]> CyberLeo.Net >> Repos - FreeBSD/releng/8.0.git/blob - sys/netinet/ipfw/ip_fw2.c
Adjust to reflect 8.0-RELEASE.
[FreeBSD/releng/8.0.git] / sys / netinet / ipfw / ip_fw2.c
1 /*-
2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28
29 #define        DEB(x)
30 #define        DDB(x) x
31
32 /*
33  * Implement IP packet firewall (new version)
34  */
35
36 #if !defined(KLD_MODULE)
37 #include "opt_ipfw.h"
38 #include "opt_ipdivert.h"
39 #include "opt_ipdn.h"
40 #include "opt_inet.h"
41 #ifndef INET
42 #error IPFIREWALL requires INET.
43 #endif /* INET */
44 #endif
45 #include "opt_inet6.h"
46 #include "opt_ipsec.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/condvar.h>
51 #include <sys/eventhandler.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/kernel.h>
55 #include <sys/lock.h>
56 #include <sys/jail.h>
57 #include <sys/module.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/rwlock.h>
61 #include <sys/socket.h>
62 #include <sys/socketvar.h>
63 #include <sys/sysctl.h>
64 #include <sys/syslog.h>
65 #include <sys/ucred.h>
66 #include <net/ethernet.h> /* for ETHERTYPE_IP */
67 #include <net/if.h>
68 #include <net/radix.h>
69 #include <net/route.h>
70 #include <net/pf_mtag.h>
71 #include <net/vnet.h>
72
73 #define IPFW_INTERNAL   /* Access to protected data structures in ip_fw.h. */
74
75 #include <netinet/in.h>
76 #include <netinet/in_var.h>
77 #include <netinet/in_pcb.h>
78 #include <netinet/ip.h>
79 #include <netinet/ip_var.h>
80 #include <netinet/ip_icmp.h>
81 #include <netinet/ip_fw.h>
82 #include <netinet/ip_divert.h>
83 #include <netinet/ip_dummynet.h>
84 #include <netinet/ip_carp.h>
85 #include <netinet/pim.h>
86 #include <netinet/tcp_var.h>
87 #include <netinet/udp.h>
88 #include <netinet/udp_var.h>
89 #include <netinet/sctp.h>
90
91 #include <netgraph/ng_ipfw.h>
92
93 #include <netinet/ip6.h>
94 #include <netinet/icmp6.h>
95 #ifdef INET6
96 #include <netinet6/scope6_var.h>
97 #endif
98
99 #include <machine/in_cksum.h>   /* XXX for in_cksum */
100
101 #ifdef MAC
102 #include <security/mac/mac_framework.h>
103 #endif
104
105 static VNET_DEFINE(int, ipfw_vnet_ready) = 0;
106 #define V_ipfw_vnet_ready       VNET(ipfw_vnet_ready)
107 /*
108  * set_disable contains one bit per set value (0..31).
109  * If the bit is set, all rules with the corresponding set
110  * are disabled. Set RESVD_SET(31) is reserved for the default rule
111  * and rules that are not deleted by the flush command,
112  * and CANNOT be disabled.
113  * Rules in set RESVD_SET can only be deleted explicitly.
114  */
115 static VNET_DEFINE(u_int32_t, set_disable);
116 static VNET_DEFINE(int, fw_verbose);
117 static VNET_DEFINE(struct callout, ipfw_timeout);
118 static VNET_DEFINE(int, verbose_limit);
119
120 #define V_set_disable                   VNET(set_disable)
121 #define V_fw_verbose                    VNET(fw_verbose)
122 #define V_ipfw_timeout                  VNET(ipfw_timeout)
123 #define V_verbose_limit                 VNET(verbose_limit)
124
125 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
126 static int default_to_accept = 1;
127 #else
128 static int default_to_accept;
129 #endif
130 static uma_zone_t ipfw_dyn_rule_zone;
131
132 struct ip_fw *ip_fw_default_rule;
133
134 /*
135  * list of rules for layer 3
136  */
137 VNET_DEFINE(struct ip_fw_chain, layer3_chain);
138
139 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
140 MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
141 #define IPFW_NAT_LOADED (ipfw_nat_ptr != NULL)
142 ipfw_nat_t *ipfw_nat_ptr = NULL;
143 ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
144 ipfw_nat_cfg_t *ipfw_nat_del_ptr;
145 ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
146 ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
147
148 struct table_entry {
149         struct radix_node       rn[2];
150         struct sockaddr_in      addr, mask;
151         u_int32_t               value;
152 };
153
154 static VNET_DEFINE(int, autoinc_step);
155 #define V_autoinc_step                  VNET(autoinc_step)
156 static VNET_DEFINE(int, fw_deny_unknown_exthdrs);
157 #define V_fw_deny_unknown_exthdrs       VNET(fw_deny_unknown_exthdrs)
158
159 extern int ipfw_chg_hook(SYSCTL_HANDLER_ARGS);
160
161 #ifdef SYSCTL_NODE
162 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
163 SYSCTL_VNET_PROC(_net_inet_ip_fw, OID_AUTO, enable,
164     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_enable), 0,
165     ipfw_chg_hook, "I", "Enable ipfw");
166 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
167     CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
168     "Rule number auto-increment step");
169 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
170     CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
171     "Only do a single pass through ipfw when using dummynet(4)");
172 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose,
173     CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
174     "Log matches to ipfw rules");
175 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
176     CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
177     "Set upper limit of matches of ipfw rules logged");
178 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
179     NULL, IPFW_DEFAULT_RULE,
180     "The default/max possible rule number.");
181 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, tables_max, CTLFLAG_RD,
182     NULL, IPFW_TABLES_MAX,
183     "The maximum number of tables.");
184 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
185     &default_to_accept, 0,
186     "Make the default rule accept all packets.");
187 TUNABLE_INT("net.inet.ip.fw.default_to_accept", &default_to_accept);
188 #ifdef INET6
189 SYSCTL_DECL(_net_inet6_ip6);
190 SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
191 SYSCTL_VNET_PROC(_net_inet6_ip6_fw, OID_AUTO, enable,
192     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw6_enable), 0,
193     ipfw_chg_hook, "I", "Enable ipfw+6");
194 SYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
195     CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_deny_unknown_exthdrs), 0,
196     "Deny packets with unknown IPv6 Extension Headers");
197 #endif
198 #endif
199
200 /*
201  * Description of dynamic rules.
202  *
203  * Dynamic rules are stored in lists accessed through a hash table
204  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
205  * be modified through the sysctl variable dyn_buckets which is
206  * updated when the table becomes empty.
207  *
208  * XXX currently there is only one list, ipfw_dyn.
209  *
210  * When a packet is received, its address fields are first masked
211  * with the mask defined for the rule, then hashed, then matched
212  * against the entries in the corresponding list.
213  * Dynamic rules can be used for different purposes:
214  *  + stateful rules;
215  *  + enforcing limits on the number of sessions;
216  *  + in-kernel NAT (not implemented yet)
217  *
218  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
219  * measured in seconds and depending on the flags.
220  *
221  * The total number of dynamic rules is stored in dyn_count.
222  * The max number of dynamic rules is dyn_max. When we reach
223  * the maximum number of rules we do not create anymore. This is
224  * done to avoid consuming too much memory, but also too much
225  * time when searching on each packet (ideally, we should try instead
226  * to put a limit on the length of the list on each bucket...).
227  *
228  * Each dynamic rule holds a pointer to the parent ipfw rule so
229  * we know what action to perform. Dynamic rules are removed when
230  * the parent rule is deleted. XXX we should make them survive.
231  *
232  * There are some limitations with dynamic rules -- we do not
233  * obey the 'randomized match', and we do not do multiple
234  * passes through the firewall. XXX check the latter!!!
235  */
236 static VNET_DEFINE(ipfw_dyn_rule **, ipfw_dyn_v);
237 static VNET_DEFINE(u_int32_t, dyn_buckets);
238 static VNET_DEFINE(u_int32_t, curr_dyn_buckets);
239
240 #define V_ipfw_dyn_v                    VNET(ipfw_dyn_v)
241 #define V_dyn_buckets                   VNET(dyn_buckets)
242 #define V_curr_dyn_buckets              VNET(curr_dyn_buckets)
243
244 static struct mtx ipfw_dyn_mtx;         /* mutex guarding dynamic rules */
245 #define IPFW_DYN_LOCK_INIT() \
246         mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
247 #define IPFW_DYN_LOCK_DESTROY() mtx_destroy(&ipfw_dyn_mtx)
248 #define IPFW_DYN_LOCK()         mtx_lock(&ipfw_dyn_mtx)
249 #define IPFW_DYN_UNLOCK()       mtx_unlock(&ipfw_dyn_mtx)
250 #define IPFW_DYN_LOCK_ASSERT()  mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
251
252 /*
253  * Timeouts for various events in handing dynamic rules.
254  */
255 static VNET_DEFINE(u_int32_t, dyn_ack_lifetime);
256 static VNET_DEFINE(u_int32_t, dyn_syn_lifetime);
257 static VNET_DEFINE(u_int32_t, dyn_fin_lifetime);
258 static VNET_DEFINE(u_int32_t, dyn_rst_lifetime);
259 static VNET_DEFINE(u_int32_t, dyn_udp_lifetime);
260 static VNET_DEFINE(u_int32_t, dyn_short_lifetime);
261
262 #define V_dyn_ack_lifetime              VNET(dyn_ack_lifetime)
263 #define V_dyn_syn_lifetime              VNET(dyn_syn_lifetime)
264 #define V_dyn_fin_lifetime              VNET(dyn_fin_lifetime)
265 #define V_dyn_rst_lifetime              VNET(dyn_rst_lifetime)
266 #define V_dyn_udp_lifetime              VNET(dyn_udp_lifetime)
267 #define V_dyn_short_lifetime            VNET(dyn_short_lifetime)
268
269 /*
270  * Keepalives are sent if dyn_keepalive is set. They are sent every
271  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
272  * seconds of lifetime of a rule.
273  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
274  * than dyn_keepalive_period.
275  */
276
277 static VNET_DEFINE(u_int32_t, dyn_keepalive_interval);
278 static VNET_DEFINE(u_int32_t, dyn_keepalive_period);
279 static VNET_DEFINE(u_int32_t, dyn_keepalive);
280
281 #define V_dyn_keepalive_interval        VNET(dyn_keepalive_interval)
282 #define V_dyn_keepalive_period          VNET(dyn_keepalive_period)
283 #define V_dyn_keepalive                 VNET(dyn_keepalive)
284
285 static VNET_DEFINE(u_int32_t, static_count);    /* # of static rules */
286 static VNET_DEFINE(u_int32_t, static_len);      /* bytes of static rules */
287 static VNET_DEFINE(u_int32_t, dyn_count);       /* # of dynamic rules */
288 static VNET_DEFINE(u_int32_t, dyn_max);         /* max # of dynamic rules */
289
290 #define V_static_count                  VNET(static_count)
291 #define V_static_len                    VNET(static_len)
292 #define V_dyn_count                     VNET(dyn_count)
293 #define V_dyn_max                       VNET(dyn_max)
294
295 #ifdef SYSCTL_NODE
296 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
297     CTLFLAG_RW, &VNET_NAME(dyn_buckets), 0,
298     "Number of dyn. buckets");
299 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
300     CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
301     "Current Number of dyn. buckets");
302 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_count,
303     CTLFLAG_RD, &VNET_NAME(dyn_count), 0,
304     "Number of dyn. rules");
305 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_max,
306     CTLFLAG_RW, &VNET_NAME(dyn_max), 0,
307     "Max number of dyn. rules");
308 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, static_count,
309     CTLFLAG_RD, &VNET_NAME(static_count), 0,
310     "Number of static rules");
311 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
312     CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
313     "Lifetime of dyn. rules for acks");
314 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
315     CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
316     "Lifetime of dyn. rules for syn");
317 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
318     CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
319     "Lifetime of dyn. rules for fin");
320 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
321     CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
322     "Lifetime of dyn. rules for rst");
323 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
324     CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
325     "Lifetime of dyn. rules for UDP");
326 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
327     CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
328     "Lifetime of dyn. rules for other situations");
329 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
330     CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
331     "Enable keepalives for dyn. rules");
332 #endif /* SYSCTL_NODE */
333
334 /*
335  * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
336  * Other macros just cast void * into the appropriate type
337  */
338 #define L3HDR(T, ip)    ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
339 #define TCP(p)          ((struct tcphdr *)(p))
340 #define SCTP(p)         ((struct sctphdr *)(p))
341 #define UDP(p)          ((struct udphdr *)(p))
342 #define ICMP(p)         ((struct icmphdr *)(p))
343 #define ICMP6(p)        ((struct icmp6_hdr *)(p))
344
345 static __inline int
346 icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
347 {
348         int type = icmp->icmp_type;
349
350         return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
351 }
352
353 #define TT      ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
354     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
355
356 static int
357 is_icmp_query(struct icmphdr *icmp)
358 {
359         int type = icmp->icmp_type;
360
361         return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
362 }
363 #undef TT
364
365 /*
366  * The following checks use two arrays of 8 or 16 bits to store the
367  * bits that we want set or clear, respectively. They are in the
368  * low and high half of cmd->arg1 or cmd->d[0].
369  *
370  * We scan options and store the bits we find set. We succeed if
371  *
372  *      (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
373  *
374  * The code is sometimes optimized not to store additional variables.
375  */
376
377 static int
378 flags_match(ipfw_insn *cmd, u_int8_t bits)
379 {
380         u_char want_clear;
381         bits = ~bits;
382
383         if ( ((cmd->arg1 & 0xff) & bits) != 0)
384                 return 0; /* some bits we want set were clear */
385         want_clear = (cmd->arg1 >> 8) & 0xff;
386         if ( (want_clear & bits) != want_clear)
387                 return 0; /* some bits we want clear were set */
388         return 1;
389 }
390
391 static int
392 ipopts_match(struct ip *ip, ipfw_insn *cmd)
393 {
394         int optlen, bits = 0;
395         u_char *cp = (u_char *)(ip + 1);
396         int x = (ip->ip_hl << 2) - sizeof (struct ip);
397
398         for (; x > 0; x -= optlen, cp += optlen) {
399                 int opt = cp[IPOPT_OPTVAL];
400
401                 if (opt == IPOPT_EOL)
402                         break;
403                 if (opt == IPOPT_NOP)
404                         optlen = 1;
405                 else {
406                         optlen = cp[IPOPT_OLEN];
407                         if (optlen <= 0 || optlen > x)
408                                 return 0; /* invalid or truncated */
409                 }
410                 switch (opt) {
411
412                 default:
413                         break;
414
415                 case IPOPT_LSRR:
416                         bits |= IP_FW_IPOPT_LSRR;
417                         break;
418
419                 case IPOPT_SSRR:
420                         bits |= IP_FW_IPOPT_SSRR;
421                         break;
422
423                 case IPOPT_RR:
424                         bits |= IP_FW_IPOPT_RR;
425                         break;
426
427                 case IPOPT_TS:
428                         bits |= IP_FW_IPOPT_TS;
429                         break;
430                 }
431         }
432         return (flags_match(cmd, bits));
433 }
434
435 static int
436 tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
437 {
438         int optlen, bits = 0;
439         u_char *cp = (u_char *)(tcp + 1);
440         int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
441
442         for (; x > 0; x -= optlen, cp += optlen) {
443                 int opt = cp[0];
444                 if (opt == TCPOPT_EOL)
445                         break;
446                 if (opt == TCPOPT_NOP)
447                         optlen = 1;
448                 else {
449                         optlen = cp[1];
450                         if (optlen <= 0)
451                                 break;
452                 }
453
454                 switch (opt) {
455
456                 default:
457                         break;
458
459                 case TCPOPT_MAXSEG:
460                         bits |= IP_FW_TCPOPT_MSS;
461                         break;
462
463                 case TCPOPT_WINDOW:
464                         bits |= IP_FW_TCPOPT_WINDOW;
465                         break;
466
467                 case TCPOPT_SACK_PERMITTED:
468                 case TCPOPT_SACK:
469                         bits |= IP_FW_TCPOPT_SACK;
470                         break;
471
472                 case TCPOPT_TIMESTAMP:
473                         bits |= IP_FW_TCPOPT_TS;
474                         break;
475
476                 }
477         }
478         return (flags_match(cmd, bits));
479 }
480
481 static int
482 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
483 {
484         if (ifp == NULL)        /* no iface with this packet, match fails */
485                 return 0;
486         /* Check by name or by IP address */
487         if (cmd->name[0] != '\0') { /* match by name */
488                 /* Check name */
489                 if (cmd->p.glob) {
490                         if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
491                                 return(1);
492                 } else {
493                         if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
494                                 return(1);
495                 }
496         } else {
497                 struct ifaddr *ia;
498
499                 if_addr_rlock(ifp);
500                 TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
501                         if (ia->ifa_addr->sa_family != AF_INET)
502                                 continue;
503                         if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
504                             (ia->ifa_addr))->sin_addr.s_addr) {
505                                 if_addr_runlock(ifp);
506                                 return(1);      /* match */
507                         }
508                 }
509                 if_addr_runlock(ifp);
510         }
511         return(0);      /* no match, fail ... */
512 }
513
514 /*
515  * The verify_path function checks if a route to the src exists and
516  * if it is reachable via ifp (when provided).
517  * 
518  * The 'verrevpath' option checks that the interface that an IP packet
519  * arrives on is the same interface that traffic destined for the
520  * packet's source address would be routed out of.  The 'versrcreach'
521  * option just checks that the source address is reachable via any route
522  * (except default) in the routing table.  These two are a measure to block
523  * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
524  * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
525  * is purposely reminiscent of the Cisco IOS command,
526  *
527  *   ip verify unicast reverse-path
528  *   ip verify unicast source reachable-via any
529  *
530  * which implements the same functionality. But note that syntax is
531  * misleading. The check may be performed on all IP packets whether unicast,
532  * multicast, or broadcast.
533  */
534 static int
535 verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
536 {
537         struct route ro;
538         struct sockaddr_in *dst;
539
540         bzero(&ro, sizeof(ro));
541
542         dst = (struct sockaddr_in *)&(ro.ro_dst);
543         dst->sin_family = AF_INET;
544         dst->sin_len = sizeof(*dst);
545         dst->sin_addr = src;
546         in_rtalloc_ign(&ro, 0, fib);
547
548         if (ro.ro_rt == NULL)
549                 return 0;
550
551         /*
552          * If ifp is provided, check for equality with rtentry.
553          * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
554          * in order to pass packets injected back by if_simloop():
555          * if useloopback == 1 routing entry (via lo0) for our own address
556          * may exist, so we need to handle routing assymetry.
557          */
558         if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
559                 RTFREE(ro.ro_rt);
560                 return 0;
561         }
562
563         /* if no ifp provided, check if rtentry is not default route */
564         if (ifp == NULL &&
565              satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
566                 RTFREE(ro.ro_rt);
567                 return 0;
568         }
569
570         /* or if this is a blackhole/reject route */
571         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
572                 RTFREE(ro.ro_rt);
573                 return 0;
574         }
575
576         /* found valid route */
577         RTFREE(ro.ro_rt);
578         return 1;
579 }
580
581 #ifdef INET6
582 /*
583  * ipv6 specific rules here...
584  */
585 static __inline int
586 icmp6type_match (int type, ipfw_insn_u32 *cmd)
587 {
588         return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
589 }
590
591 static int
592 flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
593 {
594         int i;
595         for (i=0; i <= cmd->o.arg1; ++i )
596                 if (curr_flow == cmd->d[i] )
597                         return 1;
598         return 0;
599 }
600
601 /* support for IP6_*_ME opcodes */
602 static int
603 search_ip6_addr_net (struct in6_addr * ip6_addr)
604 {
605         struct ifnet *mdc;
606         struct ifaddr *mdc2;
607         struct in6_ifaddr *fdm;
608         struct in6_addr copia;
609
610         TAILQ_FOREACH(mdc, &V_ifnet, if_link) {
611                 if_addr_rlock(mdc);
612                 TAILQ_FOREACH(mdc2, &mdc->if_addrhead, ifa_link) {
613                         if (mdc2->ifa_addr->sa_family == AF_INET6) {
614                                 fdm = (struct in6_ifaddr *)mdc2;
615                                 copia = fdm->ia_addr.sin6_addr;
616                                 /* need for leaving scope_id in the sock_addr */
617                                 in6_clearscope(&copia);
618                                 if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia)) {
619                                         if_addr_runlock(mdc);
620                                         return 1;
621                                 }
622                         }
623                 }
624                 if_addr_runlock(mdc);
625         }
626         return 0;
627 }
628
629 static int
630 verify_path6(struct in6_addr *src, struct ifnet *ifp)
631 {
632         struct route_in6 ro;
633         struct sockaddr_in6 *dst;
634
635         bzero(&ro, sizeof(ro));
636
637         dst = (struct sockaddr_in6 * )&(ro.ro_dst);
638         dst->sin6_family = AF_INET6;
639         dst->sin6_len = sizeof(*dst);
640         dst->sin6_addr = *src;
641         /* XXX MRT 0 for ipv6 at this time */
642         rtalloc_ign((struct route *)&ro, 0);
643
644         if (ro.ro_rt == NULL)
645                 return 0;
646
647         /* 
648          * if ifp is provided, check for equality with rtentry
649          * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
650          * to support the case of sending packets to an address of our own.
651          * (where the former interface is the first argument of if_simloop()
652          *  (=ifp), the latter is lo0)
653          */
654         if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
655                 RTFREE(ro.ro_rt);
656                 return 0;
657         }
658
659         /* if no ifp provided, check if rtentry is not default route */
660         if (ifp == NULL &&
661             IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
662                 RTFREE(ro.ro_rt);
663                 return 0;
664         }
665
666         /* or if this is a blackhole/reject route */
667         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
668                 RTFREE(ro.ro_rt);
669                 return 0;
670         }
671
672         /* found valid route */
673         RTFREE(ro.ro_rt);
674         return 1;
675
676 }
677 static __inline int
678 hash_packet6(struct ipfw_flow_id *id)
679 {
680         u_int32_t i;
681         i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
682             (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
683             (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
684             (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
685             (id->dst_port) ^ (id->src_port);
686         return i;
687 }
688
689 static int
690 is_icmp6_query(int icmp6_type)
691 {
692         if ((icmp6_type <= ICMP6_MAXTYPE) &&
693             (icmp6_type == ICMP6_ECHO_REQUEST ||
694             icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
695             icmp6_type == ICMP6_WRUREQUEST ||
696             icmp6_type == ICMP6_FQDN_QUERY ||
697             icmp6_type == ICMP6_NI_QUERY))
698                 return (1);
699
700         return (0);
701 }
702
703 static void
704 send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
705 {
706         struct mbuf *m;
707
708         m = args->m;
709         if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
710                 struct tcphdr *tcp;
711                 tcp_seq ack, seq;
712                 int flags;
713                 struct {
714                         struct ip6_hdr ip6;
715                         struct tcphdr th;
716                 } ti;
717                 tcp = (struct tcphdr *)((char *)ip6 + hlen);
718
719                 if ((tcp->th_flags & TH_RST) != 0) {
720                         m_freem(m);
721                         args->m = NULL;
722                         return;
723                 }
724
725                 ti.ip6 = *ip6;
726                 ti.th = *tcp;
727                 ti.th.th_seq = ntohl(ti.th.th_seq);
728                 ti.th.th_ack = ntohl(ti.th.th_ack);
729                 ti.ip6.ip6_nxt = IPPROTO_TCP;
730
731                 if (ti.th.th_flags & TH_ACK) {
732                         ack = 0;
733                         seq = ti.th.th_ack;
734                         flags = TH_RST;
735                 } else {
736                         ack = ti.th.th_seq;
737                         if ((m->m_flags & M_PKTHDR) != 0) {
738                                 /*
739                                  * total new data to ACK is:
740                                  * total packet length,
741                                  * minus the header length,
742                                  * minus the tcp header length.
743                                  */
744                                 ack += m->m_pkthdr.len - hlen
745                                         - (ti.th.th_off << 2);
746                         } else if (ip6->ip6_plen) {
747                                 ack += ntohs(ip6->ip6_plen) + sizeof(*ip6) -
748                                     hlen - (ti.th.th_off << 2);
749                         } else {
750                                 m_freem(m);
751                                 return;
752                         }
753                         if (tcp->th_flags & TH_SYN)
754                                 ack++;
755                         seq = 0;
756                         flags = TH_RST|TH_ACK;
757                 }
758                 bcopy(&ti, ip6, sizeof(ti));
759                 /*
760                  * m is only used to recycle the mbuf
761                  * The data in it is never read so we don't need
762                  * to correct the offsets or anything
763                  */
764                 tcp_respond(NULL, ip6, tcp, m, ack, seq, flags);
765         } else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
766 #if 0
767                 /*
768                  * Unlike above, the mbufs need to line up with the ip6 hdr,
769                  * as the contents are read. We need to m_adj() the
770                  * needed amount.
771                  * The mbuf will however be thrown away so we can adjust it.
772                  * Remember we did an m_pullup on it already so we
773                  * can make some assumptions about contiguousness.
774                  */
775                 if (args->L3offset)
776                         m_adj(m, args->L3offset);
777 #endif
778                 icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
779         } else
780                 m_freem(m);
781
782         args->m = NULL;
783 }
784
785 #endif /* INET6 */
786
787 /* counter for ipfw_log(NULL...) */
788 static VNET_DEFINE(u_int64_t, norule_counter);
789 #define V_norule_counter                VNET(norule_counter)
790
791 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
792 #define SNP(buf) buf, sizeof(buf)
793
794 /*
795  * We enter here when we have a rule with O_LOG.
796  * XXX this function alone takes about 2Kbytes of code!
797  */
798 static void
799 ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
800     struct mbuf *m, struct ifnet *oif, u_short offset, uint32_t tablearg,
801     struct ip *ip)
802 {
803         struct ether_header *eh = args->eh;
804         char *action;
805         int limit_reached = 0;
806         char action2[40], proto[128], fragment[32];
807
808         fragment[0] = '\0';
809         proto[0] = '\0';
810
811         if (f == NULL) {        /* bogus pkt */
812                 if (V_verbose_limit != 0 && V_norule_counter >= V_verbose_limit)
813                         return;
814                 V_norule_counter++;
815                 if (V_norule_counter == V_verbose_limit)
816                         limit_reached = V_verbose_limit;
817                 action = "Refuse";
818         } else {        /* O_LOG is the first action, find the real one */
819                 ipfw_insn *cmd = ACTION_PTR(f);
820                 ipfw_insn_log *l = (ipfw_insn_log *)cmd;
821
822                 if (l->max_log != 0 && l->log_left == 0)
823                         return;
824                 l->log_left--;
825                 if (l->log_left == 0)
826                         limit_reached = l->max_log;
827                 cmd += F_LEN(cmd);      /* point to first action */
828                 if (cmd->opcode == O_ALTQ) {
829                         ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
830
831                         snprintf(SNPARGS(action2, 0), "Altq %d",
832                                 altq->qid);
833                         cmd += F_LEN(cmd);
834                 }
835                 if (cmd->opcode == O_PROB)
836                         cmd += F_LEN(cmd);
837
838                 if (cmd->opcode == O_TAG)
839                         cmd += F_LEN(cmd);
840
841                 action = action2;
842                 switch (cmd->opcode) {
843                 case O_DENY:
844                         action = "Deny";
845                         break;
846
847                 case O_REJECT:
848                         if (cmd->arg1==ICMP_REJECT_RST)
849                                 action = "Reset";
850                         else if (cmd->arg1==ICMP_UNREACH_HOST)
851                                 action = "Reject";
852                         else
853                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
854                                         cmd->arg1);
855                         break;
856
857                 case O_UNREACH6:
858                         if (cmd->arg1==ICMP6_UNREACH_RST)
859                                 action = "Reset";
860                         else
861                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
862                                         cmd->arg1);
863                         break;
864
865                 case O_ACCEPT:
866                         action = "Accept";
867                         break;
868                 case O_COUNT:
869                         action = "Count";
870                         break;
871                 case O_DIVERT:
872                         snprintf(SNPARGS(action2, 0), "Divert %d",
873                                 cmd->arg1);
874                         break;
875                 case O_TEE:
876                         snprintf(SNPARGS(action2, 0), "Tee %d",
877                                 cmd->arg1);
878                         break;
879                 case O_SETFIB:
880                         snprintf(SNPARGS(action2, 0), "SetFib %d",
881                                 cmd->arg1);
882                         break;
883                 case O_SKIPTO:
884                         snprintf(SNPARGS(action2, 0), "SkipTo %d",
885                                 cmd->arg1);
886                         break;
887                 case O_PIPE:
888                         snprintf(SNPARGS(action2, 0), "Pipe %d",
889                                 cmd->arg1);
890                         break;
891                 case O_QUEUE:
892                         snprintf(SNPARGS(action2, 0), "Queue %d",
893                                 cmd->arg1);
894                         break;
895                 case O_FORWARD_IP: {
896                         ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
897                         int len;
898                         struct in_addr dummyaddr;
899                         if (sa->sa.sin_addr.s_addr == INADDR_ANY)
900                                 dummyaddr.s_addr = htonl(tablearg);
901                         else
902                                 dummyaddr.s_addr = sa->sa.sin_addr.s_addr;
903
904                         len = snprintf(SNPARGS(action2, 0), "Forward to %s",
905                                 inet_ntoa(dummyaddr));
906
907                         if (sa->sa.sin_port)
908                                 snprintf(SNPARGS(action2, len), ":%d",
909                                     sa->sa.sin_port);
910                         }
911                         break;
912                 case O_NETGRAPH:
913                         snprintf(SNPARGS(action2, 0), "Netgraph %d",
914                                 cmd->arg1);
915                         break;
916                 case O_NGTEE:
917                         snprintf(SNPARGS(action2, 0), "Ngtee %d",
918                                 cmd->arg1);
919                         break;
920                 case O_NAT:
921                         action = "Nat";
922                         break;
923                 case O_REASS:
924                         action = "Reass";
925                         break;
926                 default:
927                         action = "UNKNOWN";
928                         break;
929                 }
930         }
931
932         if (hlen == 0) {        /* non-ip */
933                 snprintf(SNPARGS(proto, 0), "MAC");
934
935         } else {
936                 int len;
937                 char src[48], dst[48];
938                 struct icmphdr *icmp;
939                 struct tcphdr *tcp;
940                 struct udphdr *udp;
941 #ifdef INET6
942                 struct ip6_hdr *ip6 = NULL;
943                 struct icmp6_hdr *icmp6;
944 #endif
945                 src[0] = '\0';
946                 dst[0] = '\0';
947 #ifdef INET6
948                 if (IS_IP6_FLOW_ID(&(args->f_id))) {
949                         char ip6buf[INET6_ADDRSTRLEN];
950                         snprintf(src, sizeof(src), "[%s]",
951                             ip6_sprintf(ip6buf, &args->f_id.src_ip6));
952                         snprintf(dst, sizeof(dst), "[%s]",
953                             ip6_sprintf(ip6buf, &args->f_id.dst_ip6));
954
955                         ip6 = (struct ip6_hdr *)ip;
956                         tcp = (struct tcphdr *)(((char *)ip) + hlen);
957                         udp = (struct udphdr *)(((char *)ip) + hlen);
958                 } else
959 #endif
960                 {
961                         tcp = L3HDR(struct tcphdr, ip);
962                         udp = L3HDR(struct udphdr, ip);
963
964                         inet_ntoa_r(ip->ip_src, src);
965                         inet_ntoa_r(ip->ip_dst, dst);
966                 }
967
968                 switch (args->f_id.proto) {
969                 case IPPROTO_TCP:
970                         len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
971                         if (offset == 0)
972                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
973                                     ntohs(tcp->th_sport),
974                                     dst,
975                                     ntohs(tcp->th_dport));
976                         else
977                                 snprintf(SNPARGS(proto, len), " %s", dst);
978                         break;
979
980                 case IPPROTO_UDP:
981                         len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
982                         if (offset == 0)
983                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
984                                     ntohs(udp->uh_sport),
985                                     dst,
986                                     ntohs(udp->uh_dport));
987                         else
988                                 snprintf(SNPARGS(proto, len), " %s", dst);
989                         break;
990
991                 case IPPROTO_ICMP:
992                         icmp = L3HDR(struct icmphdr, ip);
993                         if (offset == 0)
994                                 len = snprintf(SNPARGS(proto, 0),
995                                     "ICMP:%u.%u ",
996                                     icmp->icmp_type, icmp->icmp_code);
997                         else
998                                 len = snprintf(SNPARGS(proto, 0), "ICMP ");
999                         len += snprintf(SNPARGS(proto, len), "%s", src);
1000                         snprintf(SNPARGS(proto, len), " %s", dst);
1001                         break;
1002 #ifdef INET6
1003                 case IPPROTO_ICMPV6:
1004                         icmp6 = (struct icmp6_hdr *)(((char *)ip) + hlen);
1005                         if (offset == 0)
1006                                 len = snprintf(SNPARGS(proto, 0),
1007                                     "ICMPv6:%u.%u ",
1008                                     icmp6->icmp6_type, icmp6->icmp6_code);
1009                         else
1010                                 len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
1011                         len += snprintf(SNPARGS(proto, len), "%s", src);
1012                         snprintf(SNPARGS(proto, len), " %s", dst);
1013                         break;
1014 #endif
1015                 default:
1016                         len = snprintf(SNPARGS(proto, 0), "P:%d %s",
1017                             args->f_id.proto, src);
1018                         snprintf(SNPARGS(proto, len), " %s", dst);
1019                         break;
1020                 }
1021
1022 #ifdef INET6
1023                 if (IS_IP6_FLOW_ID(&(args->f_id))) {
1024                         if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
1025                                 snprintf(SNPARGS(fragment, 0),
1026                                     " (frag %08x:%d@%d%s)",
1027                                     args->f_id.frag_id6,
1028                                     ntohs(ip6->ip6_plen) - hlen,
1029                                     ntohs(offset & IP6F_OFF_MASK) << 3,
1030                                     (offset & IP6F_MORE_FRAG) ? "+" : "");
1031                 } else
1032 #endif
1033                 {
1034                         int ip_off, ip_len;
1035                         if (eh != NULL) { /* layer 2 packets are as on the wire */
1036                                 ip_off = ntohs(ip->ip_off);
1037                                 ip_len = ntohs(ip->ip_len);
1038                         } else {
1039                                 ip_off = ip->ip_off;
1040                                 ip_len = ip->ip_len;
1041                         }
1042                         if (ip_off & (IP_MF | IP_OFFMASK))
1043                                 snprintf(SNPARGS(fragment, 0),
1044                                     " (frag %d:%d@%d%s)",
1045                                     ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
1046                                     offset << 3,
1047                                     (ip_off & IP_MF) ? "+" : "");
1048                 }
1049         }
1050         if (oif || m->m_pkthdr.rcvif)
1051                 log(LOG_SECURITY | LOG_INFO,
1052                     "ipfw: %d %s %s %s via %s%s\n",
1053                     f ? f->rulenum : -1,
1054                     action, proto, oif ? "out" : "in",
1055                     oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
1056                     fragment);
1057         else
1058                 log(LOG_SECURITY | LOG_INFO,
1059                     "ipfw: %d %s %s [no if info]%s\n",
1060                     f ? f->rulenum : -1,
1061                     action, proto, fragment);
1062         if (limit_reached)
1063                 log(LOG_SECURITY | LOG_NOTICE,
1064                     "ipfw: limit %d reached on entry %d\n",
1065                     limit_reached, f ? f->rulenum : -1);
1066 }
1067
1068 /*
1069  * IMPORTANT: the hash function for dynamic rules must be commutative
1070  * in source and destination (ip,port), because rules are bidirectional
1071  * and we want to find both in the same bucket.
1072  */
1073 static __inline int
1074 hash_packet(struct ipfw_flow_id *id)
1075 {
1076         u_int32_t i;
1077
1078 #ifdef INET6
1079         if (IS_IP6_FLOW_ID(id)) 
1080                 i = hash_packet6(id);
1081         else
1082 #endif /* INET6 */
1083         i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
1084         i &= (V_curr_dyn_buckets - 1);
1085         return i;
1086 }
1087
1088 /**
1089  * unlink a dynamic rule from a chain. prev is a pointer to
1090  * the previous one, q is a pointer to the rule to delete,
1091  * head is a pointer to the head of the queue.
1092  * Modifies q and potentially also head.
1093  */
1094 #define UNLINK_DYN_RULE(prev, head, q) {                                \
1095         ipfw_dyn_rule *old_q = q;                                       \
1096                                                                         \
1097         /* remove a refcount to the parent */                           \
1098         if (q->dyn_type == O_LIMIT)                                     \
1099                 q->parent->count--;                                     \
1100         DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1101                 (q->id.src_ip), (q->id.src_port),                       \
1102                 (q->id.dst_ip), (q->id.dst_port), V_dyn_count-1 ); )    \
1103         if (prev != NULL)                                               \
1104                 prev->next = q = q->next;                               \
1105         else                                                            \
1106                 head = q = q->next;                                     \
1107         V_dyn_count--;                                                  \
1108         uma_zfree(ipfw_dyn_rule_zone, old_q); }
1109
1110 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
1111
1112 /**
1113  * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1114  *
1115  * If keep_me == NULL, rules are deleted even if not expired,
1116  * otherwise only expired rules are removed.
1117  *
1118  * The value of the second parameter is also used to point to identify
1119  * a rule we absolutely do not want to remove (e.g. because we are
1120  * holding a reference to it -- this is the case with O_LIMIT_PARENT
1121  * rules). The pointer is only used for comparison, so any non-null
1122  * value will do.
1123  */
1124 static void
1125 remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
1126 {
1127         static u_int32_t last_remove = 0;
1128
1129 #define FORCE (keep_me == NULL)
1130
1131         ipfw_dyn_rule *prev, *q;
1132         int i, pass = 0, max_pass = 0;
1133
1134         IPFW_DYN_LOCK_ASSERT();
1135
1136         if (V_ipfw_dyn_v == NULL || V_dyn_count == 0)
1137                 return;
1138         /* do not expire more than once per second, it is useless */
1139         if (!FORCE && last_remove == time_uptime)
1140                 return;
1141         last_remove = time_uptime;
1142
1143         /*
1144          * because O_LIMIT refer to parent rules, during the first pass only
1145          * remove child and mark any pending LIMIT_PARENT, and remove
1146          * them in a second pass.
1147          */
1148 next_pass:
1149         for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1150                 for (prev=NULL, q = V_ipfw_dyn_v[i] ; q ; ) {
1151                         /*
1152                          * Logic can become complex here, so we split tests.
1153                          */
1154                         if (q == keep_me)
1155                                 goto next;
1156                         if (rule != NULL && rule != q->rule)
1157                                 goto next; /* not the one we are looking for */
1158                         if (q->dyn_type == O_LIMIT_PARENT) {
1159                                 /*
1160                                  * handle parent in the second pass,
1161                                  * record we need one.
1162                                  */
1163                                 max_pass = 1;
1164                                 if (pass == 0)
1165                                         goto next;
1166                                 if (FORCE && q->count != 0 ) {
1167                                         /* XXX should not happen! */
1168                                         printf("ipfw: OUCH! cannot remove rule,"
1169                                              " count %d\n", q->count);
1170                                 }
1171                         } else {
1172                                 if (!FORCE &&
1173                                     !TIME_LEQ( q->expire, time_uptime ))
1174                                         goto next;
1175                         }
1176              if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
1177                      UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q);
1178                      continue;
1179              }
1180 next:
1181                         prev=q;
1182                         q=q->next;
1183                 }
1184         }
1185         if (pass++ < max_pass)
1186                 goto next_pass;
1187 }
1188
1189
1190 /**
1191  * lookup a dynamic rule.
1192  */
1193 static ipfw_dyn_rule *
1194 lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
1195     struct tcphdr *tcp)
1196 {
1197         /*
1198          * stateful ipfw extensions.
1199          * Lookup into dynamic session queue
1200          */
1201 #define MATCH_REVERSE   0
1202 #define MATCH_FORWARD   1
1203 #define MATCH_NONE      2
1204 #define MATCH_UNKNOWN   3
1205         int i, dir = MATCH_NONE;
1206         ipfw_dyn_rule *prev, *q=NULL;
1207
1208         IPFW_DYN_LOCK_ASSERT();
1209
1210         if (V_ipfw_dyn_v == NULL)
1211                 goto done;      /* not found */
1212         i = hash_packet( pkt );
1213         for (prev=NULL, q = V_ipfw_dyn_v[i] ; q != NULL ; ) {
1214                 if (q->dyn_type == O_LIMIT_PARENT && q->count)
1215                         goto next;
1216                 if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
1217                         UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q);
1218                         continue;
1219                 }
1220                 if (pkt->proto == q->id.proto &&
1221                     q->dyn_type != O_LIMIT_PARENT) {
1222                         if (IS_IP6_FLOW_ID(pkt)) {
1223                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1224                                 &(q->id.src_ip6)) &&
1225                             IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1226                                 &(q->id.dst_ip6)) &&
1227                             pkt->src_port == q->id.src_port &&
1228                             pkt->dst_port == q->id.dst_port ) {
1229                                 dir = MATCH_FORWARD;
1230                                 break;
1231                             }
1232                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1233                                     &(q->id.dst_ip6)) &&
1234                                 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1235                                     &(q->id.src_ip6)) &&
1236                                 pkt->src_port == q->id.dst_port &&
1237                                 pkt->dst_port == q->id.src_port ) {
1238                                     dir = MATCH_REVERSE;
1239                                     break;
1240                             }
1241                         } else {
1242                             if (pkt->src_ip == q->id.src_ip &&
1243                                 pkt->dst_ip == q->id.dst_ip &&
1244                                 pkt->src_port == q->id.src_port &&
1245                                 pkt->dst_port == q->id.dst_port ) {
1246                                     dir = MATCH_FORWARD;
1247                                     break;
1248                             }
1249                             if (pkt->src_ip == q->id.dst_ip &&
1250                                 pkt->dst_ip == q->id.src_ip &&
1251                                 pkt->src_port == q->id.dst_port &&
1252                                 pkt->dst_port == q->id.src_port ) {
1253                                     dir = MATCH_REVERSE;
1254                                     break;
1255                             }
1256                         }
1257                 }
1258 next:
1259                 prev = q;
1260                 q = q->next;
1261         }
1262         if (q == NULL)
1263                 goto done; /* q = NULL, not found */
1264
1265         if ( prev != NULL) { /* found and not in front */
1266                 prev->next = q->next;
1267                 q->next = V_ipfw_dyn_v[i];
1268                 V_ipfw_dyn_v[i] = q;
1269         }
1270         if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1271                 u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1272
1273 #define BOTH_SYN        (TH_SYN | (TH_SYN << 8))
1274 #define BOTH_FIN        (TH_FIN | (TH_FIN << 8))
1275                 q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1276                 switch (q->state) {
1277                 case TH_SYN:                            /* opening */
1278                         q->expire = time_uptime + V_dyn_syn_lifetime;
1279                         break;
1280
1281                 case BOTH_SYN:                  /* move to established */
1282                 case BOTH_SYN | TH_FIN :        /* one side tries to close */
1283                 case BOTH_SYN | (TH_FIN << 8) :
1284                         if (tcp) {
1285 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1286                             u_int32_t ack = ntohl(tcp->th_ack);
1287                             if (dir == MATCH_FORWARD) {
1288                                 if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1289                                     q->ack_fwd = ack;
1290                                 else { /* ignore out-of-sequence */
1291                                     break;
1292                                 }
1293                             } else {
1294                                 if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1295                                     q->ack_rev = ack;
1296                                 else { /* ignore out-of-sequence */
1297                                     break;
1298                                 }
1299                             }
1300                         }
1301                         q->expire = time_uptime + V_dyn_ack_lifetime;
1302                         break;
1303
1304                 case BOTH_SYN | BOTH_FIN:       /* both sides closed */
1305                         if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
1306                                 V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
1307                         q->expire = time_uptime + V_dyn_fin_lifetime;
1308                         break;
1309
1310                 default:
1311 #if 0
1312                         /*
1313                          * reset or some invalid combination, but can also
1314                          * occur if we use keep-state the wrong way.
1315                          */
1316                         if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1317                                 printf("invalid state: 0x%x\n", q->state);
1318 #endif
1319                         if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
1320                                 V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
1321                         q->expire = time_uptime + V_dyn_rst_lifetime;
1322                         break;
1323                 }
1324         } else if (pkt->proto == IPPROTO_UDP) {
1325                 q->expire = time_uptime + V_dyn_udp_lifetime;
1326         } else {
1327                 /* other protocols */
1328                 q->expire = time_uptime + V_dyn_short_lifetime;
1329         }
1330 done:
1331         if (match_direction)
1332                 *match_direction = dir;
1333         return q;
1334 }
1335
1336 static ipfw_dyn_rule *
1337 lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1338     struct tcphdr *tcp)
1339 {
1340         ipfw_dyn_rule *q;
1341
1342         IPFW_DYN_LOCK();
1343         q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1344         if (q == NULL)
1345                 IPFW_DYN_UNLOCK();
1346         /* NB: return table locked when q is not NULL */
1347         return q;
1348 }
1349
1350 static void
1351 realloc_dynamic_table(void)
1352 {
1353         IPFW_DYN_LOCK_ASSERT();
1354
1355         /*
1356          * Try reallocation, make sure we have a power of 2 and do
1357          * not allow more than 64k entries. In case of overflow,
1358          * default to 1024.
1359          */
1360
1361         if (V_dyn_buckets > 65536)
1362                 V_dyn_buckets = 1024;
1363         if ((V_dyn_buckets & (V_dyn_buckets-1)) != 0) { /* not a power of 2 */
1364                 V_dyn_buckets = V_curr_dyn_buckets; /* reset */
1365                 return;
1366         }
1367         V_curr_dyn_buckets = V_dyn_buckets;
1368         if (V_ipfw_dyn_v != NULL)
1369                 free(V_ipfw_dyn_v, M_IPFW);
1370         for (;;) {
1371                 V_ipfw_dyn_v = malloc(V_curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1372                        M_IPFW, M_NOWAIT | M_ZERO);
1373                 if (V_ipfw_dyn_v != NULL || V_curr_dyn_buckets <= 2)
1374                         break;
1375                 V_curr_dyn_buckets /= 2;
1376         }
1377 }
1378
1379 /**
1380  * Install state of type 'type' for a dynamic session.
1381  * The hash table contains two type of rules:
1382  * - regular rules (O_KEEP_STATE)
1383  * - rules for sessions with limited number of sess per user
1384  *   (O_LIMIT). When they are created, the parent is
1385  *   increased by 1, and decreased on delete. In this case,
1386  *   the third parameter is the parent rule and not the chain.
1387  * - "parent" rules for the above (O_LIMIT_PARENT).
1388  */
1389 static ipfw_dyn_rule *
1390 add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1391 {
1392         ipfw_dyn_rule *r;
1393         int i;
1394
1395         IPFW_DYN_LOCK_ASSERT();
1396
1397         if (V_ipfw_dyn_v == NULL ||
1398             (V_dyn_count == 0 && V_dyn_buckets != V_curr_dyn_buckets)) {
1399                 realloc_dynamic_table();
1400                 if (V_ipfw_dyn_v == NULL)
1401                         return NULL; /* failed ! */
1402         }
1403         i = hash_packet(id);
1404
1405         r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1406         if (r == NULL) {
1407                 printf ("ipfw: sorry cannot allocate state\n");
1408                 return NULL;
1409         }
1410
1411         /* increase refcount on parent, and set pointer */
1412         if (dyn_type == O_LIMIT) {
1413                 ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1414                 if ( parent->dyn_type != O_LIMIT_PARENT)
1415                         panic("invalid parent");
1416                 parent->count++;
1417                 r->parent = parent;
1418                 rule = parent->rule;
1419         }
1420
1421         r->id = *id;
1422         r->expire = time_uptime + V_dyn_syn_lifetime;
1423         r->rule = rule;
1424         r->dyn_type = dyn_type;
1425         r->pcnt = r->bcnt = 0;
1426         r->count = 0;
1427
1428         r->bucket = i;
1429         r->next = V_ipfw_dyn_v[i];
1430         V_ipfw_dyn_v[i] = r;
1431         V_dyn_count++;
1432         DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1433            dyn_type,
1434            (r->id.src_ip), (r->id.src_port),
1435            (r->id.dst_ip), (r->id.dst_port),
1436            V_dyn_count ); )
1437         return r;
1438 }
1439
1440 /**
1441  * lookup dynamic parent rule using pkt and rule as search keys.
1442  * If the lookup fails, then install one.
1443  */
1444 static ipfw_dyn_rule *
1445 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1446 {
1447         ipfw_dyn_rule *q;
1448         int i;
1449
1450         IPFW_DYN_LOCK_ASSERT();
1451
1452         if (V_ipfw_dyn_v) {
1453                 int is_v6 = IS_IP6_FLOW_ID(pkt);
1454                 i = hash_packet( pkt );
1455                 for (q = V_ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1456                         if (q->dyn_type == O_LIMIT_PARENT &&
1457                             rule== q->rule &&
1458                             pkt->proto == q->id.proto &&
1459                             pkt->src_port == q->id.src_port &&
1460                             pkt->dst_port == q->id.dst_port &&
1461                             (
1462                                 (is_v6 &&
1463                                  IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1464                                         &(q->id.src_ip6)) &&
1465                                  IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1466                                         &(q->id.dst_ip6))) ||
1467                                 (!is_v6 &&
1468                                  pkt->src_ip == q->id.src_ip &&
1469                                  pkt->dst_ip == q->id.dst_ip)
1470                             )
1471                         ) {
1472                                 q->expire = time_uptime + V_dyn_short_lifetime;
1473                                 DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1474                                 return q;
1475                         }
1476         }
1477         return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1478 }
1479
1480 /**
1481  * Install dynamic state for rule type cmd->o.opcode
1482  *
1483  * Returns 1 (failure) if state is not installed because of errors or because
1484  * session limitations are enforced.
1485  */
1486 static int
1487 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1488     struct ip_fw_args *args, uint32_t tablearg)
1489 {
1490         static int last_log;
1491         ipfw_dyn_rule *q;
1492         struct in_addr da;
1493         char src[48], dst[48];
1494
1495         src[0] = '\0';
1496         dst[0] = '\0';
1497
1498         DEB(
1499         printf("ipfw: %s: type %d 0x%08x %u -> 0x%08x %u\n",
1500             __func__, cmd->o.opcode,
1501             (args->f_id.src_ip), (args->f_id.src_port),
1502             (args->f_id.dst_ip), (args->f_id.dst_port));
1503         )
1504
1505         IPFW_DYN_LOCK();
1506
1507         q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1508
1509         if (q != NULL) {        /* should never occur */
1510                 if (last_log != time_uptime) {
1511                         last_log = time_uptime;
1512                         printf("ipfw: %s: entry already present, done\n",
1513                             __func__);
1514                 }
1515                 IPFW_DYN_UNLOCK();
1516                 return (0);
1517         }
1518
1519         if (V_dyn_count >= V_dyn_max)
1520                 /* Run out of slots, try to remove any expired rule. */
1521                 remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1522
1523         if (V_dyn_count >= V_dyn_max) {
1524                 if (last_log != time_uptime) {
1525                         last_log = time_uptime;
1526                         printf("ipfw: %s: Too many dynamic rules\n", __func__);
1527                 }
1528                 IPFW_DYN_UNLOCK();
1529                 return (1);     /* cannot install, notify caller */
1530         }
1531
1532         switch (cmd->o.opcode) {
1533         case O_KEEP_STATE:      /* bidir rule */
1534                 add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1535                 break;
1536
1537         case O_LIMIT: {         /* limit number of sessions */
1538                 struct ipfw_flow_id id;
1539                 ipfw_dyn_rule *parent;
1540                 uint32_t conn_limit;
1541                 uint16_t limit_mask = cmd->limit_mask;
1542
1543                 conn_limit = (cmd->conn_limit == IP_FW_TABLEARG) ?
1544                     tablearg : cmd->conn_limit;
1545                   
1546                 DEB(
1547                 if (cmd->conn_limit == IP_FW_TABLEARG)
1548                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
1549                             "(tablearg)\n", __func__, conn_limit);
1550                 else
1551                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
1552                             __func__, conn_limit);
1553                 )
1554
1555                 id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
1556                 id.proto = args->f_id.proto;
1557                 id.addr_type = args->f_id.addr_type;
1558                 id.fib = M_GETFIB(args->m);
1559
1560                 if (IS_IP6_FLOW_ID (&(args->f_id))) {
1561                         if (limit_mask & DYN_SRC_ADDR)
1562                                 id.src_ip6 = args->f_id.src_ip6;
1563                         if (limit_mask & DYN_DST_ADDR)
1564                                 id.dst_ip6 = args->f_id.dst_ip6;
1565                 } else {
1566                         if (limit_mask & DYN_SRC_ADDR)
1567                                 id.src_ip = args->f_id.src_ip;
1568                         if (limit_mask & DYN_DST_ADDR)
1569                                 id.dst_ip = args->f_id.dst_ip;
1570                 }
1571                 if (limit_mask & DYN_SRC_PORT)
1572                         id.src_port = args->f_id.src_port;
1573                 if (limit_mask & DYN_DST_PORT)
1574                         id.dst_port = args->f_id.dst_port;
1575                 if ((parent = lookup_dyn_parent(&id, rule)) == NULL) {
1576                         printf("ipfw: %s: add parent failed\n", __func__);
1577                         IPFW_DYN_UNLOCK();
1578                         return (1);
1579                 }
1580
1581                 if (parent->count >= conn_limit) {
1582                         /* See if we can remove some expired rule. */
1583                         remove_dyn_rule(rule, parent);
1584                         if (parent->count >= conn_limit) {
1585                                 if (V_fw_verbose && last_log != time_uptime) {
1586                                         last_log = time_uptime;
1587 #ifdef INET6
1588                                         /*
1589                                          * XXX IPv6 flows are not
1590                                          * supported yet.
1591                                          */
1592                                         if (IS_IP6_FLOW_ID(&(args->f_id))) {
1593                                                 char ip6buf[INET6_ADDRSTRLEN];
1594                                                 snprintf(src, sizeof(src),
1595                                                     "[%s]", ip6_sprintf(ip6buf,
1596                                                         &args->f_id.src_ip6));
1597                                                 snprintf(dst, sizeof(dst),
1598                                                     "[%s]", ip6_sprintf(ip6buf,
1599                                                         &args->f_id.dst_ip6));
1600                                         } else
1601 #endif
1602                                         {
1603                                                 da.s_addr =
1604                                                     htonl(args->f_id.src_ip);
1605                                                 inet_ntoa_r(da, src);
1606                                                 da.s_addr =
1607                                                     htonl(args->f_id.dst_ip);
1608                                                 inet_ntoa_r(da, dst);
1609                                         }
1610                                         log(LOG_SECURITY | LOG_DEBUG,
1611                                             "ipfw: %d %s %s:%u -> %s:%u, %s\n",
1612                                             parent->rule->rulenum,
1613                                             "drop session",
1614                                             src, (args->f_id.src_port),
1615                                             dst, (args->f_id.dst_port),
1616                                             "too many entries");
1617                                 }
1618                                 IPFW_DYN_UNLOCK();
1619                                 return (1);
1620                         }
1621                 }
1622                 add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1623                 break;
1624         }
1625         default:
1626                 printf("ipfw: %s: unknown dynamic rule type %u\n",
1627                     __func__, cmd->o.opcode);
1628                 IPFW_DYN_UNLOCK();
1629                 return (1);
1630         }
1631
1632         /* XXX just set lifetime */
1633         lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1634
1635         IPFW_DYN_UNLOCK();
1636         return (0);
1637 }
1638
1639 /*
1640  * Generate a TCP packet, containing either a RST or a keepalive.
1641  * When flags & TH_RST, we are sending a RST packet, because of a
1642  * "reset" action matched the packet.
1643  * Otherwise we are sending a keepalive, and flags & TH_
1644  * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
1645  * so that MAC can label the reply appropriately.
1646  */
1647 static struct mbuf *
1648 send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
1649     u_int32_t ack, int flags)
1650 {
1651         struct mbuf *m;
1652         struct ip *ip;
1653         struct tcphdr *tcp;
1654
1655         MGETHDR(m, M_DONTWAIT, MT_DATA);
1656         if (m == 0)
1657                 return (NULL);
1658         m->m_pkthdr.rcvif = (struct ifnet *)0;
1659
1660         M_SETFIB(m, id->fib);
1661 #ifdef MAC
1662         if (replyto != NULL)
1663                 mac_netinet_firewall_reply(replyto, m);
1664         else
1665                 mac_netinet_firewall_send(m);
1666 #else
1667         (void)replyto;          /* don't warn about unused arg */
1668 #endif
1669
1670         m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1671         m->m_data += max_linkhdr;
1672
1673         ip = mtod(m, struct ip *);
1674         bzero(ip, m->m_len);
1675         tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1676         ip->ip_p = IPPROTO_TCP;
1677         tcp->th_off = 5;
1678         /*
1679          * Assume we are sending a RST (or a keepalive in the reverse
1680          * direction), swap src and destination addresses and ports.
1681          */
1682         ip->ip_src.s_addr = htonl(id->dst_ip);
1683         ip->ip_dst.s_addr = htonl(id->src_ip);
1684         tcp->th_sport = htons(id->dst_port);
1685         tcp->th_dport = htons(id->src_port);
1686         if (flags & TH_RST) {   /* we are sending a RST */
1687                 if (flags & TH_ACK) {
1688                         tcp->th_seq = htonl(ack);
1689                         tcp->th_ack = htonl(0);
1690                         tcp->th_flags = TH_RST;
1691                 } else {
1692                         if (flags & TH_SYN)
1693                                 seq++;
1694                         tcp->th_seq = htonl(0);
1695                         tcp->th_ack = htonl(seq);
1696                         tcp->th_flags = TH_RST | TH_ACK;
1697                 }
1698         } else {
1699                 /*
1700                  * We are sending a keepalive. flags & TH_SYN determines
1701                  * the direction, forward if set, reverse if clear.
1702                  * NOTE: seq and ack are always assumed to be correct
1703                  * as set by the caller. This may be confusing...
1704                  */
1705                 if (flags & TH_SYN) {
1706                         /*
1707                          * we have to rewrite the correct addresses!
1708                          */
1709                         ip->ip_dst.s_addr = htonl(id->dst_ip);
1710                         ip->ip_src.s_addr = htonl(id->src_ip);
1711                         tcp->th_dport = htons(id->dst_port);
1712                         tcp->th_sport = htons(id->src_port);
1713                 }
1714                 tcp->th_seq = htonl(seq);
1715                 tcp->th_ack = htonl(ack);
1716                 tcp->th_flags = TH_ACK;
1717         }
1718         /*
1719          * set ip_len to the payload size so we can compute
1720          * the tcp checksum on the pseudoheader
1721          * XXX check this, could save a couple of words ?
1722          */
1723         ip->ip_len = htons(sizeof(struct tcphdr));
1724         tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1725         /*
1726          * now fill fields left out earlier
1727          */
1728         ip->ip_ttl = V_ip_defttl;
1729         ip->ip_len = m->m_pkthdr.len;
1730         m->m_flags |= M_SKIP_FIREWALL;
1731         return (m);
1732 }
1733
1734 /*
1735  * sends a reject message, consuming the mbuf passed as an argument.
1736  */
1737 static void
1738 send_reject(struct ip_fw_args *args, int code, int ip_len, struct ip *ip)
1739 {
1740
1741 #if 0
1742         /* XXX When ip is not guaranteed to be at mtod() we will
1743          * need to account for this */
1744          * The mbuf will however be thrown away so we can adjust it.
1745          * Remember we did an m_pullup on it already so we
1746          * can make some assumptions about contiguousness.
1747          */
1748         if (args->L3offset)
1749                 m_adj(m, args->L3offset);
1750 #endif
1751         if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1752                 /* We need the IP header in host order for icmp_error(). */
1753                 if (args->eh != NULL) {
1754                         ip->ip_len = ntohs(ip->ip_len);
1755                         ip->ip_off = ntohs(ip->ip_off);
1756                 }
1757                 icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1758         } else if (args->f_id.proto == IPPROTO_TCP) {
1759                 struct tcphdr *const tcp =
1760                     L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1761                 if ( (tcp->th_flags & TH_RST) == 0) {
1762                         struct mbuf *m;
1763                         m = send_pkt(args->m, &(args->f_id),
1764                                 ntohl(tcp->th_seq), ntohl(tcp->th_ack),
1765                                 tcp->th_flags | TH_RST);
1766                         if (m != NULL)
1767                                 ip_output(m, NULL, NULL, 0, NULL, NULL);
1768                 }
1769                 m_freem(args->m);
1770         } else
1771                 m_freem(args->m);
1772         args->m = NULL;
1773 }
1774
1775 /**
1776  *
1777  * Given an ip_fw *, lookup_next_rule will return a pointer
1778  * to the next rule, which can be either the jump
1779  * target (for skipto instructions) or the next one in the list (in
1780  * all other cases including a missing jump target).
1781  * The result is also written in the "next_rule" field of the rule.
1782  * Backward jumps are not allowed, so start looking from the next
1783  * rule...
1784  *
1785  * This never returns NULL -- in case we do not have an exact match,
1786  * the next rule is returned. When the ruleset is changed,
1787  * pointers are flushed so we are always correct.
1788  */
1789
1790 static struct ip_fw *
1791 lookup_next_rule(struct ip_fw *me, u_int32_t tablearg)
1792 {
1793         struct ip_fw *rule = NULL;
1794         ipfw_insn *cmd;
1795         u_int16_t       rulenum;
1796
1797         /* look for action, in case it is a skipto */
1798         cmd = ACTION_PTR(me);
1799         if (cmd->opcode == O_LOG)
1800                 cmd += F_LEN(cmd);
1801         if (cmd->opcode == O_ALTQ)
1802                 cmd += F_LEN(cmd);
1803         if (cmd->opcode == O_TAG)
1804                 cmd += F_LEN(cmd);
1805         if (cmd->opcode == O_SKIPTO ) {
1806                 if (tablearg != 0) {
1807                         rulenum = (u_int16_t)tablearg;
1808                 } else {
1809                         rulenum = cmd->arg1;
1810                 }
1811                 for (rule = me->next; rule ; rule = rule->next) {
1812                         if (rule->rulenum >= rulenum) {
1813                                 break;
1814                         }
1815                 }
1816         }
1817         if (rule == NULL)                       /* failure or not a skipto */
1818                 rule = me->next;
1819         me->next_rule = rule;
1820         return rule;
1821 }
1822
1823 static int
1824 add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1825     uint8_t mlen, uint32_t value)
1826 {
1827         struct radix_node_head *rnh;
1828         struct table_entry *ent;
1829         struct radix_node *rn;
1830
1831         if (tbl >= IPFW_TABLES_MAX)
1832                 return (EINVAL);
1833         rnh = ch->tables[tbl];
1834         ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1835         if (ent == NULL)
1836                 return (ENOMEM);
1837         ent->value = value;
1838         ent->addr.sin_len = ent->mask.sin_len = 8;
1839         ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1840         ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1841         IPFW_WLOCK(ch);
1842         rn = rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent);
1843         if (rn == NULL) {
1844                 IPFW_WUNLOCK(ch);
1845                 free(ent, M_IPFW_TBL);
1846                 return (EEXIST);
1847         }
1848         IPFW_WUNLOCK(ch);
1849         return (0);
1850 }
1851
1852 static int
1853 del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1854     uint8_t mlen)
1855 {
1856         struct radix_node_head *rnh;
1857         struct table_entry *ent;
1858         struct sockaddr_in sa, mask;
1859
1860         if (tbl >= IPFW_TABLES_MAX)
1861                 return (EINVAL);
1862         rnh = ch->tables[tbl];
1863         sa.sin_len = mask.sin_len = 8;
1864         mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1865         sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1866         IPFW_WLOCK(ch);
1867         ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1868         if (ent == NULL) {
1869                 IPFW_WUNLOCK(ch);
1870                 return (ESRCH);
1871         }
1872         IPFW_WUNLOCK(ch);
1873         free(ent, M_IPFW_TBL);
1874         return (0);
1875 }
1876
1877 static int
1878 flush_table_entry(struct radix_node *rn, void *arg)
1879 {
1880         struct radix_node_head * const rnh = arg;
1881         struct table_entry *ent;
1882
1883         ent = (struct table_entry *)
1884             rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1885         if (ent != NULL)
1886                 free(ent, M_IPFW_TBL);
1887         return (0);
1888 }
1889
1890 static int
1891 flush_table(struct ip_fw_chain *ch, uint16_t tbl)
1892 {
1893         struct radix_node_head *rnh;
1894
1895         IPFW_WLOCK_ASSERT(ch);
1896
1897         if (tbl >= IPFW_TABLES_MAX)
1898                 return (EINVAL);
1899         rnh = ch->tables[tbl];
1900         KASSERT(rnh != NULL, ("NULL IPFW table"));
1901         rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1902         return (0);
1903 }
1904
1905 static void
1906 flush_tables(struct ip_fw_chain *ch)
1907 {
1908         uint16_t tbl;
1909
1910         IPFW_WLOCK_ASSERT(ch);
1911
1912         for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1913                 flush_table(ch, tbl);
1914 }
1915
1916 static int
1917 init_tables(struct ip_fw_chain *ch)
1918
1919         int i;
1920         uint16_t j;
1921
1922         for (i = 0; i < IPFW_TABLES_MAX; i++) {
1923                 if (!rn_inithead((void **)&ch->tables[i], 32)) {
1924                         for (j = 0; j < i; j++) {
1925                                 (void) flush_table(ch, j);
1926                         }
1927                         return (ENOMEM);
1928                 }
1929         }
1930         return (0);
1931 }
1932
1933 static int
1934 lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1935     uint32_t *val)
1936 {
1937         struct radix_node_head *rnh;
1938         struct table_entry *ent;
1939         struct sockaddr_in sa;
1940
1941         if (tbl >= IPFW_TABLES_MAX)
1942                 return (0);
1943         rnh = ch->tables[tbl];
1944         sa.sin_len = 8;
1945         sa.sin_addr.s_addr = addr;
1946         ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
1947         if (ent != NULL) {
1948                 *val = ent->value;
1949                 return (1);
1950         }
1951         return (0);
1952 }
1953
1954 static int
1955 count_table_entry(struct radix_node *rn, void *arg)
1956 {
1957         u_int32_t * const cnt = arg;
1958
1959         (*cnt)++;
1960         return (0);
1961 }
1962
1963 static int
1964 count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
1965 {
1966         struct radix_node_head *rnh;
1967
1968         if (tbl >= IPFW_TABLES_MAX)
1969                 return (EINVAL);
1970         rnh = ch->tables[tbl];
1971         *cnt = 0;
1972         rnh->rnh_walktree(rnh, count_table_entry, cnt);
1973         return (0);
1974 }
1975
1976 static int
1977 dump_table_entry(struct radix_node *rn, void *arg)
1978 {
1979         struct table_entry * const n = (struct table_entry *)rn;
1980         ipfw_table * const tbl = arg;
1981         ipfw_table_entry *ent;
1982
1983         if (tbl->cnt == tbl->size)
1984                 return (1);
1985         ent = &tbl->ent[tbl->cnt];
1986         ent->tbl = tbl->tbl;
1987         if (in_nullhost(n->mask.sin_addr))
1988                 ent->masklen = 0;
1989         else
1990                 ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
1991         ent->addr = n->addr.sin_addr.s_addr;
1992         ent->value = n->value;
1993         tbl->cnt++;
1994         return (0);
1995 }
1996
1997 static int
1998 dump_table(struct ip_fw_chain *ch, ipfw_table *tbl)
1999 {
2000         struct radix_node_head *rnh;
2001
2002         if (tbl->tbl >= IPFW_TABLES_MAX)
2003                 return (EINVAL);
2004         rnh = ch->tables[tbl->tbl];
2005         tbl->cnt = 0;
2006         rnh->rnh_walktree(rnh, dump_table_entry, tbl);
2007         return (0);
2008 }
2009
2010 static int
2011 check_uidgid(ipfw_insn_u32 *insn, int proto, struct ifnet *oif,
2012     struct in_addr dst_ip, u_int16_t dst_port, struct in_addr src_ip,
2013     u_int16_t src_port, struct ucred **uc, int *ugid_lookupp,
2014     struct inpcb *inp)
2015 {
2016         struct inpcbinfo *pi;
2017         int wildcard;
2018         struct inpcb *pcb;
2019         int match;
2020
2021         /*
2022          * Check to see if the UDP or TCP stack supplied us with
2023          * the PCB. If so, rather then holding a lock and looking
2024          * up the PCB, we can use the one that was supplied.
2025          */
2026         if (inp && *ugid_lookupp == 0) {
2027                 INP_LOCK_ASSERT(inp);
2028                 if (inp->inp_socket != NULL) {
2029                         *uc = crhold(inp->inp_cred);
2030                         *ugid_lookupp = 1;
2031                 } else
2032                         *ugid_lookupp = -1;
2033         }
2034         /*
2035          * If we have already been here and the packet has no
2036          * PCB entry associated with it, then we can safely
2037          * assume that this is a no match.
2038          */
2039         if (*ugid_lookupp == -1)
2040                 return (0);
2041         if (proto == IPPROTO_TCP) {
2042                 wildcard = 0;
2043                 pi = &V_tcbinfo;
2044         } else if (proto == IPPROTO_UDP) {
2045                 wildcard = INPLOOKUP_WILDCARD;
2046                 pi = &V_udbinfo;
2047         } else
2048                 return 0;
2049         match = 0;
2050         if (*ugid_lookupp == 0) {
2051                 INP_INFO_RLOCK(pi);
2052                 pcb =  (oif) ?
2053                         in_pcblookup_hash(pi,
2054                                 dst_ip, htons(dst_port),
2055                                 src_ip, htons(src_port),
2056                                 wildcard, oif) :
2057                         in_pcblookup_hash(pi,
2058                                 src_ip, htons(src_port),
2059                                 dst_ip, htons(dst_port),
2060                                 wildcard, NULL);
2061                 if (pcb != NULL) {
2062                         *uc = crhold(pcb->inp_cred);
2063                         *ugid_lookupp = 1;
2064                 }
2065                 INP_INFO_RUNLOCK(pi);
2066                 if (*ugid_lookupp == 0) {
2067                         /*
2068                          * If the lookup did not yield any results, there
2069                          * is no sense in coming back and trying again. So
2070                          * we can set lookup to -1 and ensure that we wont
2071                          * bother the pcb system again.
2072                          */
2073                         *ugid_lookupp = -1;
2074                         return (0);
2075                 }
2076         } 
2077         if (insn->o.opcode == O_UID)
2078                 match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
2079         else if (insn->o.opcode == O_GID)
2080                 match = groupmember((gid_t)insn->d[0], *uc);
2081         else if (insn->o.opcode == O_JAIL)
2082                 match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
2083         return match;
2084 }
2085
2086 /*
2087  * The main check routine for the firewall.
2088  *
2089  * All arguments are in args so we can modify them and return them
2090  * back to the caller.
2091  *
2092  * Parameters:
2093  *
2094  *      args->m (in/out) The packet; we set to NULL when/if we nuke it.
2095  *              Starts with the IP header.
2096  *      args->eh (in)   Mac header if present, or NULL for layer3 packet.
2097  *      args->L3offset  Number of bytes bypassed if we came from L2.
2098  *                      e.g. often sizeof(eh)  ** NOTYET **
2099  *      args->oif       Outgoing interface, or NULL if packet is incoming.
2100  *              The incoming interface is in the mbuf. (in)
2101  *      args->divert_rule (in/out)
2102  *              Skip up to the first rule past this rule number;
2103  *              upon return, non-zero port number for divert or tee.
2104  *
2105  *      args->rule      Pointer to the last matching rule (in/out)
2106  *      args->next_hop  Socket we are forwarding to (out).
2107  *      args->f_id      Addresses grabbed from the packet (out)
2108  *      args->cookie    a cookie depending on rule action
2109  *
2110  * Return value:
2111  *
2112  *      IP_FW_PASS      the packet must be accepted
2113  *      IP_FW_DENY      the packet must be dropped
2114  *      IP_FW_DIVERT    divert packet, port in m_tag
2115  *      IP_FW_TEE       tee packet, port in m_tag
2116  *      IP_FW_DUMMYNET  to dummynet, pipe in args->cookie
2117  *      IP_FW_NETGRAPH  into netgraph, cookie args->cookie
2118  *
2119  */
2120 int
2121 ipfw_chk(struct ip_fw_args *args)
2122 {
2123
2124         /*
2125          * Local variables holding state during the processing of a packet:
2126          *
2127          * IMPORTANT NOTE: to speed up the processing of rules, there
2128          * are some assumption on the values of the variables, which
2129          * are documented here. Should you change them, please check
2130          * the implementation of the various instructions to make sure
2131          * that they still work.
2132          *
2133          * args->eh     The MAC header. It is non-null for a layer2
2134          *      packet, it is NULL for a layer-3 packet.
2135          * **notyet**
2136          * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
2137          *
2138          * m | args->m  Pointer to the mbuf, as received from the caller.
2139          *      It may change if ipfw_chk() does an m_pullup, or if it
2140          *      consumes the packet because it calls send_reject().
2141          *      XXX This has to change, so that ipfw_chk() never modifies
2142          *      or consumes the buffer.
2143          * ip   is the beginning of the ip(4 or 6) header.
2144          *      Calculated by adding the L3offset to the start of data.
2145          *      (Until we start using L3offset, the packet is
2146          *      supposed to start with the ip header).
2147          */
2148         struct mbuf *m = args->m;
2149         struct ip *ip = mtod(m, struct ip *);
2150
2151         /*
2152          * For rules which contain uid/gid or jail constraints, cache
2153          * a copy of the users credentials after the pcb lookup has been
2154          * executed. This will speed up the processing of rules with
2155          * these types of constraints, as well as decrease contention
2156          * on pcb related locks.
2157          */
2158         struct ucred *ucred_cache = NULL;
2159         int ucred_lookup = 0;
2160
2161         /*
2162          * divinput_flags       If non-zero, set to the IP_FW_DIVERT_*_FLAG
2163          *      associated with a packet input on a divert socket.  This
2164          *      will allow to distinguish traffic and its direction when
2165          *      it originates from a divert socket.
2166          */
2167         u_int divinput_flags = 0;
2168
2169         /*
2170          * oif | args->oif      If NULL, ipfw_chk has been called on the
2171          *      inbound path (ether_input, ip_input).
2172          *      If non-NULL, ipfw_chk has been called on the outbound path
2173          *      (ether_output, ip_output).
2174          */
2175         struct ifnet *oif = args->oif;
2176
2177         struct ip_fw *f = NULL;         /* matching rule */
2178         int retval = 0;
2179
2180         /*
2181          * hlen The length of the IP header.
2182          */
2183         u_int hlen = 0;         /* hlen >0 means we have an IP pkt */
2184
2185         /*
2186          * offset       The offset of a fragment. offset != 0 means that
2187          *      we have a fragment at this offset of an IPv4 packet.
2188          *      offset == 0 means that (if this is an IPv4 packet)
2189          *      this is the first or only fragment.
2190          *      For IPv6 offset == 0 means there is no Fragment Header. 
2191          *      If offset != 0 for IPv6 always use correct mask to
2192          *      get the correct offset because we add IP6F_MORE_FRAG
2193          *      to be able to dectect the first fragment which would
2194          *      otherwise have offset = 0.
2195          */
2196         u_short offset = 0;
2197
2198         /*
2199          * Local copies of addresses. They are only valid if we have
2200          * an IP packet.
2201          *
2202          * proto        The protocol. Set to 0 for non-ip packets,
2203          *      or to the protocol read from the packet otherwise.
2204          *      proto != 0 means that we have an IPv4 packet.
2205          *
2206          * src_port, dst_port   port numbers, in HOST format. Only
2207          *      valid for TCP and UDP packets.
2208          *
2209          * src_ip, dst_ip       ip addresses, in NETWORK format.
2210          *      Only valid for IPv4 packets.
2211          */
2212         u_int8_t proto;
2213         u_int16_t src_port = 0, dst_port = 0;   /* NOTE: host format    */
2214         struct in_addr src_ip, dst_ip;          /* NOTE: network format */
2215         u_int16_t ip_len=0;
2216         int pktlen;
2217         u_int16_t       etype = 0;      /* Host order stored ether type */
2218
2219         /*
2220          * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2221          *      MATCH_NONE when checked and not matched (q = NULL),
2222          *      MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2223          */
2224         int dyn_dir = MATCH_UNKNOWN;
2225         ipfw_dyn_rule *q = NULL;
2226         struct ip_fw_chain *chain = &V_layer3_chain;
2227         struct m_tag *mtag;
2228
2229         /*
2230          * We store in ulp a pointer to the upper layer protocol header.
2231          * In the ipv4 case this is easy to determine from the header,
2232          * but for ipv6 we might have some additional headers in the middle.
2233          * ulp is NULL if not found.
2234          */
2235         void *ulp = NULL;               /* upper layer protocol pointer. */
2236         /* XXX ipv6 variables */
2237         int is_ipv6 = 0;
2238         u_int16_t ext_hd = 0;   /* bits vector for extension header filtering */
2239         /* end of ipv6 variables */
2240         int is_ipv4 = 0;
2241
2242         if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
2243                 return (IP_FW_PASS);    /* accept */
2244
2245         dst_ip.s_addr = 0;              /* make sure it is initialized */
2246         pktlen = m->m_pkthdr.len;
2247         args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
2248         proto = args->f_id.proto = 0;   /* mark f_id invalid */
2249                 /* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
2250
2251 /*
2252  * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
2253  * then it sets p to point at the offset "len" in the mbuf. WARNING: the
2254  * pointer might become stale after other pullups (but we never use it
2255  * this way).
2256  */
2257 #define PULLUP_TO(len, p, T)                                            \
2258 do {                                                                    \
2259         int x = (len) + sizeof(T);                                      \
2260         if ((m)->m_len < x) {                                           \
2261                 args->m = m = m_pullup(m, x);                           \
2262                 if (m == NULL)                                          \
2263                         goto pullup_failed;                             \
2264         }                                                               \
2265         p = (mtod(m, char *) + (len));                                  \
2266 } while (0)
2267
2268         /*
2269          * if we have an ether header,
2270          */
2271         if (args->eh)
2272                 etype = ntohs(args->eh->ether_type);
2273
2274         /* Identify IP packets and fill up variables. */
2275         if (pktlen >= sizeof(struct ip6_hdr) &&
2276             (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
2277                 struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
2278                 is_ipv6 = 1;
2279                 args->f_id.addr_type = 6;
2280                 hlen = sizeof(struct ip6_hdr);
2281                 proto = ip6->ip6_nxt;
2282
2283                 /* Search extension headers to find upper layer protocols */
2284                 while (ulp == NULL) {
2285                         switch (proto) {
2286                         case IPPROTO_ICMPV6:
2287                                 PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2288                                 args->f_id.flags = ICMP6(ulp)->icmp6_type;
2289                                 break;
2290
2291                         case IPPROTO_TCP:
2292                                 PULLUP_TO(hlen, ulp, struct tcphdr);
2293                                 dst_port = TCP(ulp)->th_dport;
2294                                 src_port = TCP(ulp)->th_sport;
2295                                 args->f_id.flags = TCP(ulp)->th_flags;
2296                                 break;
2297
2298                         case IPPROTO_SCTP:
2299                                 PULLUP_TO(hlen, ulp, struct sctphdr);
2300                                 src_port = SCTP(ulp)->src_port;
2301                                 dst_port = SCTP(ulp)->dest_port;
2302                                 break;
2303
2304                         case IPPROTO_UDP:
2305                                 PULLUP_TO(hlen, ulp, struct udphdr);
2306                                 dst_port = UDP(ulp)->uh_dport;
2307                                 src_port = UDP(ulp)->uh_sport;
2308                                 break;
2309
2310                         case IPPROTO_HOPOPTS:   /* RFC 2460 */
2311                                 PULLUP_TO(hlen, ulp, struct ip6_hbh);
2312                                 ext_hd |= EXT_HOPOPTS;
2313                                 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2314                                 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2315                                 ulp = NULL;
2316                                 break;
2317
2318                         case IPPROTO_ROUTING:   /* RFC 2460 */
2319                                 PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2320                                 switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
2321                                 case 0:
2322                                         ext_hd |= EXT_RTHDR0;
2323                                         break;
2324                                 case 2:
2325                                         ext_hd |= EXT_RTHDR2;
2326                                         break;
2327                                 default:
2328                                         printf("IPFW2: IPV6 - Unknown Routing "
2329                                             "Header type(%d)\n",
2330                                             ((struct ip6_rthdr *)ulp)->ip6r_type);
2331                                         if (V_fw_deny_unknown_exthdrs)
2332                                             return (IP_FW_DENY);
2333                                         break;
2334                                 }
2335                                 ext_hd |= EXT_ROUTING;
2336                                 hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
2337                                 proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2338                                 ulp = NULL;
2339                                 break;
2340
2341                         case IPPROTO_FRAGMENT:  /* RFC 2460 */
2342                                 PULLUP_TO(hlen, ulp, struct ip6_frag);
2343                                 ext_hd |= EXT_FRAGMENT;
2344                                 hlen += sizeof (struct ip6_frag);
2345                                 proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2346                                 offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
2347                                         IP6F_OFF_MASK;
2348                                 /* Add IP6F_MORE_FRAG for offset of first
2349                                  * fragment to be != 0. */
2350                                 offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
2351                                         IP6F_MORE_FRAG;
2352                                 if (offset == 0) {
2353                                         printf("IPFW2: IPV6 - Invalid Fragment "
2354                                             "Header\n");
2355                                         if (V_fw_deny_unknown_exthdrs)
2356                                             return (IP_FW_DENY);
2357                                         break;
2358                                 }
2359                                 args->f_id.frag_id6 =
2360                                     ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
2361                                 ulp = NULL;
2362                                 break;
2363
2364                         case IPPROTO_DSTOPTS:   /* RFC 2460 */
2365                                 PULLUP_TO(hlen, ulp, struct ip6_hbh);
2366                                 ext_hd |= EXT_DSTOPTS;
2367                                 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2368                                 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2369                                 ulp = NULL;
2370                                 break;
2371
2372                         case IPPROTO_AH:        /* RFC 2402 */
2373                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2374                                 ext_hd |= EXT_AH;
2375                                 hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
2376                                 proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2377                                 ulp = NULL;
2378                                 break;
2379
2380                         case IPPROTO_ESP:       /* RFC 2406 */
2381                                 PULLUP_TO(hlen, ulp, uint32_t); /* SPI, Seq# */
2382                                 /* Anything past Seq# is variable length and
2383                                  * data past this ext. header is encrypted. */
2384                                 ext_hd |= EXT_ESP;
2385                                 break;
2386
2387                         case IPPROTO_NONE:      /* RFC 2460 */
2388                                 /*
2389                                  * Packet ends here, and IPv6 header has
2390                                  * already been pulled up. If ip6e_len!=0
2391                                  * then octets must be ignored.
2392                                  */
2393                                 ulp = ip; /* non-NULL to get out of loop. */
2394                                 break;
2395
2396                         case IPPROTO_OSPFIGP:
2397                                 /* XXX OSPF header check? */
2398                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2399                                 break;
2400
2401                         case IPPROTO_PIM:
2402                                 /* XXX PIM header check? */
2403                                 PULLUP_TO(hlen, ulp, struct pim);
2404                                 break;
2405
2406                         case IPPROTO_CARP:
2407                                 PULLUP_TO(hlen, ulp, struct carp_header);
2408                                 if (((struct carp_header *)ulp)->carp_version !=
2409                                     CARP_VERSION) 
2410                                         return (IP_FW_DENY);
2411                                 if (((struct carp_header *)ulp)->carp_type !=
2412                                     CARP_ADVERTISEMENT) 
2413                                         return (IP_FW_DENY);
2414                                 break;
2415
2416                         case IPPROTO_IPV6:      /* RFC 2893 */
2417                                 PULLUP_TO(hlen, ulp, struct ip6_hdr);
2418                                 break;
2419
2420                         case IPPROTO_IPV4:      /* RFC 2893 */
2421                                 PULLUP_TO(hlen, ulp, struct ip);
2422                                 break;
2423
2424                         default:
2425                                 printf("IPFW2: IPV6 - Unknown Extension "
2426                                     "Header(%d), ext_hd=%x\n", proto, ext_hd);
2427                                 if (V_fw_deny_unknown_exthdrs)
2428                                     return (IP_FW_DENY);
2429                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
2430                                 break;
2431                         } /*switch */
2432                 }
2433                 ip = mtod(m, struct ip *);
2434                 ip6 = (struct ip6_hdr *)ip;
2435                 args->f_id.src_ip6 = ip6->ip6_src;
2436                 args->f_id.dst_ip6 = ip6->ip6_dst;
2437                 args->f_id.src_ip = 0;
2438                 args->f_id.dst_ip = 0;
2439                 args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
2440         } else if (pktlen >= sizeof(struct ip) &&
2441             (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
2442                 is_ipv4 = 1;
2443                 hlen = ip->ip_hl << 2;
2444                 args->f_id.addr_type = 4;
2445
2446                 /*
2447                  * Collect parameters into local variables for faster matching.
2448                  */
2449                 proto = ip->ip_p;
2450                 src_ip = ip->ip_src;
2451                 dst_ip = ip->ip_dst;
2452                 if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2453                         offset = ntohs(ip->ip_off) & IP_OFFMASK;
2454                         ip_len = ntohs(ip->ip_len);
2455                 } else {
2456                         offset = ip->ip_off & IP_OFFMASK;
2457                         ip_len = ip->ip_len;
2458                 }
2459                 pktlen = ip_len < pktlen ? ip_len : pktlen;
2460
2461                 if (offset == 0) {
2462                         switch (proto) {
2463                         case IPPROTO_TCP:
2464                                 PULLUP_TO(hlen, ulp, struct tcphdr);
2465                                 dst_port = TCP(ulp)->th_dport;
2466                                 src_port = TCP(ulp)->th_sport;
2467                                 args->f_id.flags = TCP(ulp)->th_flags;
2468                                 break;
2469
2470                         case IPPROTO_UDP:
2471                                 PULLUP_TO(hlen, ulp, struct udphdr);
2472                                 dst_port = UDP(ulp)->uh_dport;
2473                                 src_port = UDP(ulp)->uh_sport;
2474                                 break;
2475
2476                         case IPPROTO_ICMP:
2477                                 PULLUP_TO(hlen, ulp, struct icmphdr);
2478                                 args->f_id.flags = ICMP(ulp)->icmp_type;
2479                                 break;
2480
2481                         default:
2482                                 break;
2483                         }
2484                 }
2485
2486                 ip = mtod(m, struct ip *);
2487                 args->f_id.src_ip = ntohl(src_ip.s_addr);
2488                 args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2489         }
2490 #undef PULLUP_TO
2491         if (proto) { /* we may have port numbers, store them */
2492                 args->f_id.proto = proto;
2493                 args->f_id.src_port = src_port = ntohs(src_port);
2494                 args->f_id.dst_port = dst_port = ntohs(dst_port);
2495         }
2496
2497         IPFW_RLOCK(chain);
2498         mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2499         if (args->rule) {
2500                 /*
2501                  * Packet has already been tagged. Look for the next rule
2502                  * to restart processing. Make sure that args->rule still
2503                  * exists and not changed.
2504                  */
2505                 if (chain->id != args->chain_id) {
2506                         for (f = chain->rules; f != NULL; f = f->next)
2507                                 if (f == args->rule && f->id == args->rule_id)
2508                                         break;
2509
2510                         if (f != NULL)
2511                                 f = f->next_rule;
2512                         else
2513                                 f = ip_fw_default_rule;
2514                 } else 
2515                         f = args->rule->next_rule;
2516
2517                 if (f == NULL)
2518                         f = lookup_next_rule(args->rule, 0);
2519         } else {
2520                 /*
2521                  * Find the starting rule. It can be either the first
2522                  * one, or the one after divert_rule if asked so.
2523                  */
2524                 int skipto = mtag ? divert_cookie(mtag) : 0;
2525
2526                 f = chain->rules;
2527                 if (args->eh == NULL && skipto != 0) {
2528                         if (skipto >= IPFW_DEFAULT_RULE) {
2529                                 IPFW_RUNLOCK(chain);
2530                                 return (IP_FW_DENY); /* invalid */
2531                         }
2532                         while (f && f->rulenum <= skipto)
2533                                 f = f->next;
2534                         if (f == NULL) {        /* drop packet */
2535                                 IPFW_RUNLOCK(chain);
2536                                 return (IP_FW_DENY);
2537                         }
2538                 }
2539         }
2540         /* reset divert rule to avoid confusion later */
2541         if (mtag) {
2542                 divinput_flags = divert_info(mtag) &
2543                     (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2544                 m_tag_delete(m, mtag);
2545         }
2546
2547         /*
2548          * Now scan the rules, and parse microinstructions for each rule.
2549          */
2550         for (; f; f = f->next) {
2551                 ipfw_insn *cmd;
2552                 uint32_t tablearg = 0;
2553                 int l, cmdlen, skip_or; /* skip rest of OR block */
2554
2555 again:
2556                 if (V_set_disable & (1 << f->set) )
2557                         continue;
2558
2559                 skip_or = 0;
2560                 for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2561                     l -= cmdlen, cmd += cmdlen) {
2562                         int match;
2563
2564                         /*
2565                          * check_body is a jump target used when we find a
2566                          * CHECK_STATE, and need to jump to the body of
2567                          * the target rule.
2568                          */
2569
2570 check_body:
2571                         cmdlen = F_LEN(cmd);
2572                         /*
2573                          * An OR block (insn_1 || .. || insn_n) has the
2574                          * F_OR bit set in all but the last instruction.
2575                          * The first match will set "skip_or", and cause
2576                          * the following instructions to be skipped until
2577                          * past the one with the F_OR bit clear.
2578                          */
2579                         if (skip_or) {          /* skip this instruction */
2580                                 if ((cmd->len & F_OR) == 0)
2581                                         skip_or = 0;    /* next one is good */
2582                                 continue;
2583                         }
2584                         match = 0; /* set to 1 if we succeed */
2585
2586                         switch (cmd->opcode) {
2587                         /*
2588                          * The first set of opcodes compares the packet's
2589                          * fields with some pattern, setting 'match' if a
2590                          * match is found. At the end of the loop there is
2591                          * logic to deal with F_NOT and F_OR flags associated
2592                          * with the opcode.
2593                          */
2594                         case O_NOP:
2595                                 match = 1;
2596                                 break;
2597
2598                         case O_FORWARD_MAC:
2599                                 printf("ipfw: opcode %d unimplemented\n",
2600                                     cmd->opcode);
2601                                 break;
2602
2603                         case O_GID:
2604                         case O_UID:
2605                         case O_JAIL:
2606                                 /*
2607                                  * We only check offset == 0 && proto != 0,
2608                                  * as this ensures that we have a
2609                                  * packet with the ports info.
2610                                  */
2611                                 if (offset!=0)
2612                                         break;
2613                                 if (is_ipv6) /* XXX to be fixed later */
2614                                         break;
2615                                 if (proto == IPPROTO_TCP ||
2616                                     proto == IPPROTO_UDP)
2617                                         match = check_uidgid(
2618                                                     (ipfw_insn_u32 *)cmd,
2619                                                     proto, oif,
2620                                                     dst_ip, dst_port,
2621                                                     src_ip, src_port, &ucred_cache,
2622                                                     &ucred_lookup, args->inp);
2623                                 break;
2624
2625                         case O_RECV:
2626                                 match = iface_match(m->m_pkthdr.rcvif,
2627                                     (ipfw_insn_if *)cmd);
2628                                 break;
2629
2630                         case O_XMIT:
2631                                 match = iface_match(oif, (ipfw_insn_if *)cmd);
2632                                 break;
2633
2634                         case O_VIA:
2635                                 match = iface_match(oif ? oif :
2636                                     m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2637                                 break;
2638
2639                         case O_MACADDR2:
2640                                 if (args->eh != NULL) { /* have MAC header */
2641                                         u_int32_t *want = (u_int32_t *)
2642                                                 ((ipfw_insn_mac *)cmd)->addr;
2643                                         u_int32_t *mask = (u_int32_t *)
2644                                                 ((ipfw_insn_mac *)cmd)->mask;
2645                                         u_int32_t *hdr = (u_int32_t *)args->eh;
2646
2647                                         match =
2648                                             ( want[0] == (hdr[0] & mask[0]) &&
2649                                               want[1] == (hdr[1] & mask[1]) &&
2650                                               want[2] == (hdr[2] & mask[2]) );
2651                                 }
2652                                 break;
2653
2654                         case O_MAC_TYPE:
2655                                 if (args->eh != NULL) {
2656                                         u_int16_t *p =
2657                                             ((ipfw_insn_u16 *)cmd)->ports;
2658                                         int i;
2659
2660                                         for (i = cmdlen - 1; !match && i>0;
2661                                             i--, p += 2)
2662                                                 match = (etype >= p[0] &&
2663                                                     etype <= p[1]);
2664                                 }
2665                                 break;
2666
2667                         case O_FRAG:
2668                                 match = (offset != 0);
2669                                 break;
2670
2671                         case O_IN:      /* "out" is "not in" */
2672                                 match = (oif == NULL);
2673                                 break;
2674
2675                         case O_LAYER2:
2676                                 match = (args->eh != NULL);
2677                                 break;
2678
2679                         case O_DIVERTED:
2680                                 match = (cmd->arg1 & 1 && divinput_flags &
2681                                     IP_FW_DIVERT_LOOPBACK_FLAG) ||
2682                                         (cmd->arg1 & 2 && divinput_flags &
2683                                     IP_FW_DIVERT_OUTPUT_FLAG);
2684                                 break;
2685
2686                         case O_PROTO:
2687                                 /*
2688                                  * We do not allow an arg of 0 so the
2689                                  * check of "proto" only suffices.
2690                                  */
2691                                 match = (proto == cmd->arg1);
2692                                 break;
2693
2694                         case O_IP_SRC:
2695                                 match = is_ipv4 &&
2696                                     (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2697                                     src_ip.s_addr);
2698                                 break;
2699
2700                         case O_IP_SRC_LOOKUP:
2701                         case O_IP_DST_LOOKUP:
2702                                 if (is_ipv4) {
2703                                     uint32_t a =
2704                                         (cmd->opcode == O_IP_DST_LOOKUP) ?
2705                                             dst_ip.s_addr : src_ip.s_addr;
2706                                     uint32_t v = 0;
2707
2708                                     match = lookup_table(chain, cmd->arg1, a,
2709                                         &v);
2710                                     if (!match)
2711                                         break;
2712                                     if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2713                                         match =
2714                                             ((ipfw_insn_u32 *)cmd)->d[0] == v;
2715                                     else
2716                                         tablearg = v;
2717                                 }
2718                                 break;
2719
2720                         case O_IP_SRC_MASK:
2721                         case O_IP_DST_MASK:
2722                                 if (is_ipv4) {
2723                                     uint32_t a =
2724                                         (cmd->opcode == O_IP_DST_MASK) ?
2725                                             dst_ip.s_addr : src_ip.s_addr;
2726                                     uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2727                                     int i = cmdlen-1;
2728
2729                                     for (; !match && i>0; i-= 2, p+= 2)
2730                                         match = (p[0] == (a & p[1]));
2731                                 }
2732                                 break;
2733
2734                         case O_IP_SRC_ME:
2735                                 if (is_ipv4) {
2736                                         struct ifnet *tif;
2737
2738                                         INADDR_TO_IFP(src_ip, tif);
2739                                         match = (tif != NULL);
2740                                 }
2741                                 break;
2742
2743                         case O_IP_DST_SET:
2744                         case O_IP_SRC_SET:
2745                                 if (is_ipv4) {
2746                                         u_int32_t *d = (u_int32_t *)(cmd+1);
2747                                         u_int32_t addr =
2748                                             cmd->opcode == O_IP_DST_SET ?
2749                                                 args->f_id.dst_ip :
2750                                                 args->f_id.src_ip;
2751
2752                                             if (addr < d[0])
2753                                                     break;
2754                                             addr -= d[0]; /* subtract base */
2755                                             match = (addr < cmd->arg1) &&
2756                                                 ( d[ 1 + (addr>>5)] &
2757                                                   (1<<(addr & 0x1f)) );
2758                                 }
2759                                 break;
2760
2761                         case O_IP_DST:
2762                                 match = is_ipv4 &&
2763                                     (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2764                                     dst_ip.s_addr);
2765                                 break;
2766
2767                         case O_IP_DST_ME:
2768                                 if (is_ipv4) {
2769                                         struct ifnet *tif;
2770
2771                                         INADDR_TO_IFP(dst_ip, tif);
2772                                         match = (tif != NULL);
2773                                 }
2774                                 break;
2775
2776                         case O_IP_SRCPORT:
2777                         case O_IP_DSTPORT:
2778                                 /*
2779                                  * offset == 0 && proto != 0 is enough
2780                                  * to guarantee that we have a
2781                                  * packet with port info.
2782                                  */
2783                                 if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2784                                     && offset == 0) {
2785                                         u_int16_t x =
2786                                             (cmd->opcode == O_IP_SRCPORT) ?
2787                                                 src_port : dst_port ;
2788                                         u_int16_t *p =
2789                                             ((ipfw_insn_u16 *)cmd)->ports;
2790                                         int i;
2791
2792                                         for (i = cmdlen - 1; !match && i>0;
2793                                             i--, p += 2)
2794                                                 match = (x>=p[0] && x<=p[1]);
2795                                 }
2796                                 break;
2797
2798                         case O_ICMPTYPE:
2799                                 match = (offset == 0 && proto==IPPROTO_ICMP &&
2800                                     icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2801                                 break;
2802
2803 #ifdef INET6
2804                         case O_ICMP6TYPE:
2805                                 match = is_ipv6 && offset == 0 &&
2806                                     proto==IPPROTO_ICMPV6 &&
2807                                     icmp6type_match(
2808                                         ICMP6(ulp)->icmp6_type,
2809                                         (ipfw_insn_u32 *)cmd);
2810                                 break;
2811 #endif /* INET6 */
2812
2813                         case O_IPOPT:
2814                                 match = (is_ipv4 &&
2815                                     ipopts_match(ip, cmd) );
2816                                 break;
2817
2818                         case O_IPVER:
2819                                 match = (is_ipv4 &&
2820                                     cmd->arg1 == ip->ip_v);
2821                                 break;
2822
2823                         case O_IPID:
2824                         case O_IPLEN:
2825                         case O_IPTTL:
2826                                 if (is_ipv4) {  /* only for IP packets */
2827                                     uint16_t x;
2828                                     uint16_t *p;
2829                                     int i;
2830
2831                                     if (cmd->opcode == O_IPLEN)
2832                                         x = ip_len;
2833                                     else if (cmd->opcode == O_IPTTL)
2834                                         x = ip->ip_ttl;
2835                                     else /* must be IPID */
2836                                         x = ntohs(ip->ip_id);
2837                                     if (cmdlen == 1) {
2838                                         match = (cmd->arg1 == x);
2839                                         break;
2840                                     }
2841                                     /* otherwise we have ranges */
2842                                     p = ((ipfw_insn_u16 *)cmd)->ports;
2843                                     i = cmdlen - 1;
2844                                     for (; !match && i>0; i--, p += 2)
2845                                         match = (x >= p[0] && x <= p[1]);
2846                                 }
2847                                 break;
2848
2849                         case O_IPPRECEDENCE:
2850                                 match = (is_ipv4 &&
2851                                     (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2852                                 break;
2853
2854                         case O_IPTOS:
2855                                 match = (is_ipv4 &&
2856                                     flags_match(cmd, ip->ip_tos));
2857                                 break;
2858
2859                         case O_TCPDATALEN:
2860                                 if (proto == IPPROTO_TCP && offset == 0) {
2861                                     struct tcphdr *tcp;
2862                                     uint16_t x;
2863                                     uint16_t *p;
2864                                     int i;
2865
2866                                     tcp = TCP(ulp);
2867                                     x = ip_len -
2868                                         ((ip->ip_hl + tcp->th_off) << 2);
2869                                     if (cmdlen == 1) {
2870                                         match = (cmd->arg1 == x);
2871                                         break;
2872                                     }
2873                                     /* otherwise we have ranges */
2874                                     p = ((ipfw_insn_u16 *)cmd)->ports;
2875                                     i = cmdlen - 1;
2876                                     for (; !match && i>0; i--, p += 2)
2877                                         match = (x >= p[0] && x <= p[1]);
2878                                 }
2879                                 break;
2880
2881                         case O_TCPFLAGS:
2882                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2883                                     flags_match(cmd, TCP(ulp)->th_flags));
2884                                 break;
2885
2886                         case O_TCPOPTS:
2887                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2888                                     tcpopts_match(TCP(ulp), cmd));
2889                                 break;
2890
2891                         case O_TCPSEQ:
2892                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2893                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
2894                                         TCP(ulp)->th_seq);
2895                                 break;
2896
2897                         case O_TCPACK:
2898                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2899                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
2900                                         TCP(ulp)->th_ack);
2901                                 break;
2902
2903                         case O_TCPWIN:
2904                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2905                                     cmd->arg1 == TCP(ulp)->th_win);
2906                                 break;
2907
2908                         case O_ESTAB:
2909                                 /* reject packets which have SYN only */
2910                                 /* XXX should i also check for TH_ACK ? */
2911                                 match = (proto == IPPROTO_TCP && offset == 0 &&
2912                                     (TCP(ulp)->th_flags &
2913                                      (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2914                                 break;
2915
2916                         case O_ALTQ: {
2917                                 struct pf_mtag *at;
2918                                 ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2919
2920                                 match = 1;
2921                                 at = pf_find_mtag(m);
2922                                 if (at != NULL && at->qid != 0)
2923                                         break;
2924                                 at = pf_get_mtag(m);
2925                                 if (at == NULL) {
2926                                         /*
2927                                          * Let the packet fall back to the
2928                                          * default ALTQ.
2929                                          */
2930                                         break;
2931                                 }
2932                                 at->qid = altq->qid;
2933                                 if (is_ipv4)
2934                                         at->af = AF_INET;
2935                                 else
2936                                         at->af = AF_LINK;
2937                                 at->hdr = ip;
2938                                 break;
2939                         }
2940
2941                         case O_LOG:
2942                                 if (V_fw_verbose)
2943                                         ipfw_log(f, hlen, args, m,
2944                                             oif, offset, tablearg, ip);
2945                                 match = 1;
2946                                 break;
2947
2948                         case O_PROB:
2949                                 match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2950                                 break;
2951
2952                         case O_VERREVPATH:
2953                                 /* Outgoing packets automatically pass/match */
2954                                 match = ((oif != NULL) ||
2955                                     (m->m_pkthdr.rcvif == NULL) ||
2956                                     (
2957 #ifdef INET6
2958                                     is_ipv6 ?
2959                                         verify_path6(&(args->f_id.src_ip6),
2960                                             m->m_pkthdr.rcvif) :
2961 #endif
2962                                     verify_path(src_ip, m->m_pkthdr.rcvif,
2963                                         args->f_id.fib)));
2964                                 break;
2965
2966                         case O_VERSRCREACH:
2967                                 /* Outgoing packets automatically pass/match */
2968                                 match = (hlen > 0 && ((oif != NULL) ||
2969 #ifdef INET6
2970                                     is_ipv6 ?
2971                                         verify_path6(&(args->f_id.src_ip6),
2972                                             NULL) :
2973 #endif
2974                                     verify_path(src_ip, NULL, args->f_id.fib)));
2975                                 break;
2976
2977                         case O_ANTISPOOF:
2978                                 /* Outgoing packets automatically pass/match */
2979                                 if (oif == NULL && hlen > 0 &&
2980                                     (  (is_ipv4 && in_localaddr(src_ip))
2981 #ifdef INET6
2982                                     || (is_ipv6 &&
2983                                         in6_localaddr(&(args->f_id.src_ip6)))
2984 #endif
2985                                     ))
2986                                         match =
2987 #ifdef INET6
2988                                             is_ipv6 ? verify_path6(
2989                                                 &(args->f_id.src_ip6),
2990                                                 m->m_pkthdr.rcvif) :
2991 #endif
2992                                             verify_path(src_ip,
2993                                                 m->m_pkthdr.rcvif,
2994                                                 args->f_id.fib);
2995                                 else
2996                                         match = 1;
2997                                 break;
2998
2999                         case O_IPSEC:
3000 #ifdef IPSEC
3001                                 match = (m_tag_find(m,
3002                                     PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
3003 #endif
3004                                 /* otherwise no match */
3005                                 break;
3006
3007 #ifdef INET6
3008                         case O_IP6_SRC:
3009                                 match = is_ipv6 &&
3010                                     IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
3011                                     &((ipfw_insn_ip6 *)cmd)->addr6);
3012                                 break;
3013
3014                         case O_IP6_DST:
3015                                 match = is_ipv6 &&
3016                                 IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
3017                                     &((ipfw_insn_ip6 *)cmd)->addr6);
3018                                 break;
3019                         case O_IP6_SRC_MASK:
3020                         case O_IP6_DST_MASK:
3021                                 if (is_ipv6) {
3022                                         int i = cmdlen - 1;
3023                                         struct in6_addr p;
3024                                         struct in6_addr *d =
3025                                             &((ipfw_insn_ip6 *)cmd)->addr6;
3026
3027                                         for (; !match && i > 0; d += 2,
3028                                             i -= F_INSN_SIZE(struct in6_addr)
3029                                             * 2) {
3030                                                 p = (cmd->opcode ==
3031                                                     O_IP6_SRC_MASK) ?
3032                                                     args->f_id.src_ip6:
3033                                                     args->f_id.dst_ip6;
3034                                                 APPLY_MASK(&p, &d[1]);
3035                                                 match =
3036                                                     IN6_ARE_ADDR_EQUAL(&d[0],
3037                                                     &p);
3038                                         }
3039                                 }
3040                                 break;
3041
3042                         case O_IP6_SRC_ME:
3043                                 match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
3044                                 break;
3045
3046                         case O_IP6_DST_ME:
3047                                 match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
3048                                 break;
3049
3050                         case O_FLOW6ID:
3051                                 match = is_ipv6 &&
3052                                     flow6id_match(args->f_id.flow_id6,
3053                                     (ipfw_insn_u32 *) cmd);
3054                                 break;
3055
3056                         case O_EXT_HDR:
3057                                 match = is_ipv6 &&
3058                                     (ext_hd & ((ipfw_insn *) cmd)->arg1);
3059                                 break;
3060
3061                         case O_IP6:
3062                                 match = is_ipv6;
3063                                 break;
3064 #endif
3065
3066                         case O_IP4:
3067                                 match = is_ipv4;
3068                                 break;
3069
3070                         case O_TAG: {
3071                                 uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
3072                                     tablearg : cmd->arg1;
3073
3074                                 /* Packet is already tagged with this tag? */
3075                                 mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
3076
3077                                 /* We have `untag' action when F_NOT flag is
3078                                  * present. And we must remove this mtag from
3079                                  * mbuf and reset `match' to zero (`match' will
3080                                  * be inversed later).
3081                                  * Otherwise we should allocate new mtag and
3082                                  * push it into mbuf.
3083                                  */
3084                                 if (cmd->len & F_NOT) { /* `untag' action */
3085                                         if (mtag != NULL)
3086                                                 m_tag_delete(m, mtag);
3087                                 } else if (mtag == NULL) {
3088                                         if ((mtag = m_tag_alloc(MTAG_IPFW,
3089                                             tag, 0, M_NOWAIT)) != NULL)
3090                                                 m_tag_prepend(m, mtag);
3091                                 }
3092                                 match = (cmd->len & F_NOT) ? 0: 1;
3093                                 break;
3094                         }
3095
3096                         case O_FIB: /* try match the specified fib */
3097                                 if (args->f_id.fib == cmd->arg1)
3098                                         match = 1;
3099                                 break;
3100
3101                         case O_TAGGED: {
3102                                 uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
3103                                     tablearg : cmd->arg1;
3104
3105                                 if (cmdlen == 1) {
3106                                         match = m_tag_locate(m, MTAG_IPFW,
3107                                             tag, NULL) != NULL;
3108                                         break;
3109                                 }
3110
3111                                 /* we have ranges */
3112                                 for (mtag = m_tag_first(m);
3113                                     mtag != NULL && !match;
3114                                     mtag = m_tag_next(m, mtag)) {
3115                                         uint16_t *p;
3116                                         int i;
3117
3118                                         if (mtag->m_tag_cookie != MTAG_IPFW)
3119                                                 continue;
3120
3121                                         p = ((ipfw_insn_u16 *)cmd)->ports;
3122                                         i = cmdlen - 1;
3123                                         for(; !match && i > 0; i--, p += 2)
3124                                                 match =
3125                                                     mtag->m_tag_id >= p[0] &&
3126                                                     mtag->m_tag_id <= p[1];
3127                                 }
3128                                 break;
3129                         }
3130                                 
3131                         /*
3132                          * The second set of opcodes represents 'actions',
3133                          * i.e. the terminal part of a rule once the packet
3134                          * matches all previous patterns.
3135                          * Typically there is only one action for each rule,
3136                          * and the opcode is stored at the end of the rule
3137                          * (but there are exceptions -- see below).
3138                          *
3139                          * In general, here we set retval and terminate the
3140                          * outer loop (would be a 'break 3' in some language,
3141                          * but we need to do a 'goto done').
3142                          *
3143                          * Exceptions:
3144                          * O_COUNT and O_SKIPTO actions:
3145                          *   instead of terminating, we jump to the next rule
3146                          *   ('goto next_rule', equivalent to a 'break 2'),
3147                          *   or to the SKIPTO target ('goto again' after
3148                          *   having set f, cmd and l), respectively.
3149                          *
3150                          * O_TAG, O_LOG and O_ALTQ action parameters:
3151                          *   perform some action and set match = 1;
3152                          *
3153                          * O_LIMIT and O_KEEP_STATE: these opcodes are
3154                          *   not real 'actions', and are stored right
3155                          *   before the 'action' part of the rule.
3156                          *   These opcodes try to install an entry in the
3157                          *   state tables; if successful, we continue with
3158                          *   the next opcode (match=1; break;), otherwise
3159                          *   the packet *   must be dropped
3160                          *   ('goto done' after setting retval);
3161                          *
3162                          * O_PROBE_STATE and O_CHECK_STATE: these opcodes
3163                          *   cause a lookup of the state table, and a jump
3164                          *   to the 'action' part of the parent rule
3165                          *   ('goto check_body') if an entry is found, or
3166                          *   (CHECK_STATE only) a jump to the next rule if
3167                          *   the entry is not found ('goto next_rule').
3168                          *   The result of the lookup is cached to make
3169                          *   further instances of these opcodes are
3170                          *   effectively NOPs.
3171                          */
3172                         case O_LIMIT:
3173                         case O_KEEP_STATE:
3174                                 if (install_state(f,
3175                                     (ipfw_insn_limit *)cmd, args, tablearg)) {
3176                                         retval = IP_FW_DENY;
3177                                         goto done; /* error/limit violation */
3178                                 }
3179                                 match = 1;
3180                                 break;
3181
3182                         case O_PROBE_STATE:
3183                         case O_CHECK_STATE:
3184                                 /*
3185                                  * dynamic rules are checked at the first
3186                                  * keep-state or check-state occurrence,
3187                                  * with the result being stored in dyn_dir.
3188                                  * The compiler introduces a PROBE_STATE
3189                                  * instruction for us when we have a
3190                                  * KEEP_STATE (because PROBE_STATE needs
3191                                  * to be run first).
3192                                  */
3193                                 if (dyn_dir == MATCH_UNKNOWN &&
3194                                     (q = lookup_dyn_rule(&args->f_id,
3195                                      &dyn_dir, proto == IPPROTO_TCP ?
3196                                         TCP(ulp) : NULL))
3197                                         != NULL) {
3198                                         /*
3199                                          * Found dynamic entry, update stats
3200                                          * and jump to the 'action' part of
3201                                          * the parent rule.
3202                                          */
3203                                         q->pcnt++;
3204                                         q->bcnt += pktlen;
3205                                         f = q->rule;
3206                                         cmd = ACTION_PTR(f);
3207                                         l = f->cmd_len - f->act_ofs;
3208                                         IPFW_DYN_UNLOCK();
3209                                         goto check_body;
3210                                 }
3211                                 /*
3212                                  * Dynamic entry not found. If CHECK_STATE,
3213                                  * skip to next rule, if PROBE_STATE just
3214                                  * ignore and continue with next opcode.
3215                                  */
3216                                 if (cmd->opcode == O_CHECK_STATE)
3217                                         goto next_rule;
3218                                 match = 1;
3219                                 break;
3220
3221                         case O_ACCEPT:
3222                                 retval = 0;     /* accept */
3223                                 goto done;
3224
3225                         case O_PIPE:
3226                         case O_QUEUE:
3227                                 args->rule = f; /* report matching rule */
3228                                 args->rule_id = f->id;
3229                                 args->chain_id = chain->id;
3230                                 if (cmd->arg1 == IP_FW_TABLEARG)
3231                                         args->cookie = tablearg;
3232                                 else
3233                                         args->cookie = cmd->arg1;
3234                                 retval = IP_FW_DUMMYNET;
3235                                 goto done;
3236
3237                         case O_DIVERT:
3238                         case O_TEE: {
3239                                 struct divert_tag *dt;
3240
3241                                 if (args->eh) /* not on layer 2 */
3242                                         break;
3243                                 mtag = m_tag_get(PACKET_TAG_DIVERT,
3244                                                 sizeof(struct divert_tag),
3245                                                 M_NOWAIT);
3246                                 if (mtag == NULL) {
3247                                         /* XXX statistic */
3248                                         /* drop packet */
3249                                         IPFW_RUNLOCK(chain);
3250                                         if (ucred_cache != NULL)
3251                                                 crfree(ucred_cache);
3252                                         return (IP_FW_DENY);
3253                                 }
3254                                 dt = (struct divert_tag *)(mtag+1);
3255                                 dt->cookie = f->rulenum;
3256                                 if (cmd->arg1 == IP_FW_TABLEARG)
3257                                         dt->info = tablearg;
3258                                 else
3259                                         dt->info = cmd->arg1;
3260                                 m_tag_prepend(m, mtag);
3261                                 retval = (cmd->opcode == O_DIVERT) ?
3262                                     IP_FW_DIVERT : IP_FW_TEE;
3263                                 goto done;
3264                         }
3265                         case O_COUNT:
3266                         case O_SKIPTO:
3267                                 f->pcnt++;      /* update stats */
3268                                 f->bcnt += pktlen;
3269                                 f->timestamp = time_uptime;
3270                                 if (cmd->opcode == O_COUNT)
3271                                         goto next_rule;
3272                                 /* handle skipto */
3273                                 if (cmd->arg1 == IP_FW_TABLEARG) {
3274                                         f = lookup_next_rule(f, tablearg);
3275                                 } else {
3276                                         if (f->next_rule == NULL)
3277                                                 lookup_next_rule(f, 0);
3278                                         f = f->next_rule;
3279                                 }
3280                                 goto again;
3281
3282                         case O_REJECT:
3283                                 /*
3284                                  * Drop the packet and send a reject notice
3285                                  * if the packet is not ICMP (or is an ICMP
3286                                  * query), and it is not multicast/broadcast.
3287                                  */
3288                                 if (hlen > 0 && is_ipv4 && offset == 0 &&
3289                                     (proto != IPPROTO_ICMP ||
3290                                      is_icmp_query(ICMP(ulp))) &&
3291                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
3292                                     !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3293                                         send_reject(args, cmd->arg1, ip_len, ip);
3294                                         m = args->m;
3295                                 }
3296                                 /* FALLTHROUGH */
3297 #ifdef INET6
3298                         case O_UNREACH6:
3299                                 if (hlen > 0 && is_ipv6 &&
3300                                     ((offset & IP6F_OFF_MASK) == 0) &&
3301                                     (proto != IPPROTO_ICMPV6 ||
3302                                      (is_icmp6_query(args->f_id.flags) == 1)) &&
3303                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
3304                                     !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
3305                                         send_reject6(
3306                                             args, cmd->arg1, hlen,
3307                                             (struct ip6_hdr *)ip);
3308                                         m = args->m;
3309                                 }
3310                                 /* FALLTHROUGH */
3311 #endif
3312                         case O_DENY:
3313                                 retval = IP_FW_DENY;
3314                                 goto done;
3315
3316                         case O_FORWARD_IP: {
3317                                 struct sockaddr_in *sa;
3318                                 sa = &(((ipfw_insn_sa *)cmd)->sa);
3319                                 if (args->eh)   /* not valid on layer2 pkts */
3320                                         break;
3321                                 if (!q || dyn_dir == MATCH_FORWARD) {
3322                                         if (sa->sin_addr.s_addr == INADDR_ANY) {
3323                                                 bcopy(sa, &args->hopstore,
3324                                                         sizeof(*sa));
3325                                                 args->hopstore.sin_addr.s_addr =
3326                                                     htonl(tablearg);
3327                                                 args->next_hop =
3328                                                     &args->hopstore;
3329                                         } else {
3330                                                 args->next_hop = sa;
3331                                         }
3332                                 }
3333                                 retval = IP_FW_PASS;
3334                             }
3335                             goto done;
3336
3337                         case O_NETGRAPH:
3338                         case O_NGTEE:
3339                                 args->rule = f; /* report matching rule */
3340                                 args->rule_id = f->id;
3341                                 args->chain_id = chain->id;
3342                                 if (cmd->arg1 == IP_FW_TABLEARG)
3343                                         args->cookie = tablearg;
3344                                 else
3345                                         args->cookie = cmd->arg1;
3346                                 retval = (cmd->opcode == O_NETGRAPH) ?
3347                                     IP_FW_NETGRAPH : IP_FW_NGTEE;
3348                                 goto done;
3349
3350                         case O_SETFIB:
3351                                 f->pcnt++;      /* update stats */
3352                                 f->bcnt += pktlen;
3353                                 f->timestamp = time_uptime;
3354                                 M_SETFIB(m, cmd->arg1);
3355                                 args->f_id.fib = cmd->arg1;
3356                                 goto next_rule;
3357
3358                         case O_NAT: {
3359                                 struct cfg_nat *t;
3360                                 int nat_id;
3361
3362                                 if (IPFW_NAT_LOADED) {
3363                                         args->rule = f; /* Report matching rule. */
3364                                         args->rule_id = f->id;
3365                                         args->chain_id = chain->id;
3366                                         t = ((ipfw_insn_nat *)cmd)->nat;
3367                                         if (t == NULL) {
3368                                                 nat_id = (cmd->arg1 == IP_FW_TABLEARG) ?
3369                                                     tablearg : cmd->arg1;
3370                                                 LOOKUP_NAT(V_layer3_chain, nat_id, t);
3371                                                 if (t == NULL) {
3372                                                         retval = IP_FW_DENY;
3373                                                         goto done;
3374                                                 }
3375                                                 if (cmd->arg1 != IP_FW_TABLEARG)
3376                                                         ((ipfw_insn_nat *)cmd)->nat = t;
3377                                         }
3378                                         retval = ipfw_nat_ptr(args, t, m);
3379                                 } else
3380                                         retval = IP_FW_DENY;
3381                                 goto done;
3382                         }
3383
3384                         case O_REASS: {
3385                                 int ip_off;
3386
3387                                 f->pcnt++;
3388                                 f->bcnt += pktlen;
3389                                 ip_off = (args->eh != NULL) ? ntohs(ip->ip_off) : ip->ip_off;
3390                                 if (ip_off & (IP_MF | IP_OFFMASK)) {
3391                                         /* 
3392                                          * ip_reass() expects len & off in host
3393                                          * byte order: fix them in case we come
3394                                          * from layer2.
3395                                          */
3396                                         if (args->eh != NULL) {
3397                                                 ip->ip_len = ntohs(ip->ip_len);
3398                                                 ip->ip_off = ntohs(ip->ip_off);
3399                                         }
3400
3401                                         m = ip_reass(m);
3402                                         args->m = m;
3403                                         
3404                                         /*
3405                                          * IP header checksum fixup after 
3406                                          * reassembly and leave header
3407                                          * in network byte order.
3408                                          */
3409                                         if (m != NULL) {
3410                                                 int hlen;
3411                                         
3412                                                 ip = mtod(m, struct ip *);
3413                                                 hlen = ip->ip_hl << 2;
3414                                                 /* revert len & off for layer2 pkts */
3415                                                 if (args->eh != NULL)
3416                                                         ip->ip_len = htons(ip->ip_len);
3417                                                 ip->ip_sum = 0;
3418                                                 if (hlen == sizeof(struct ip))
3419                                                         ip->ip_sum = in_cksum_hdr(ip);
3420                                                 else
3421                                                         ip->ip_sum = in_cksum(m, hlen);
3422                                                 retval = IP_FW_REASS;
3423                                                 args->rule = f;
3424                                                 args->rule_id = f->id;
3425                                                 args->chain_id = chain->id;
3426                                                 goto done;
3427                                         } else {
3428                                                 retval = IP_FW_DENY;
3429                                                 goto done;
3430                                         }
3431                                 }
3432                                 goto next_rule;
3433                         }
3434
3435                         default:
3436                                 panic("-- unknown opcode %d\n", cmd->opcode);
3437                         } /* end of switch() on opcodes */
3438
3439                         if (cmd->len & F_NOT)
3440                                 match = !match;
3441
3442                         if (match) {
3443                                 if (cmd->len & F_OR)
3444                                         skip_or = 1;
3445                         } else {
3446                                 if (!(cmd->len & F_OR)) /* not an OR block, */
3447                                         break;          /* try next rule    */
3448                         }
3449
3450                 }       /* end of inner for, scan opcodes */
3451
3452 next_rule:;             /* try next rule                */
3453
3454         }               /* end of outer for, scan rules */
3455         printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3456         IPFW_RUNLOCK(chain);
3457         if (ucred_cache != NULL)
3458                 crfree(ucred_cache);
3459         return (IP_FW_DENY);
3460
3461 done:
3462         /* Update statistics */
3463         f->pcnt++;
3464         f->bcnt += pktlen;
3465         f->timestamp = time_uptime;
3466         IPFW_RUNLOCK(chain);
3467         if (ucred_cache != NULL)
3468                 crfree(ucred_cache);
3469         return (retval);
3470
3471 pullup_failed:
3472         if (V_fw_verbose)
3473                 printf("ipfw: pullup failed\n");
3474         return (IP_FW_DENY);
3475 }
3476
3477 /*
3478  * When a rule is added/deleted, clear the next_rule pointers in all rules.
3479  * These will be reconstructed on the fly as packets are matched.
3480  */
3481 static void
3482 flush_rule_ptrs(struct ip_fw_chain *chain)
3483 {
3484         struct ip_fw *rule;
3485
3486         IPFW_WLOCK_ASSERT(chain);
3487
3488         chain->id++;
3489
3490         for (rule = chain->rules; rule; rule = rule->next)
3491                 rule->next_rule = NULL;
3492 }
3493
3494 /*
3495  * Add a new rule to the list. Copy the rule into a malloc'ed area, then
3496  * possibly create a rule number and add the rule to the list.
3497  * Update the rule_number in the input struct so the caller knows it as well.
3498  */
3499 static int
3500 add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
3501 {
3502         struct ip_fw *rule, *f, *prev;
3503         int l = RULESIZE(input_rule);
3504
3505         if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
3506                 return (EINVAL);
3507
3508         rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
3509         if (rule == NULL)
3510                 return (ENOSPC);
3511
3512         bcopy(input_rule, rule, l);
3513
3514         rule->next = NULL;
3515         rule->next_rule = NULL;
3516
3517         rule->pcnt = 0;
3518         rule->bcnt = 0;
3519         rule->timestamp = 0;
3520
3521         IPFW_WLOCK(chain);
3522
3523         if (chain->rules == NULL) {     /* default rule */
3524                 chain->rules = rule;
3525                 rule->id = ++chain->id;
3526                 goto done;
3527         }
3528
3529         /*
3530          * If rulenum is 0, find highest numbered rule before the
3531          * default rule, and add autoinc_step
3532          */
3533         if (V_autoinc_step < 1)
3534                 V_autoinc_step = 1;
3535         else if (V_autoinc_step > 1000)
3536                 V_autoinc_step = 1000;
3537         if (rule->rulenum == 0) {
3538                 /*
3539                  * locate the highest numbered rule before default
3540                  */
3541                 for (f = chain->rules; f; f = f->next) {
3542                         if (f->rulenum == IPFW_DEFAULT_RULE)
3543                                 break;
3544                         rule->rulenum = f->rulenum;
3545                 }
3546                 if (rule->rulenum < IPFW_DEFAULT_RULE - V_autoinc_step)
3547                         rule->rulenum += V_autoinc_step;
3548                 input_rule->rulenum = rule->rulenum;
3549         }
3550
3551         /*
3552          * Now insert the new rule in the right place in the sorted list.
3553          */
3554         for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
3555                 if (f->rulenum > rule->rulenum) { /* found the location */
3556                         if (prev) {
3557                                 rule->next = f;
3558                                 prev->next = rule;
3559                         } else { /* head insert */
3560                                 rule->next = chain->rules;
3561                                 chain->rules = rule;
3562                         }
3563                         break;
3564                 }
3565         }
3566         flush_rule_ptrs(chain);
3567         /* chain->id incremented inside flush_rule_ptrs() */
3568         rule->id = chain->id;
3569 done:
3570         V_static_count++;
3571         V_static_len += l;
3572         IPFW_WUNLOCK(chain);
3573         DEB(printf("ipfw: installed rule %d, static count now %d\n",
3574                 rule->rulenum, V_static_count);)
3575         return (0);
3576 }
3577
3578 /**
3579  * Remove a static rule (including derived * dynamic rules)
3580  * and place it on the ``reap list'' for later reclamation.
3581  * The caller is in charge of clearing rule pointers to avoid
3582  * dangling pointers.
3583  * @return a pointer to the next entry.
3584  * Arguments are not checked, so they better be correct.
3585  */
3586 static struct ip_fw *
3587 remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule,
3588     struct ip_fw *prev)
3589 {
3590         struct ip_fw *n;
3591         int l = RULESIZE(rule);
3592
3593         IPFW_WLOCK_ASSERT(chain);
3594
3595         n = rule->next;
3596         IPFW_DYN_LOCK();
3597         remove_dyn_rule(rule, NULL /* force removal */);
3598         IPFW_DYN_UNLOCK();
3599         if (prev == NULL)
3600                 chain->rules = n;
3601         else
3602                 prev->next = n;
3603         V_static_count--;
3604         V_static_len -= l;
3605
3606         rule->next = chain->reap;
3607         chain->reap = rule;
3608
3609         return n;
3610 }
3611
3612 /*
3613  * Reclaim storage associated with a list of rules.  This is
3614  * typically the list created using remove_rule.
3615  * A NULL pointer on input is handled correctly.
3616  */
3617 static void
3618 reap_rules(struct ip_fw *head)
3619 {
3620         struct ip_fw *rule;
3621
3622         while ((rule = head) != NULL) {
3623                 head = head->next;
3624                 free(rule, M_IPFW);
3625         }
3626 }
3627
3628 /*
3629  * Remove all rules from a chain (except rules in set RESVD_SET
3630  * unless kill_default = 1).  The caller is responsible for
3631  * reclaiming storage for the rules left in chain->reap.
3632  */
3633 static void
3634 free_chain(struct ip_fw_chain *chain, int kill_default)
3635 {
3636         struct ip_fw *prev, *rule;
3637
3638         IPFW_WLOCK_ASSERT(chain);
3639
3640         chain->reap = NULL;
3641         flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3642         for (prev = NULL, rule = chain->rules; rule ; )
3643                 if (kill_default || rule->set != RESVD_SET)
3644                         rule = remove_rule(chain, rule, prev);
3645                 else {
3646                         prev = rule;
3647                         rule = rule->next;
3648                 }
3649 }
3650
3651 /**
3652  * Remove all rules with given number, and also do set manipulation.
3653  * Assumes chain != NULL && *chain != NULL.
3654  *
3655  * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3656  * the next 8 bits are the new set, the top 8 bits are the command:
3657  *
3658  *      0       delete rules with given number
3659  *      1       delete rules with given set number
3660  *      2       move rules with given number to new set
3661  *      3       move rules with given set number to new set
3662  *      4       swap sets with given numbers
3663  *      5       delete rules with given number and with given set number
3664  */
3665 static int
3666 del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3667 {
3668         struct ip_fw *prev = NULL, *rule;
3669         u_int16_t rulenum;      /* rule or old_set */
3670         u_int8_t cmd, new_set;
3671
3672         rulenum = arg & 0xffff;
3673         cmd = (arg >> 24) & 0xff;
3674         new_set = (arg >> 16) & 0xff;
3675
3676         if (cmd > 5 || new_set > RESVD_SET)
3677                 return EINVAL;
3678         if (cmd == 0 || cmd == 2 || cmd == 5) {
3679                 if (rulenum >= IPFW_DEFAULT_RULE)
3680                         return EINVAL;
3681         } else {
3682                 if (rulenum > RESVD_SET)        /* old_set */
3683                         return EINVAL;
3684         }
3685
3686         IPFW_WLOCK(chain);
3687         rule = chain->rules;    /* common starting point */
3688         chain->reap = NULL;     /* prepare for deletions */
3689         switch (cmd) {
3690         case 0: /* delete rules with given number */
3691                 /*
3692                  * locate first rule to delete
3693                  */
3694                 for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3695                         ;
3696                 if (rule->rulenum != rulenum) {
3697                         IPFW_WUNLOCK(chain);
3698                         return EINVAL;
3699                 }
3700
3701                 /*
3702                  * flush pointers outside the loop, then delete all matching
3703                  * rules. prev remains the same throughout the cycle.
3704                  */
3705                 flush_rule_ptrs(chain);
3706                 while (rule->rulenum == rulenum)
3707                         rule = remove_rule(chain, rule, prev);
3708                 break;
3709
3710         case 1: /* delete all rules with given set number */
3711                 flush_rule_ptrs(chain);
3712                 while (rule->rulenum < IPFW_DEFAULT_RULE) {
3713                         if (rule->set == rulenum)
3714                                 rule = remove_rule(chain, rule, prev);
3715                         else {
3716                                 prev = rule;
3717                                 rule = rule->next;
3718                         }
3719                 }
3720                 break;
3721
3722         case 2: /* move rules with given number to new set */
3723                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3724                         if (rule->rulenum == rulenum)
3725                                 rule->set = new_set;
3726                 break;
3727
3728         case 3: /* move rules with given set number to new set */
3729                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3730                         if (rule->set == rulenum)
3731                                 rule->set = new_set;
3732                 break;
3733
3734         case 4: /* swap two sets */
3735                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3736                         if (rule->set == rulenum)
3737                                 rule->set = new_set;
3738                         else if (rule->set == new_set)
3739                                 rule->set = rulenum;
3740                 break;
3741
3742         case 5: /* delete rules with given number and with given set number.
3743                  * rulenum - given rule number;
3744                  * new_set - given set number.
3745                  */
3746                 for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3747                         ;
3748                 if (rule->rulenum != rulenum) {
3749                         IPFW_WUNLOCK(chain);
3750                         return (EINVAL);
3751                 }
3752                 flush_rule_ptrs(chain);
3753                 while (rule->rulenum == rulenum) {
3754                         if (rule->set == new_set)
3755                                 rule = remove_rule(chain, rule, prev);
3756                         else {
3757                                 prev = rule;
3758                                 rule = rule->next;
3759                         }
3760                 }
3761         }
3762         /*
3763          * Look for rules to reclaim.  We grab the list before
3764          * releasing the lock then reclaim them w/o the lock to
3765          * avoid a LOR with dummynet.
3766          */
3767         rule = chain->reap;
3768         IPFW_WUNLOCK(chain);
3769         reap_rules(rule);
3770         return 0;
3771 }
3772
3773 /*
3774  * Clear counters for a specific rule.
3775  * The enclosing "table" is assumed locked.
3776  */
3777 static void
3778 clear_counters(struct ip_fw *rule, int log_only)
3779 {
3780         ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3781
3782         if (log_only == 0) {
3783                 rule->bcnt = rule->pcnt = 0;
3784                 rule->timestamp = 0;
3785         }
3786         if (l->o.opcode == O_LOG)
3787                 l->log_left = l->max_log;
3788 }
3789
3790 /**
3791  * Reset some or all counters on firewall rules.
3792  * The argument `arg' is an u_int32_t. The low 16 bit are the rule number,
3793  * the next 8 bits are the set number, the top 8 bits are the command:
3794  *      0       work with rules from all set's;
3795  *      1       work with rules only from specified set.
3796  * Specified rule number is zero if we want to clear all entries.
3797  * log_only is 1 if we only want to reset logs, zero otherwise.
3798  */
3799 static int
3800 zero_entry(struct ip_fw_chain *chain, u_int32_t arg, int log_only)
3801 {
3802         struct ip_fw *rule;
3803         char *msg;
3804
3805         uint16_t rulenum = arg & 0xffff;
3806         uint8_t set = (arg >> 16) & 0xff;
3807         uint8_t cmd = (arg >> 24) & 0xff;
3808
3809         if (cmd > 1)
3810                 return (EINVAL);
3811         if (cmd == 1 && set > RESVD_SET)
3812                 return (EINVAL);
3813
3814         IPFW_WLOCK(chain);
3815         if (rulenum == 0) {
3816                 V_norule_counter = 0;
3817                 for (rule = chain->rules; rule; rule = rule->next) {
3818                         /* Skip rules from another set. */
3819                         if (cmd == 1 && rule->set != set)
3820                                 continue;
3821                         clear_counters(rule, log_only);
3822                 }
3823                 msg = log_only ? "All logging counts reset" :
3824                     "Accounting cleared";
3825         } else {
3826                 int cleared = 0;
3827                 /*
3828                  * We can have multiple rules with the same number, so we
3829                  * need to clear them all.
3830                  */
3831                 for (rule = chain->rules; rule; rule = rule->next)
3832                         if (rule->rulenum == rulenum) {
3833                                 while (rule && rule->rulenum == rulenum) {
3834                                         if (cmd == 0 || rule->set == set)
3835                                                 clear_counters(rule, log_only);
3836                                         rule = rule->next;
3837                                 }
3838                                 cleared = 1;
3839                                 break;
3840                         }
3841                 if (!cleared) { /* we did not find any matching rules */
3842                         IPFW_WUNLOCK(chain);
3843                         return (EINVAL);
3844                 }
3845                 msg = log_only ? "logging count reset" : "cleared";
3846         }
3847         IPFW_WUNLOCK(chain);
3848
3849         if (V_fw_verbose) {
3850                 int lev = LOG_SECURITY | LOG_NOTICE;
3851
3852                 if (rulenum)
3853                         log(lev, "ipfw: Entry %d %s.\n", rulenum, msg);
3854                 else
3855                         log(lev, "ipfw: %s.\n", msg);
3856         }
3857         return (0);
3858 }
3859
3860 /*
3861  * Check validity of the structure before insert.
3862  * Fortunately rules are simple, so this mostly need to check rule sizes.
3863  */
3864 static int
3865 check_ipfw_struct(struct ip_fw *rule, int size)
3866 {
3867         int l, cmdlen = 0;
3868         int have_action=0;
3869         ipfw_insn *cmd;
3870
3871         if (size < sizeof(*rule)) {
3872                 printf("ipfw: rule too short\n");
3873                 return (EINVAL);
3874         }
3875         /* first, check for valid size */
3876         l = RULESIZE(rule);
3877         if (l != size) {
3878                 printf("ipfw: size mismatch (have %d want %d)\n", size, l);
3879                 return (EINVAL);
3880         }
3881         if (rule->act_ofs >= rule->cmd_len) {
3882                 printf("ipfw: bogus action offset (%u > %u)\n",
3883                     rule->act_ofs, rule->cmd_len - 1);
3884                 return (EINVAL);
3885         }
3886         /*
3887          * Now go for the individual checks. Very simple ones, basically only
3888          * instruction sizes.
3889          */
3890         for (l = rule->cmd_len, cmd = rule->cmd ;
3891                         l > 0 ; l -= cmdlen, cmd += cmdlen) {
3892                 cmdlen = F_LEN(cmd);
3893                 if (cmdlen > l) {
3894                         printf("ipfw: opcode %d size truncated\n",
3895                             cmd->opcode);
3896                         return EINVAL;
3897                 }
3898                 DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
3899                 switch (cmd->opcode) {
3900                 case O_PROBE_STATE:
3901                 case O_KEEP_STATE:
3902                 case O_PROTO:
3903                 case O_IP_SRC_ME:
3904                 case O_IP_DST_ME:
3905                 case O_LAYER2:
3906                 case O_IN:
3907                 case O_FRAG:
3908                 case O_DIVERTED:
3909                 case O_IPOPT:
3910                 case O_IPTOS:
3911                 case O_IPPRECEDENCE:
3912                 case O_IPVER:
3913                 case O_TCPWIN:
3914                 case O_TCPFLAGS:
3915                 case O_TCPOPTS:
3916                 case O_ESTAB:
3917                 case O_VERREVPATH:
3918                 case O_VERSRCREACH:
3919                 case O_ANTISPOOF:
3920                 case O_IPSEC:
3921 #ifdef INET6
3922                 case O_IP6_SRC_ME:
3923                 case O_IP6_DST_ME:
3924                 case O_EXT_HDR:
3925                 case O_IP6:
3926 #endif
3927                 case O_IP4:
3928                 case O_TAG:
3929                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3930                                 goto bad_size;
3931                         break;
3932
3933                 case O_FIB:
3934                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3935                                 goto bad_size;
3936                         if (cmd->arg1 >= rt_numfibs) {
3937                                 printf("ipfw: invalid fib number %d\n",
3938                                         cmd->arg1);
3939                                 return EINVAL;
3940                         }
3941                         break;
3942
3943                 case O_SETFIB:
3944                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
3945                                 goto bad_size;
3946                         if (cmd->arg1 >= rt_numfibs) {
3947                                 printf("ipfw: invalid fib number %d\n",
3948                                         cmd->arg1);
3949                                 return EINVAL;
3950                         }
3951                         goto check_action;
3952
3953                 case O_UID:
3954                 case O_GID:
3955                 case O_JAIL:
3956                 case O_IP_SRC:
3957                 case O_IP_DST:
3958                 case O_TCPSEQ:
3959                 case O_TCPACK:
3960                 case O_PROB:
3961                 case O_ICMPTYPE:
3962                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3963                                 goto bad_size;
3964                         break;
3965
3966                 case O_LIMIT:
3967                         if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3968                                 goto bad_size;
3969                         break;
3970
3971                 case O_LOG:
3972                         if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3973                                 goto bad_size;
3974
3975                         ((ipfw_insn_log *)cmd)->log_left =
3976                             ((ipfw_insn_log *)cmd)->max_log;
3977
3978                         break;
3979
3980                 case O_IP_SRC_MASK:
3981                 case O_IP_DST_MASK:
3982                         /* only odd command lengths */
3983                         if ( !(cmdlen & 1) || cmdlen > 31)
3984                                 goto bad_size;
3985                         break;
3986
3987                 case O_IP_SRC_SET:
3988                 case O_IP_DST_SET:
3989                         if (cmd->arg1 == 0 || cmd->arg1 > 256) {
3990                                 printf("ipfw: invalid set size %d\n",
3991                                         cmd->arg1);
3992                                 return EINVAL;
3993                         }
3994                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3995                             (cmd->arg1+31)/32 )
3996                                 goto bad_size;
3997                         break;
3998
3999                 case O_IP_SRC_LOOKUP:
4000                 case O_IP_DST_LOOKUP:
4001                         if (cmd->arg1 >= IPFW_TABLES_MAX) {
4002                                 printf("ipfw: invalid table number %d\n",
4003                                     cmd->arg1);
4004                                 return (EINVAL);
4005                         }
4006                         if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
4007                             cmdlen != F_INSN_SIZE(ipfw_insn_u32))
4008                                 goto bad_size;
4009                         break;
4010
4011                 case O_MACADDR2:
4012                         if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
4013                                 goto bad_size;
4014                         break;
4015
4016                 case O_NOP:
4017                 case O_IPID:
4018                 case O_IPTTL:
4019                 case O_IPLEN:
4020                 case O_TCPDATALEN:
4021                 case O_TAGGED:
4022                         if (cmdlen < 1 || cmdlen > 31)
4023                                 goto bad_size;
4024                         break;
4025
4026                 case O_MAC_TYPE:
4027                 case O_IP_SRCPORT:
4028                 case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
4029                         if (cmdlen < 2 || cmdlen > 31)
4030                                 goto bad_size;
4031                         break;
4032
4033                 case O_RECV:
4034                 case O_XMIT:
4035                 case O_VIA:
4036                         if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
4037                                 goto bad_size;
4038                         break;
4039
4040                 case O_ALTQ:
4041                         if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
4042                                 goto bad_size;
4043                         break;
4044
4045                 case O_PIPE:
4046                 case O_QUEUE:
4047                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
4048                                 goto bad_size;
4049                         goto check_action;
4050
4051                 case O_FORWARD_IP:
4052 #ifdef  IPFIREWALL_FORWARD
4053                         if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
4054                                 goto bad_size;
4055                         goto check_action;
4056 #else
4057                         return EINVAL;
4058 #endif
4059
4060                 case O_DIVERT:
4061                 case O_TEE:
4062                         if (ip_divert_ptr == NULL)
4063                                 return EINVAL;
4064                         else
4065                                 goto check_size;
4066                 case O_NETGRAPH:
4067                 case O_NGTEE:
4068                         if (!NG_IPFW_LOADED)
4069                                 return EINVAL;
4070                         else
4071                                 goto check_size;
4072                 case O_NAT:
4073                         if (!IPFW_NAT_LOADED)
4074                                 return EINVAL;
4075                         if (cmdlen != F_INSN_SIZE(ipfw_insn_nat))
4076                                 goto bad_size;          
4077                         goto check_action;
4078                 case O_FORWARD_MAC: /* XXX not implemented yet */
4079                 case O_CHECK_STATE:
4080                 case O_COUNT:
4081                 case O_ACCEPT:
4082                 case O_DENY:
4083                 case O_REJECT:
4084 #ifdef INET6
4085                 case O_UNREACH6:
4086 #endif
4087                 case O_SKIPTO:
4088                 case O_REASS:
4089 check_size:
4090                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
4091                                 goto bad_size;
4092 check_action:
4093                         if (have_action) {
4094                                 printf("ipfw: opcode %d, multiple actions"
4095                                         " not allowed\n",
4096                                         cmd->opcode);
4097                                 return EINVAL;
4098                         }
4099                         have_action = 1;
4100                         if (l != cmdlen) {
4101                                 printf("ipfw: opcode %d, action must be"
4102                                         " last opcode\n",
4103                                         cmd->opcode);
4104                                 return EINVAL;
4105                         }
4106                         break;
4107 #ifdef INET6
4108                 case O_IP6_SRC:
4109                 case O_IP6_DST:
4110                         if (cmdlen != F_INSN_SIZE(struct in6_addr) +
4111                             F_INSN_SIZE(ipfw_insn))
4112                                 goto bad_size;
4113                         break;
4114
4115                 case O_FLOW6ID:
4116                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
4117                             ((ipfw_insn_u32 *)cmd)->o.arg1)
4118                                 goto bad_size;
4119                         break;
4120
4121                 case O_IP6_SRC_MASK:
4122                 case O_IP6_DST_MASK:
4123                         if ( !(cmdlen & 1) || cmdlen > 127)
4124                                 goto bad_size;
4125                         break;
4126                 case O_ICMP6TYPE:
4127                         if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
4128                                 goto bad_size;
4129                         break;
4130 #endif
4131
4132                 default:
4133                         switch (cmd->opcode) {
4134 #ifndef INET6
4135                         case O_IP6_SRC_ME:
4136                         case O_IP6_DST_ME:
4137                         case O_EXT_HDR:
4138                         case O_IP6:
4139                         case O_UNREACH6:
4140                         case O_IP6_SRC:
4141                         case O_IP6_DST:
4142                         case O_FLOW6ID:
4143                         case O_IP6_SRC_MASK:
4144                         case O_IP6_DST_MASK:
4145                         case O_ICMP6TYPE:
4146                                 printf("ipfw: no IPv6 support in kernel\n");
4147                                 return EPROTONOSUPPORT;
4148 #endif
4149                         default:
4150                                 printf("ipfw: opcode %d, unknown opcode\n",
4151                                         cmd->opcode);
4152                                 return EINVAL;
4153                         }
4154                 }
4155         }
4156         if (have_action == 0) {
4157                 printf("ipfw: missing action\n");
4158                 return EINVAL;
4159         }
4160         return 0;
4161
4162 bad_size:
4163         printf("ipfw: opcode %d size %d wrong\n",
4164                 cmd->opcode, cmdlen);
4165         return EINVAL;
4166 }
4167
4168 /*
4169  * Copy the static and dynamic rules to the supplied buffer
4170  * and return the amount of space actually used.
4171  */
4172 static size_t
4173 ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
4174 {
4175         char *bp = buf;
4176         char *ep = bp + space;
4177         struct ip_fw *rule;
4178         int i;
4179         time_t  boot_seconds;
4180
4181         boot_seconds = boottime.tv_sec;
4182         /* XXX this can take a long time and locking will block packet flow */
4183         IPFW_RLOCK(chain);
4184         for (rule = chain->rules; rule ; rule = rule->next) {
4185                 /*
4186                  * Verify the entry fits in the buffer in case the
4187                  * rules changed between calculating buffer space and
4188                  * now.  This would be better done using a generation
4189                  * number but should suffice for now.
4190                  */
4191                 i = RULESIZE(rule);
4192                 if (bp + i <= ep) {
4193                         bcopy(rule, bp, i);
4194                         /*
4195                          * XXX HACK. Store the disable mask in the "next"
4196                          * pointer in a wild attempt to keep the ABI the same.
4197                          * Why do we do this on EVERY rule?
4198                          */
4199                         bcopy(&V_set_disable,
4200                             &(((struct ip_fw *)bp)->next_rule),
4201                             sizeof(V_set_disable));
4202                         if (((struct ip_fw *)bp)->timestamp)
4203                                 ((struct ip_fw *)bp)->timestamp += boot_seconds;
4204                         bp += i;
4205                 }
4206         }
4207         IPFW_RUNLOCK(chain);
4208         if (V_ipfw_dyn_v) {
4209                 ipfw_dyn_rule *p, *last = NULL;
4210
4211                 IPFW_DYN_LOCK();
4212                 for (i = 0 ; i < V_curr_dyn_buckets; i++)
4213                         for (p = V_ipfw_dyn_v[i] ; p != NULL; p = p->next) {
4214                                 if (bp + sizeof *p <= ep) {
4215                                         ipfw_dyn_rule *dst =
4216                                                 (ipfw_dyn_rule *)bp;
4217                                         bcopy(p, dst, sizeof *p);
4218                                         bcopy(&(p->rule->rulenum), &(dst->rule),
4219                                             sizeof(p->rule->rulenum));
4220                                         /*
4221                                          * store set number into high word of
4222                                          * dst->rule pointer.
4223                                          */
4224                                         bcopy(&(p->rule->set),
4225                                             (char *)&dst->rule +
4226                                             sizeof(p->rule->rulenum),
4227                                             sizeof(p->rule->set));
4228                                         /*
4229                                          * store a non-null value in "next".
4230                                          * The userland code will interpret a
4231                                          * NULL here as a marker
4232                                          * for the last dynamic rule.
4233                                          */
4234                                         bcopy(&dst, &dst->next, sizeof(dst));
4235                                         last = dst;
4236                                         dst->expire =
4237                                             TIME_LEQ(dst->expire, time_uptime) ?
4238                                                 0 : dst->expire - time_uptime ;
4239                                         bp += sizeof(ipfw_dyn_rule);
4240                                 }
4241                         }
4242                 IPFW_DYN_UNLOCK();
4243                 if (last != NULL) /* mark last dynamic rule */
4244                         bzero(&last->next, sizeof(last));
4245         }
4246         return (bp - (char *)buf);
4247 }
4248
4249
4250 /**
4251  * {set|get}sockopt parser.
4252  */
4253 static int
4254 ipfw_ctl(struct sockopt *sopt)
4255 {
4256 #define RULE_MAXSIZE    (256*sizeof(u_int32_t))
4257         int error;
4258         size_t size;
4259         struct ip_fw *buf, *rule;
4260         u_int32_t rulenum[2];
4261
4262         error = priv_check(sopt->sopt_td, PRIV_NETINET_IPFW);
4263         if (error)
4264                 return (error);
4265
4266         /*
4267          * Disallow modifications in really-really secure mode, but still allow
4268          * the logging counters to be reset.
4269          */
4270         if (sopt->sopt_name == IP_FW_ADD ||
4271             (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
4272                 error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
4273                 if (error)
4274                         return (error);
4275         }
4276
4277         error = 0;
4278
4279         switch (sopt->sopt_name) {
4280         case IP_FW_GET:
4281                 /*
4282                  * pass up a copy of the current rules. Static rules
4283                  * come first (the last of which has number IPFW_DEFAULT_RULE),
4284                  * followed by a possibly empty list of dynamic rule.
4285                  * The last dynamic rule has NULL in the "next" field.
4286                  *
4287                  * Note that the calculated size is used to bound the
4288                  * amount of data returned to the user.  The rule set may
4289                  * change between calculating the size and returning the
4290                  * data in which case we'll just return what fits.
4291                  */
4292                 size = V_static_len;    /* size of static rules */
4293                 if (V_ipfw_dyn_v)               /* add size of dyn.rules */
4294                         size += (V_dyn_count * sizeof(ipfw_dyn_rule));
4295
4296                 if (size >= sopt->sopt_valsize)
4297                         break;
4298                 /*
4299                  * XXX todo: if the user passes a short length just to know
4300                  * how much room is needed, do not bother filling up the
4301                  * buffer, just jump to the sooptcopyout.
4302                  */
4303                 buf = malloc(size, M_TEMP, M_WAITOK);
4304                 error = sooptcopyout(sopt, buf,
4305                                 ipfw_getrules(&V_layer3_chain, buf, size));
4306                 free(buf, M_TEMP);
4307                 break;
4308
4309         case IP_FW_FLUSH:
4310                 /*
4311                  * Normally we cannot release the lock on each iteration.
4312                  * We could do it here only because we start from the head all
4313                  * the times so there is no risk of missing some entries.
4314                  * On the other hand, the risk is that we end up with
4315                  * a very inconsistent ruleset, so better keep the lock
4316                  * around the whole cycle.
4317                  *
4318                  * XXX this code can be improved by resetting the head of
4319                  * the list to point to the default rule, and then freeing
4320                  * the old list without the need for a lock.
4321                  */
4322
4323                 IPFW_WLOCK(&V_layer3_chain);
4324                 free_chain(&V_layer3_chain, 0 /* keep default rule */);
4325                 rule = V_layer3_chain.reap;
4326                 IPFW_WUNLOCK(&V_layer3_chain);
4327                 reap_rules(rule);
4328                 break;
4329
4330         case IP_FW_ADD:
4331                 rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
4332                 error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
4333                         sizeof(struct ip_fw) );
4334                 if (error == 0)
4335                         error = check_ipfw_struct(rule, sopt->sopt_valsize);
4336                 if (error == 0) {
4337                         error = add_rule(&V_layer3_chain, rule);
4338                         size = RULESIZE(rule);
4339                         if (!error && sopt->sopt_dir == SOPT_GET)
4340                                 error = sooptcopyout(sopt, rule, size);
4341                 }
4342                 free(rule, M_TEMP);
4343                 break;
4344
4345         case IP_FW_DEL:
4346                 /*
4347                  * IP_FW_DEL is used for deleting single rules or sets,
4348                  * and (ab)used to atomically manipulate sets. Argument size
4349                  * is used to distinguish between the two:
4350                  *    sizeof(u_int32_t)
4351                  *      delete single rule or set of rules,
4352                  *      or reassign rules (or sets) to a different set.
4353                  *    2*sizeof(u_int32_t)
4354                  *      atomic disable/enable sets.
4355                  *      first u_int32_t contains sets to be disabled,
4356                  *      second u_int32_t contains sets to be enabled.
4357                  */
4358                 error = sooptcopyin(sopt, rulenum,
4359                         2*sizeof(u_int32_t), sizeof(u_int32_t));
4360                 if (error)
4361                         break;
4362                 size = sopt->sopt_valsize;
4363                 if (size == sizeof(u_int32_t))  /* delete or reassign */
4364                         error = del_entry(&V_layer3_chain, rulenum[0]);
4365                 else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
4366                         V_set_disable =
4367                             (V_set_disable | rulenum[0]) & ~rulenum[1] &
4368                             ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
4369                 else
4370                         error = EINVAL;
4371                 break;
4372
4373         case IP_FW_ZERO:
4374         case IP_FW_RESETLOG: /* argument is an u_int_32, the rule number */
4375                 rulenum[0] = 0;
4376                 if (sopt->sopt_val != 0) {
4377                     error = sooptcopyin(sopt, rulenum,
4378                             sizeof(u_int32_t), sizeof(u_int32_t));
4379                     if (error)
4380                         break;
4381                 }
4382                 error = zero_entry(&V_layer3_chain, rulenum[0],
4383                         sopt->sopt_name == IP_FW_RESETLOG);
4384                 break;
4385
4386         case IP_FW_TABLE_ADD:
4387                 {
4388                         ipfw_table_entry ent;
4389
4390                         error = sooptcopyin(sopt, &ent,
4391                             sizeof(ent), sizeof(ent));
4392                         if (error)
4393                                 break;
4394                         error = add_table_entry(&V_layer3_chain, ent.tbl,
4395                             ent.addr, ent.masklen, ent.value);
4396                 }
4397                 break;
4398
4399         case IP_FW_TABLE_DEL:
4400                 {
4401                         ipfw_table_entry ent;
4402
4403                         error = sooptcopyin(sopt, &ent,
4404                             sizeof(ent), sizeof(ent));
4405                         if (error)
4406                                 break;
4407                         error = del_table_entry(&V_layer3_chain, ent.tbl,
4408                             ent.addr, ent.masklen);
4409                 }
4410                 break;
4411
4412         case IP_FW_TABLE_FLUSH:
4413                 {
4414                         u_int16_t tbl;
4415
4416                         error = sooptcopyin(sopt, &tbl,
4417                             sizeof(tbl), sizeof(tbl));
4418                         if (error)
4419                                 break;
4420                         IPFW_WLOCK(&V_layer3_chain);
4421                         error = flush_table(&V_layer3_chain, tbl);
4422                         IPFW_WUNLOCK(&V_layer3_chain);
4423                 }
4424                 break;
4425
4426         case IP_FW_TABLE_GETSIZE:
4427                 {
4428                         u_int32_t tbl, cnt;
4429
4430                         if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
4431                             sizeof(tbl))))
4432                                 break;
4433                         IPFW_RLOCK(&V_layer3_chain);
4434                         error = count_table(&V_layer3_chain, tbl, &cnt);
4435                         IPFW_RUNLOCK(&V_layer3_chain);
4436                         if (error)
4437                                 break;
4438                         error = sooptcopyout(sopt, &cnt, sizeof(cnt));
4439                 }
4440                 break;
4441
4442         case IP_FW_TABLE_LIST:
4443                 {
4444                         ipfw_table *tbl;
4445
4446                         if (sopt->sopt_valsize < sizeof(*tbl)) {
4447                                 error = EINVAL;
4448                                 break;
4449                         }
4450                         size = sopt->sopt_valsize;
4451                         tbl = malloc(size, M_TEMP, M_WAITOK);
4452                         error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
4453                         if (error) {
4454                                 free(tbl, M_TEMP);
4455                                 break;
4456                         }
4457                         tbl->size = (size - sizeof(*tbl)) /
4458                             sizeof(ipfw_table_entry);
4459                         IPFW_RLOCK(&V_layer3_chain);
4460                         error = dump_table(&V_layer3_chain, tbl);
4461                         IPFW_RUNLOCK(&V_layer3_chain);
4462                         if (error) {
4463                                 free(tbl, M_TEMP);
4464                                 break;
4465                         }
4466                         error = sooptcopyout(sopt, tbl, size);
4467                         free(tbl, M_TEMP);
4468                 }
4469                 break;
4470
4471         case IP_FW_NAT_CFG:
4472                 if (IPFW_NAT_LOADED)
4473                         error = ipfw_nat_cfg_ptr(sopt);
4474                 else {
4475                         printf("IP_FW_NAT_CFG: %s\n",
4476                             "ipfw_nat not present, please load it");
4477                         error = EINVAL;
4478                 }
4479                 break;
4480
4481         case IP_FW_NAT_DEL:
4482                 if (IPFW_NAT_LOADED)
4483                         error = ipfw_nat_del_ptr(sopt);
4484                 else {
4485                         printf("IP_FW_NAT_DEL: %s\n",
4486                             "ipfw_nat not present, please load it");
4487                         error = EINVAL;
4488                 }
4489                 break;
4490
4491         case IP_FW_NAT_GET_CONFIG:
4492                 if (IPFW_NAT_LOADED)
4493                         error = ipfw_nat_get_cfg_ptr(sopt);
4494                 else {
4495                         printf("IP_FW_NAT_GET_CFG: %s\n",
4496                             "ipfw_nat not present, please load it");
4497                         error = EINVAL;
4498                 }
4499                 break;
4500
4501         case IP_FW_NAT_GET_LOG:
4502                 if (IPFW_NAT_LOADED)
4503                         error = ipfw_nat_get_log_ptr(sopt);
4504                 else {
4505                         printf("IP_FW_NAT_GET_LOG: %s\n",
4506                             "ipfw_nat not present, please load it");
4507                         error = EINVAL;
4508                 }
4509                 break;
4510
4511         default:
4512                 printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
4513                 error = EINVAL;
4514         }
4515
4516         return (error);
4517 #undef RULE_MAXSIZE
4518 }
4519
4520
4521 /*
4522  * This procedure is only used to handle keepalives. It is invoked
4523  * every dyn_keepalive_period
4524  */
4525 static void
4526 ipfw_tick(void * vnetx) 
4527 {
4528         struct mbuf *m0, *m, *mnext, **mtailp;
4529         int i;
4530         ipfw_dyn_rule *q;
4531 #ifdef VIMAGE
4532         struct vnet *vp = vnetx;
4533 #endif
4534
4535         CURVNET_SET(vp);
4536         if (V_dyn_keepalive == 0 || V_ipfw_dyn_v == NULL || V_dyn_count == 0)
4537                 goto done;
4538
4539         /*
4540          * We make a chain of packets to go out here -- not deferring
4541          * until after we drop the IPFW dynamic rule lock would result
4542          * in a lock order reversal with the normal packet input -> ipfw
4543          * call stack.
4544          */
4545         m0 = NULL;
4546         mtailp = &m0;
4547         IPFW_DYN_LOCK();
4548         for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
4549                 for (q = V_ipfw_dyn_v[i] ; q ; q = q->next ) {
4550                         if (q->dyn_type == O_LIMIT_PARENT)
4551                                 continue;
4552                         if (q->id.proto != IPPROTO_TCP)
4553                                 continue;
4554                         if ( (q->state & BOTH_SYN) != BOTH_SYN)
4555                                 continue;
4556                         if (TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
4557                             q->expire))
4558                                 continue;       /* too early */
4559                         if (TIME_LEQ(q->expire, time_uptime))
4560                                 continue;       /* too late, rule expired */
4561
4562                         *mtailp = send_pkt(NULL, &(q->id), q->ack_rev - 1,
4563                                 q->ack_fwd, TH_SYN);
4564                         if (*mtailp != NULL)
4565                                 mtailp = &(*mtailp)->m_nextpkt;
4566                         *mtailp = send_pkt(NULL, &(q->id), q->ack_fwd - 1,
4567                                 q->ack_rev, 0);
4568                         if (*mtailp != NULL)
4569                                 mtailp = &(*mtailp)->m_nextpkt;
4570                 }
4571         }
4572         IPFW_DYN_UNLOCK();
4573         for (m = mnext = m0; m != NULL; m = mnext) {
4574                 mnext = m->m_nextpkt;
4575                 m->m_nextpkt = NULL;
4576                 ip_output(m, NULL, NULL, 0, NULL, NULL);
4577         }
4578 done:
4579         callout_reset(&V_ipfw_timeout, V_dyn_keepalive_period * hz,
4580                       ipfw_tick, vnetx);
4581         CURVNET_RESTORE();
4582 }
4583
4584 /****************
4585  * Stuff that must be initialised only on boot or module load
4586  */
4587 static int
4588 ipfw_init(void)
4589 {
4590         int error = 0;
4591
4592         ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
4593             sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
4594             UMA_ALIGN_PTR, 0);
4595
4596         IPFW_DYN_LOCK_INIT();
4597         /*
4598          * Only print out this stuff the first time around,
4599          * when called from the sysinit code.
4600          */
4601         printf("ipfw2 "
4602 #ifdef INET6
4603                 "(+ipv6) "
4604 #endif
4605                 "initialized, divert %s, nat %s, "
4606                 "rule-based forwarding "
4607 #ifdef IPFIREWALL_FORWARD
4608                 "enabled, "
4609 #else
4610                 "disabled, "
4611 #endif
4612                 "default to %s, logging ",
4613 #ifdef IPDIVERT
4614                 "enabled",
4615 #else
4616                 "loadable",
4617 #endif
4618 #ifdef IPFIREWALL_NAT
4619                 "enabled",
4620 #else
4621                 "loadable",
4622 #endif
4623                 default_to_accept ? "accept" : "deny");
4624
4625         /*
4626          * Note: V_xxx variables can be accessed here but the vnet specific
4627          * initializer may not have been called yet for the VIMAGE case.
4628          * Tuneables will have been processed. We will print out values for
4629          * the default vnet. 
4630          * XXX This should all be rationalized AFTER 8.0
4631          */
4632         if (V_fw_verbose == 0)
4633                 printf("disabled\n");
4634         else if (V_verbose_limit == 0)
4635                 printf("unlimited\n");
4636         else
4637                 printf("limited to %d packets/entry by default\n",
4638                     V_verbose_limit);
4639
4640         /*
4641          * Hook us up to pfil.
4642          * Eventually pfil will be per vnet.
4643          */
4644         if ((error = ipfw_hook()) != 0) {
4645                 printf("ipfw_hook() error\n");
4646                 return (error);
4647         }
4648 #ifdef INET6
4649         if ((error = ipfw6_hook()) != 0) {
4650                 printf("ipfw6_hook() error\n");
4651                 return (error);
4652         }
4653 #endif
4654         /*
4655          * Other things that are only done the first time.
4656          * (now that we a re cuaranteed of success).
4657          */
4658         ip_fw_ctl_ptr = ipfw_ctl;
4659         ip_fw_chk_ptr = ipfw_chk;
4660         return (error);
4661 }
4662
4663 /****************
4664  * Stuff that must be initialized for every instance
4665  * (including the first of course).
4666  */
4667 static int
4668 vnet_ipfw_init(const void *unused)
4669 {
4670         int error;
4671         struct ip_fw default_rule;
4672
4673         /* First set up some values that are compile time options */
4674 #ifdef IPFIREWALL_VERBOSE
4675         V_fw_verbose = 1;
4676 #endif
4677 #ifdef IPFIREWALL_VERBOSE_LIMIT
4678         V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
4679 #endif
4680
4681         error = init_tables(&V_layer3_chain);
4682         if (error) {
4683                 panic("init_tables"); /* XXX Marko fix this ! */
4684         }
4685 #ifdef IPFIREWALL_NAT
4686         LIST_INIT(&V_layer3_chain.nat);
4687 #endif
4688
4689         V_autoinc_step = 100;   /* bounded to 1..1000 in add_rule() */
4690
4691         V_ipfw_dyn_v = NULL;
4692         V_dyn_buckets = 256;    /* must be power of 2 */
4693         V_curr_dyn_buckets = 256; /* must be power of 2 */
4694
4695         V_dyn_ack_lifetime = 300;
4696         V_dyn_syn_lifetime = 20;
4697         V_dyn_fin_lifetime = 1;
4698         V_dyn_rst_lifetime = 1;
4699         V_dyn_udp_lifetime = 10;
4700         V_dyn_short_lifetime = 5;
4701
4702         V_dyn_keepalive_interval = 20;
4703         V_dyn_keepalive_period = 5;
4704         V_dyn_keepalive = 1;    /* do send keepalives */
4705
4706         V_dyn_max = 4096;       /* max # of dynamic rules */
4707
4708         V_fw_deny_unknown_exthdrs = 1;
4709
4710         V_layer3_chain.rules = NULL;
4711         IPFW_LOCK_INIT(&V_layer3_chain);
4712         callout_init(&V_ipfw_timeout, CALLOUT_MPSAFE);
4713
4714         bzero(&default_rule, sizeof default_rule);
4715         default_rule.act_ofs = 0;
4716         default_rule.rulenum = IPFW_DEFAULT_RULE;
4717         default_rule.cmd_len = 1;
4718         default_rule.set = RESVD_SET;
4719         default_rule.cmd[0].len = 1;
4720         default_rule.cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
4721         error = add_rule(&V_layer3_chain, &default_rule);
4722
4723         if (error != 0) {
4724                 printf("ipfw2: error %u initializing default rule "
4725                         "(support disabled)\n", error);
4726                 IPFW_LOCK_DESTROY(&V_layer3_chain);
4727                 printf("leaving ipfw_iattach (1) with error %d\n", error);
4728                 return (error);
4729         }
4730
4731         ip_fw_default_rule = V_layer3_chain.rules;
4732
4733         if (error) {
4734                 IPFW_LOCK_DESTROY(&V_layer3_chain);
4735                 printf("leaving ipfw_iattach (2) with error %d\n", error);
4736                 return (error);
4737         }
4738 #ifdef VIMAGE  /* want a better way to do this */
4739         callout_reset(&V_ipfw_timeout, hz, ipfw_tick, curvnet); 
4740 #else
4741         callout_reset(&V_ipfw_timeout, hz, ipfw_tick, NULL);    
4742 #endif
4743
4744         /* First set up some values that are compile time options */
4745         V_ipfw_vnet_ready = 1;          /* Open for business */
4746         return (0);
4747 }
4748
4749 /**********************
4750  * Called for the removal of the last instance only on module unload.
4751  */
4752 static void
4753 ipfw_destroy(void)
4754 {
4755
4756         uma_zdestroy(ipfw_dyn_rule_zone);
4757         IPFW_DYN_LOCK_DESTROY();
4758         printf("IP firewall unloaded\n");
4759 }
4760
4761 /***********************
4762  * Called for the removal of each instance.
4763  */
4764 static int
4765 vnet_ipfw_uninit(const void *unused)
4766 {
4767         struct ip_fw *reap;
4768
4769         V_ipfw_vnet_ready = 0; /* tell new callers to go away */
4770         callout_drain(&V_ipfw_timeout);
4771         /* We wait on the wlock here until the last user leaves */
4772         IPFW_WLOCK(&V_layer3_chain);
4773         flush_tables(&V_layer3_chain);
4774         V_layer3_chain.reap = NULL;
4775         free_chain(&V_layer3_chain, 1 /* kill default rule */);
4776         reap = V_layer3_chain.reap;
4777         V_layer3_chain.reap = NULL;
4778         IPFW_WUNLOCK(&V_layer3_chain);
4779         if (reap != NULL)
4780                 reap_rules(reap);
4781         IPFW_LOCK_DESTROY(&V_layer3_chain);
4782         if (V_ipfw_dyn_v != NULL)
4783                 free(V_ipfw_dyn_v, M_IPFW);
4784         return 0;
4785 }
4786
4787 /*
4788  * Module event handler.
4789  * In general we have the choice of handling most of these events by the
4790  * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
4791  * use the SYSINIT handlers as they are more capable of expressing the
4792  * flow of control during module and vnet operations, so this is just
4793  * a skeleton. Note there is no SYSINIT equivalent of the module
4794  * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
4795  */
4796 static int
4797 ipfw_modevent(module_t mod, int type, void *unused)
4798 {
4799         int err = 0;
4800
4801         switch (type) {
4802         case MOD_LOAD:
4803                 /* Called once at module load or
4804                  * system boot if compiled in. */
4805                 break;
4806         case MOD_UNLOAD:
4807                 break;
4808         case MOD_QUIESCE:
4809                 /* Yes, the unhooks can return errors, we can safely ignore
4810                  * them. Eventually these will be done per jail as they
4811                  * shut down. We will wait on each vnet's l3 lock as existing
4812                  * callers go away.
4813                  */
4814                 ipfw_unhook();
4815 #ifdef INET6
4816                 ipfw6_unhook();
4817 #endif
4818                 /* layer2 and other entrypoints still come in this way. */
4819                 ip_fw_chk_ptr = NULL;
4820                 ip_fw_ctl_ptr = NULL;
4821                 /* Called during unload. */
4822                 break;
4823         case MOD_SHUTDOWN:
4824                 /* Called during system shutdown. */
4825                 break;
4826         default:
4827                 err = EOPNOTSUPP;
4828                 break;
4829         }
4830         return err;
4831 }
4832
4833 static moduledata_t ipfwmod = {
4834         "ipfw",
4835         ipfw_modevent,
4836         0
4837 };
4838
4839 /* Define startup order. */
4840 #define IPFW_SI_SUB_FIREWALL    SI_SUB_PROTO_IFATTACHDOMAIN
4841 #define IPFW_MODEVENT_ORDER     (SI_ORDER_ANY - 255) /* On boot slot in here. */
4842 #define IPFW_MODULE_ORDER       (IPFW_MODEVENT_ORDER + 1) /* A little later. */
4843 #define IPFW_VNET_ORDER         (IPFW_MODEVENT_ORDER + 2) /* Later still. */
4844
4845 DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
4846 MODULE_VERSION(ipfw, 2);
4847 /* should declare some dependencies here */
4848
4849 /*
4850  * Starting up. Done in order after ipfwmod() has been called.
4851  * VNET_SYSINIT is also called for each existing vnet and each new vnet.
4852  */
4853 SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
4854             ipfw_init, NULL);
4855 VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
4856             vnet_ipfw_init, NULL);
4857  
4858 /*
4859  * Closing up shop. These are done in REVERSE ORDER, but still
4860  * after ipfwmod() has been called. Not called on reboot.
4861  * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
4862  * or when the module is unloaded.
4863  */
4864 SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
4865             ipfw_destroy, NULL);
4866 VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
4867             vnet_ipfw_uninit, NULL);
4868
4869