]> CyberLeo.Net >> Repos - FreeBSD/releng/8.0.git/blob - sys/vm/vm_fault.c
Adjust to reflect 8.0-RELEASE.
[FreeBSD/releng/8.0.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_vm.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/lock.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sysctl.h>
87 #include <sys/vmmeter.h>
88 #include <sys/vnode.h>
89
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/vm_extern.h>
101
102 #include <sys/mount.h>  /* XXX Temporary for VFS_LOCK_GIANT() */
103
104 #define PFBAK 4
105 #define PFFOR 4
106 #define PAGEORDER_SIZE (PFBAK+PFFOR)
107
108 static int prefault_pageorder[] = {
109         -1 * PAGE_SIZE, 1 * PAGE_SIZE,
110         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
111         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
112         -4 * PAGE_SIZE, 4 * PAGE_SIZE
113 };
114
115 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
116 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
117
118 #define VM_FAULT_READ_AHEAD 8
119 #define VM_FAULT_READ_BEHIND 7
120 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
121
122 struct faultstate {
123         vm_page_t m;
124         vm_object_t object;
125         vm_pindex_t pindex;
126         vm_page_t first_m;
127         vm_object_t     first_object;
128         vm_pindex_t first_pindex;
129         vm_map_t map;
130         vm_map_entry_t entry;
131         int lookup_still_valid;
132         struct vnode *vp;
133         int vfslocked;
134 };
135
136 static inline void
137 release_page(struct faultstate *fs)
138 {
139
140         vm_page_wakeup(fs->m);
141         vm_page_lock_queues();
142         vm_page_deactivate(fs->m);
143         vm_page_unlock_queues();
144         fs->m = NULL;
145 }
146
147 static inline void
148 unlock_map(struct faultstate *fs)
149 {
150
151         if (fs->lookup_still_valid) {
152                 vm_map_lookup_done(fs->map, fs->entry);
153                 fs->lookup_still_valid = FALSE;
154         }
155 }
156
157 static void
158 unlock_and_deallocate(struct faultstate *fs)
159 {
160
161         vm_object_pip_wakeup(fs->object);
162         VM_OBJECT_UNLOCK(fs->object);
163         if (fs->object != fs->first_object) {
164                 VM_OBJECT_LOCK(fs->first_object);
165                 vm_page_lock_queues();
166                 vm_page_free(fs->first_m);
167                 vm_page_unlock_queues();
168                 vm_object_pip_wakeup(fs->first_object);
169                 VM_OBJECT_UNLOCK(fs->first_object);
170                 fs->first_m = NULL;
171         }
172         vm_object_deallocate(fs->first_object);
173         unlock_map(fs); 
174         if (fs->vp != NULL) { 
175                 vput(fs->vp);
176                 fs->vp = NULL;
177         }
178         VFS_UNLOCK_GIANT(fs->vfslocked);
179         fs->vfslocked = 0;
180 }
181
182 /*
183  * TRYPAGER - used by vm_fault to calculate whether the pager for the
184  *            current object *might* contain the page.
185  *
186  *            default objects are zero-fill, there is no real pager.
187  */
188 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
189                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
190
191 /*
192  *      vm_fault:
193  *
194  *      Handle a page fault occurring at the given address,
195  *      requiring the given permissions, in the map specified.
196  *      If successful, the page is inserted into the
197  *      associated physical map.
198  *
199  *      NOTE: the given address should be truncated to the
200  *      proper page address.
201  *
202  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
203  *      a standard error specifying why the fault is fatal is returned.
204  *
205  *
206  *      The map in question must be referenced, and remains so.
207  *      Caller may hold no locks.
208  */
209 int
210 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
211          int fault_flags)
212 {
213         vm_prot_t prot;
214         int is_first_object_locked, result;
215         boolean_t are_queues_locked, growstack, wired;
216         int map_generation;
217         vm_object_t next_object;
218         vm_page_t marray[VM_FAULT_READ];
219         int hardfault;
220         int faultcount, ahead, behind;
221         struct faultstate fs;
222         struct vnode *vp;
223         int locked, error;
224
225         hardfault = 0;
226         growstack = TRUE;
227         PCPU_INC(cnt.v_vm_faults);
228         fs.vp = NULL;
229         fs.vfslocked = 0;
230         faultcount = behind = 0;
231
232 RetryFault:;
233
234         /*
235          * Find the backing store object and offset into it to begin the
236          * search.
237          */
238         fs.map = map;
239         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
240             &fs.first_object, &fs.first_pindex, &prot, &wired);
241         if (result != KERN_SUCCESS) {
242                 if (result != KERN_PROTECTION_FAILURE ||
243                     (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
244                         if (growstack && result == KERN_INVALID_ADDRESS &&
245                             map != kernel_map && curproc != NULL) {
246                                 result = vm_map_growstack(curproc, vaddr);
247                                 if (result != KERN_SUCCESS)
248                                         return (KERN_FAILURE);
249                                 growstack = FALSE;
250                                 goto RetryFault;
251                         }
252                         return (result);
253                 }
254
255                 /*
256                  * If we are user-wiring a r/w segment, and it is COW, then
257                  * we need to do the COW operation.  Note that we don't COW
258                  * currently RO sections now, because it is NOT desirable
259                  * to COW .text.  We simply keep .text from ever being COW'ed
260                  * and take the heat that one cannot debug wired .text sections.
261                  */
262                 result = vm_map_lookup(&fs.map, vaddr,
263                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
264                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
265                 if (result != KERN_SUCCESS)
266                         return (result);
267
268                 /*
269                  * If we don't COW now, on a user wire, the user will never
270                  * be able to write to the mapping.  If we don't make this
271                  * restriction, the bookkeeping would be nearly impossible.
272                  *
273                  * XXX The following assignment modifies the map without
274                  * holding a write lock on it.
275                  */
276                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
277                         fs.entry->max_protection &= ~VM_PROT_WRITE;
278         }
279
280         map_generation = fs.map->timestamp;
281
282         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
283                 panic("vm_fault: fault on nofault entry, addr: %lx",
284                     (u_long)vaddr);
285         }
286
287         /*
288          * Make a reference to this object to prevent its disposal while we
289          * are messing with it.  Once we have the reference, the map is free
290          * to be diddled.  Since objects reference their shadows (and copies),
291          * they will stay around as well.
292          *
293          * Bump the paging-in-progress count to prevent size changes (e.g. 
294          * truncation operations) during I/O.  This must be done after
295          * obtaining the vnode lock in order to avoid possible deadlocks.
296          */
297         VM_OBJECT_LOCK(fs.first_object);
298         vm_object_reference_locked(fs.first_object);
299         vm_object_pip_add(fs.first_object, 1);
300
301         fs.lookup_still_valid = TRUE;
302
303         if (wired)
304                 fault_type = prot;
305
306         fs.first_m = NULL;
307
308         /*
309          * Search for the page at object/offset.
310          */
311         fs.object = fs.first_object;
312         fs.pindex = fs.first_pindex;
313         while (TRUE) {
314                 /*
315                  * If the object is dead, we stop here
316                  */
317                 if (fs.object->flags & OBJ_DEAD) {
318                         unlock_and_deallocate(&fs);
319                         return (KERN_PROTECTION_FAILURE);
320                 }
321
322                 /*
323                  * See if page is resident
324                  */
325                 fs.m = vm_page_lookup(fs.object, fs.pindex);
326                 if (fs.m != NULL) {
327                         /* 
328                          * check for page-based copy on write.
329                          * We check fs.object == fs.first_object so
330                          * as to ensure the legacy COW mechanism is
331                          * used when the page in question is part of
332                          * a shadow object.  Otherwise, vm_page_cowfault()
333                          * removes the page from the backing object, 
334                          * which is not what we want.
335                          */
336                         vm_page_lock_queues();
337                         if ((fs.m->cow) && 
338                             (fault_type & VM_PROT_WRITE) &&
339                             (fs.object == fs.first_object)) {
340                                 vm_page_cowfault(fs.m);
341                                 vm_page_unlock_queues();
342                                 unlock_and_deallocate(&fs);
343                                 goto RetryFault;
344                         }
345
346                         /*
347                          * Wait/Retry if the page is busy.  We have to do this
348                          * if the page is busy via either VPO_BUSY or 
349                          * vm_page_t->busy because the vm_pager may be using
350                          * vm_page_t->busy for pageouts ( and even pageins if
351                          * it is the vnode pager ), and we could end up trying
352                          * to pagein and pageout the same page simultaneously.
353                          *
354                          * We can theoretically allow the busy case on a read
355                          * fault if the page is marked valid, but since such
356                          * pages are typically already pmap'd, putting that
357                          * special case in might be more effort then it is 
358                          * worth.  We cannot under any circumstances mess
359                          * around with a vm_page_t->busy page except, perhaps,
360                          * to pmap it.
361                          */
362                         if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
363                                 vm_page_unlock_queues();
364                                 VM_OBJECT_UNLOCK(fs.object);
365                                 if (fs.object != fs.first_object) {
366                                         VM_OBJECT_LOCK(fs.first_object);
367                                         vm_page_lock_queues();
368                                         vm_page_free(fs.first_m);
369                                         vm_page_unlock_queues();
370                                         vm_object_pip_wakeup(fs.first_object);
371                                         VM_OBJECT_UNLOCK(fs.first_object);
372                                         fs.first_m = NULL;
373                                 }
374                                 unlock_map(&fs);
375                                 VM_OBJECT_LOCK(fs.object);
376                                 if (fs.m == vm_page_lookup(fs.object,
377                                     fs.pindex)) {
378                                         vm_page_sleep_if_busy(fs.m, TRUE,
379                                             "vmpfw");
380                                 }
381                                 vm_object_pip_wakeup(fs.object);
382                                 VM_OBJECT_UNLOCK(fs.object);
383                                 PCPU_INC(cnt.v_intrans);
384                                 vm_object_deallocate(fs.first_object);
385                                 goto RetryFault;
386                         }
387                         vm_pageq_remove(fs.m);
388                         vm_page_unlock_queues();
389
390                         /*
391                          * Mark page busy for other processes, and the 
392                          * pagedaemon.  If it still isn't completely valid
393                          * (readable), jump to readrest, else break-out ( we
394                          * found the page ).
395                          */
396                         vm_page_busy(fs.m);
397                         if (fs.m->valid != VM_PAGE_BITS_ALL &&
398                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
399                                 goto readrest;
400                         }
401
402                         break;
403                 }
404
405                 /*
406                  * Page is not resident, If this is the search termination
407                  * or the pager might contain the page, allocate a new page.
408                  */
409                 if (TRYPAGER || fs.object == fs.first_object) {
410                         if (fs.pindex >= fs.object->size) {
411                                 unlock_and_deallocate(&fs);
412                                 return (KERN_PROTECTION_FAILURE);
413                         }
414
415                         /*
416                          * Allocate a new page for this object/offset pair.
417                          */
418                         fs.m = NULL;
419                         if (!vm_page_count_severe()) {
420 #if VM_NRESERVLEVEL > 0
421                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
422                                         fs.object->flags |= OBJ_COLORED;
423                                         fs.object->pg_color = atop(vaddr) -
424                                             fs.pindex;
425                                 }
426 #endif
427                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
428                                     (fs.object->type == OBJT_VNODE ||
429                                      fs.object->backing_object != NULL) ?
430                                     VM_ALLOC_NORMAL : VM_ALLOC_ZERO);
431                         }
432                         if (fs.m == NULL) {
433                                 unlock_and_deallocate(&fs);
434                                 VM_WAITPFAULT;
435                                 goto RetryFault;
436                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
437                                 break;
438                 }
439
440 readrest:
441                 /*
442                  * We have found a valid page or we have allocated a new page.
443                  * The page thus may not be valid or may not be entirely 
444                  * valid.
445                  *
446                  * Attempt to fault-in the page if there is a chance that the
447                  * pager has it, and potentially fault in additional pages
448                  * at the same time.
449                  */
450                 if (TRYPAGER) {
451                         int rv;
452                         int reqpage = 0;
453                         u_char behavior = vm_map_entry_behavior(fs.entry);
454
455                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
456                                 ahead = 0;
457                                 behind = 0;
458                         } else {
459                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
460                                 if (behind > VM_FAULT_READ_BEHIND)
461                                         behind = VM_FAULT_READ_BEHIND;
462
463                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
464                                 if (ahead > VM_FAULT_READ_AHEAD)
465                                         ahead = VM_FAULT_READ_AHEAD;
466                         }
467                         is_first_object_locked = FALSE;
468                         if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
469                              (behavior != MAP_ENTRY_BEHAV_RANDOM &&
470                               fs.pindex >= fs.entry->lastr &&
471                               fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
472                             (fs.first_object == fs.object ||
473                              (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
474                             fs.first_object->type != OBJT_DEVICE &&
475                             fs.first_object->type != OBJT_PHYS &&
476                             fs.first_object->type != OBJT_SG) {
477                                 vm_pindex_t firstpindex, tmppindex;
478
479                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
480                                         firstpindex = 0;
481                                 else
482                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
483
484                                 are_queues_locked = FALSE;
485                                 /*
486                                  * note: partially valid pages cannot be 
487                                  * included in the lookahead - NFS piecemeal
488                                  * writes will barf on it badly.
489                                  */
490                                 for (tmppindex = fs.first_pindex - 1;
491                                         tmppindex >= firstpindex;
492                                         --tmppindex) {
493                                         vm_page_t mt;
494
495                                         mt = vm_page_lookup(fs.first_object, tmppindex);
496                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
497                                                 break;
498                                         if (mt->busy ||
499                                             (mt->oflags & VPO_BUSY))
500                                                 continue;
501                                         if (!are_queues_locked) {
502                                                 are_queues_locked = TRUE;
503                                                 vm_page_lock_queues();
504                                         }
505                                         if (mt->hold_count ||
506                                                 mt->wire_count) 
507                                                 continue;
508                                         pmap_remove_all(mt);
509                                         if (mt->dirty) {
510                                                 vm_page_deactivate(mt);
511                                         } else {
512                                                 vm_page_cache(mt);
513                                         }
514                                 }
515                                 if (are_queues_locked)
516                                         vm_page_unlock_queues();
517                                 ahead += behind;
518                                 behind = 0;
519                         }
520                         if (is_first_object_locked)
521                                 VM_OBJECT_UNLOCK(fs.first_object);
522
523                         /*
524                          * Call the pager to retrieve the data, if any, after
525                          * releasing the lock on the map.  We hold a ref on
526                          * fs.object and the pages are VPO_BUSY'd.
527                          */
528                         unlock_map(&fs);
529
530 vnode_lock:
531                         if (fs.object->type == OBJT_VNODE) {
532                                 vp = fs.object->handle;
533                                 if (vp == fs.vp)
534                                         goto vnode_locked;
535                                 else if (fs.vp != NULL) {
536                                         vput(fs.vp);
537                                         fs.vp = NULL;
538                                 }
539                                 locked = VOP_ISLOCKED(vp);
540
541                                 if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
542                                         fs.vfslocked = 1;
543                                         if (!mtx_trylock(&Giant)) {
544                                                 VM_OBJECT_UNLOCK(fs.object);
545                                                 mtx_lock(&Giant);
546                                                 VM_OBJECT_LOCK(fs.object);
547                                                 goto vnode_lock;
548                                         }
549                                 }
550                                 if (locked != LK_EXCLUSIVE)
551                                         locked = LK_SHARED;
552                                 /* Do not sleep for vnode lock while fs.m is busy */
553                                 error = vget(vp, locked | LK_CANRECURSE |
554                                     LK_NOWAIT, curthread);
555                                 if (error != 0) {
556                                         int vfslocked;
557
558                                         vfslocked = fs.vfslocked;
559                                         fs.vfslocked = 0; /* Keep Giant */
560                                         vhold(vp);
561                                         release_page(&fs);
562                                         unlock_and_deallocate(&fs);
563                                         error = vget(vp, locked | LK_RETRY |
564                                             LK_CANRECURSE, curthread);
565                                         vdrop(vp);
566                                         fs.vp = vp;
567                                         fs.vfslocked = vfslocked;
568                                         KASSERT(error == 0,
569                                             ("vm_fault: vget failed"));
570                                         goto RetryFault;
571                                 }
572                                 fs.vp = vp;
573                         }
574 vnode_locked:
575                         KASSERT(fs.vp == NULL || !fs.map->system_map,
576                             ("vm_fault: vnode-backed object mapped by system map"));
577
578                         /*
579                          * now we find out if any other pages should be paged
580                          * in at this time this routine checks to see if the
581                          * pages surrounding this fault reside in the same
582                          * object as the page for this fault.  If they do,
583                          * then they are faulted in also into the object.  The
584                          * array "marray" returned contains an array of
585                          * vm_page_t structs where one of them is the
586                          * vm_page_t passed to the routine.  The reqpage
587                          * return value is the index into the marray for the
588                          * vm_page_t passed to the routine.
589                          *
590                          * fs.m plus the additional pages are VPO_BUSY'd.
591                          */
592                         faultcount = vm_fault_additional_pages(
593                             fs.m, behind, ahead, marray, &reqpage);
594
595                         rv = faultcount ?
596                             vm_pager_get_pages(fs.object, marray, faultcount,
597                                 reqpage) : VM_PAGER_FAIL;
598
599                         if (rv == VM_PAGER_OK) {
600                                 /*
601                                  * Found the page. Leave it busy while we play
602                                  * with it.
603                                  */
604
605                                 /*
606                                  * Relookup in case pager changed page. Pager
607                                  * is responsible for disposition of old page
608                                  * if moved.
609                                  */
610                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
611                                 if (!fs.m) {
612                                         unlock_and_deallocate(&fs);
613                                         goto RetryFault;
614                                 }
615
616                                 hardfault++;
617                                 break; /* break to PAGE HAS BEEN FOUND */
618                         }
619                         /*
620                          * Remove the bogus page (which does not exist at this
621                          * object/offset); before doing so, we must get back
622                          * our object lock to preserve our invariant.
623                          *
624                          * Also wake up any other process that may want to bring
625                          * in this page.
626                          *
627                          * If this is the top-level object, we must leave the
628                          * busy page to prevent another process from rushing
629                          * past us, and inserting the page in that object at
630                          * the same time that we are.
631                          */
632                         if (rv == VM_PAGER_ERROR)
633                                 printf("vm_fault: pager read error, pid %d (%s)\n",
634                                     curproc->p_pid, curproc->p_comm);
635                         /*
636                          * Data outside the range of the pager or an I/O error
637                          */
638                         /*
639                          * XXX - the check for kernel_map is a kludge to work
640                          * around having the machine panic on a kernel space
641                          * fault w/ I/O error.
642                          */
643                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
644                                 (rv == VM_PAGER_BAD)) {
645                                 vm_page_lock_queues();
646                                 vm_page_free(fs.m);
647                                 vm_page_unlock_queues();
648                                 fs.m = NULL;
649                                 unlock_and_deallocate(&fs);
650                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
651                         }
652                         if (fs.object != fs.first_object) {
653                                 vm_page_lock_queues();
654                                 vm_page_free(fs.m);
655                                 vm_page_unlock_queues();
656                                 fs.m = NULL;
657                                 /*
658                                  * XXX - we cannot just fall out at this
659                                  * point, m has been freed and is invalid!
660                                  */
661                         }
662                 }
663
664                 /*
665                  * We get here if the object has default pager (or unwiring) 
666                  * or the pager doesn't have the page.
667                  */
668                 if (fs.object == fs.first_object)
669                         fs.first_m = fs.m;
670
671                 /*
672                  * Move on to the next object.  Lock the next object before
673                  * unlocking the current one.
674                  */
675                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
676                 next_object = fs.object->backing_object;
677                 if (next_object == NULL) {
678                         /*
679                          * If there's no object left, fill the page in the top
680                          * object with zeros.
681                          */
682                         if (fs.object != fs.first_object) {
683                                 vm_object_pip_wakeup(fs.object);
684                                 VM_OBJECT_UNLOCK(fs.object);
685
686                                 fs.object = fs.first_object;
687                                 fs.pindex = fs.first_pindex;
688                                 fs.m = fs.first_m;
689                                 VM_OBJECT_LOCK(fs.object);
690                         }
691                         fs.first_m = NULL;
692
693                         /*
694                          * Zero the page if necessary and mark it valid.
695                          */
696                         if ((fs.m->flags & PG_ZERO) == 0) {
697                                 pmap_zero_page(fs.m);
698                         } else {
699                                 PCPU_INC(cnt.v_ozfod);
700                         }
701                         PCPU_INC(cnt.v_zfod);
702                         fs.m->valid = VM_PAGE_BITS_ALL;
703                         break;  /* break to PAGE HAS BEEN FOUND */
704                 } else {
705                         KASSERT(fs.object != next_object,
706                             ("object loop %p", next_object));
707                         VM_OBJECT_LOCK(next_object);
708                         vm_object_pip_add(next_object, 1);
709                         if (fs.object != fs.first_object)
710                                 vm_object_pip_wakeup(fs.object);
711                         VM_OBJECT_UNLOCK(fs.object);
712                         fs.object = next_object;
713                 }
714         }
715
716         KASSERT((fs.m->oflags & VPO_BUSY) != 0,
717             ("vm_fault: not busy after main loop"));
718
719         /*
720          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
721          * is held.]
722          */
723
724         /*
725          * If the page is being written, but isn't already owned by the
726          * top-level object, we have to copy it into a new page owned by the
727          * top-level object.
728          */
729         if (fs.object != fs.first_object) {
730                 /*
731                  * We only really need to copy if we want to write it.
732                  */
733                 if (fault_type & VM_PROT_WRITE) {
734                         /*
735                          * This allows pages to be virtually copied from a 
736                          * backing_object into the first_object, where the 
737                          * backing object has no other refs to it, and cannot
738                          * gain any more refs.  Instead of a bcopy, we just 
739                          * move the page from the backing object to the 
740                          * first object.  Note that we must mark the page 
741                          * dirty in the first object so that it will go out 
742                          * to swap when needed.
743                          */
744                         is_first_object_locked = FALSE;
745                         if (
746                                 /*
747                                  * Only one shadow object
748                                  */
749                                 (fs.object->shadow_count == 1) &&
750                                 /*
751                                  * No COW refs, except us
752                                  */
753                                 (fs.object->ref_count == 1) &&
754                                 /*
755                                  * No one else can look this object up
756                                  */
757                                 (fs.object->handle == NULL) &&
758                                 /*
759                                  * No other ways to look the object up
760                                  */
761                                 ((fs.object->type == OBJT_DEFAULT) ||
762                                  (fs.object->type == OBJT_SWAP)) &&
763                             (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
764                                 /*
765                                  * We don't chase down the shadow chain
766                                  */
767                             fs.object == fs.first_object->backing_object) {
768                                 vm_page_lock_queues();
769                                 /*
770                                  * get rid of the unnecessary page
771                                  */
772                                 vm_page_free(fs.first_m);
773                                 /*
774                                  * grab the page and put it into the 
775                                  * process'es object.  The page is 
776                                  * automatically made dirty.
777                                  */
778                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
779                                 vm_page_unlock_queues();
780                                 vm_page_busy(fs.m);
781                                 fs.first_m = fs.m;
782                                 fs.m = NULL;
783                                 PCPU_INC(cnt.v_cow_optim);
784                         } else {
785                                 /*
786                                  * Oh, well, lets copy it.
787                                  */
788                                 pmap_copy_page(fs.m, fs.first_m);
789                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
790                         }
791                         if (fs.m) {
792                                 /*
793                                  * We no longer need the old page or object.
794                                  */
795                                 release_page(&fs);
796                         }
797                         /*
798                          * fs.object != fs.first_object due to above 
799                          * conditional
800                          */
801                         vm_object_pip_wakeup(fs.object);
802                         VM_OBJECT_UNLOCK(fs.object);
803                         /*
804                          * Only use the new page below...
805                          */
806                         fs.object = fs.first_object;
807                         fs.pindex = fs.first_pindex;
808                         fs.m = fs.first_m;
809                         if (!is_first_object_locked)
810                                 VM_OBJECT_LOCK(fs.object);
811                         PCPU_INC(cnt.v_cow_faults);
812                 } else {
813                         prot &= ~VM_PROT_WRITE;
814                 }
815         }
816
817         /*
818          * We must verify that the maps have not changed since our last
819          * lookup.
820          */
821         if (!fs.lookup_still_valid) {
822                 vm_object_t retry_object;
823                 vm_pindex_t retry_pindex;
824                 vm_prot_t retry_prot;
825
826                 if (!vm_map_trylock_read(fs.map)) {
827                         release_page(&fs);
828                         unlock_and_deallocate(&fs);
829                         goto RetryFault;
830                 }
831                 fs.lookup_still_valid = TRUE;
832                 if (fs.map->timestamp != map_generation) {
833                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
834                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
835
836                         /*
837                          * If we don't need the page any longer, put it on the inactive
838                          * list (the easiest thing to do here).  If no one needs it,
839                          * pageout will grab it eventually.
840                          */
841                         if (result != KERN_SUCCESS) {
842                                 release_page(&fs);
843                                 unlock_and_deallocate(&fs);
844
845                                 /*
846                                  * If retry of map lookup would have blocked then
847                                  * retry fault from start.
848                                  */
849                                 if (result == KERN_FAILURE)
850                                         goto RetryFault;
851                                 return (result);
852                         }
853                         if ((retry_object != fs.first_object) ||
854                             (retry_pindex != fs.first_pindex)) {
855                                 release_page(&fs);
856                                 unlock_and_deallocate(&fs);
857                                 goto RetryFault;
858                         }
859
860                         /*
861                          * Check whether the protection has changed or the object has
862                          * been copied while we left the map unlocked. Changing from
863                          * read to write permission is OK - we leave the page
864                          * write-protected, and catch the write fault. Changing from
865                          * write to read permission means that we can't mark the page
866                          * write-enabled after all.
867                          */
868                         prot &= retry_prot;
869                 }
870         }
871         /*
872          * If the page was filled by a pager, update the map entry's
873          * last read offset.  Since the pager does not return the
874          * actual set of pages that it read, this update is based on
875          * the requested set.  Typically, the requested and actual
876          * sets are the same.
877          *
878          * XXX The following assignment modifies the map
879          * without holding a write lock on it.
880          */
881         if (hardfault)
882                 fs.entry->lastr = fs.pindex + faultcount - behind;
883
884         if (prot & VM_PROT_WRITE) {
885                 vm_object_set_writeable_dirty(fs.object);
886
887                 /*
888                  * If the fault is a write, we know that this page is being
889                  * written NOW so dirty it explicitly to save on 
890                  * pmap_is_modified() calls later.
891                  *
892                  * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
893                  * if the page is already dirty to prevent data written with
894                  * the expectation of being synced from not being synced.
895                  * Likewise if this entry does not request NOSYNC then make
896                  * sure the page isn't marked NOSYNC.  Applications sharing
897                  * data should use the same flags to avoid ping ponging.
898                  *
899                  * Also tell the backing pager, if any, that it should remove
900                  * any swap backing since the page is now dirty.
901                  */
902                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
903                         if (fs.m->dirty == 0)
904                                 fs.m->oflags |= VPO_NOSYNC;
905                 } else {
906                         fs.m->oflags &= ~VPO_NOSYNC;
907                 }
908                 if (fault_flags & VM_FAULT_DIRTY) {
909                         vm_page_dirty(fs.m);
910                         vm_pager_page_unswapped(fs.m);
911                 }
912         }
913
914         /*
915          * Page had better still be busy
916          */
917         KASSERT(fs.m->oflags & VPO_BUSY,
918                 ("vm_fault: page %p not busy!", fs.m));
919         /*
920          * Page must be completely valid or it is not fit to
921          * map into user space.  vm_pager_get_pages() ensures this.
922          */
923         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
924             ("vm_fault: page %p partially invalid", fs.m));
925         VM_OBJECT_UNLOCK(fs.object);
926
927         /*
928          * Put this page into the physical map.  We had to do the unlock above
929          * because pmap_enter() may sleep.  We don't put the page
930          * back on the active queue until later so that the pageout daemon
931          * won't find it (yet).
932          */
933         pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
934         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
935                 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
936         }
937         VM_OBJECT_LOCK(fs.object);
938         vm_page_lock_queues();
939         vm_page_flag_set(fs.m, PG_REFERENCED);
940
941         /*
942          * If the page is not wired down, then put it where the pageout daemon
943          * can find it.
944          */
945         if (fault_flags & VM_FAULT_WIRE_MASK) {
946                 if (wired)
947                         vm_page_wire(fs.m);
948                 else
949                         vm_page_unwire(fs.m, 1);
950         } else {
951                 vm_page_activate(fs.m);
952         }
953         vm_page_unlock_queues();
954         vm_page_wakeup(fs.m);
955
956         /*
957          * Unlock everything, and return
958          */
959         unlock_and_deallocate(&fs);
960         if (hardfault)
961                 curthread->td_ru.ru_majflt++;
962         else
963                 curthread->td_ru.ru_minflt++;
964
965         return (KERN_SUCCESS);
966 }
967
968 /*
969  * vm_fault_prefault provides a quick way of clustering
970  * pagefaults into a processes address space.  It is a "cousin"
971  * of vm_map_pmap_enter, except it runs at page fault time instead
972  * of mmap time.
973  */
974 static void
975 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
976 {
977         int i;
978         vm_offset_t addr, starta;
979         vm_pindex_t pindex;
980         vm_page_t m;
981         vm_object_t object;
982
983         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
984                 return;
985
986         object = entry->object.vm_object;
987
988         starta = addra - PFBAK * PAGE_SIZE;
989         if (starta < entry->start) {
990                 starta = entry->start;
991         } else if (starta > addra) {
992                 starta = 0;
993         }
994
995         for (i = 0; i < PAGEORDER_SIZE; i++) {
996                 vm_object_t backing_object, lobject;
997
998                 addr = addra + prefault_pageorder[i];
999                 if (addr > addra + (PFFOR * PAGE_SIZE))
1000                         addr = 0;
1001
1002                 if (addr < starta || addr >= entry->end)
1003                         continue;
1004
1005                 if (!pmap_is_prefaultable(pmap, addr))
1006                         continue;
1007
1008                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1009                 lobject = object;
1010                 VM_OBJECT_LOCK(lobject);
1011                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1012                     lobject->type == OBJT_DEFAULT &&
1013                     (backing_object = lobject->backing_object) != NULL) {
1014                         if (lobject->backing_object_offset & PAGE_MASK)
1015                                 break;
1016                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1017                         VM_OBJECT_LOCK(backing_object);
1018                         VM_OBJECT_UNLOCK(lobject);
1019                         lobject = backing_object;
1020                 }
1021                 /*
1022                  * give-up when a page is not in memory
1023                  */
1024                 if (m == NULL) {
1025                         VM_OBJECT_UNLOCK(lobject);
1026                         break;
1027                 }
1028                 if (m->valid == VM_PAGE_BITS_ALL &&
1029                     (m->flags & PG_FICTITIOUS) == 0) {
1030                         vm_page_lock_queues();
1031                         pmap_enter_quick(pmap, addr, m, entry->protection);
1032                         vm_page_unlock_queues();
1033                 }
1034                 VM_OBJECT_UNLOCK(lobject);
1035         }
1036 }
1037
1038 /*
1039  *      vm_fault_quick:
1040  *
1041  *      Ensure that the requested virtual address, which may be in userland,
1042  *      is valid.  Fault-in the page if necessary.  Return -1 on failure.
1043  */
1044 int
1045 vm_fault_quick(caddr_t v, int prot)
1046 {
1047         int r;
1048
1049         if (prot & VM_PROT_WRITE)
1050                 r = subyte(v, fubyte(v));
1051         else
1052                 r = fubyte(v);
1053         return(r);
1054 }
1055
1056 /*
1057  *      vm_fault_wire:
1058  *
1059  *      Wire down a range of virtual addresses in a map.
1060  */
1061 int
1062 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1063     boolean_t user_wire, boolean_t fictitious)
1064 {
1065         vm_offset_t va;
1066         int rv;
1067
1068         /*
1069          * We simulate a fault to get the page and enter it in the physical
1070          * map.  For user wiring, we only ask for read access on currently
1071          * read-only sections.
1072          */
1073         for (va = start; va < end; va += PAGE_SIZE) {
1074                 rv = vm_fault(map, va,
1075                     user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1076                     user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1077                 if (rv) {
1078                         if (va != start)
1079                                 vm_fault_unwire(map, start, va, fictitious);
1080                         return (rv);
1081                 }
1082         }
1083         return (KERN_SUCCESS);
1084 }
1085
1086 /*
1087  *      vm_fault_unwire:
1088  *
1089  *      Unwire a range of virtual addresses in a map.
1090  */
1091 void
1092 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1093     boolean_t fictitious)
1094 {
1095         vm_paddr_t pa;
1096         vm_offset_t va;
1097         pmap_t pmap;
1098
1099         pmap = vm_map_pmap(map);
1100
1101         /*
1102          * Since the pages are wired down, we must be able to get their
1103          * mappings from the physical map system.
1104          */
1105         for (va = start; va < end; va += PAGE_SIZE) {
1106                 pa = pmap_extract(pmap, va);
1107                 if (pa != 0) {
1108                         pmap_change_wiring(pmap, va, FALSE);
1109                         if (!fictitious) {
1110                                 vm_page_lock_queues();
1111                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1112                                 vm_page_unlock_queues();
1113                         }
1114                 }
1115         }
1116 }
1117
1118 /*
1119  *      Routine:
1120  *              vm_fault_copy_entry
1121  *      Function:
1122  *              Copy all of the pages from a wired-down map entry to another.
1123  *
1124  *      In/out conditions:
1125  *              The source and destination maps must be locked for write.
1126  *              The source map entry must be wired down (or be a sharing map
1127  *              entry corresponding to a main map entry that is wired down).
1128  */
1129 void
1130 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1131     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1132     vm_ooffset_t *fork_charge)
1133 {
1134         vm_object_t backing_object, dst_object, object;
1135         vm_object_t src_object;
1136         vm_ooffset_t dst_offset;
1137         vm_ooffset_t src_offset;
1138         vm_pindex_t pindex;
1139         vm_prot_t prot;
1140         vm_offset_t vaddr;
1141         vm_page_t dst_m;
1142         vm_page_t src_m;
1143
1144 #ifdef  lint
1145         src_map++;
1146 #endif  /* lint */
1147
1148         src_object = src_entry->object.vm_object;
1149         src_offset = src_entry->offset;
1150
1151         /*
1152          * Create the top-level object for the destination entry. (Doesn't
1153          * actually shadow anything - we copy the pages directly.)
1154          */
1155         dst_object = vm_object_allocate(OBJT_DEFAULT,
1156             OFF_TO_IDX(dst_entry->end - dst_entry->start));
1157 #if VM_NRESERVLEVEL > 0
1158         dst_object->flags |= OBJ_COLORED;
1159         dst_object->pg_color = atop(dst_entry->start);
1160 #endif
1161
1162         VM_OBJECT_LOCK(dst_object);
1163         KASSERT(dst_entry->object.vm_object == NULL,
1164             ("vm_fault_copy_entry: vm_object not NULL"));
1165         dst_entry->object.vm_object = dst_object;
1166         dst_entry->offset = 0;
1167         dst_object->uip = curthread->td_ucred->cr_ruidinfo;
1168         uihold(dst_object->uip);
1169         dst_object->charge = dst_entry->end - dst_entry->start;
1170         KASSERT(dst_entry->uip == NULL,
1171             ("vm_fault_copy_entry: leaked swp charge"));
1172         *fork_charge += dst_object->charge;
1173         prot = dst_entry->max_protection;
1174
1175         /*
1176          * Loop through all of the pages in the entry's range, copying each
1177          * one from the source object (it should be there) to the destination
1178          * object.
1179          */
1180         for (vaddr = dst_entry->start, dst_offset = 0;
1181             vaddr < dst_entry->end;
1182             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1183
1184                 /*
1185                  * Allocate a page in the destination object
1186                  */
1187                 do {
1188                         dst_m = vm_page_alloc(dst_object,
1189                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1190                         if (dst_m == NULL) {
1191                                 VM_OBJECT_UNLOCK(dst_object);
1192                                 VM_WAIT;
1193                                 VM_OBJECT_LOCK(dst_object);
1194                         }
1195                 } while (dst_m == NULL);
1196
1197                 /*
1198                  * Find the page in the source object, and copy it in.
1199                  * (Because the source is wired down, the page will be in
1200                  * memory.)
1201                  */
1202                 VM_OBJECT_LOCK(src_object);
1203                 object = src_object;
1204                 pindex = 0;
1205                 while ((src_m = vm_page_lookup(object, pindex +
1206                     OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
1207                     (src_entry->protection & VM_PROT_WRITE) == 0 &&
1208                     (backing_object = object->backing_object) != NULL) {
1209                         /*
1210                          * Allow fallback to backing objects if we are reading.
1211                          */
1212                         VM_OBJECT_LOCK(backing_object);
1213                         pindex += OFF_TO_IDX(object->backing_object_offset);
1214                         VM_OBJECT_UNLOCK(object);
1215                         object = backing_object;
1216                 }
1217                 if (src_m == NULL)
1218                         panic("vm_fault_copy_wired: page missing");
1219                 pmap_copy_page(src_m, dst_m);
1220                 VM_OBJECT_UNLOCK(object);
1221                 dst_m->valid = VM_PAGE_BITS_ALL;
1222                 VM_OBJECT_UNLOCK(dst_object);
1223
1224                 /*
1225                  * Enter it in the pmap as a read and/or execute access.
1226                  */
1227                 pmap_enter(dst_map->pmap, vaddr, prot & ~VM_PROT_WRITE, dst_m,
1228                     prot, FALSE);
1229
1230                 /*
1231                  * Mark it no longer busy, and put it on the active list.
1232                  */
1233                 VM_OBJECT_LOCK(dst_object);
1234                 vm_page_lock_queues();
1235                 vm_page_activate(dst_m);
1236                 vm_page_unlock_queues();
1237                 vm_page_wakeup(dst_m);
1238         }
1239         VM_OBJECT_UNLOCK(dst_object);
1240 }
1241
1242
1243 /*
1244  * This routine checks around the requested page for other pages that
1245  * might be able to be faulted in.  This routine brackets the viable
1246  * pages for the pages to be paged in.
1247  *
1248  * Inputs:
1249  *      m, rbehind, rahead
1250  *
1251  * Outputs:
1252  *  marray (array of vm_page_t), reqpage (index of requested page)
1253  *
1254  * Return value:
1255  *  number of pages in marray
1256  */
1257 static int
1258 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1259         vm_page_t m;
1260         int rbehind;
1261         int rahead;
1262         vm_page_t *marray;
1263         int *reqpage;
1264 {
1265         int i,j;
1266         vm_object_t object;
1267         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1268         vm_page_t rtm;
1269         int cbehind, cahead;
1270
1271         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1272
1273         object = m->object;
1274         pindex = m->pindex;
1275         cbehind = cahead = 0;
1276
1277         /*
1278          * if the requested page is not available, then give up now
1279          */
1280         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1281                 return 0;
1282         }
1283
1284         if ((cbehind == 0) && (cahead == 0)) {
1285                 *reqpage = 0;
1286                 marray[0] = m;
1287                 return 1;
1288         }
1289
1290         if (rahead > cahead) {
1291                 rahead = cahead;
1292         }
1293
1294         if (rbehind > cbehind) {
1295                 rbehind = cbehind;
1296         }
1297
1298         /*
1299          * scan backward for the read behind pages -- in memory 
1300          */
1301         if (pindex > 0) {
1302                 if (rbehind > pindex) {
1303                         rbehind = pindex;
1304                         startpindex = 0;
1305                 } else {
1306                         startpindex = pindex - rbehind;
1307                 }
1308
1309                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1310                     rtm->pindex >= startpindex)
1311                         startpindex = rtm->pindex + 1;
1312
1313                 /* tpindex is unsigned; beware of numeric underflow. */
1314                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1315                     tpindex < pindex; i++, tpindex--) {
1316
1317                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1318                             VM_ALLOC_IFNOTCACHED);
1319                         if (rtm == NULL) {
1320                                 /*
1321                                  * Shift the allocated pages to the
1322                                  * beginning of the array.
1323                                  */
1324                                 for (j = 0; j < i; j++) {
1325                                         marray[j] = marray[j + tpindex + 1 -
1326                                             startpindex];
1327                                 }
1328                                 break;
1329                         }
1330
1331                         marray[tpindex - startpindex] = rtm;
1332                 }
1333         } else {
1334                 startpindex = 0;
1335                 i = 0;
1336         }
1337
1338         marray[i] = m;
1339         /* page offset of the required page */
1340         *reqpage = i;
1341
1342         tpindex = pindex + 1;
1343         i++;
1344
1345         /*
1346          * scan forward for the read ahead pages
1347          */
1348         endpindex = tpindex + rahead;
1349         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1350                 endpindex = rtm->pindex;
1351         if (endpindex > object->size)
1352                 endpindex = object->size;
1353
1354         for (; tpindex < endpindex; i++, tpindex++) {
1355
1356                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1357                     VM_ALLOC_IFNOTCACHED);
1358                 if (rtm == NULL) {
1359                         break;
1360                 }
1361
1362                 marray[i] = rtm;
1363         }
1364
1365         /* return number of pages */
1366         return i;
1367 }