]> CyberLeo.Net >> Repos - FreeBSD/releng/8.0.git/blob - sys/kern/subr_witness.c
Adjust to reflect 8.0-RELEASE.
[FreeBSD/releng/8.0.git] / sys / kern / subr_witness.c
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40
41 /*
42  *      Main Entry: witness
43  *      Pronunciation: 'wit-n&s
44  *      Function: noun
45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *          testimony, witness, from 2wit
47  *      Date: before 12th century
48  *      1 : attestation of a fact or event : TESTIMONY
49  *      2 : one that gives evidence; specifically : one who testifies in
50  *          a cause or before a judicial tribunal
51  *      3 : one asked to be present at a transaction so as to be able to
52  *          testify to its having taken place
53  *      4 : one who has personal knowledge of something
54  *      5 a : something serving as evidence or proof : SIGN
55  *        b : public affirmation by word or example of usually
56  *            religious faith or conviction <the heroic witness to divine
57  *            life -- Pilot>
58  *      6 capitalized : a member of the Jehovah's Witnesses 
59  */
60
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/systm.h>
110
111 #ifdef DDB
112 #include <ddb/ddb.h>
113 #endif
114
115 #include <machine/stdarg.h>
116
117 #if !defined(DDB) && !defined(STACK)
118 #error "DDB or STACK options are required for WITNESS"
119 #endif
120
121 /* Note that these traces do not work with KTR_ALQ. */
122 #if 0
123 #define KTR_WITNESS     KTR_SUBSYS
124 #else
125 #define KTR_WITNESS     0
126 #endif
127
128 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
129 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
130 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
131
132 /* Define this to check for blessed mutexes */
133 #undef BLESSING
134
135 #define WITNESS_COUNT           1024
136 #define WITNESS_CHILDCOUNT      (WITNESS_COUNT * 4)
137 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
138 #define WITNESS_PENDLIST        512
139
140 /* Allocate 256 KB of stack data space */
141 #define WITNESS_LO_DATA_COUNT   2048
142
143 /* Prime, gives load factor of ~2 at full load */
144 #define WITNESS_LO_HASH_SIZE    1021
145
146 /*
147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149  * probably be safe for the most part, but it's still a SWAG.
150  */
151 #define LOCK_NCHILDREN  5
152 #define LOCK_CHILDCOUNT 2048
153
154 #define MAX_W_NAME      64
155
156 #define BADSTACK_SBUF_SIZE      (256 * WITNESS_COUNT)
157 #define CYCLEGRAPH_SBUF_SIZE    8192
158 #define FULLGRAPH_SBUF_SIZE     32768
159
160 /*
161  * These flags go in the witness relationship matrix and describe the
162  * relationship between any two struct witness objects.
163  */
164 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
165 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
166 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
167 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
168 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
169 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
170 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
171 #define WITNESS_RELATED_MASK                                            \
172         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
173 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
174                                           * observed. */
175 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
176 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
177 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
178
179 /* Descendant to ancestor flags */
180 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
181
182 /* Ancestor to descendant flags */
183 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
184
185 #define WITNESS_INDEX_ASSERT(i)                                         \
186         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
187
188 MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
189
190 /*
191  * Lock instances.  A lock instance is the data associated with a lock while
192  * it is held by witness.  For example, a lock instance will hold the
193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
194  * are held in a per-cpu list while sleep locks are held in per-thread list.
195  */
196 struct lock_instance {
197         struct lock_object      *li_lock;
198         const char              *li_file;
199         int                     li_line;
200         u_int                   li_flags;
201 };
202
203 /*
204  * A simple list type used to build the list of locks held by a thread
205  * or CPU.  We can't simply embed the list in struct lock_object since a
206  * lock may be held by more than one thread if it is a shared lock.  Locks
207  * are added to the head of the list, so we fill up each list entry from
208  * "the back" logically.  To ease some of the arithmetic, we actually fill
209  * in each list entry the normal way (children[0] then children[1], etc.) but
210  * when we traverse the list we read children[count-1] as the first entry
211  * down to children[0] as the final entry.
212  */
213 struct lock_list_entry {
214         struct lock_list_entry  *ll_next;
215         struct lock_instance    ll_children[LOCK_NCHILDREN];
216         u_int                   ll_count;
217 };
218
219 /*
220  * The main witness structure. One of these per named lock type in the system
221  * (for example, "vnode interlock").
222  */
223 struct witness {
224         char                    w_name[MAX_W_NAME];
225         uint32_t                w_index;  /* Index in the relationship matrix */
226         struct lock_class       *w_class;
227         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
228         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
229         struct witness          *w_hash_next; /* Linked list in hash buckets. */
230         const char              *w_file; /* File where last acquired */
231         uint32_t                w_line; /* Line where last acquired */
232         uint32_t                w_refcount;
233         uint16_t                w_num_ancestors; /* direct/indirect
234                                                   * ancestor count */
235         uint16_t                w_num_descendants; /* direct/indirect
236                                                     * descendant count */
237         int16_t                 w_ddb_level;
238         unsigned                w_displayed:1;
239         unsigned                w_reversed:1;
240 };
241
242 STAILQ_HEAD(witness_list, witness);
243
244 /*
245  * The witness hash table. Keys are witness names (const char *), elements are
246  * witness objects (struct witness *).
247  */
248 struct witness_hash {
249         struct witness  *wh_array[WITNESS_HASH_SIZE];
250         uint32_t        wh_size;
251         uint32_t        wh_count;
252 };
253
254 /*
255  * Key type for the lock order data hash table.
256  */
257 struct witness_lock_order_key {
258         uint16_t        from;
259         uint16_t        to;
260 };
261
262 struct witness_lock_order_data {
263         struct stack                    wlod_stack;
264         struct witness_lock_order_key   wlod_key;
265         struct witness_lock_order_data  *wlod_next;
266 };
267
268 /*
269  * The witness lock order data hash table. Keys are witness index tuples
270  * (struct witness_lock_order_key), elements are lock order data objects
271  * (struct witness_lock_order_data). 
272  */
273 struct witness_lock_order_hash {
274         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
275         u_int   wloh_size;
276         u_int   wloh_count;
277 };
278
279 #ifdef BLESSING
280 struct witness_blessed {
281         const char      *b_lock1;
282         const char      *b_lock2;
283 };
284 #endif
285
286 struct witness_pendhelp {
287         const char              *wh_type;
288         struct lock_object      *wh_lock;
289 };
290
291 struct witness_order_list_entry {
292         const char              *w_name;
293         struct lock_class       *w_class;
294 };
295
296 /*
297  * Returns 0 if one of the locks is a spin lock and the other is not.
298  * Returns 1 otherwise.
299  */
300 static __inline int
301 witness_lock_type_equal(struct witness *w1, struct witness *w2)
302 {
303
304         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
305                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
306 }
307
308 static __inline int
309 witness_lock_order_key_empty(const struct witness_lock_order_key *key)
310 {
311
312         return (key->from == 0 && key->to == 0);
313 }
314
315 static __inline int
316 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
317     const struct witness_lock_order_key *b)
318 {
319
320         return (a->from == b->from && a->to == b->to);
321 }
322
323 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
324                     const char *fname);
325 #ifdef KDB
326 static void     _witness_debugger(int cond, const char *msg);
327 #endif
328 static void     adopt(struct witness *parent, struct witness *child);
329 #ifdef BLESSING
330 static int      blessed(struct witness *, struct witness *);
331 #endif
332 static void     depart(struct witness *w);
333 static struct witness   *enroll(const char *description,
334                             struct lock_class *lock_class);
335 static struct lock_instance     *find_instance(struct lock_list_entry *list,
336                                     struct lock_object *lock);
337 static int      isitmychild(struct witness *parent, struct witness *child);
338 static int      isitmydescendant(struct witness *parent, struct witness *child);
339 static void     itismychild(struct witness *parent, struct witness *child);
340 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
341 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
342 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
343 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
344 #ifdef DDB
345 static void     witness_ddb_compute_levels(void);
346 static void     witness_ddb_display(void(*)(const char *fmt, ...));
347 static void     witness_ddb_display_descendants(void(*)(const char *fmt, ...),
348                     struct witness *, int indent);
349 static void     witness_ddb_display_list(void(*prnt)(const char *fmt, ...),
350                     struct witness_list *list);
351 static void     witness_ddb_level_descendants(struct witness *parent, int l);
352 static void     witness_ddb_list(struct thread *td);
353 #endif
354 static void     witness_free(struct witness *m);
355 static struct witness   *witness_get(void);
356 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
357 static struct witness   *witness_hash_get(const char *key);
358 static void     witness_hash_put(struct witness *w);
359 static void     witness_init_hash_tables(void);
360 static void     witness_increment_graph_generation(void);
361 static void     witness_lock_list_free(struct lock_list_entry *lle);
362 static struct lock_list_entry   *witness_lock_list_get(void);
363 static int      witness_lock_order_add(struct witness *parent,
364                     struct witness *child);
365 static int      witness_lock_order_check(struct witness *parent,
366                     struct witness *child);
367 static struct witness_lock_order_data   *witness_lock_order_get(
368                                             struct witness *parent,
369                                             struct witness *child);
370 static void     witness_list_lock(struct lock_instance *instance);
371 static void     witness_setflag(struct lock_object *lock, int flag, int set);
372
373 #ifdef KDB
374 #define witness_debugger(c)     _witness_debugger(c, __func__)
375 #else
376 #define witness_debugger(c)
377 #endif
378
379 SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL, "Witness Locking");
380
381 /*
382  * If set to 0, lock order checking is disabled.  If set to -1,
383  * witness is completely disabled.  Otherwise witness performs full
384  * lock order checking for all locks.  At runtime, lock order checking
385  * may be toggled.  However, witness cannot be reenabled once it is
386  * completely disabled.
387  */
388 static int witness_watch = 1;
389 TUNABLE_INT("debug.witness.watch", &witness_watch);
390 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
391     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
392
393 #ifdef KDB
394 /*
395  * When KDB is enabled and witness_kdb is 1, it will cause the system
396  * to drop into kdebug() when:
397  *      - a lock hierarchy violation occurs
398  *      - locks are held when going to sleep.
399  */
400 #ifdef WITNESS_KDB
401 int     witness_kdb = 1;
402 #else
403 int     witness_kdb = 0;
404 #endif
405 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
406 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
407
408 /*
409  * When KDB is enabled and witness_trace is 1, it will cause the system
410  * to print a stack trace:
411  *      - a lock hierarchy violation occurs
412  *      - locks are held when going to sleep.
413  */
414 int     witness_trace = 1;
415 TUNABLE_INT("debug.witness.trace", &witness_trace);
416 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
417 #endif /* KDB */
418
419 #ifdef WITNESS_SKIPSPIN
420 int     witness_skipspin = 1;
421 #else
422 int     witness_skipspin = 0;
423 #endif
424 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
425 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
426     0, "");
427
428 /*
429  * Call this to print out the relations between locks.
430  */
431 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
432     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
433
434 /*
435  * Call this to print out the witness faulty stacks.
436  */
437 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
438     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
439
440 static struct mtx w_mtx;
441
442 /* w_list */
443 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
444 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
445
446 /* w_typelist */
447 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
448 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
449
450 /* lock list */
451 static struct lock_list_entry *w_lock_list_free = NULL;
452 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
453 static u_int pending_cnt;
454
455 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
456 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
457 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
458 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
459     "");
460
461 static struct witness *w_data;
462 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
463 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
464 static struct witness_hash w_hash;      /* The witness hash table. */
465
466 /* The lock order data hash */
467 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
468 static struct witness_lock_order_data *w_lofree = NULL;
469 static struct witness_lock_order_hash w_lohash;
470 static int w_max_used_index = 0;
471 static unsigned int w_generation = 0;
472 static const char *w_notrunning = "Witness not running\n";
473 static const char *w_stillcold = "Witness is still cold\n";
474
475
476 static struct witness_order_list_entry order_lists[] = {
477         /*
478          * sx locks
479          */
480         { "proctree", &lock_class_sx },
481         { "allproc", &lock_class_sx },
482         { "allprison", &lock_class_sx },
483         { NULL, NULL },
484         /*
485          * Various mutexes
486          */
487         { "Giant", &lock_class_mtx_sleep },
488         { "pipe mutex", &lock_class_mtx_sleep },
489         { "sigio lock", &lock_class_mtx_sleep },
490         { "process group", &lock_class_mtx_sleep },
491         { "process lock", &lock_class_mtx_sleep },
492         { "session", &lock_class_mtx_sleep },
493         { "uidinfo hash", &lock_class_rw },
494 #ifdef  HWPMC_HOOKS
495         { "pmc-sleep", &lock_class_mtx_sleep },
496 #endif
497         { NULL, NULL },
498         /*
499          * Sockets
500          */
501         { "accept", &lock_class_mtx_sleep },
502         { "so_snd", &lock_class_mtx_sleep },
503         { "so_rcv", &lock_class_mtx_sleep },
504         { "sellck", &lock_class_mtx_sleep },
505         { NULL, NULL },
506         /*
507          * Routing
508          */
509         { "so_rcv", &lock_class_mtx_sleep },
510         { "radix node head", &lock_class_rw },
511         { "rtentry", &lock_class_mtx_sleep },
512         { "ifaddr", &lock_class_mtx_sleep },
513         { NULL, NULL },
514         /*
515          * IPv4 multicast:
516          * protocol locks before interface locks, after UDP locks.
517          */
518         { "udpinp", &lock_class_rw },
519         { "in_multi_mtx", &lock_class_mtx_sleep },
520         { "igmp_mtx", &lock_class_mtx_sleep },
521         { "if_addr_mtx", &lock_class_mtx_sleep },
522         { NULL, NULL },
523         /*
524          * IPv6 multicast:
525          * protocol locks before interface locks, after UDP locks.
526          */
527         { "udpinp", &lock_class_rw },
528         { "in6_multi_mtx", &lock_class_mtx_sleep },
529         { "mld_mtx", &lock_class_mtx_sleep },
530         { "if_addr_mtx", &lock_class_mtx_sleep },
531         { NULL, NULL },
532         /*
533          * UNIX Domain Sockets
534          */
535         { "unp_global_rwlock", &lock_class_rw },
536         { "unp_list_lock", &lock_class_mtx_sleep },
537         { "unp", &lock_class_mtx_sleep },
538         { "so_snd", &lock_class_mtx_sleep },
539         { NULL, NULL },
540         /*
541          * UDP/IP
542          */
543         { "udp", &lock_class_rw },
544         { "udpinp", &lock_class_rw },
545         { "so_snd", &lock_class_mtx_sleep },
546         { NULL, NULL },
547         /*
548          * TCP/IP
549          */
550         { "tcp", &lock_class_rw },
551         { "tcpinp", &lock_class_rw },
552         { "so_snd", &lock_class_mtx_sleep },
553         { NULL, NULL },
554         /*
555          * SLIP
556          */
557         { "slip_mtx", &lock_class_mtx_sleep },
558         { "slip sc_mtx", &lock_class_mtx_sleep },
559         { NULL, NULL },
560         /*
561          * netatalk
562          */
563         { "ddp_list_mtx", &lock_class_mtx_sleep },
564         { "ddp_mtx", &lock_class_mtx_sleep },
565         { NULL, NULL },
566         /*
567          * BPF
568          */
569         { "bpf global lock", &lock_class_mtx_sleep },
570         { "bpf interface lock", &lock_class_mtx_sleep },
571         { "bpf cdev lock", &lock_class_mtx_sleep },
572         { NULL, NULL },
573         /*
574          * NFS server
575          */
576         { "nfsd_mtx", &lock_class_mtx_sleep },
577         { "so_snd", &lock_class_mtx_sleep },
578         { NULL, NULL },
579
580         /*
581          * IEEE 802.11
582          */
583         { "802.11 com lock", &lock_class_mtx_sleep},
584         { NULL, NULL },
585         /*
586          * Network drivers
587          */
588         { "network driver", &lock_class_mtx_sleep},
589         { NULL, NULL },
590
591         /*
592          * Netgraph
593          */
594         { "ng_node", &lock_class_mtx_sleep },
595         { "ng_worklist", &lock_class_mtx_sleep },
596         { NULL, NULL },
597         /*
598          * CDEV
599          */
600         { "system map", &lock_class_mtx_sleep },
601         { "vm page queue mutex", &lock_class_mtx_sleep },
602         { "vnode interlock", &lock_class_mtx_sleep },
603         { "cdev", &lock_class_mtx_sleep },
604         { NULL, NULL },
605         /*
606          * kqueue/VFS interaction
607          */
608         { "kqueue", &lock_class_mtx_sleep },
609         { "struct mount mtx", &lock_class_mtx_sleep },
610         { "vnode interlock", &lock_class_mtx_sleep },
611         { NULL, NULL },
612         /*
613          * ZFS locking
614          */
615         { "dn->dn_mtx", &lock_class_sx },
616         { "dr->dt.di.dr_mtx", &lock_class_sx },
617         { "db->db_mtx", &lock_class_sx },
618         { NULL, NULL },
619         /*
620          * spin locks
621          */
622 #ifdef SMP
623         { "ap boot", &lock_class_mtx_spin },
624 #endif
625         { "rm.mutex_mtx", &lock_class_mtx_spin },
626         { "sio", &lock_class_mtx_spin },
627         { "scrlock", &lock_class_mtx_spin },
628 #ifdef __i386__
629         { "cy", &lock_class_mtx_spin },
630 #endif
631 #ifdef __sparc64__
632         { "pcib_mtx", &lock_class_mtx_spin },
633         { "rtc_mtx", &lock_class_mtx_spin },
634 #endif
635         { "scc_hwmtx", &lock_class_mtx_spin },
636         { "uart_hwmtx", &lock_class_mtx_spin },
637         { "fast_taskqueue", &lock_class_mtx_spin },
638         { "intr table", &lock_class_mtx_spin },
639 #ifdef  HWPMC_HOOKS
640         { "pmc-per-proc", &lock_class_mtx_spin },
641 #endif
642         { "process slock", &lock_class_mtx_spin },
643         { "sleepq chain", &lock_class_mtx_spin },
644         { "umtx lock", &lock_class_mtx_spin },
645         { "rm_spinlock", &lock_class_mtx_spin },
646         { "turnstile chain", &lock_class_mtx_spin },
647         { "turnstile lock", &lock_class_mtx_spin },
648         { "sched lock", &lock_class_mtx_spin },
649         { "td_contested", &lock_class_mtx_spin },
650         { "callout", &lock_class_mtx_spin },
651         { "entropy harvest mutex", &lock_class_mtx_spin },
652         { "syscons video lock", &lock_class_mtx_spin },
653         { "time lock", &lock_class_mtx_spin },
654 #ifdef SMP
655         { "smp rendezvous", &lock_class_mtx_spin },
656 #endif
657 #ifdef __powerpc__
658         { "tlb0", &lock_class_mtx_spin },
659 #endif
660         /*
661          * leaf locks
662          */
663         { "intrcnt", &lock_class_mtx_spin },
664         { "icu", &lock_class_mtx_spin },
665 #if defined(SMP) && defined(__sparc64__)
666         { "ipi", &lock_class_mtx_spin },
667 #endif
668 #ifdef __i386__
669         { "allpmaps", &lock_class_mtx_spin },
670         { "descriptor tables", &lock_class_mtx_spin },
671 #endif
672         { "clk", &lock_class_mtx_spin },
673         { "cpuset", &lock_class_mtx_spin },
674         { "mprof lock", &lock_class_mtx_spin },
675         { "zombie lock", &lock_class_mtx_spin },
676         { "ALD Queue", &lock_class_mtx_spin },
677 #ifdef __ia64__
678         { "MCA spin lock", &lock_class_mtx_spin },
679 #endif
680 #if defined(__i386__) || defined(__amd64__)
681         { "pcicfg", &lock_class_mtx_spin },
682         { "NDIS thread lock", &lock_class_mtx_spin },
683 #endif
684         { "tw_osl_io_lock", &lock_class_mtx_spin },
685         { "tw_osl_q_lock", &lock_class_mtx_spin },
686         { "tw_cl_io_lock", &lock_class_mtx_spin },
687         { "tw_cl_intr_lock", &lock_class_mtx_spin },
688         { "tw_cl_gen_lock", &lock_class_mtx_spin },
689 #ifdef  HWPMC_HOOKS
690         { "pmc-leaf", &lock_class_mtx_spin },
691 #endif
692         { "blocked lock", &lock_class_mtx_spin },
693         { NULL, NULL },
694         { NULL, NULL }
695 };
696
697 #ifdef BLESSING
698 /*
699  * Pairs of locks which have been blessed
700  * Don't complain about order problems with blessed locks
701  */
702 static struct witness_blessed blessed_list[] = {
703 };
704 static int blessed_count =
705         sizeof(blessed_list) / sizeof(struct witness_blessed);
706 #endif
707
708 /*
709  * This global is set to 0 once it becomes safe to use the witness code.
710  */
711 static int witness_cold = 1;
712
713 /*
714  * This global is set to 1 once the static lock orders have been enrolled
715  * so that a warning can be issued for any spin locks enrolled later.
716  */
717 static int witness_spin_warn = 0;
718
719 /*
720  * The WITNESS-enabled diagnostic code.  Note that the witness code does
721  * assume that the early boot is single-threaded at least until after this
722  * routine is completed.
723  */
724 static void
725 witness_initialize(void *dummy __unused)
726 {
727         struct lock_object *lock;
728         struct witness_order_list_entry *order;
729         struct witness *w, *w1;
730         int i;
731
732         w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
733             M_NOWAIT | M_ZERO);
734
735         /*
736          * We have to release Giant before initializing its witness
737          * structure so that WITNESS doesn't get confused.
738          */
739         mtx_unlock(&Giant);
740         mtx_assert(&Giant, MA_NOTOWNED);
741
742         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
743         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
744             MTX_NOWITNESS | MTX_NOPROFILE);
745         for (i = WITNESS_COUNT - 1; i >= 0; i--) {
746                 w = &w_data[i];
747                 memset(w, 0, sizeof(*w));
748                 w_data[i].w_index = i;  /* Witness index never changes. */
749                 witness_free(w);
750         }
751         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
752             ("%s: Invalid list of free witness objects", __func__));
753
754         /* Witness with index 0 is not used to aid in debugging. */
755         STAILQ_REMOVE_HEAD(&w_free, w_list);
756         w_free_cnt--;
757
758         memset(w_rmatrix, 0,
759             (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
760
761         for (i = 0; i < LOCK_CHILDCOUNT; i++)
762                 witness_lock_list_free(&w_locklistdata[i]);
763         witness_init_hash_tables();
764
765         /* First add in all the specified order lists. */
766         for (order = order_lists; order->w_name != NULL; order++) {
767                 w = enroll(order->w_name, order->w_class);
768                 if (w == NULL)
769                         continue;
770                 w->w_file = "order list";
771                 for (order++; order->w_name != NULL; order++) {
772                         w1 = enroll(order->w_name, order->w_class);
773                         if (w1 == NULL)
774                                 continue;
775                         w1->w_file = "order list";
776                         itismychild(w, w1);
777                         w = w1;
778                 }
779         }
780         witness_spin_warn = 1;
781
782         /* Iterate through all locks and add them to witness. */
783         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
784                 lock = pending_locks[i].wh_lock;
785                 KASSERT(lock->lo_flags & LO_WITNESS,
786                     ("%s: lock %s is on pending list but not LO_WITNESS",
787                     __func__, lock->lo_name));
788                 lock->lo_witness = enroll(pending_locks[i].wh_type,
789                     LOCK_CLASS(lock));
790         }
791
792         /* Mark the witness code as being ready for use. */
793         witness_cold = 0;
794
795         mtx_lock(&Giant);
796 }
797 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
798     NULL);
799
800 void
801 witness_init(struct lock_object *lock, const char *type)
802 {
803         struct lock_class *class;
804
805         /* Various sanity checks. */
806         class = LOCK_CLASS(lock);
807         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
808             (class->lc_flags & LC_RECURSABLE) == 0)
809                 panic("%s: lock (%s) %s can not be recursable", __func__,
810                     class->lc_name, lock->lo_name);
811         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
812             (class->lc_flags & LC_SLEEPABLE) == 0)
813                 panic("%s: lock (%s) %s can not be sleepable", __func__,
814                     class->lc_name, lock->lo_name);
815         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
816             (class->lc_flags & LC_UPGRADABLE) == 0)
817                 panic("%s: lock (%s) %s can not be upgradable", __func__,
818                     class->lc_name, lock->lo_name);
819
820         /*
821          * If we shouldn't watch this lock, then just clear lo_witness.
822          * Otherwise, if witness_cold is set, then it is too early to
823          * enroll this lock, so defer it to witness_initialize() by adding
824          * it to the pending_locks list.  If it is not too early, then enroll
825          * the lock now.
826          */
827         if (witness_watch < 1 || panicstr != NULL ||
828             (lock->lo_flags & LO_WITNESS) == 0)
829                 lock->lo_witness = NULL;
830         else if (witness_cold) {
831                 pending_locks[pending_cnt].wh_lock = lock;
832                 pending_locks[pending_cnt++].wh_type = type;
833                 if (pending_cnt > WITNESS_PENDLIST)
834                         panic("%s: pending locks list is too small, bump it\n",
835                             __func__);
836         } else
837                 lock->lo_witness = enroll(type, class);
838 }
839
840 void
841 witness_destroy(struct lock_object *lock)
842 {
843         struct lock_class *class;
844         struct witness *w;
845
846         class = LOCK_CLASS(lock);
847
848         if (witness_cold)
849                 panic("lock (%s) %s destroyed while witness_cold",
850                     class->lc_name, lock->lo_name);
851
852         /* XXX: need to verify that no one holds the lock */
853         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
854                 return;
855         w = lock->lo_witness;
856
857         mtx_lock_spin(&w_mtx);
858         MPASS(w->w_refcount > 0);
859         w->w_refcount--;
860
861         if (w->w_refcount == 0)
862                 depart(w);
863         mtx_unlock_spin(&w_mtx);
864 }
865
866 #ifdef DDB
867 static void
868 witness_ddb_compute_levels(void)
869 {
870         struct witness *w;
871
872         /*
873          * First clear all levels.
874          */
875         STAILQ_FOREACH(w, &w_all, w_list)
876                 w->w_ddb_level = -1;
877
878         /*
879          * Look for locks with no parents and level all their descendants.
880          */
881         STAILQ_FOREACH(w, &w_all, w_list) {
882
883                 /* If the witness has ancestors (is not a root), skip it. */
884                 if (w->w_num_ancestors > 0)
885                         continue;
886                 witness_ddb_level_descendants(w, 0);
887         }
888 }
889
890 static void
891 witness_ddb_level_descendants(struct witness *w, int l)
892 {
893         int i;
894
895         if (w->w_ddb_level >= l)
896                 return;
897
898         w->w_ddb_level = l;
899         l++;
900
901         for (i = 1; i <= w_max_used_index; i++) {
902                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
903                         witness_ddb_level_descendants(&w_data[i], l);
904         }
905 }
906
907 static void
908 witness_ddb_display_descendants(void(*prnt)(const char *fmt, ...),
909     struct witness *w, int indent)
910 {
911         int i;
912
913         for (i = 0; i < indent; i++)
914                 prnt(" ");
915         prnt("%s (type: %s, depth: %d, active refs: %d)",
916              w->w_name, w->w_class->lc_name,
917              w->w_ddb_level, w->w_refcount);
918         if (w->w_displayed) {
919                 prnt(" -- (already displayed)\n");
920                 return;
921         }
922         w->w_displayed = 1;
923         if (w->w_file != NULL && w->w_line != 0)
924                 prnt(" -- last acquired @ %s:%d\n", w->w_file,
925                     w->w_line);
926         else
927                 prnt(" -- never acquired\n");
928         indent++;
929         WITNESS_INDEX_ASSERT(w->w_index);
930         for (i = 1; i <= w_max_used_index; i++) {
931                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
932                         witness_ddb_display_descendants(prnt, &w_data[i],
933                             indent);
934         }
935 }
936
937 static void
938 witness_ddb_display_list(void(*prnt)(const char *fmt, ...),
939     struct witness_list *list)
940 {
941         struct witness *w;
942
943         STAILQ_FOREACH(w, list, w_typelist) {
944                 if (w->w_file == NULL || w->w_ddb_level > 0)
945                         continue;
946
947                 /* This lock has no anscestors - display its descendants. */
948                 witness_ddb_display_descendants(prnt, w, 0);
949         }
950 }
951         
952 static void
953 witness_ddb_display(void(*prnt)(const char *fmt, ...))
954 {
955         struct witness *w;
956
957         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
958         witness_ddb_compute_levels();
959
960         /* Clear all the displayed flags. */
961         STAILQ_FOREACH(w, &w_all, w_list)
962                 w->w_displayed = 0;
963
964         /*
965          * First, handle sleep locks which have been acquired at least
966          * once.
967          */
968         prnt("Sleep locks:\n");
969         witness_ddb_display_list(prnt, &w_sleep);
970         
971         /*
972          * Now do spin locks which have been acquired at least once.
973          */
974         prnt("\nSpin locks:\n");
975         witness_ddb_display_list(prnt, &w_spin);
976         
977         /*
978          * Finally, any locks which have not been acquired yet.
979          */
980         prnt("\nLocks which were never acquired:\n");
981         STAILQ_FOREACH(w, &w_all, w_list) {
982                 if (w->w_file != NULL || w->w_refcount == 0)
983                         continue;
984                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
985                     w->w_class->lc_name, w->w_ddb_level);
986         }
987 }
988 #endif /* DDB */
989
990 /* Trim useless garbage from filenames. */
991 static const char *
992 fixup_filename(const char *file)
993 {
994
995         if (file == NULL)
996                 return (NULL);
997         while (strncmp(file, "../", 3) == 0)
998                 file += 3;
999         return (file);
1000 }
1001
1002 int
1003 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1004 {
1005
1006         if (witness_watch == -1 || panicstr != NULL)
1007                 return (0);
1008
1009         /* Require locks that witness knows about. */
1010         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1011             lock2->lo_witness == NULL)
1012                 return (EINVAL);
1013
1014         mtx_assert(&w_mtx, MA_NOTOWNED);
1015         mtx_lock_spin(&w_mtx);
1016
1017         /*
1018          * If we already have either an explicit or implied lock order that
1019          * is the other way around, then return an error.
1020          */
1021         if (witness_watch &&
1022             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1023                 mtx_unlock_spin(&w_mtx);
1024                 return (EDOOFUS);
1025         }
1026         
1027         /* Try to add the new order. */
1028         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1029             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1030         itismychild(lock1->lo_witness, lock2->lo_witness);
1031         mtx_unlock_spin(&w_mtx);
1032         return (0);
1033 }
1034
1035 void
1036 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1037     int line, struct lock_object *interlock)
1038 {
1039         struct lock_list_entry *lock_list, *lle;
1040         struct lock_instance *lock1, *lock2, *plock;
1041         struct lock_class *class;
1042         struct witness *w, *w1;
1043         struct thread *td;
1044         int i, j;
1045
1046         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1047             panicstr != NULL)
1048                 return;
1049
1050         w = lock->lo_witness;
1051         class = LOCK_CLASS(lock);
1052         td = curthread;
1053         file = fixup_filename(file);
1054
1055         if (class->lc_flags & LC_SLEEPLOCK) {
1056
1057                 /*
1058                  * Since spin locks include a critical section, this check
1059                  * implicitly enforces a lock order of all sleep locks before
1060                  * all spin locks.
1061                  */
1062                 if (td->td_critnest != 0 && !kdb_active)
1063                         panic("blockable sleep lock (%s) %s @ %s:%d",
1064                             class->lc_name, lock->lo_name, file, line);
1065
1066                 /*
1067                  * If this is the first lock acquired then just return as
1068                  * no order checking is needed.
1069                  */
1070                 lock_list = td->td_sleeplocks;
1071                 if (lock_list == NULL || lock_list->ll_count == 0)
1072                         return;
1073         } else {
1074
1075                 /*
1076                  * If this is the first lock, just return as no order
1077                  * checking is needed.  Avoid problems with thread
1078                  * migration pinning the thread while checking if
1079                  * spinlocks are held.  If at least one spinlock is held
1080                  * the thread is in a safe path and it is allowed to
1081                  * unpin it.
1082                  */
1083                 sched_pin();
1084                 lock_list = PCPU_GET(spinlocks);
1085                 if (lock_list == NULL || lock_list->ll_count == 0) {
1086                         sched_unpin();
1087                         return;
1088                 }
1089                 sched_unpin();
1090         }
1091
1092         /*
1093          * Check to see if we are recursing on a lock we already own.  If
1094          * so, make sure that we don't mismatch exclusive and shared lock
1095          * acquires.
1096          */
1097         lock1 = find_instance(lock_list, lock);
1098         if (lock1 != NULL) {
1099                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1100                     (flags & LOP_EXCLUSIVE) == 0) {
1101                         printf("shared lock of (%s) %s @ %s:%d\n",
1102                             class->lc_name, lock->lo_name, file, line);
1103                         printf("while exclusively locked from %s:%d\n",
1104                             lock1->li_file, lock1->li_line);
1105                         panic("share->excl");
1106                 }
1107                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1108                     (flags & LOP_EXCLUSIVE) != 0) {
1109                         printf("exclusive lock of (%s) %s @ %s:%d\n",
1110                             class->lc_name, lock->lo_name, file, line);
1111                         printf("while share locked from %s:%d\n",
1112                             lock1->li_file, lock1->li_line);
1113                         panic("excl->share");
1114                 }
1115                 return;
1116         }
1117
1118         /*
1119          * Find the previously acquired lock, but ignore interlocks.
1120          */
1121         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1122         if (interlock != NULL && plock->li_lock == interlock) {
1123                 if (lock_list->ll_count > 1)
1124                         plock =
1125                             &lock_list->ll_children[lock_list->ll_count - 2];
1126                 else {
1127                         lle = lock_list->ll_next;
1128
1129                         /*
1130                          * The interlock is the only lock we hold, so
1131                          * simply return.
1132                          */
1133                         if (lle == NULL)
1134                                 return;
1135                         plock = &lle->ll_children[lle->ll_count - 1];
1136                 }
1137         }
1138         
1139         /*
1140          * Try to perform most checks without a lock.  If this succeeds we
1141          * can skip acquiring the lock and return success.
1142          */
1143         w1 = plock->li_lock->lo_witness;
1144         if (witness_lock_order_check(w1, w))
1145                 return;
1146
1147         /*
1148          * Check for duplicate locks of the same type.  Note that we only
1149          * have to check for this on the last lock we just acquired.  Any
1150          * other cases will be caught as lock order violations.
1151          */
1152         mtx_lock_spin(&w_mtx);
1153         witness_lock_order_add(w1, w);
1154         if (w1 == w) {
1155                 i = w->w_index;
1156                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1157                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1158                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1159                         w->w_reversed = 1;
1160                         mtx_unlock_spin(&w_mtx);
1161                         printf(
1162                             "acquiring duplicate lock of same type: \"%s\"\n", 
1163                             w->w_name);
1164                         printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1165                                plock->li_file, plock->li_line);
1166                         printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
1167                         witness_debugger(1);
1168                     } else
1169                             mtx_unlock_spin(&w_mtx);
1170                 return;
1171         }
1172         mtx_assert(&w_mtx, MA_OWNED);
1173
1174         /*
1175          * If we know that the the lock we are acquiring comes after
1176          * the lock we most recently acquired in the lock order tree,
1177          * then there is no need for any further checks.
1178          */
1179         if (isitmychild(w1, w))
1180                 goto out;
1181
1182         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1183                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1184
1185                         MPASS(j < WITNESS_COUNT);
1186                         lock1 = &lle->ll_children[i];
1187
1188                         /*
1189                          * Ignore the interlock the first time we see it.
1190                          */
1191                         if (interlock != NULL && interlock == lock1->li_lock) {
1192                                 interlock = NULL;
1193                                 continue;
1194                         }
1195
1196                         /*
1197                          * If this lock doesn't undergo witness checking,
1198                          * then skip it.
1199                          */
1200                         w1 = lock1->li_lock->lo_witness;
1201                         if (w1 == NULL) {
1202                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1203                                     ("lock missing witness structure"));
1204                                 continue;
1205                         }
1206
1207                         /*
1208                          * If we are locking Giant and this is a sleepable
1209                          * lock, then skip it.
1210                          */
1211                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1212                             lock == &Giant.lock_object)
1213                                 continue;
1214
1215                         /*
1216                          * If we are locking a sleepable lock and this lock
1217                          * is Giant, then skip it.
1218                          */
1219                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1220                             lock1->li_lock == &Giant.lock_object)
1221                                 continue;
1222
1223                         /*
1224                          * If we are locking a sleepable lock and this lock
1225                          * isn't sleepable, we want to treat it as a lock
1226                          * order violation to enfore a general lock order of
1227                          * sleepable locks before non-sleepable locks.
1228                          */
1229                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1230                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1231                                 goto reversal;
1232
1233                         /*
1234                          * If we are locking Giant and this is a non-sleepable
1235                          * lock, then treat it as a reversal.
1236                          */
1237                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1238                             lock == &Giant.lock_object)
1239                                 goto reversal;
1240
1241                         /*
1242                          * Check the lock order hierarchy for a reveresal.
1243                          */
1244                         if (!isitmydescendant(w, w1))
1245                                 continue;
1246                 reversal:
1247
1248                         /*
1249                          * We have a lock order violation, check to see if it
1250                          * is allowed or has already been yelled about.
1251                          */
1252 #ifdef BLESSING
1253
1254                         /*
1255                          * If the lock order is blessed, just bail.  We don't
1256                          * look for other lock order violations though, which
1257                          * may be a bug.
1258                          */
1259                         if (blessed(w, w1))
1260                                 goto out;
1261 #endif
1262
1263                         /* Bail if this violation is known */
1264                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1265                                 goto out;
1266
1267                         /* Record this as a violation */
1268                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1269                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1270                         w->w_reversed = w1->w_reversed = 1;
1271                         witness_increment_graph_generation();
1272                         mtx_unlock_spin(&w_mtx);
1273                         
1274                         /*
1275                          * Ok, yell about it.
1276                          */
1277                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1278                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1279                                 printf(
1280                 "lock order reversal: (sleepable after non-sleepable)\n");
1281                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1282                             && lock == &Giant.lock_object)
1283                                 printf(
1284                 "lock order reversal: (Giant after non-sleepable)\n");
1285                         else
1286                                 printf("lock order reversal:\n");
1287
1288                         /*
1289                          * Try to locate an earlier lock with
1290                          * witness w in our list.
1291                          */
1292                         do {
1293                                 lock2 = &lle->ll_children[i];
1294                                 MPASS(lock2->li_lock != NULL);
1295                                 if (lock2->li_lock->lo_witness == w)
1296                                         break;
1297                                 if (i == 0 && lle->ll_next != NULL) {
1298                                         lle = lle->ll_next;
1299                                         i = lle->ll_count - 1;
1300                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1301                                 } else
1302                                         i--;
1303                         } while (i >= 0);
1304                         if (i < 0) {
1305                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1306                                     lock1->li_lock, lock1->li_lock->lo_name,
1307                                     w1->w_name, lock1->li_file, lock1->li_line);
1308                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1309                                     lock->lo_name, w->w_name, file, line);
1310                         } else {
1311                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1312                                     lock2->li_lock, lock2->li_lock->lo_name,
1313                                     lock2->li_lock->lo_witness->w_name,
1314                                     lock2->li_file, lock2->li_line);
1315                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
1316                                     lock1->li_lock, lock1->li_lock->lo_name,
1317                                     w1->w_name, lock1->li_file, lock1->li_line);
1318                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1319                                     lock->lo_name, w->w_name, file, line);
1320                         }
1321                         witness_debugger(1);
1322                         return;
1323                 }
1324         }
1325
1326         /*
1327          * If requested, build a new lock order.  However, don't build a new
1328          * relationship between a sleepable lock and Giant if it is in the
1329          * wrong direction.  The correct lock order is that sleepable locks
1330          * always come before Giant.
1331          */
1332         if (flags & LOP_NEWORDER &&
1333             !(plock->li_lock == &Giant.lock_object &&
1334             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1335                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1336                     w->w_name, plock->li_lock->lo_witness->w_name);
1337                 itismychild(plock->li_lock->lo_witness, w);
1338         }
1339 out:
1340         mtx_unlock_spin(&w_mtx);
1341 }
1342
1343 void
1344 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1345 {
1346         struct lock_list_entry **lock_list, *lle;
1347         struct lock_instance *instance;
1348         struct witness *w;
1349         struct thread *td;
1350
1351         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1352             panicstr != NULL)
1353                 return;
1354         w = lock->lo_witness;
1355         td = curthread;
1356         file = fixup_filename(file);
1357
1358         /* Determine lock list for this lock. */
1359         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1360                 lock_list = &td->td_sleeplocks;
1361         else
1362                 lock_list = PCPU_PTR(spinlocks);
1363
1364         /* Check to see if we are recursing on a lock we already own. */
1365         instance = find_instance(*lock_list, lock);
1366         if (instance != NULL) {
1367                 instance->li_flags++;
1368                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1369                     td->td_proc->p_pid, lock->lo_name,
1370                     instance->li_flags & LI_RECURSEMASK);
1371                 instance->li_file = file;
1372                 instance->li_line = line;
1373                 return;
1374         }
1375
1376         /* Update per-witness last file and line acquire. */
1377         w->w_file = file;
1378         w->w_line = line;
1379
1380         /* Find the next open lock instance in the list and fill it. */
1381         lle = *lock_list;
1382         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1383                 lle = witness_lock_list_get();
1384                 if (lle == NULL)
1385                         return;
1386                 lle->ll_next = *lock_list;
1387                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1388                     td->td_proc->p_pid, lle);
1389                 *lock_list = lle;
1390         }
1391         instance = &lle->ll_children[lle->ll_count++];
1392         instance->li_lock = lock;
1393         instance->li_line = line;
1394         instance->li_file = file;
1395         if ((flags & LOP_EXCLUSIVE) != 0)
1396                 instance->li_flags = LI_EXCLUSIVE;
1397         else
1398                 instance->li_flags = 0;
1399         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1400             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1401 }
1402
1403 void
1404 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1405 {
1406         struct lock_instance *instance;
1407         struct lock_class *class;
1408
1409         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1410         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1411                 return;
1412         class = LOCK_CLASS(lock);
1413         file = fixup_filename(file);
1414         if (witness_watch) {
1415                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1416                         panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1417                             class->lc_name, lock->lo_name, file, line);
1418                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1419                         panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1420                             class->lc_name, lock->lo_name, file, line);
1421         }
1422         instance = find_instance(curthread->td_sleeplocks, lock);
1423         if (instance == NULL)
1424                 panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1425                     class->lc_name, lock->lo_name, file, line);
1426         if (witness_watch) {
1427                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1428                         panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1429                             class->lc_name, lock->lo_name, file, line);
1430                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1431                         panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1432                             class->lc_name, lock->lo_name,
1433                             instance->li_flags & LI_RECURSEMASK, file, line);
1434         }
1435         instance->li_flags |= LI_EXCLUSIVE;
1436 }
1437
1438 void
1439 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1440     int line)
1441 {
1442         struct lock_instance *instance;
1443         struct lock_class *class;
1444
1445         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1446         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1447                 return;
1448         class = LOCK_CLASS(lock);
1449         file = fixup_filename(file);
1450         if (witness_watch) {
1451                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1452                 panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1453                             class->lc_name, lock->lo_name, file, line);
1454                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1455                         panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1456                             class->lc_name, lock->lo_name, file, line);
1457         }
1458         instance = find_instance(curthread->td_sleeplocks, lock);
1459         if (instance == NULL)
1460                 panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1461                     class->lc_name, lock->lo_name, file, line);
1462         if (witness_watch) {
1463                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1464                         panic("downgrade of shared lock (%s) %s @ %s:%d",
1465                             class->lc_name, lock->lo_name, file, line);
1466                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1467                         panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1468                             class->lc_name, lock->lo_name,
1469                             instance->li_flags & LI_RECURSEMASK, file, line);
1470         }
1471         instance->li_flags &= ~LI_EXCLUSIVE;
1472 }
1473
1474 void
1475 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1476 {
1477         struct lock_list_entry **lock_list, *lle;
1478         struct lock_instance *instance;
1479         struct lock_class *class;
1480         struct thread *td;
1481         register_t s;
1482         int i, j;
1483
1484         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1485                 return;
1486         td = curthread;
1487         class = LOCK_CLASS(lock);
1488         file = fixup_filename(file);
1489
1490         /* Find lock instance associated with this lock. */
1491         if (class->lc_flags & LC_SLEEPLOCK)
1492                 lock_list = &td->td_sleeplocks;
1493         else
1494                 lock_list = PCPU_PTR(spinlocks);
1495         lle = *lock_list;
1496         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1497                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1498                         instance = &(*lock_list)->ll_children[i];
1499                         if (instance->li_lock == lock)
1500                                 goto found;
1501                 }
1502
1503         /*
1504          * When disabling WITNESS through witness_watch we could end up in
1505          * having registered locks in the td_sleeplocks queue.
1506          * We have to make sure we flush these queues, so just search for
1507          * eventual register locks and remove them.
1508          */
1509         if (witness_watch > 0)
1510                 panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1511                     lock->lo_name, file, line);
1512         else
1513                 return;
1514 found:
1515
1516         /* First, check for shared/exclusive mismatches. */
1517         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1518             (flags & LOP_EXCLUSIVE) == 0) {
1519                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1520                     lock->lo_name, file, line);
1521                 printf("while exclusively locked from %s:%d\n",
1522                     instance->li_file, instance->li_line);
1523                 panic("excl->ushare");
1524         }
1525         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1526             (flags & LOP_EXCLUSIVE) != 0) {
1527                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1528                     lock->lo_name, file, line);
1529                 printf("while share locked from %s:%d\n", instance->li_file,
1530                     instance->li_line);
1531                 panic("share->uexcl");
1532         }
1533         /* If we are recursed, unrecurse. */
1534         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1535                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1536                     td->td_proc->p_pid, instance->li_lock->lo_name,
1537                     instance->li_flags);
1538                 instance->li_flags--;
1539                 return;
1540         }
1541         /* The lock is now being dropped, check for NORELEASE flag */
1542         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1543                 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1544                     lock->lo_name, file, line);
1545                 panic("lock marked norelease");
1546         }
1547
1548         /* Otherwise, remove this item from the list. */
1549         s = intr_disable();
1550         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1551             td->td_proc->p_pid, instance->li_lock->lo_name,
1552             (*lock_list)->ll_count - 1);
1553         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1554                 (*lock_list)->ll_children[j] =
1555                     (*lock_list)->ll_children[j + 1];
1556         (*lock_list)->ll_count--;
1557         intr_restore(s);
1558
1559         /*
1560          * In order to reduce contention on w_mtx, we want to keep always an
1561          * head object into lists so that frequent allocation from the 
1562          * free witness pool (and subsequent locking) is avoided.
1563          * In order to maintain the current code simple, when the head
1564          * object is totally unloaded it means also that we do not have
1565          * further objects in the list, so the list ownership needs to be
1566          * hand over to another object if the current head needs to be freed.
1567          */
1568         if ((*lock_list)->ll_count == 0) {
1569                 if (*lock_list == lle) {
1570                         if (lle->ll_next == NULL)
1571                                 return;
1572                 } else
1573                         lle = *lock_list;
1574                 *lock_list = lle->ll_next;
1575                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1576                     td->td_proc->p_pid, lle);
1577                 witness_lock_list_free(lle);
1578         }
1579 }
1580
1581 void
1582 witness_thread_exit(struct thread *td)
1583 {
1584         struct lock_list_entry *lle;
1585         int i, n;
1586
1587         lle = td->td_sleeplocks;
1588         if (lle == NULL || panicstr != NULL)
1589                 return;
1590         if (lle->ll_count != 0) {
1591                 for (n = 0; lle != NULL; lle = lle->ll_next)
1592                         for (i = lle->ll_count - 1; i >= 0; i--) {
1593                                 if (n == 0)
1594                 printf("Thread %p exiting with the following locks held:\n",
1595                                             td);
1596                                 n++;
1597                                 witness_list_lock(&lle->ll_children[i]);
1598                                 
1599                         }
1600                 panic("Thread %p cannot exit while holding sleeplocks\n", td);
1601         }
1602         witness_lock_list_free(lle);
1603 }
1604
1605 /*
1606  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1607  * exempt Giant and sleepable locks from the checks as well.  If any
1608  * non-exempt locks are held, then a supplied message is printed to the
1609  * console along with a list of the offending locks.  If indicated in the
1610  * flags then a failure results in a panic as well.
1611  */
1612 int
1613 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1614 {
1615         struct lock_list_entry *lock_list, *lle;
1616         struct lock_instance *lock1;
1617         struct thread *td;
1618         va_list ap;
1619         int i, n;
1620
1621         if (witness_cold || witness_watch < 1 || panicstr != NULL)
1622                 return (0);
1623         n = 0;
1624         td = curthread;
1625         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1626                 for (i = lle->ll_count - 1; i >= 0; i--) {
1627                         lock1 = &lle->ll_children[i];
1628                         if (lock1->li_lock == lock)
1629                                 continue;
1630                         if (flags & WARN_GIANTOK &&
1631                             lock1->li_lock == &Giant.lock_object)
1632                                 continue;
1633                         if (flags & WARN_SLEEPOK &&
1634                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1635                                 continue;
1636                         if (n == 0) {
1637                                 va_start(ap, fmt);
1638                                 vprintf(fmt, ap);
1639                                 va_end(ap);
1640                                 printf(" with the following");
1641                                 if (flags & WARN_SLEEPOK)
1642                                         printf(" non-sleepable");
1643                                 printf(" locks held:\n");
1644                         }
1645                         n++;
1646                         witness_list_lock(lock1);
1647                 }
1648
1649         /*
1650          * Pin the thread in order to avoid problems with thread migration.
1651          * Once that all verifies are passed about spinlocks ownership,
1652          * the thread is in a safe path and it can be unpinned.
1653          */
1654         sched_pin();
1655         lock_list = PCPU_GET(spinlocks);
1656         if (lock_list != NULL && lock_list->ll_count != 0) {
1657                 sched_unpin();
1658
1659                 /*
1660                  * We should only have one spinlock and as long as
1661                  * the flags cannot match for this locks class,
1662                  * check if the first spinlock is the one curthread
1663                  * should hold.
1664                  */
1665                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1666                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1667                     lock1->li_lock == lock && n == 0)
1668                         return (0);
1669
1670                 va_start(ap, fmt);
1671                 vprintf(fmt, ap);
1672                 va_end(ap);
1673                 printf(" with the following");
1674                 if (flags & WARN_SLEEPOK)
1675                         printf(" non-sleepable");
1676                 printf(" locks held:\n");
1677                 n += witness_list_locks(&lock_list);
1678         } else
1679                 sched_unpin();
1680         if (flags & WARN_PANIC && n)
1681                 panic("%s", __func__);
1682         else
1683                 witness_debugger(n);
1684         return (n);
1685 }
1686
1687 const char *
1688 witness_file(struct lock_object *lock)
1689 {
1690         struct witness *w;
1691
1692         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1693                 return ("?");
1694         w = lock->lo_witness;
1695         return (w->w_file);
1696 }
1697
1698 int
1699 witness_line(struct lock_object *lock)
1700 {
1701         struct witness *w;
1702
1703         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1704                 return (0);
1705         w = lock->lo_witness;
1706         return (w->w_line);
1707 }
1708
1709 static struct witness *
1710 enroll(const char *description, struct lock_class *lock_class)
1711 {
1712         struct witness *w;
1713         struct witness_list *typelist;
1714
1715         MPASS(description != NULL);
1716
1717         if (witness_watch == -1 || panicstr != NULL)
1718                 return (NULL);
1719         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1720                 if (witness_skipspin)
1721                         return (NULL);
1722                 else
1723                         typelist = &w_spin;
1724         } else if ((lock_class->lc_flags & LC_SLEEPLOCK))
1725                 typelist = &w_sleep;
1726         else
1727                 panic("lock class %s is not sleep or spin",
1728                     lock_class->lc_name);
1729
1730         mtx_lock_spin(&w_mtx);
1731         w = witness_hash_get(description);
1732         if (w)
1733                 goto found;
1734         if ((w = witness_get()) == NULL)
1735                 return (NULL);
1736         MPASS(strlen(description) < MAX_W_NAME);
1737         strcpy(w->w_name, description);
1738         w->w_class = lock_class;
1739         w->w_refcount = 1;
1740         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1741         if (lock_class->lc_flags & LC_SPINLOCK) {
1742                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1743                 w_spin_cnt++;
1744         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1745                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1746                 w_sleep_cnt++;
1747         }
1748
1749         /* Insert new witness into the hash */
1750         witness_hash_put(w);
1751         witness_increment_graph_generation();
1752         mtx_unlock_spin(&w_mtx);
1753         return (w);
1754 found:
1755         w->w_refcount++;
1756         mtx_unlock_spin(&w_mtx);
1757         if (lock_class != w->w_class)
1758                 panic(
1759                         "lock (%s) %s does not match earlier (%s) lock",
1760                         description, lock_class->lc_name,
1761                         w->w_class->lc_name);
1762         return (w);
1763 }
1764
1765 static void
1766 depart(struct witness *w)
1767 {
1768         struct witness_list *list;
1769
1770         MPASS(w->w_refcount == 0);
1771         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1772                 list = &w_sleep;
1773                 w_sleep_cnt--;
1774         } else {
1775                 list = &w_spin;
1776                 w_spin_cnt--;
1777         }
1778         /*
1779          * Set file to NULL as it may point into a loadable module.
1780          */
1781         w->w_file = NULL;
1782         w->w_line = 0;
1783         witness_increment_graph_generation();
1784 }
1785
1786
1787 static void
1788 adopt(struct witness *parent, struct witness *child)
1789 {
1790         int pi, ci, i, j;
1791
1792         if (witness_cold == 0)
1793                 mtx_assert(&w_mtx, MA_OWNED);
1794
1795         /* If the relationship is already known, there's no work to be done. */
1796         if (isitmychild(parent, child))
1797                 return;
1798
1799         /* When the structure of the graph changes, bump up the generation. */
1800         witness_increment_graph_generation();
1801
1802         /*
1803          * The hard part ... create the direct relationship, then propagate all
1804          * indirect relationships.
1805          */
1806         pi = parent->w_index;
1807         ci = child->w_index;
1808         WITNESS_INDEX_ASSERT(pi);
1809         WITNESS_INDEX_ASSERT(ci);
1810         MPASS(pi != ci);
1811         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1812         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1813
1814         /*
1815          * If parent was not already an ancestor of child,
1816          * then we increment the descendant and ancestor counters.
1817          */
1818         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1819                 parent->w_num_descendants++;
1820                 child->w_num_ancestors++;
1821         }
1822
1823         /* 
1824          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
1825          * an ancestor of 'pi' during this loop.
1826          */
1827         for (i = 1; i <= w_max_used_index; i++) {
1828                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
1829                     (i != pi))
1830                         continue;
1831
1832                 /* Find each descendant of 'i' and mark it as a descendant. */
1833                 for (j = 1; j <= w_max_used_index; j++) {
1834
1835                         /* 
1836                          * Skip children that are already marked as
1837                          * descendants of 'i'.
1838                          */
1839                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1840                                 continue;
1841
1842                         /*
1843                          * We are only interested in descendants of 'ci'. Note
1844                          * that 'ci' itself is counted as a descendant of 'ci'.
1845                          */
1846                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
1847                             (j != ci))
1848                                 continue;
1849                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1850                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1851                         w_data[i].w_num_descendants++;
1852                         w_data[j].w_num_ancestors++;
1853
1854                         /* 
1855                          * Make sure we aren't marking a node as both an
1856                          * ancestor and descendant. We should have caught 
1857                          * this as a lock order reversal earlier.
1858                          */
1859                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1860                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1861                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1862                                     "both ancestor and descendant\n",
1863                                     i, j, w_rmatrix[i][j]); 
1864                                 kdb_backtrace();
1865                                 printf("Witness disabled.\n");
1866                                 witness_watch = -1;
1867                         }
1868                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1869                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1870                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1871                                     "both ancestor and descendant\n",
1872                                     j, i, w_rmatrix[j][i]); 
1873                                 kdb_backtrace();
1874                                 printf("Witness disabled.\n");
1875                                 witness_watch = -1;
1876                         }
1877                 }
1878         }
1879 }
1880
1881 static void
1882 itismychild(struct witness *parent, struct witness *child)
1883 {
1884
1885         MPASS(child != NULL && parent != NULL);
1886         if (witness_cold == 0)
1887                 mtx_assert(&w_mtx, MA_OWNED);
1888
1889         if (!witness_lock_type_equal(parent, child)) {
1890                 if (witness_cold == 0)
1891                         mtx_unlock_spin(&w_mtx);
1892                 panic("%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1893                     "the same lock type", __func__, parent->w_name,
1894                     parent->w_class->lc_name, child->w_name,
1895                     child->w_class->lc_name);
1896         }
1897         adopt(parent, child);
1898 }
1899
1900 /*
1901  * Generic code for the isitmy*() functions. The rmask parameter is the
1902  * expected relationship of w1 to w2.
1903  */
1904 static int
1905 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1906 {
1907         unsigned char r1, r2;
1908         int i1, i2;
1909
1910         i1 = w1->w_index;
1911         i2 = w2->w_index;
1912         WITNESS_INDEX_ASSERT(i1);
1913         WITNESS_INDEX_ASSERT(i2);
1914         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1915         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1916
1917         /* The flags on one better be the inverse of the flags on the other */
1918         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1919                 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
1920                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
1921                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
1922                     "w_rmatrix[%d][%d] == %hhx\n",
1923                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
1924                     i2, i1, r2);
1925                 kdb_backtrace();
1926                 printf("Witness disabled.\n");
1927                 witness_watch = -1;
1928         }
1929         return (r1 & rmask);
1930 }
1931
1932 /*
1933  * Checks if @child is a direct child of @parent.
1934  */
1935 static int
1936 isitmychild(struct witness *parent, struct witness *child)
1937 {
1938
1939         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
1940 }
1941
1942 /*
1943  * Checks if @descendant is a direct or inderect descendant of @ancestor.
1944  */
1945 static int
1946 isitmydescendant(struct witness *ancestor, struct witness *descendant)
1947 {
1948
1949         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
1950             __func__));
1951 }
1952
1953 #ifdef BLESSING
1954 static int
1955 blessed(struct witness *w1, struct witness *w2)
1956 {
1957         int i;
1958         struct witness_blessed *b;
1959
1960         for (i = 0; i < blessed_count; i++) {
1961                 b = &blessed_list[i];
1962                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
1963                         if (strcmp(w2->w_name, b->b_lock2) == 0)
1964                                 return (1);
1965                         continue;
1966                 }
1967                 if (strcmp(w1->w_name, b->b_lock2) == 0)
1968                         if (strcmp(w2->w_name, b->b_lock1) == 0)
1969                                 return (1);
1970         }
1971         return (0);
1972 }
1973 #endif
1974
1975 static struct witness *
1976 witness_get(void)
1977 {
1978         struct witness *w;
1979         int index;
1980
1981         if (witness_cold == 0)
1982                 mtx_assert(&w_mtx, MA_OWNED);
1983
1984         if (witness_watch == -1) {
1985                 mtx_unlock_spin(&w_mtx);
1986                 return (NULL);
1987         }
1988         if (STAILQ_EMPTY(&w_free)) {
1989                 witness_watch = -1;
1990                 mtx_unlock_spin(&w_mtx);
1991                 printf("WITNESS: unable to allocate a new witness object\n");
1992                 return (NULL);
1993         }
1994         w = STAILQ_FIRST(&w_free);
1995         STAILQ_REMOVE_HEAD(&w_free, w_list);
1996         w_free_cnt--;
1997         index = w->w_index;
1998         MPASS(index > 0 && index == w_max_used_index+1 &&
1999             index < WITNESS_COUNT);
2000         bzero(w, sizeof(*w));
2001         w->w_index = index;
2002         if (index > w_max_used_index)
2003                 w_max_used_index = index;
2004         return (w);
2005 }
2006
2007 static void
2008 witness_free(struct witness *w)
2009 {
2010
2011         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2012         w_free_cnt++;
2013 }
2014
2015 static struct lock_list_entry *
2016 witness_lock_list_get(void)
2017 {
2018         struct lock_list_entry *lle;
2019
2020         if (witness_watch == -1)
2021                 return (NULL);
2022         mtx_lock_spin(&w_mtx);
2023         lle = w_lock_list_free;
2024         if (lle == NULL) {
2025                 witness_watch = -1;
2026                 mtx_unlock_spin(&w_mtx);
2027                 printf("%s: witness exhausted\n", __func__);
2028                 return (NULL);
2029         }
2030         w_lock_list_free = lle->ll_next;
2031         mtx_unlock_spin(&w_mtx);
2032         bzero(lle, sizeof(*lle));
2033         return (lle);
2034 }
2035                 
2036 static void
2037 witness_lock_list_free(struct lock_list_entry *lle)
2038 {
2039
2040         mtx_lock_spin(&w_mtx);
2041         lle->ll_next = w_lock_list_free;
2042         w_lock_list_free = lle;
2043         mtx_unlock_spin(&w_mtx);
2044 }
2045
2046 static struct lock_instance *
2047 find_instance(struct lock_list_entry *list, struct lock_object *lock)
2048 {
2049         struct lock_list_entry *lle;
2050         struct lock_instance *instance;
2051         int i;
2052
2053         for (lle = list; lle != NULL; lle = lle->ll_next)
2054                 for (i = lle->ll_count - 1; i >= 0; i--) {
2055                         instance = &lle->ll_children[i];
2056                         if (instance->li_lock == lock)
2057                                 return (instance);
2058                 }
2059         return (NULL);
2060 }
2061
2062 static void
2063 witness_list_lock(struct lock_instance *instance)
2064 {
2065         struct lock_object *lock;
2066
2067         lock = instance->li_lock;
2068         printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2069             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2070         if (lock->lo_witness->w_name != lock->lo_name)
2071                 printf(" (%s)", lock->lo_witness->w_name);
2072         printf(" r = %d (%p) locked @ %s:%d\n",
2073             instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
2074             instance->li_line);
2075 }
2076
2077 #ifdef DDB
2078 static int
2079 witness_thread_has_locks(struct thread *td)
2080 {
2081
2082         if (td->td_sleeplocks == NULL)
2083                 return (0);
2084         return (td->td_sleeplocks->ll_count != 0);
2085 }
2086
2087 static int
2088 witness_proc_has_locks(struct proc *p)
2089 {
2090         struct thread *td;
2091
2092         FOREACH_THREAD_IN_PROC(p, td) {
2093                 if (witness_thread_has_locks(td))
2094                         return (1);
2095         }
2096         return (0);
2097 }
2098 #endif
2099
2100 int
2101 witness_list_locks(struct lock_list_entry **lock_list)
2102 {
2103         struct lock_list_entry *lle;
2104         int i, nheld;
2105
2106         nheld = 0;
2107         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2108                 for (i = lle->ll_count - 1; i >= 0; i--) {
2109                         witness_list_lock(&lle->ll_children[i]);
2110                         nheld++;
2111                 }
2112         return (nheld);
2113 }
2114
2115 /*
2116  * This is a bit risky at best.  We call this function when we have timed
2117  * out acquiring a spin lock, and we assume that the other CPU is stuck
2118  * with this lock held.  So, we go groveling around in the other CPU's
2119  * per-cpu data to try to find the lock instance for this spin lock to
2120  * see when it was last acquired.
2121  */
2122 void
2123 witness_display_spinlock(struct lock_object *lock, struct thread *owner)
2124 {
2125         struct lock_instance *instance;
2126         struct pcpu *pc;
2127
2128         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2129                 return;
2130         pc = pcpu_find(owner->td_oncpu);
2131         instance = find_instance(pc->pc_spinlocks, lock);
2132         if (instance != NULL)
2133                 witness_list_lock(instance);
2134 }
2135
2136 void
2137 witness_save(struct lock_object *lock, const char **filep, int *linep)
2138 {
2139         struct lock_list_entry *lock_list;
2140         struct lock_instance *instance;
2141         struct lock_class *class;
2142
2143         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2144         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2145                 return;
2146         class = LOCK_CLASS(lock);
2147         if (class->lc_flags & LC_SLEEPLOCK)
2148                 lock_list = curthread->td_sleeplocks;
2149         else {
2150                 if (witness_skipspin)
2151                         return;
2152                 lock_list = PCPU_GET(spinlocks);
2153         }
2154         instance = find_instance(lock_list, lock);
2155         if (instance == NULL)
2156                 panic("%s: lock (%s) %s not locked", __func__,
2157                     class->lc_name, lock->lo_name);
2158         *filep = instance->li_file;
2159         *linep = instance->li_line;
2160 }
2161
2162 void
2163 witness_restore(struct lock_object *lock, const char *file, int line)
2164 {
2165         struct lock_list_entry *lock_list;
2166         struct lock_instance *instance;
2167         struct lock_class *class;
2168
2169         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2170         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2171                 return;
2172         class = LOCK_CLASS(lock);
2173         if (class->lc_flags & LC_SLEEPLOCK)
2174                 lock_list = curthread->td_sleeplocks;
2175         else {
2176                 if (witness_skipspin)
2177                         return;
2178                 lock_list = PCPU_GET(spinlocks);
2179         }
2180         instance = find_instance(lock_list, lock);
2181         if (instance == NULL)
2182                 panic("%s: lock (%s) %s not locked", __func__,
2183                     class->lc_name, lock->lo_name);
2184         lock->lo_witness->w_file = file;
2185         lock->lo_witness->w_line = line;
2186         instance->li_file = file;
2187         instance->li_line = line;
2188 }
2189
2190 void
2191 witness_assert(struct lock_object *lock, int flags, const char *file, int line)
2192 {
2193 #ifdef INVARIANT_SUPPORT
2194         struct lock_instance *instance;
2195         struct lock_class *class;
2196
2197         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2198                 return;
2199         class = LOCK_CLASS(lock);
2200         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2201                 instance = find_instance(curthread->td_sleeplocks, lock);
2202         else if ((class->lc_flags & LC_SPINLOCK) != 0)
2203                 instance = find_instance(PCPU_GET(spinlocks), lock);
2204         else {
2205                 panic("Lock (%s) %s is not sleep or spin!",
2206                     class->lc_name, lock->lo_name);
2207         }
2208         file = fixup_filename(file);
2209         switch (flags) {
2210         case LA_UNLOCKED:
2211                 if (instance != NULL)
2212                         panic("Lock (%s) %s locked @ %s:%d.",
2213                             class->lc_name, lock->lo_name, file, line);
2214                 break;
2215         case LA_LOCKED:
2216         case LA_LOCKED | LA_RECURSED:
2217         case LA_LOCKED | LA_NOTRECURSED:
2218         case LA_SLOCKED:
2219         case LA_SLOCKED | LA_RECURSED:
2220         case LA_SLOCKED | LA_NOTRECURSED:
2221         case LA_XLOCKED:
2222         case LA_XLOCKED | LA_RECURSED:
2223         case LA_XLOCKED | LA_NOTRECURSED:
2224                 if (instance == NULL) {
2225                         panic("Lock (%s) %s not locked @ %s:%d.",
2226                             class->lc_name, lock->lo_name, file, line);
2227                         break;
2228                 }
2229                 if ((flags & LA_XLOCKED) != 0 &&
2230                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2231                         panic("Lock (%s) %s not exclusively locked @ %s:%d.",
2232                             class->lc_name, lock->lo_name, file, line);
2233                 if ((flags & LA_SLOCKED) != 0 &&
2234                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2235                         panic("Lock (%s) %s exclusively locked @ %s:%d.",
2236                             class->lc_name, lock->lo_name, file, line);
2237                 if ((flags & LA_RECURSED) != 0 &&
2238                     (instance->li_flags & LI_RECURSEMASK) == 0)
2239                         panic("Lock (%s) %s not recursed @ %s:%d.",
2240                             class->lc_name, lock->lo_name, file, line);
2241                 if ((flags & LA_NOTRECURSED) != 0 &&
2242                     (instance->li_flags & LI_RECURSEMASK) != 0)
2243                         panic("Lock (%s) %s recursed @ %s:%d.",
2244                             class->lc_name, lock->lo_name, file, line);
2245                 break;
2246         default:
2247                 panic("Invalid lock assertion at %s:%d.", file, line);
2248
2249         }
2250 #endif  /* INVARIANT_SUPPORT */
2251 }
2252
2253 static void
2254 witness_setflag(struct lock_object *lock, int flag, int set)
2255 {
2256         struct lock_list_entry *lock_list;
2257         struct lock_instance *instance;
2258         struct lock_class *class;
2259
2260         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2261                 return;
2262         class = LOCK_CLASS(lock);
2263         if (class->lc_flags & LC_SLEEPLOCK)
2264                 lock_list = curthread->td_sleeplocks;
2265         else {
2266                 if (witness_skipspin)
2267                         return;
2268                 lock_list = PCPU_GET(spinlocks);
2269         }
2270         instance = find_instance(lock_list, lock);
2271         if (instance == NULL)
2272                 panic("%s: lock (%s) %s not locked", __func__,
2273                     class->lc_name, lock->lo_name);
2274
2275         if (set)
2276                 instance->li_flags |= flag;
2277         else
2278                 instance->li_flags &= ~flag;
2279 }
2280
2281 void
2282 witness_norelease(struct lock_object *lock)
2283 {
2284
2285         witness_setflag(lock, LI_NORELEASE, 1);
2286 }
2287
2288 void
2289 witness_releaseok(struct lock_object *lock)
2290 {
2291
2292         witness_setflag(lock, LI_NORELEASE, 0);
2293 }
2294
2295 #ifdef DDB
2296 static void
2297 witness_ddb_list(struct thread *td)
2298 {
2299
2300         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2301         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2302
2303         if (witness_watch < 1)
2304                 return;
2305
2306         witness_list_locks(&td->td_sleeplocks);
2307
2308         /*
2309          * We only handle spinlocks if td == curthread.  This is somewhat broken
2310          * if td is currently executing on some other CPU and holds spin locks
2311          * as we won't display those locks.  If we had a MI way of getting
2312          * the per-cpu data for a given cpu then we could use
2313          * td->td_oncpu to get the list of spinlocks for this thread
2314          * and "fix" this.
2315          *
2316          * That still wouldn't really fix this unless we locked the scheduler
2317          * lock or stopped the other CPU to make sure it wasn't changing the
2318          * list out from under us.  It is probably best to just not try to
2319          * handle threads on other CPU's for now.
2320          */
2321         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2322                 witness_list_locks(PCPU_PTR(spinlocks));
2323 }
2324
2325 DB_SHOW_COMMAND(locks, db_witness_list)
2326 {
2327         struct thread *td;
2328
2329         if (have_addr)
2330                 td = db_lookup_thread(addr, TRUE);
2331         else
2332                 td = kdb_thread;
2333         witness_ddb_list(td);
2334 }
2335
2336 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2337 {
2338         struct thread *td;
2339         struct proc *p;
2340
2341         /*
2342          * It would be nice to list only threads and processes that actually
2343          * held sleep locks, but that information is currently not exported
2344          * by WITNESS.
2345          */
2346         FOREACH_PROC_IN_SYSTEM(p) {
2347                 if (!witness_proc_has_locks(p))
2348                         continue;
2349                 FOREACH_THREAD_IN_PROC(p, td) {
2350                         if (!witness_thread_has_locks(td))
2351                                 continue;
2352                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2353                             p->p_comm, td, td->td_tid);
2354                         witness_ddb_list(td);
2355                 }
2356         }
2357 }
2358 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2359
2360 DB_SHOW_COMMAND(witness, db_witness_display)
2361 {
2362
2363         witness_ddb_display(db_printf);
2364 }
2365 #endif
2366
2367 static int
2368 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2369 {
2370         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2371         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2372         struct sbuf *sb;
2373         u_int w_rmatrix1, w_rmatrix2;
2374         int error, generation, i, j;
2375
2376         tmp_data1 = NULL;
2377         tmp_data2 = NULL;
2378         tmp_w1 = NULL;
2379         tmp_w2 = NULL;
2380         if (witness_watch < 1) {
2381                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2382                 return (error);
2383         }
2384         if (witness_cold) {
2385                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2386                 return (error);
2387         }
2388         error = 0;
2389         sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2390         if (sb == NULL)
2391                 return (ENOMEM);
2392
2393         /* Allocate and init temporary storage space. */
2394         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2395         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2396         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2397             M_WAITOK | M_ZERO);
2398         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2399             M_WAITOK | M_ZERO);
2400         stack_zero(&tmp_data1->wlod_stack);
2401         stack_zero(&tmp_data2->wlod_stack);
2402
2403 restart:
2404         mtx_lock_spin(&w_mtx);
2405         generation = w_generation;
2406         mtx_unlock_spin(&w_mtx);
2407         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2408             w_lohash.wloh_count);
2409         for (i = 1; i < w_max_used_index; i++) {
2410                 mtx_lock_spin(&w_mtx);
2411                 if (generation != w_generation) {
2412                         mtx_unlock_spin(&w_mtx);
2413
2414                         /* The graph has changed, try again. */
2415                         req->oldidx = 0;
2416                         sbuf_clear(sb);
2417                         goto restart;
2418                 }
2419
2420                 w1 = &w_data[i];
2421                 if (w1->w_reversed == 0) {
2422                         mtx_unlock_spin(&w_mtx);
2423                         continue;
2424                 }
2425
2426                 /* Copy w1 locally so we can release the spin lock. */
2427                 *tmp_w1 = *w1;
2428                 mtx_unlock_spin(&w_mtx);
2429
2430                 if (tmp_w1->w_reversed == 0)
2431                         continue;
2432                 for (j = 1; j < w_max_used_index; j++) {
2433                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2434                                 continue;
2435
2436                         mtx_lock_spin(&w_mtx);
2437                         if (generation != w_generation) {
2438                                 mtx_unlock_spin(&w_mtx);
2439
2440                                 /* The graph has changed, try again. */
2441                                 req->oldidx = 0;
2442                                 sbuf_clear(sb);
2443                                 goto restart;
2444                         }
2445
2446                         w2 = &w_data[j];
2447                         data1 = witness_lock_order_get(w1, w2);
2448                         data2 = witness_lock_order_get(w2, w1);
2449
2450                         /*
2451                          * Copy information locally so we can release the
2452                          * spin lock.
2453                          */
2454                         *tmp_w2 = *w2;
2455                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2456                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2457
2458                         if (data1) {
2459                                 stack_zero(&tmp_data1->wlod_stack);
2460                                 stack_copy(&data1->wlod_stack,
2461                                     &tmp_data1->wlod_stack);
2462                         }
2463                         if (data2 && data2 != data1) {
2464                                 stack_zero(&tmp_data2->wlod_stack);
2465                                 stack_copy(&data2->wlod_stack,
2466                                     &tmp_data2->wlod_stack);
2467                         }
2468                         mtx_unlock_spin(&w_mtx);
2469
2470                         sbuf_printf(sb,
2471             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2472                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2473                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2474 #if 0
2475                         sbuf_printf(sb,
2476                         "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2477                             tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2478                             tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2479 #endif
2480                         if (data1) {
2481                                 sbuf_printf(sb,
2482                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2483                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2484                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2485                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2486                                 sbuf_printf(sb, "\n");
2487                         }
2488                         if (data2 && data2 != data1) {
2489                                 sbuf_printf(sb,
2490                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2491                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2492                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2493                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2494                                 sbuf_printf(sb, "\n");
2495                         }
2496                 }
2497         }
2498         mtx_lock_spin(&w_mtx);
2499         if (generation != w_generation) {
2500                 mtx_unlock_spin(&w_mtx);
2501
2502                 /*
2503                  * The graph changed while we were printing stack data,
2504                  * try again.
2505                  */
2506                 req->oldidx = 0;
2507                 sbuf_clear(sb);
2508                 goto restart;
2509         }
2510         mtx_unlock_spin(&w_mtx);
2511
2512         /* Free temporary storage space. */
2513         free(tmp_data1, M_TEMP);
2514         free(tmp_data2, M_TEMP);
2515         free(tmp_w1, M_TEMP);
2516         free(tmp_w2, M_TEMP);
2517
2518         sbuf_finish(sb);
2519         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2520         sbuf_delete(sb);
2521
2522         return (error);
2523 }
2524
2525 static int
2526 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2527 {
2528         struct witness *w;
2529         struct sbuf *sb;
2530         int error;
2531
2532         if (witness_watch < 1) {
2533                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2534                 return (error);
2535         }
2536         if (witness_cold) {
2537                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2538                 return (error);
2539         }
2540         error = 0;
2541         sb = sbuf_new(NULL, NULL, FULLGRAPH_SBUF_SIZE, SBUF_FIXEDLEN);
2542         if (sb == NULL)
2543                 return (ENOMEM);
2544         sbuf_printf(sb, "\n");
2545
2546         mtx_lock_spin(&w_mtx);
2547         STAILQ_FOREACH(w, &w_all, w_list)
2548                 w->w_displayed = 0;
2549         STAILQ_FOREACH(w, &w_all, w_list)
2550                 witness_add_fullgraph(sb, w);
2551         mtx_unlock_spin(&w_mtx);
2552
2553         /*
2554          * While using SBUF_FIXEDLEN, check if the sbuf overflowed.
2555          */
2556         if (sbuf_overflowed(sb)) {
2557                 sbuf_delete(sb);
2558                 panic("%s: sbuf overflowed, bump FULLGRAPH_SBUF_SIZE value\n",
2559                     __func__);
2560         }
2561
2562         /*
2563          * Close the sbuf and return to userland.
2564          */
2565         sbuf_finish(sb);
2566         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2567         sbuf_delete(sb);
2568
2569         return (error);
2570 }
2571
2572 static int
2573 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2574 {
2575         int error, value;
2576
2577         value = witness_watch;
2578         error = sysctl_handle_int(oidp, &value, 0, req);
2579         if (error != 0 || req->newptr == NULL)
2580                 return (error);
2581         if (value > 1 || value < -1 ||
2582             (witness_watch == -1 && value != witness_watch))
2583                 return (EINVAL);
2584         witness_watch = value;
2585         return (0);
2586 }
2587
2588 static void
2589 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2590 {
2591         int i;
2592
2593         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2594                 return;
2595         w->w_displayed = 1;
2596
2597         WITNESS_INDEX_ASSERT(w->w_index);
2598         for (i = 1; i <= w_max_used_index; i++) {
2599                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2600                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2601                             w_data[i].w_name);
2602                         witness_add_fullgraph(sb, &w_data[i]);
2603                 }
2604         }
2605 }
2606
2607 /*
2608  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2609  * interprets the key as a string and reads until the null
2610  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2611  * hash value computed from the key.
2612  */
2613 static uint32_t
2614 witness_hash_djb2(const uint8_t *key, uint32_t size)
2615 {
2616         unsigned int hash = 5381;
2617         int i;
2618
2619         /* hash = hash * 33 + key[i] */
2620         if (size)
2621                 for (i = 0; i < size; i++)
2622                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2623         else
2624                 for (i = 0; key[i] != 0; i++)
2625                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2626
2627         return (hash);
2628 }
2629
2630
2631 /*
2632  * Initializes the two witness hash tables. Called exactly once from
2633  * witness_initialize().
2634  */
2635 static void
2636 witness_init_hash_tables(void)
2637 {
2638         int i;
2639
2640         MPASS(witness_cold);
2641
2642         /* Initialize the hash tables. */
2643         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2644                 w_hash.wh_array[i] = NULL;
2645
2646         w_hash.wh_size = WITNESS_HASH_SIZE;
2647         w_hash.wh_count = 0;
2648
2649         /* Initialize the lock order data hash. */
2650         w_lofree = NULL;
2651         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2652                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2653                 w_lodata[i].wlod_next = w_lofree;
2654                 w_lofree = &w_lodata[i];
2655         }
2656         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2657         w_lohash.wloh_count = 0;
2658         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2659                 w_lohash.wloh_array[i] = NULL;
2660 }
2661
2662 static struct witness *
2663 witness_hash_get(const char *key)
2664 {
2665         struct witness *w;
2666         uint32_t hash;
2667         
2668         MPASS(key != NULL);
2669         if (witness_cold == 0)
2670                 mtx_assert(&w_mtx, MA_OWNED);
2671         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2672         w = w_hash.wh_array[hash];
2673         while (w != NULL) {
2674                 if (strcmp(w->w_name, key) == 0)
2675                         goto out;
2676                 w = w->w_hash_next;
2677         }
2678
2679 out:
2680         return (w);
2681 }
2682
2683 static void
2684 witness_hash_put(struct witness *w)
2685 {
2686         uint32_t hash;
2687
2688         MPASS(w != NULL);
2689         MPASS(w->w_name != NULL);
2690         if (witness_cold == 0)
2691                 mtx_assert(&w_mtx, MA_OWNED);
2692         KASSERT(witness_hash_get(w->w_name) == NULL,
2693             ("%s: trying to add a hash entry that already exists!", __func__));
2694         KASSERT(w->w_hash_next == NULL,
2695             ("%s: w->w_hash_next != NULL", __func__));
2696
2697         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2698         w->w_hash_next = w_hash.wh_array[hash];
2699         w_hash.wh_array[hash] = w;
2700         w_hash.wh_count++;
2701 }
2702
2703
2704 static struct witness_lock_order_data *
2705 witness_lock_order_get(struct witness *parent, struct witness *child)
2706 {
2707         struct witness_lock_order_data *data = NULL;
2708         struct witness_lock_order_key key;
2709         unsigned int hash;
2710
2711         MPASS(parent != NULL && child != NULL);
2712         key.from = parent->w_index;
2713         key.to = child->w_index;
2714         WITNESS_INDEX_ASSERT(key.from);
2715         WITNESS_INDEX_ASSERT(key.to);
2716         if ((w_rmatrix[parent->w_index][child->w_index]
2717             & WITNESS_LOCK_ORDER_KNOWN) == 0)
2718                 goto out;
2719
2720         hash = witness_hash_djb2((const char*)&key,
2721             sizeof(key)) % w_lohash.wloh_size;
2722         data = w_lohash.wloh_array[hash];
2723         while (data != NULL) {
2724                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
2725                         break;
2726                 data = data->wlod_next;
2727         }
2728
2729 out:
2730         return (data);
2731 }
2732
2733 /*
2734  * Verify that parent and child have a known relationship, are not the same,
2735  * and child is actually a child of parent.  This is done without w_mtx
2736  * to avoid contention in the common case.
2737  */
2738 static int
2739 witness_lock_order_check(struct witness *parent, struct witness *child)
2740 {
2741
2742         if (parent != child &&
2743             w_rmatrix[parent->w_index][child->w_index]
2744             & WITNESS_LOCK_ORDER_KNOWN &&
2745             isitmychild(parent, child))
2746                 return (1);
2747
2748         return (0);
2749 }
2750
2751 static int
2752 witness_lock_order_add(struct witness *parent, struct witness *child)
2753 {
2754         struct witness_lock_order_data *data = NULL;
2755         struct witness_lock_order_key key;
2756         unsigned int hash;
2757         
2758         MPASS(parent != NULL && child != NULL);
2759         key.from = parent->w_index;
2760         key.to = child->w_index;
2761         WITNESS_INDEX_ASSERT(key.from);
2762         WITNESS_INDEX_ASSERT(key.to);
2763         if (w_rmatrix[parent->w_index][child->w_index]
2764             & WITNESS_LOCK_ORDER_KNOWN)
2765                 return (1);
2766
2767         hash = witness_hash_djb2((const char*)&key,
2768             sizeof(key)) % w_lohash.wloh_size;
2769         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2770         data = w_lofree;
2771         if (data == NULL)
2772                 return (0);
2773         w_lofree = data->wlod_next;
2774         data->wlod_next = w_lohash.wloh_array[hash];
2775         data->wlod_key = key;
2776         w_lohash.wloh_array[hash] = data;
2777         w_lohash.wloh_count++;
2778         stack_zero(&data->wlod_stack);
2779         stack_save(&data->wlod_stack);
2780         return (1);
2781 }
2782
2783 /* Call this whenver the structure of the witness graph changes. */
2784 static void
2785 witness_increment_graph_generation(void)
2786 {
2787
2788         if (witness_cold == 0)
2789                 mtx_assert(&w_mtx, MA_OWNED);
2790         w_generation++;
2791 }
2792
2793 #ifdef KDB
2794 static void
2795 _witness_debugger(int cond, const char *msg)
2796 {
2797
2798         if (witness_trace && cond)
2799                 kdb_backtrace();
2800         if (witness_kdb && cond)
2801                 kdb_enter(KDB_WHY_WITNESS, msg);
2802 }
2803 #endif