)name[0]) {
1137                                         PROC_UNLOCK(p);
1138                                         continue;
1139                                 }
1140                                 break;
1141
1142                         case KERN_PROC_TTY:
1143                                 if ((p->p_flag & P_CONTROLT) == 0 ||
1144                                     p->p_session == NULL) {
1145                                         PROC_UNLOCK(p);
1146                                         continue;
1147                                 }
1148                                 /* XXX proctree_lock */
1149                                 SESS_LOCK(p->p_session);
1150                                 if (p->p_session->s_ttyp == NULL ||
1151                                     tty_udev(p->p_session->s_ttyp) != 
1152                                     (dev_t)name[0]) {
1153                                         SESS_UNLOCK(p->p_session);
1154                                         PROC_UNLOCK(p);
1155                                         continue;
1156                                 }
1157                                 SESS_UNLOCK(p->p_session);
1158                                 break;
1159
1160                         case KERN_PROC_UID:
1161                                 if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1162                                         PROC_UNLOCK(p);
1163                                         continue;
1164                                 }
1165                                 break;
1166
1167                         case KERN_PROC_RUID:
1168                                 if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1169                                         PROC_UNLOCK(p);
1170                                         continue;
1171                                 }
1172                                 break;
1173
1174                         case KERN_PROC_PROC:
1175                                 break;
1176
1177                         default:
1178                                 break;
1179
1180                         }
1181
1182                         error = sysctl_out_proc(p, req, flags | doingzomb);
1183                         if (error) {
1184                                 sx_sunlock(&allproc_lock);
1185                                 return (error);
1186                         }
1187                 }
1188         }
1189         sx_sunlock(&allproc_lock);
1190         return (0);
1191 }
1192
1193 struct pargs *
1194 pargs_alloc(int len)
1195 {
1196         struct pargs *pa;
1197
1198         pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1199                 M_WAITOK);
1200         refcount_init(&pa->ar_ref, 1);
1201         pa->ar_length = len;
1202         return (pa);
1203 }
1204
1205 static void
1206 pargs_free(struct pargs *pa)
1207 {
1208
1209         free(pa, M_PARGS);
1210 }
1211
1212 void
1213 pargs_hold(struct pargs *pa)
1214 {
1215
1216         if (pa == NULL)
1217                 return;
1218         refcount_acquire(&pa->ar_ref);
1219 }
1220
1221 void
1222 pargs_drop(struct pargs *pa)
1223 {
1224
1225         if (pa == NULL)
1226                 return;
1227         if (refcount_release(&pa->ar_ref))
1228                 pargs_free(pa);
1229 }
1230
1231 /*
1232  * This sysctl allows a process to retrieve the argument list or process
1233  * title for another process without groping around in the address space
1234  * of the other process.  It also allow a process to set its own "process 
1235  * title to a string of its own choice.
1236  */
1237 static int
1238 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1239 {
1240         int *name = (int*) arg1;
1241         u_int namelen = arg2;
1242         struct pargs *newpa, *pa;
1243         struct proc *p;
1244         int error = 0;
1245
1246         if (namelen != 1) 
1247                 return (EINVAL);
1248
1249         p = pfind((pid_t)name[0]);
1250         if (!p)
1251                 return (ESRCH);
1252
1253         if ((error = p_cansee(curthread, p)) != 0) {
1254                 PROC_UNLOCK(p);
1255                 return (error);
1256         }
1257
1258         if (req->newptr && curproc != p) {
1259                 PROC_UNLOCK(p);
1260                 return (EPERM);
1261         }
1262
1263         pa = p->p_args;
1264         pargs_hold(pa);
1265         PROC_UNLOCK(p);
1266         if (req->oldptr != NULL && pa != NULL)
1267                 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1268         pargs_drop(pa);
1269         if (error != 0 || req->newptr == NULL)
1270                 return (error);
1271
1272         if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1273                 return (ENOMEM);
1274         newpa = pargs_alloc(req->newlen);
1275         error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1276         if (error != 0) {
1277                 pargs_free(newpa);
1278                 return (error);
1279         }
1280         PROC_LOCK(p);
1281         pa = p->p_args;
1282         p->p_args = newpa;
1283         PROC_UNLOCK(p);
1284         pargs_drop(pa);
1285         return (0);
1286 }
1287
1288 /*
1289  * This sysctl allows a process to retrieve the path of the executable for
1290  * itself or another process.
1291  */
1292 static int
1293 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1294 {
1295         pid_t *pidp = (pid_t *)arg1;
1296         unsigned int arglen = arg2;
1297         struct proc *p;
1298         struct vnode *vp;
1299         char *retbuf, *freebuf;
1300         int error, vfslocked;
1301
1302         if (arglen != 1)
1303                 return (EINVAL);
1304         if (*pidp == -1) {      /* -1 means this process */
1305                 p = req->td->td_proc;
1306         } else {
1307                 p = pfind(*pidp);
1308                 if (p == NULL)
1309                         return (ESRCH);
1310                 if ((error = p_cansee(curthread, p)) != 0) {
1311                         PROC_UNLOCK(p);
1312                         return (error);
1313                 }
1314         }
1315
1316         vp = p->p_textvp;
1317         if (vp == NULL) {
1318                 if (*pidp != -1)
1319                         PROC_UNLOCK(p);
1320                 return (0);
1321         }
1322         vref(vp);
1323         if (*pidp != -1)
1324                 PROC_UNLOCK(p);
1325         error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
1326         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1327         vrele(vp);
1328         VFS_UNLOCK_GIANT(vfslocked);
1329         if (error)
1330                 return (error);
1331         error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1332         free(freebuf, M_TEMP);
1333         return (error);
1334 }
1335
1336 static int
1337 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1338 {
1339         struct proc *p;
1340         char *sv_name;
1341         int *name;
1342         int namelen;
1343         int error;
1344
1345         namelen = arg2;
1346         if (namelen != 1) 
1347                 return (EINVAL);
1348
1349         name = (int *)arg1;
1350         if ((p = pfind((pid_t)name[0])) == NULL)
1351                 return (ESRCH);
1352         if ((error = p_cansee(curthread, p))) {
1353                 PROC_UNLOCK(p);
1354                 return (error);
1355         }
1356         sv_name = p->p_sysent->sv_name;
1357         PROC_UNLOCK(p);
1358         return (sysctl_handle_string(oidp, sv_name, 0, req));
1359 }
1360
1361 #ifdef KINFO_OVMENTRY_SIZE
1362 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
1363 #endif
1364
1365 #ifdef COMPAT_FREEBSD7
1366 static int
1367 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
1368 {
1369         vm_map_entry_t entry, tmp_entry;
1370         unsigned int last_timestamp;
1371         char *fullpath, *freepath;
1372         struct kinfo_ovmentry *kve;
1373         struct vattr va;
1374         struct ucred *cred;
1375         int error, *name;
1376         struct vnode *vp;
1377         struct proc *p;
1378         vm_map_t map;
1379         struct vmspace *vm;
1380
1381         name = (int *)arg1;
1382         if ((p = pfind((pid_t)name[0])) == NULL)
1383                 return (ESRCH);
1384         if (p->p_flag & P_WEXIT) {
1385                 PROC_UNLOCK(p);
1386                 return (ESRCH);
1387         }
1388         if ((error = p_candebug(curthread, p))) {
1389                 PROC_UNLOCK(p);
1390                 return (error);
1391         }
1392         _PHOLD(p);
1393         PROC_UNLOCK(p);
1394         vm = vmspace_acquire_ref(p);
1395         if (vm == NULL) {
1396                 PRELE(p);
1397                 return (ESRCH);
1398         }
1399         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1400
1401         map = &p->p_vmspace->vm_map;    /* XXXRW: More locking required? */
1402         vm_map_lock_read(map);
1403         for (entry = map->header.next; entry != &map->header;
1404             entry = entry->next) {
1405                 vm_object_t obj, tobj, lobj;
1406                 vm_offset_t addr;
1407                 int vfslocked;
1408
1409                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1410                         continue;
1411
1412                 bzero(kve, sizeof(*kve));
1413                 kve->kve_structsize = sizeof(*kve);
1414
1415                 kve->kve_private_resident = 0;
1416                 obj = entry->object.vm_object;
1417                 if (obj != NULL) {
1418                         VM_OBJECT_LOCK(obj);
1419                         if (obj->shadow_count == 1)
1420                                 kve->kve_private_resident =
1421                                     obj->resident_page_count;
1422                 }
1423                 kve->kve_resident = 0;
1424                 addr = entry->start;
1425                 while (addr < entry->end) {
1426                         if (pmap_extract(map->pmap, addr))
1427                                 kve->kve_resident++;
1428                         addr += PAGE_SIZE;
1429                 }
1430
1431                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1432                         if (tobj != obj)
1433                                 VM_OBJECT_LOCK(tobj);
1434                         if (lobj != obj)
1435                                 VM_OBJECT_UNLOCK(lobj);
1436                         lobj = tobj;
1437                 }
1438
1439                 kve->kve_start = (void*)entry->start;
1440                 kve->kve_end = (void*)entry->end;
1441                 kve->kve_offset = (off_t)entry->offset;
1442
1443                 if (entry->protection & VM_PROT_READ)
1444                         kve->kve_protection |= KVME_PROT_READ;
1445                 if (entry->protection & VM_PROT_WRITE)
1446                         kve->kve_protection |= KVME_PROT_WRITE;
1447                 if (entry->protection & VM_PROT_EXECUTE)
1448                         kve->kve_protection |= KVME_PROT_EXEC;
1449
1450                 if (entry->eflags & MAP_ENTRY_COW)
1451                         kve->kve_flags |= KVME_FLAG_COW;
1452                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1453                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1454
1455                 last_timestamp = map->timestamp;
1456                 vm_map_unlock_read(map);
1457
1458                 kve->kve_fileid = 0;
1459                 kve->kve_fsid = 0;
1460                 freepath = NULL;
1461                 fullpath = "";
1462                 if (lobj) {
1463                         vp = NULL;
1464                         switch (lobj->type) {
1465                         case OBJT_DEFAULT:
1466                                 kve->kve_type = KVME_TYPE_DEFAULT;
1467                                 break;
1468                         case OBJT_VNODE:
1469                                 kve->kve_type = KVME_TYPE_VNODE;
1470                                 vp = lobj->handle;
1471                                 vref(vp);
1472                                 break;
1473                         case OBJT_SWAP:
1474                                 kve->kve_type = KVME_TYPE_SWAP;
1475                                 break;
1476                         case OBJT_DEVICE:
1477                                 kve->kve_type = KVME_TYPE_DEVICE;
1478                                 break;
1479                         case OBJT_PHYS:
1480                                 kve->kve_type = KVME_TYPE_PHYS;
1481                                 break;
1482                         case OBJT_DEAD:
1483                                 kve->kve_type = KVME_TYPE_DEAD;
1484                                 break;
1485                         case OBJT_SG:
1486                                 kve->kve_type = KVME_TYPE_SG;
1487                                 break;
1488                         default:
1489                                 kve->kve_type = KVME_TYPE_UNKNOWN;
1490                                 break;
1491                         }
1492                         if (lobj != obj)
1493                                 VM_OBJECT_UNLOCK(lobj);
1494
1495                         kve->kve_ref_count = obj->ref_count;
1496                         kve->kve_shadow_count = obj->shadow_count;
1497                         VM_OBJECT_UNLOCK(obj);
1498                         if (vp != NULL) {
1499                                 vn_fullpath(curthread, vp, &fullpath,
1500                                     &freepath);
1501                                 cred = curthread->td_ucred;
1502                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1503                                 vn_lock(vp, LK_SHARED | LK_RETRY);
1504                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
1505                                         kve->kve_fileid = va.va_fileid;
1506                                         kve->kve_fsid = va.va_fsid;
1507                                 }
1508                                 vput(vp);
1509                                 VFS_UNLOCK_GIANT(vfslocked);
1510                         }
1511                 } else {
1512                         kve->kve_type = KVME_TYPE_NONE;
1513                         kve->kve_ref_count = 0;
1514                         kve->kve_shadow_count = 0;
1515                 }
1516
1517                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1518                 if (freepath != NULL)
1519                         free(freepath, M_TEMP);
1520
1521                 error = SYSCTL_OUT(req, kve, sizeof(*kve));
1522                 vm_map_lock_read(map);
1523                 if (error)
1524                         break;
1525                 if (last_timestamp != map->timestamp) {
1526                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1527                         entry = tmp_entry;
1528                 }
1529         }
1530         vm_map_unlock_read(map);
1531         vmspace_free(vm);
1532         PRELE(p);
1533         free(kve, M_TEMP);
1534         return (error);
1535 }
1536 #endif  /* COMPAT_FREEBSD7 */
1537
1538 #ifdef KINFO_VMENTRY_SIZE
1539 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
1540 #endif
1541
1542 static int
1543 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
1544 {
1545         vm_map_entry_t entry, tmp_entry;
1546         unsigned int last_timestamp;
1547         char *fullpath, *freepath;
1548         struct kinfo_vmentry *kve;
1549         struct vattr va;
1550         struct ucred *cred;
1551         int error, *name;
1552         struct vnode *vp;
1553         struct proc *p;
1554         struct vmspace *vm;
1555         vm_map_t map;
1556
1557         name = (int *)arg1;
1558         if ((p = pfind((pid_t)name[0])) == NULL)
1559                 return (ESRCH);
1560         if (p->p_flag & P_WEXIT) {
1561                 PROC_UNLOCK(p);
1562                 return (ESRCH);
1563         }
1564         if ((error = p_candebug(curthread, p))) {
1565                 PROC_UNLOCK(p);
1566                 return (error);
1567         }
1568         _PHOLD(p);
1569         PROC_UNLOCK(p);
1570         vm = vmspace_acquire_ref(p);
1571         if (vm == NULL) {
1572                 PRELE(p);
1573                 return (ESRCH);
1574         }
1575         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1576
1577         map = &vm->vm_map;      /* XXXRW: More locking required? */
1578         vm_map_lock_read(map);
1579         for (entry = map->header.next; entry != &map->header;
1580             entry = entry->next) {
1581                 vm_object_t obj, tobj, lobj;
1582                 vm_offset_t addr;
1583                 int vfslocked;
1584
1585                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1586                         continue;
1587
1588                 bzero(kve, sizeof(*kve));
1589
1590                 kve->kve_private_resident = 0;
1591                 obj = entry->object.vm_object;
1592                 if (obj != NULL) {
1593                         VM_OBJECT_LOCK(obj);
1594                         if (obj->shadow_count == 1)
1595                                 kve->kve_private_resident =
1596                                     obj->resident_page_count;
1597                 }
1598                 kve->kve_resident = 0;
1599                 addr = entry->start;
1600                 while (addr < entry->end) {
1601                         if (pmap_extract(map->pmap, addr))
1602                                 kve->kve_resident++;
1603                         addr += PAGE_SIZE;
1604                 }
1605
1606                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1607                         if (tobj != obj)
1608                                 VM_OBJECT_LOCK(tobj);
1609                         if (lobj != obj)
1610                                 VM_OBJECT_UNLOCK(lobj);
1611                         lobj = tobj;
1612                 }
1613
1614                 kve->kve_start = entry->start;
1615                 kve->kve_end = entry->end;
1616                 kve->kve_offset = entry->offset;
1617
1618                 if (entry->protection & VM_PROT_READ)
1619                         kve->kve_protection |= KVME_PROT_READ;
1620                 if (entry->protection & VM_PROT_WRITE)
1621                         kve->kve_protection |= KVME_PROT_WRITE;
1622                 if (entry->protection & VM_PROT_EXECUTE)
1623                         kve->kve_protection |= KVME_PROT_EXEC;
1624
1625                 if (entry->eflags & MAP_ENTRY_COW)
1626                         kve->kve_flags |= KVME_FLAG_COW;
1627                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1628                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1629
1630                 last_timestamp = map->timestamp;
1631                 vm_map_unlock_read(map);
1632
1633                 kve->kve_fileid = 0;
1634                 kve->kve_fsid = 0;
1635                 freepath = NULL;
1636                 fullpath = "";
1637                 if (lobj) {
1638                         vp = NULL;
1639                         switch (lobj->type) {
1640                         case OBJT_DEFAULT:
1641                                 kve->kve_type = KVME_TYPE_DEFAULT;
1642                                 break;
1643                         case OBJT_VNODE:
1644                                 kve->kve_type = KVME_TYPE_VNODE;
1645                                 vp = lobj->handle;
1646                                 vref(vp);
1647                                 break;
1648                         case OBJT_SWAP:
1649                                 kve->kve_type = KVME_TYPE_SWAP;
1650                                 break;
1651                         case OBJT_DEVICE:
1652                                 kve->kve_type = KVME_TYPE_DEVICE;
1653                                 break;
1654                         case OBJT_PHYS:
1655                                 kve->kve_type = KVME_TYPE_PHYS;
1656                                 break;
1657                         case OBJT_DEAD:
1658                                 kve->kve_type = KVME_TYPE_DEAD;
1659                                 break;
1660                         case OBJT_SG:
1661                                 kve->kve_type = KVME_TYPE_SG;
1662                                 break;
1663                         default:
1664                                 kve->kve_type = KVME_TYPE_UNKNOWN;
1665                                 break;
1666                         }
1667                         if (lobj != obj)
1668                                 VM_OBJECT_UNLOCK(lobj);
1669
1670                         kve->kve_ref_count = obj->ref_count;
1671                         kve->kve_shadow_count = obj->shadow_count;
1672                         VM_OBJECT_UNLOCK(obj);
1673                         if (vp != NULL) {
1674                                 vn_fullpath(curthread, vp, &fullpath,
1675                                     &freepath);
1676                                 cred = curthread->td_ucred;
1677                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1678                                 vn_lock(vp, LK_SHARED | LK_RETRY);
1679                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
1680                                         kve->kve_fileid = va.va_fileid;
1681                                         kve->kve_fsid = va.va_fsid;
1682                                 }
1683                                 vput(vp);
1684                                 VFS_UNLOCK_GIANT(vfslocked);
1685                         }
1686                 } else {
1687                         kve->kve_type = KVME_TYPE_NONE;
1688                         kve->kve_ref_count = 0;
1689                         kve->kve_shadow_count = 0;
1690                 }
1691
1692                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1693                 if (freepath != NULL)
1694                         free(freepath, M_TEMP);
1695
1696                 /* Pack record size down */
1697                 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
1698                     strlen(kve->kve_path) + 1;
1699                 kve->kve_structsize = roundup(kve->kve_structsize,
1700                     sizeof(uint64_t));
1701                 error = SYSCTL_OUT(req, kve, kve->kve_structsize);
1702                 vm_map_lock_read(map);
1703                 if (error)
1704                         break;
1705                 if (last_timestamp != map->timestamp) {
1706                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1707                         entry = tmp_entry;
1708                 }
1709         }
1710         vm_map_unlock_read(map);
1711         vmspace_free(vm);
1712         PRELE(p);
1713         free(kve, M_TEMP);
1714         return (error);
1715 }
1716
1717 #if defined(STACK) || defined(DDB)
1718 static int
1719 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
1720 {
1721         struct kinfo_kstack *kkstp;
1722         int error, i, *name, numthreads;
1723         lwpid_t *lwpidarray;
1724         struct thread *td;
1725         struct stack *st;
1726         struct sbuf sb;
1727         struct proc *p;
1728
1729         name = (int *)arg1;
1730         if ((p = pfind((pid_t)name[0])) == NULL)
1731                 return (ESRCH);
1732         /* XXXRW: Not clear ESRCH is the right error during proc execve(). */
1733         if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) {
1734                 PROC_UNLOCK(p);
1735                 return (ESRCH);
1736         }
1737         if ((error = p_candebug(curthread, p))) {
1738                 PROC_UNLOCK(p);
1739                 return (error);
1740         }
1741         _PHOLD(p);
1742         PROC_UNLOCK(p);
1743
1744         kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
1745         st = stack_create();
1746
1747         lwpidarray = NULL;
1748         numthreads = 0;
1749         PROC_LOCK(p);
1750 repeat:
1751         if (numthreads < p->p_numthreads) {
1752                 if (lwpidarray != NULL) {
1753                         free(lwpidarray, M_TEMP);
1754                         lwpidarray = NULL;
1755                 }
1756                 numthreads = p->p_numthreads;
1757                 PROC_UNLOCK(p);
1758                 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
1759                     M_WAITOK | M_ZERO);
1760                 PROC_LOCK(p);
1761                 goto repeat;
1762         }
1763         i = 0;
1764
1765         /*
1766          * XXXRW: During the below loop, execve(2) and countless other sorts
1767          * of changes could have taken place.  Should we check to see if the
1768          * vmspace has been replaced, or the like, in order to prevent
1769          * giving a snapshot that spans, say, execve(2), with some threads
1770          * before and some after?  Among other things, the credentials could
1771          * have changed, in which case the right to extract debug info might
1772          * no longer be assured.
1773          */
1774         FOREACH_THREAD_IN_PROC(p, td) {
1775                 KASSERT(i < numthreads,
1776                     ("sysctl_kern_proc_kstack: numthreads"));
1777                 lwpidarray[i] = td->td_tid;
1778                 i++;
1779         }
1780         numthreads = i;
1781         for (i = 0; i < numthreads; i++) {
1782                 td = thread_find(p, lwpidarray[i]);
1783                 if (td == NULL) {
1784                         continue;
1785                 }
1786                 bzero(kkstp, sizeof(*kkstp));
1787                 (void)sbuf_new(&sb, kkstp->kkst_trace,
1788                     sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
1789                 thread_lock(td);
1790                 kkstp->kkst_tid = td->td_tid;
1791                 if (TD_IS_SWAPPED(td))
1792                         kkstp->kkst_state = KKST_STATE_SWAPPED;
1793                 else if (TD_IS_RUNNING(td))
1794                         kkstp->kkst_state = KKST_STATE_RUNNING;
1795                 else {
1796                         kkstp->kkst_state = KKST_STATE_STACKOK;
1797                         stack_save_td(st, td);
1798                 }
1799                 thread_unlock(td);
1800                 PROC_UNLOCK(p);
1801                 stack_sbuf_print(&sb, st);
1802                 sbuf_finish(&sb);
1803                 sbuf_delete(&sb);
1804                 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
1805                 PROC_LOCK(p);
1806                 if (error)
1807                         break;
1808         }
1809         _PRELE(p);
1810         PROC_UNLOCK(p);
1811         if (lwpidarray != NULL)
1812                 free(lwpidarray, M_TEMP);
1813         stack_destroy(st);
1814         free(kkstp, M_TEMP);
1815         return (error);
1816 }
1817 #endif
1818
1819 /*
1820  * This sysctl allows a process to retrieve the full list of groups from
1821  * itself or another process.
1822  */
1823 static int
1824 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
1825 {
1826         pid_t *pidp = (pid_t *)arg1;
1827         unsigned int arglen = arg2;
1828         struct proc *p;
1829         struct ucred *cred;
1830         int error;
1831
1832         if (arglen != 1)
1833                 return (EINVAL);
1834         if (*pidp == -1) {      /* -1 means this process */
1835                 p = req->td->td_proc;
1836         } else {
1837                 p = pfind(*pidp);
1838                 if (p == NULL)
1839                         return (ESRCH);
1840                 if ((error = p_cansee(curthread, p)) != 0) {
1841                         PROC_UNLOCK(p);
1842                         return (error);
1843                 }
1844         }
1845
1846         cred = crhold(p->p_ucred);
1847         if (*pidp != -1)
1848                 PROC_UNLOCK(p);
1849
1850         error = SYSCTL_OUT(req, cred->cr_groups,
1851             cred->cr_ngroups * sizeof(gid_t));
1852         crfree(cred);
1853         return (error);
1854 }
1855
1856 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
1857
1858 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
1859         CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
1860         "Return entire process table");
1861
1862 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1863         sysctl_kern_proc, "Process table");
1864
1865 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
1866         sysctl_kern_proc, "Process table");
1867
1868 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1869         sysctl_kern_proc, "Process table");
1870
1871 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
1872         CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1873
1874 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 
1875         sysctl_kern_proc, "Process table");
1876
1877 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 
1878         sysctl_kern_proc, "Process table");
1879
1880 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1881         sysctl_kern_proc, "Process table");
1882
1883 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1884         sysctl_kern_proc, "Process table");
1885
1886 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
1887         sysctl_kern_proc, "Return process table, no threads");
1888
1889 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
1890         CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
1891         sysctl_kern_proc_args, "Process argument list");
1892
1893 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
1894         CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
1895
1896 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
1897         CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
1898         "Process syscall vector name (ABI type)");
1899
1900 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
1901         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1902
1903 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
1904         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1905
1906 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
1907         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1908
1909 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
1910         sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1911
1912 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
1913         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1914
1915 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
1916         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1917
1918 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
1919         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1920
1921 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
1922         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1923
1924 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
1925         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
1926         "Return process table, no threads");
1927
1928 #ifdef COMPAT_FREEBSD7
1929 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
1930         CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
1931 #endif
1932
1933 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
1934         CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
1935
1936 #if defined(STACK) || defined(DDB)
1937 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
1938         CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
1939 #endif
1940
1941 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
1942         CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");