]> CyberLeo.Net >> Repos - FreeBSD/releng/8.0.git/blob - sys/vm/vm_pageout.c
Adjust to reflect 8.0-RELEASE.
[FreeBSD/releng/8.0.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/resourcevar.h>
90 #include <sys/sched.h>
91 #include <sys/signalvar.h>
92 #include <sys/vnode.h>
93 #include <sys/vmmeter.h>
94 #include <sys/sx.h>
95 #include <sys/sysctl.h>
96
97 #include <vm/vm.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_pager.h>
104 #include <vm/swap_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/uma.h>
107
108 /*
109  * System initialization
110  */
111
112 /* the kernel process "vm_pageout"*/
113 static void vm_pageout(void);
114 static int vm_pageout_clean(vm_page_t);
115 static void vm_pageout_scan(int pass);
116
117 struct proc *pageproc;
118
119 static struct kproc_desc page_kp = {
120         "pagedaemon",
121         vm_pageout,
122         &pageproc
123 };
124 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
125     &page_kp);
126
127 #if !defined(NO_SWAPPING)
128 /* the kernel process "vm_daemon"*/
129 static void vm_daemon(void);
130 static struct   proc *vmproc;
131
132 static struct kproc_desc vm_kp = {
133         "vmdaemon",
134         vm_daemon,
135         &vmproc
136 };
137 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
138 #endif
139
140
141 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
142 int vm_pageout_deficit;         /* Estimated number of pages deficit */
143 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
144
145 #if !defined(NO_SWAPPING)
146 static int vm_pageout_req_swapout;      /* XXX */
147 static int vm_daemon_needed;
148 static struct mtx vm_daemon_mtx;
149 /* Allow for use by vm_pageout before vm_daemon is initialized. */
150 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
151 #endif
152 static int vm_max_launder = 32;
153 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
154 static int vm_pageout_full_stats_interval = 0;
155 static int vm_pageout_algorithm=0;
156 static int defer_swap_pageouts=0;
157 static int disable_swap_pageouts=0;
158
159 #if defined(NO_SWAPPING)
160 static int vm_swap_enabled=0;
161 static int vm_swap_idle_enabled=0;
162 #else
163 static int vm_swap_enabled=1;
164 static int vm_swap_idle_enabled=0;
165 #endif
166
167 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
168         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
169
170 SYSCTL_INT(_vm, OID_AUTO, max_launder,
171         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
172
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
174         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
175
176 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
177         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
178
179 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
180         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
181
182 #if defined(NO_SWAPPING)
183 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
184         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
185 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
186         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
187 #else
188 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
190 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192 #endif
193
194 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
195         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
196
197 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
198         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
199
200 static int pageout_lock_miss;
201 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
202         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
203
204 #define VM_PAGEOUT_PAGE_COUNT 16
205 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
206
207 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
208 SYSCTL_INT(_vm, OID_AUTO, max_wired,
209         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
210
211 #if !defined(NO_SWAPPING)
212 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
213 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
214 static void vm_req_vmdaemon(int req);
215 #endif
216 static void vm_pageout_page_stats(void);
217
218 /*
219  * vm_pageout_fallback_object_lock:
220  * 
221  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
222  * known to have failed and page queue must be either PQ_ACTIVE or
223  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
224  * while locking the vm object.  Use marker page to detect page queue
225  * changes and maintain notion of next page on page queue.  Return
226  * TRUE if no changes were detected, FALSE otherwise.  vm object is
227  * locked on return.
228  * 
229  * This function depends on both the lock portion of struct vm_object
230  * and normal struct vm_page being type stable.
231  */
232 boolean_t
233 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
234 {
235         struct vm_page marker;
236         boolean_t unchanged;
237         u_short queue;
238         vm_object_t object;
239
240         /*
241          * Initialize our marker
242          */
243         bzero(&marker, sizeof(marker));
244         marker.flags = PG_FICTITIOUS | PG_MARKER;
245         marker.oflags = VPO_BUSY;
246         marker.queue = m->queue;
247         marker.wire_count = 1;
248
249         queue = m->queue;
250         object = m->object;
251         
252         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
253                            m, &marker, pageq);
254         vm_page_unlock_queues();
255         VM_OBJECT_LOCK(object);
256         vm_page_lock_queues();
257
258         /* Page queue might have changed. */
259         *next = TAILQ_NEXT(&marker, pageq);
260         unchanged = (m->queue == queue &&
261                      m->object == object &&
262                      &marker == TAILQ_NEXT(m, pageq));
263         TAILQ_REMOVE(&vm_page_queues[queue].pl,
264                      &marker, pageq);
265         return (unchanged);
266 }
267
268 /*
269  * vm_pageout_clean:
270  *
271  * Clean the page and remove it from the laundry.
272  * 
273  * We set the busy bit to cause potential page faults on this page to
274  * block.  Note the careful timing, however, the busy bit isn't set till
275  * late and we cannot do anything that will mess with the page.
276  */
277 static int
278 vm_pageout_clean(m)
279         vm_page_t m;
280 {
281         vm_object_t object;
282         vm_page_t mc[2*vm_pageout_page_count];
283         int pageout_count;
284         int ib, is, page_base;
285         vm_pindex_t pindex = m->pindex;
286
287         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
288         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
289
290         /*
291          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
292          * with the new swapper, but we could have serious problems paging
293          * out other object types if there is insufficient memory.  
294          *
295          * Unfortunately, checking free memory here is far too late, so the
296          * check has been moved up a procedural level.
297          */
298
299         /*
300          * Can't clean the page if it's busy or held.
301          */
302         if ((m->hold_count != 0) ||
303             ((m->busy != 0) || (m->oflags & VPO_BUSY))) {
304                 return 0;
305         }
306
307         mc[vm_pageout_page_count] = m;
308         pageout_count = 1;
309         page_base = vm_pageout_page_count;
310         ib = 1;
311         is = 1;
312
313         /*
314          * Scan object for clusterable pages.
315          *
316          * We can cluster ONLY if: ->> the page is NOT
317          * clean, wired, busy, held, or mapped into a
318          * buffer, and one of the following:
319          * 1) The page is inactive, or a seldom used
320          *    active page.
321          * -or-
322          * 2) we force the issue.
323          *
324          * During heavy mmap/modification loads the pageout
325          * daemon can really fragment the underlying file
326          * due to flushing pages out of order and not trying
327          * align the clusters (which leave sporatic out-of-order
328          * holes).  To solve this problem we do the reverse scan
329          * first and attempt to align our cluster, then do a 
330          * forward scan if room remains.
331          */
332         object = m->object;
333 more:
334         while (ib && pageout_count < vm_pageout_page_count) {
335                 vm_page_t p;
336
337                 if (ib > pindex) {
338                         ib = 0;
339                         break;
340                 }
341
342                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
343                         ib = 0;
344                         break;
345                 }
346                 if ((p->oflags & VPO_BUSY) || p->busy) {
347                         ib = 0;
348                         break;
349                 }
350                 vm_page_test_dirty(p);
351                 if (p->dirty == 0 ||
352                     p->queue != PQ_INACTIVE ||
353                     p->wire_count != 0 ||       /* may be held by buf cache */
354                     p->hold_count != 0) {       /* may be undergoing I/O */
355                         ib = 0;
356                         break;
357                 }
358                 mc[--page_base] = p;
359                 ++pageout_count;
360                 ++ib;
361                 /*
362                  * alignment boundry, stop here and switch directions.  Do
363                  * not clear ib.
364                  */
365                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
366                         break;
367         }
368
369         while (pageout_count < vm_pageout_page_count && 
370             pindex + is < object->size) {
371                 vm_page_t p;
372
373                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
374                         break;
375                 if ((p->oflags & VPO_BUSY) || p->busy) {
376                         break;
377                 }
378                 vm_page_test_dirty(p);
379                 if (p->dirty == 0 ||
380                     p->queue != PQ_INACTIVE ||
381                     p->wire_count != 0 ||       /* may be held by buf cache */
382                     p->hold_count != 0) {       /* may be undergoing I/O */
383                         break;
384                 }
385                 mc[page_base + pageout_count] = p;
386                 ++pageout_count;
387                 ++is;
388         }
389
390         /*
391          * If we exhausted our forward scan, continue with the reverse scan
392          * when possible, even past a page boundry.  This catches boundry
393          * conditions.
394          */
395         if (ib && pageout_count < vm_pageout_page_count)
396                 goto more;
397
398         /*
399          * we allow reads during pageouts...
400          */
401         return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
402 }
403
404 /*
405  * vm_pageout_flush() - launder the given pages
406  *
407  *      The given pages are laundered.  Note that we setup for the start of
408  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
409  *      reference count all in here rather then in the parent.  If we want
410  *      the parent to do more sophisticated things we may have to change
411  *      the ordering.
412  */
413 int
414 vm_pageout_flush(vm_page_t *mc, int count, int flags)
415 {
416         vm_object_t object = mc[0]->object;
417         int pageout_status[count];
418         int numpagedout = 0;
419         int i;
420
421         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
422         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
423         /*
424          * Initiate I/O.  Bump the vm_page_t->busy counter and
425          * mark the pages read-only.
426          *
427          * We do not have to fixup the clean/dirty bits here... we can
428          * allow the pager to do it after the I/O completes.
429          *
430          * NOTE! mc[i]->dirty may be partial or fragmented due to an
431          * edge case with file fragments.
432          */
433         for (i = 0; i < count; i++) {
434                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
435                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
436                         mc[i], i, count));
437                 vm_page_io_start(mc[i]);
438                 pmap_remove_write(mc[i]);
439         }
440         vm_page_unlock_queues();
441         vm_object_pip_add(object, count);
442
443         vm_pager_put_pages(object, mc, count, flags, pageout_status);
444
445         vm_page_lock_queues();
446         for (i = 0; i < count; i++) {
447                 vm_page_t mt = mc[i];
448
449                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
450                     (mt->flags & PG_WRITEABLE) == 0,
451                     ("vm_pageout_flush: page %p is not write protected", mt));
452                 switch (pageout_status[i]) {
453                 case VM_PAGER_OK:
454                 case VM_PAGER_PEND:
455                         numpagedout++;
456                         break;
457                 case VM_PAGER_BAD:
458                         /*
459                          * Page outside of range of object. Right now we
460                          * essentially lose the changes by pretending it
461                          * worked.
462                          */
463                         vm_page_undirty(mt);
464                         break;
465                 case VM_PAGER_ERROR:
466                 case VM_PAGER_FAIL:
467                         /*
468                          * If page couldn't be paged out, then reactivate the
469                          * page so it doesn't clog the inactive list.  (We
470                          * will try paging out it again later).
471                          */
472                         vm_page_activate(mt);
473                         break;
474                 case VM_PAGER_AGAIN:
475                         break;
476                 }
477
478                 /*
479                  * If the operation is still going, leave the page busy to
480                  * block all other accesses. Also, leave the paging in
481                  * progress indicator set so that we don't attempt an object
482                  * collapse.
483                  */
484                 if (pageout_status[i] != VM_PAGER_PEND) {
485                         vm_object_pip_wakeup(object);
486                         vm_page_io_finish(mt);
487                         if (vm_page_count_severe())
488                                 vm_page_try_to_cache(mt);
489                 }
490         }
491         return numpagedout;
492 }
493
494 #if !defined(NO_SWAPPING)
495 /*
496  *      vm_pageout_object_deactivate_pages
497  *
498  *      deactivate enough pages to satisfy the inactive target
499  *      requirements or if vm_page_proc_limit is set, then
500  *      deactivate all of the pages in the object and its
501  *      backing_objects.
502  *
503  *      The object and map must be locked.
504  */
505 static void
506 vm_pageout_object_deactivate_pages(pmap, first_object, desired)
507         pmap_t pmap;
508         vm_object_t first_object;
509         long desired;
510 {
511         vm_object_t backing_object, object;
512         vm_page_t p, next;
513         int actcount, rcount, remove_mode;
514
515         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
516         if (first_object->type == OBJT_DEVICE ||
517             first_object->type == OBJT_SG ||
518             first_object->type == OBJT_PHYS)
519                 return;
520         for (object = first_object;; object = backing_object) {
521                 if (pmap_resident_count(pmap) <= desired)
522                         goto unlock_return;
523                 if (object->paging_in_progress)
524                         goto unlock_return;
525
526                 remove_mode = 0;
527                 if (object->shadow_count > 1)
528                         remove_mode = 1;
529                 /*
530                  * scan the objects entire memory queue
531                  */
532                 rcount = object->resident_page_count;
533                 p = TAILQ_FIRST(&object->memq);
534                 vm_page_lock_queues();
535                 while (p && (rcount-- > 0)) {
536                         if (pmap_resident_count(pmap) <= desired) {
537                                 vm_page_unlock_queues();
538                                 goto unlock_return;
539                         }
540                         next = TAILQ_NEXT(p, listq);
541                         cnt.v_pdpages++;
542                         if (p->wire_count != 0 ||
543                             p->hold_count != 0 ||
544                             p->busy != 0 ||
545                             (p->oflags & VPO_BUSY) ||
546                             (p->flags & PG_UNMANAGED) ||
547                             !pmap_page_exists_quick(pmap, p)) {
548                                 p = next;
549                                 continue;
550                         }
551                         actcount = pmap_ts_referenced(p);
552                         if (actcount) {
553                                 vm_page_flag_set(p, PG_REFERENCED);
554                         } else if (p->flags & PG_REFERENCED) {
555                                 actcount = 1;
556                         }
557                         if ((p->queue != PQ_ACTIVE) &&
558                                 (p->flags & PG_REFERENCED)) {
559                                 vm_page_activate(p);
560                                 p->act_count += actcount;
561                                 vm_page_flag_clear(p, PG_REFERENCED);
562                         } else if (p->queue == PQ_ACTIVE) {
563                                 if ((p->flags & PG_REFERENCED) == 0) {
564                                         p->act_count -= min(p->act_count, ACT_DECLINE);
565                                         if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
566                                                 pmap_remove_all(p);
567                                                 vm_page_deactivate(p);
568                                         } else {
569                                                 vm_page_requeue(p);
570                                         }
571                                 } else {
572                                         vm_page_activate(p);
573                                         vm_page_flag_clear(p, PG_REFERENCED);
574                                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
575                                                 p->act_count += ACT_ADVANCE;
576                                         vm_page_requeue(p);
577                                 }
578                         } else if (p->queue == PQ_INACTIVE) {
579                                 pmap_remove_all(p);
580                         }
581                         p = next;
582                 }
583                 vm_page_unlock_queues();
584                 if ((backing_object = object->backing_object) == NULL)
585                         goto unlock_return;
586                 VM_OBJECT_LOCK(backing_object);
587                 if (object != first_object)
588                         VM_OBJECT_UNLOCK(object);
589         }
590 unlock_return:
591         if (object != first_object)
592                 VM_OBJECT_UNLOCK(object);
593 }
594
595 /*
596  * deactivate some number of pages in a map, try to do it fairly, but
597  * that is really hard to do.
598  */
599 static void
600 vm_pageout_map_deactivate_pages(map, desired)
601         vm_map_t map;
602         long desired;
603 {
604         vm_map_entry_t tmpe;
605         vm_object_t obj, bigobj;
606         int nothingwired;
607
608         if (!vm_map_trylock(map))
609                 return;
610
611         bigobj = NULL;
612         nothingwired = TRUE;
613
614         /*
615          * first, search out the biggest object, and try to free pages from
616          * that.
617          */
618         tmpe = map->header.next;
619         while (tmpe != &map->header) {
620                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
621                         obj = tmpe->object.vm_object;
622                         if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
623                                 if (obj->shadow_count <= 1 &&
624                                     (bigobj == NULL ||
625                                      bigobj->resident_page_count < obj->resident_page_count)) {
626                                         if (bigobj != NULL)
627                                                 VM_OBJECT_UNLOCK(bigobj);
628                                         bigobj = obj;
629                                 } else
630                                         VM_OBJECT_UNLOCK(obj);
631                         }
632                 }
633                 if (tmpe->wired_count > 0)
634                         nothingwired = FALSE;
635                 tmpe = tmpe->next;
636         }
637
638         if (bigobj != NULL) {
639                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
640                 VM_OBJECT_UNLOCK(bigobj);
641         }
642         /*
643          * Next, hunt around for other pages to deactivate.  We actually
644          * do this search sort of wrong -- .text first is not the best idea.
645          */
646         tmpe = map->header.next;
647         while (tmpe != &map->header) {
648                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
649                         break;
650                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
651                         obj = tmpe->object.vm_object;
652                         if (obj != NULL) {
653                                 VM_OBJECT_LOCK(obj);
654                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
655                                 VM_OBJECT_UNLOCK(obj);
656                         }
657                 }
658                 tmpe = tmpe->next;
659         }
660
661         /*
662          * Remove all mappings if a process is swapped out, this will free page
663          * table pages.
664          */
665         if (desired == 0 && nothingwired) {
666                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
667                     vm_map_max(map));
668         }
669         vm_map_unlock(map);
670 }
671 #endif          /* !defined(NO_SWAPPING) */
672
673 /*
674  *      vm_pageout_scan does the dirty work for the pageout daemon.
675  */
676 static void
677 vm_pageout_scan(int pass)
678 {
679         vm_page_t m, next;
680         struct vm_page marker;
681         int page_shortage, maxscan, pcount;
682         int addl_page_shortage, addl_page_shortage_init;
683         vm_object_t object;
684         int actcount;
685         int vnodes_skipped = 0;
686         int maxlaunder;
687
688         /*
689          * Decrease registered cache sizes.
690          */
691         EVENTHANDLER_INVOKE(vm_lowmem, 0);
692         /*
693          * We do this explicitly after the caches have been drained above.
694          */
695         uma_reclaim();
696
697         addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
698
699         /*
700          * Calculate the number of pages we want to either free or move
701          * to the cache.
702          */
703         page_shortage = vm_paging_target() + addl_page_shortage_init;
704
705         /*
706          * Initialize our marker
707          */
708         bzero(&marker, sizeof(marker));
709         marker.flags = PG_FICTITIOUS | PG_MARKER;
710         marker.oflags = VPO_BUSY;
711         marker.queue = PQ_INACTIVE;
712         marker.wire_count = 1;
713
714         /*
715          * Start scanning the inactive queue for pages we can move to the
716          * cache or free.  The scan will stop when the target is reached or
717          * we have scanned the entire inactive queue.  Note that m->act_count
718          * is not used to form decisions for the inactive queue, only for the
719          * active queue.
720          *
721          * maxlaunder limits the number of dirty pages we flush per scan.
722          * For most systems a smaller value (16 or 32) is more robust under
723          * extreme memory and disk pressure because any unnecessary writes
724          * to disk can result in extreme performance degredation.  However,
725          * systems with excessive dirty pages (especially when MAP_NOSYNC is
726          * used) will die horribly with limited laundering.  If the pageout
727          * daemon cannot clean enough pages in the first pass, we let it go
728          * all out in succeeding passes.
729          */
730         if ((maxlaunder = vm_max_launder) <= 1)
731                 maxlaunder = 1;
732         if (pass)
733                 maxlaunder = 10000;
734         vm_page_lock_queues();
735 rescan0:
736         addl_page_shortage = addl_page_shortage_init;
737         maxscan = cnt.v_inactive_count;
738
739         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
740              m != NULL && maxscan-- > 0 && page_shortage > 0;
741              m = next) {
742
743                 cnt.v_pdpages++;
744
745                 if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
746                         goto rescan0;
747                 }
748
749                 next = TAILQ_NEXT(m, pageq);
750                 object = m->object;
751
752                 /*
753                  * skip marker pages
754                  */
755                 if (m->flags & PG_MARKER)
756                         continue;
757
758                 /*
759                  * A held page may be undergoing I/O, so skip it.
760                  */
761                 if (m->hold_count) {
762                         vm_page_requeue(m);
763                         addl_page_shortage++;
764                         continue;
765                 }
766                 /*
767                  * Don't mess with busy pages, keep in the front of the
768                  * queue, most likely are being paged out.
769                  */
770                 if (!VM_OBJECT_TRYLOCK(object) &&
771                     (!vm_pageout_fallback_object_lock(m, &next) ||
772                      m->hold_count != 0)) {
773                         VM_OBJECT_UNLOCK(object);
774                         addl_page_shortage++;
775                         continue;
776                 }
777                 if (m->busy || (m->oflags & VPO_BUSY)) {
778                         VM_OBJECT_UNLOCK(object);
779                         addl_page_shortage++;
780                         continue;
781                 }
782
783                 /*
784                  * If the object is not being used, we ignore previous 
785                  * references.
786                  */
787                 if (object->ref_count == 0) {
788                         vm_page_flag_clear(m, PG_REFERENCED);
789                         KASSERT(!pmap_page_is_mapped(m),
790                             ("vm_pageout_scan: page %p is mapped", m));
791
792                 /*
793                  * Otherwise, if the page has been referenced while in the 
794                  * inactive queue, we bump the "activation count" upwards, 
795                  * making it less likely that the page will be added back to 
796                  * the inactive queue prematurely again.  Here we check the 
797                  * page tables (or emulated bits, if any), given the upper 
798                  * level VM system not knowing anything about existing 
799                  * references.
800                  */
801                 } else if (((m->flags & PG_REFERENCED) == 0) &&
802                         (actcount = pmap_ts_referenced(m))) {
803                         vm_page_activate(m);
804                         VM_OBJECT_UNLOCK(object);
805                         m->act_count += (actcount + ACT_ADVANCE);
806                         continue;
807                 }
808
809                 /*
810                  * If the upper level VM system knows about any page 
811                  * references, we activate the page.  We also set the 
812                  * "activation count" higher than normal so that we will less 
813                  * likely place pages back onto the inactive queue again.
814                  */
815                 if ((m->flags & PG_REFERENCED) != 0) {
816                         vm_page_flag_clear(m, PG_REFERENCED);
817                         actcount = pmap_ts_referenced(m);
818                         vm_page_activate(m);
819                         VM_OBJECT_UNLOCK(object);
820                         m->act_count += (actcount + ACT_ADVANCE + 1);
821                         continue;
822                 }
823
824                 /*
825                  * If the upper level VM system does not believe that the page
826                  * is fully dirty, but it is mapped for write access, then we
827                  * consult the pmap to see if the page's dirty status should
828                  * be updated.
829                  */
830                 if (m->dirty != VM_PAGE_BITS_ALL &&
831                     (m->flags & PG_WRITEABLE) != 0) {
832                         /*
833                          * Avoid a race condition: Unless write access is
834                          * removed from the page, another processor could
835                          * modify it before all access is removed by the call
836                          * to vm_page_cache() below.  If vm_page_cache() finds
837                          * that the page has been modified when it removes all
838                          * access, it panics because it cannot cache dirty
839                          * pages.  In principle, we could eliminate just write
840                          * access here rather than all access.  In the expected
841                          * case, when there are no last instant modifications
842                          * to the page, removing all access will be cheaper
843                          * overall.
844                          */
845                         if (pmap_is_modified(m))
846                                 vm_page_dirty(m);
847                         else if (m->dirty == 0)
848                                 pmap_remove_all(m);
849                 }
850
851                 if (m->valid == 0) {
852                         /*
853                          * Invalid pages can be easily freed
854                          */
855                         vm_page_free(m);
856                         cnt.v_dfree++;
857                         --page_shortage;
858                 } else if (m->dirty == 0) {
859                         /*
860                          * Clean pages can be placed onto the cache queue.
861                          * This effectively frees them.
862                          */
863                         vm_page_cache(m);
864                         --page_shortage;
865                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
866                         /*
867                          * Dirty pages need to be paged out, but flushing
868                          * a page is extremely expensive verses freeing
869                          * a clean page.  Rather then artificially limiting
870                          * the number of pages we can flush, we instead give
871                          * dirty pages extra priority on the inactive queue
872                          * by forcing them to be cycled through the queue
873                          * twice before being flushed, after which the
874                          * (now clean) page will cycle through once more
875                          * before being freed.  This significantly extends
876                          * the thrash point for a heavily loaded machine.
877                          */
878                         vm_page_flag_set(m, PG_WINATCFLS);
879                         vm_page_requeue(m);
880                 } else if (maxlaunder > 0) {
881                         /*
882                          * We always want to try to flush some dirty pages if
883                          * we encounter them, to keep the system stable.
884                          * Normally this number is small, but under extreme
885                          * pressure where there are insufficient clean pages
886                          * on the inactive queue, we may have to go all out.
887                          */
888                         int swap_pageouts_ok, vfslocked = 0;
889                         struct vnode *vp = NULL;
890                         struct mount *mp = NULL;
891
892                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
893                                 swap_pageouts_ok = 1;
894                         } else {
895                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
896                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
897                                 vm_page_count_min());
898                                                                                 
899                         }
900
901                         /*
902                          * We don't bother paging objects that are "dead".  
903                          * Those objects are in a "rundown" state.
904                          */
905                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
906                                 VM_OBJECT_UNLOCK(object);
907                                 vm_page_requeue(m);
908                                 continue;
909                         }
910
911                         /*
912                          * Following operations may unlock
913                          * vm_page_queue_mtx, invalidating the 'next'
914                          * pointer.  To prevent an inordinate number
915                          * of restarts we use our marker to remember
916                          * our place.
917                          *
918                          */
919                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
920                                            m, &marker, pageq);
921                         /*
922                          * The object is already known NOT to be dead.   It
923                          * is possible for the vget() to block the whole
924                          * pageout daemon, but the new low-memory handling
925                          * code should prevent it.
926                          *
927                          * The previous code skipped locked vnodes and, worse,
928                          * reordered pages in the queue.  This results in
929                          * completely non-deterministic operation and, on a
930                          * busy system, can lead to extremely non-optimal
931                          * pageouts.  For example, it can cause clean pages
932                          * to be freed and dirty pages to be moved to the end
933                          * of the queue.  Since dirty pages are also moved to
934                          * the end of the queue once-cleaned, this gives
935                          * way too large a weighting to defering the freeing
936                          * of dirty pages.
937                          *
938                          * We can't wait forever for the vnode lock, we might
939                          * deadlock due to a vn_read() getting stuck in
940                          * vm_wait while holding this vnode.  We skip the 
941                          * vnode if we can't get it in a reasonable amount
942                          * of time.
943                          */
944                         if (object->type == OBJT_VNODE) {
945                                 vp = object->handle;
946                                 if (vp->v_type == VREG &&
947                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
948                                         mp = NULL;
949                                         ++pageout_lock_miss;
950                                         if (object->flags & OBJ_MIGHTBEDIRTY)
951                                                 vnodes_skipped++;
952                                         goto unlock_and_continue;
953                                 }
954                                 vm_page_unlock_queues();
955                                 vm_object_reference_locked(object);
956                                 VM_OBJECT_UNLOCK(object);
957                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
958                                 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
959                                     curthread)) {
960                                         VM_OBJECT_LOCK(object);
961                                         vm_page_lock_queues();
962                                         ++pageout_lock_miss;
963                                         if (object->flags & OBJ_MIGHTBEDIRTY)
964                                                 vnodes_skipped++;
965                                         vp = NULL;
966                                         goto unlock_and_continue;
967                                 }
968                                 VM_OBJECT_LOCK(object);
969                                 vm_page_lock_queues();
970                                 /*
971                                  * The page might have been moved to another
972                                  * queue during potential blocking in vget()
973                                  * above.  The page might have been freed and
974                                  * reused for another vnode.
975                                  */
976                                 if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
977                                     m->object != object ||
978                                     TAILQ_NEXT(m, pageq) != &marker) {
979                                         if (object->flags & OBJ_MIGHTBEDIRTY)
980                                                 vnodes_skipped++;
981                                         goto unlock_and_continue;
982                                 }
983         
984                                 /*
985                                  * The page may have been busied during the
986                                  * blocking in vget().  We don't move the
987                                  * page back onto the end of the queue so that
988                                  * statistics are more correct if we don't.
989                                  */
990                                 if (m->busy || (m->oflags & VPO_BUSY)) {
991                                         goto unlock_and_continue;
992                                 }
993
994                                 /*
995                                  * If the page has become held it might
996                                  * be undergoing I/O, so skip it
997                                  */
998                                 if (m->hold_count) {
999                                         vm_page_requeue(m);
1000                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1001                                                 vnodes_skipped++;
1002                                         goto unlock_and_continue;
1003                                 }
1004                         }
1005
1006                         /*
1007                          * If a page is dirty, then it is either being washed
1008                          * (but not yet cleaned) or it is still in the
1009                          * laundry.  If it is still in the laundry, then we
1010                          * start the cleaning operation. 
1011                          *
1012                          * decrement page_shortage on success to account for
1013                          * the (future) cleaned page.  Otherwise we could wind
1014                          * up laundering or cleaning too many pages.
1015                          */
1016                         if (vm_pageout_clean(m) != 0) {
1017                                 --page_shortage;
1018                                 --maxlaunder;
1019                         }
1020 unlock_and_continue:
1021                         VM_OBJECT_UNLOCK(object);
1022                         if (mp != NULL) {
1023                                 vm_page_unlock_queues();
1024                                 if (vp != NULL)
1025                                         vput(vp);
1026                                 VFS_UNLOCK_GIANT(vfslocked);
1027                                 vm_object_deallocate(object);
1028                                 vn_finished_write(mp);
1029                                 vm_page_lock_queues();
1030                         }
1031                         next = TAILQ_NEXT(&marker, pageq);
1032                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1033                                      &marker, pageq);
1034                         continue;
1035                 }
1036                 VM_OBJECT_UNLOCK(object);
1037         }
1038
1039         /*
1040          * Compute the number of pages we want to try to move from the
1041          * active queue to the inactive queue.
1042          */
1043         page_shortage = vm_paging_target() +
1044                 cnt.v_inactive_target - cnt.v_inactive_count;
1045         page_shortage += addl_page_shortage;
1046
1047         /*
1048          * Scan the active queue for things we can deactivate. We nominally
1049          * track the per-page activity counter and use it to locate
1050          * deactivation candidates.
1051          */
1052         pcount = cnt.v_active_count;
1053         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1054
1055         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1056
1057                 KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1058                     ("vm_pageout_scan: page %p isn't active", m));
1059
1060                 next = TAILQ_NEXT(m, pageq);
1061                 object = m->object;
1062                 if ((m->flags & PG_MARKER) != 0) {
1063                         m = next;
1064                         continue;
1065                 }
1066                 if (!VM_OBJECT_TRYLOCK(object) &&
1067                     !vm_pageout_fallback_object_lock(m, &next)) {
1068                         VM_OBJECT_UNLOCK(object);
1069                         m = next;
1070                         continue;
1071                 }
1072
1073                 /*
1074                  * Don't deactivate pages that are busy.
1075                  */
1076                 if ((m->busy != 0) ||
1077                     (m->oflags & VPO_BUSY) ||
1078                     (m->hold_count != 0)) {
1079                         VM_OBJECT_UNLOCK(object);
1080                         vm_page_requeue(m);
1081                         m = next;
1082                         continue;
1083                 }
1084
1085                 /*
1086                  * The count for pagedaemon pages is done after checking the
1087                  * page for eligibility...
1088                  */
1089                 cnt.v_pdpages++;
1090
1091                 /*
1092                  * Check to see "how much" the page has been used.
1093                  */
1094                 actcount = 0;
1095                 if (object->ref_count != 0) {
1096                         if (m->flags & PG_REFERENCED) {
1097                                 actcount += 1;
1098                         }
1099                         actcount += pmap_ts_referenced(m);
1100                         if (actcount) {
1101                                 m->act_count += ACT_ADVANCE + actcount;
1102                                 if (m->act_count > ACT_MAX)
1103                                         m->act_count = ACT_MAX;
1104                         }
1105                 }
1106
1107                 /*
1108                  * Since we have "tested" this bit, we need to clear it now.
1109                  */
1110                 vm_page_flag_clear(m, PG_REFERENCED);
1111
1112                 /*
1113                  * Only if an object is currently being used, do we use the
1114                  * page activation count stats.
1115                  */
1116                 if (actcount && (object->ref_count != 0)) {
1117                         vm_page_requeue(m);
1118                 } else {
1119                         m->act_count -= min(m->act_count, ACT_DECLINE);
1120                         if (vm_pageout_algorithm ||
1121                             object->ref_count == 0 ||
1122                             m->act_count == 0) {
1123                                 page_shortage--;
1124                                 if (object->ref_count == 0) {
1125                                         pmap_remove_all(m);
1126                                         if (m->dirty == 0)
1127                                                 vm_page_cache(m);
1128                                         else
1129                                                 vm_page_deactivate(m);
1130                                 } else {
1131                                         vm_page_deactivate(m);
1132                                 }
1133                         } else {
1134                                 vm_page_requeue(m);
1135                         }
1136                 }
1137                 VM_OBJECT_UNLOCK(object);
1138                 m = next;
1139         }
1140         vm_page_unlock_queues();
1141 #if !defined(NO_SWAPPING)
1142         /*
1143          * Idle process swapout -- run once per second.
1144          */
1145         if (vm_swap_idle_enabled) {
1146                 static long lsec;
1147                 if (time_second != lsec) {
1148                         vm_req_vmdaemon(VM_SWAP_IDLE);
1149                         lsec = time_second;
1150                 }
1151         }
1152 #endif
1153                 
1154         /*
1155          * If we didn't get enough free pages, and we have skipped a vnode
1156          * in a writeable object, wakeup the sync daemon.  And kick swapout
1157          * if we did not get enough free pages.
1158          */
1159         if (vm_paging_target() > 0) {
1160                 if (vnodes_skipped && vm_page_count_min())
1161                         (void) speedup_syncer();
1162 #if !defined(NO_SWAPPING)
1163                 if (vm_swap_enabled && vm_page_count_target())
1164                         vm_req_vmdaemon(VM_SWAP_NORMAL);
1165 #endif
1166         }
1167
1168         /*
1169          * If we are critically low on one of RAM or swap and low on
1170          * the other, kill the largest process.  However, we avoid
1171          * doing this on the first pass in order to give ourselves a
1172          * chance to flush out dirty vnode-backed pages and to allow
1173          * active pages to be moved to the inactive queue and reclaimed.
1174          */
1175         if (pass != 0 &&
1176             ((swap_pager_avail < 64 && vm_page_count_min()) ||
1177              (swap_pager_full && vm_paging_target() > 0)))
1178                 vm_pageout_oom(VM_OOM_MEM);
1179 }
1180
1181
1182 void
1183 vm_pageout_oom(int shortage)
1184 {
1185         struct proc *p, *bigproc;
1186         vm_offset_t size, bigsize;
1187         struct thread *td;
1188         struct vmspace *vm;
1189
1190         /*
1191          * We keep the process bigproc locked once we find it to keep anyone
1192          * from messing with it; however, there is a possibility of
1193          * deadlock if process B is bigproc and one of it's child processes
1194          * attempts to propagate a signal to B while we are waiting for A's
1195          * lock while walking this list.  To avoid this, we don't block on
1196          * the process lock but just skip a process if it is already locked.
1197          */
1198         bigproc = NULL;
1199         bigsize = 0;
1200         sx_slock(&allproc_lock);
1201         FOREACH_PROC_IN_SYSTEM(p) {
1202                 int breakout;
1203
1204                 if (PROC_TRYLOCK(p) == 0)
1205                         continue;
1206                 /*
1207                  * If this is a system or protected process, skip it.
1208                  */
1209                 if ((p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1210                     (p->p_pid == 1) ||
1211                     ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1212                         PROC_UNLOCK(p);
1213                         continue;
1214                 }
1215                 /*
1216                  * If the process is in a non-running type state,
1217                  * don't touch it.  Check all the threads individually.
1218                  */
1219                 breakout = 0;
1220                 FOREACH_THREAD_IN_PROC(p, td) {
1221                         thread_lock(td);
1222                         if (!TD_ON_RUNQ(td) &&
1223                             !TD_IS_RUNNING(td) &&
1224                             !TD_IS_SLEEPING(td)) {
1225                                 thread_unlock(td);
1226                                 breakout = 1;
1227                                 break;
1228                         }
1229                         thread_unlock(td);
1230                 }
1231                 if (breakout) {
1232                         PROC_UNLOCK(p);
1233                         continue;
1234                 }
1235                 /*
1236                  * get the process size
1237                  */
1238                 vm = vmspace_acquire_ref(p);
1239                 if (vm == NULL) {
1240                         PROC_UNLOCK(p);
1241                         continue;
1242                 }
1243                 if (!vm_map_trylock_read(&vm->vm_map)) {
1244                         vmspace_free(vm);
1245                         PROC_UNLOCK(p);
1246                         continue;
1247                 }
1248                 size = vmspace_swap_count(vm);
1249                 vm_map_unlock_read(&vm->vm_map);
1250                 if (shortage == VM_OOM_MEM)
1251                         size += vmspace_resident_count(vm);
1252                 vmspace_free(vm);
1253                 /*
1254                  * if the this process is bigger than the biggest one
1255                  * remember it.
1256                  */
1257                 if (size > bigsize) {
1258                         if (bigproc != NULL)
1259                                 PROC_UNLOCK(bigproc);
1260                         bigproc = p;
1261                         bigsize = size;
1262                 } else
1263                         PROC_UNLOCK(p);
1264         }
1265         sx_sunlock(&allproc_lock);
1266         if (bigproc != NULL) {
1267                 killproc(bigproc, "out of swap space");
1268                 sched_nice(bigproc, PRIO_MIN);
1269                 PROC_UNLOCK(bigproc);
1270                 wakeup(&cnt.v_free_count);
1271         }
1272 }
1273
1274 /*
1275  * This routine tries to maintain the pseudo LRU active queue,
1276  * so that during long periods of time where there is no paging,
1277  * that some statistic accumulation still occurs.  This code
1278  * helps the situation where paging just starts to occur.
1279  */
1280 static void
1281 vm_pageout_page_stats()
1282 {
1283         vm_object_t object;
1284         vm_page_t m,next;
1285         int pcount,tpcount;             /* Number of pages to check */
1286         static int fullintervalcount = 0;
1287         int page_shortage;
1288
1289         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1290         page_shortage = 
1291             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1292             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1293
1294         if (page_shortage <= 0)
1295                 return;
1296
1297         pcount = cnt.v_active_count;
1298         fullintervalcount += vm_pageout_stats_interval;
1299         if (fullintervalcount < vm_pageout_full_stats_interval) {
1300                 tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1301                     cnt.v_page_count;
1302                 if (pcount > tpcount)
1303                         pcount = tpcount;
1304         } else {
1305                 fullintervalcount = 0;
1306         }
1307
1308         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1309         while ((m != NULL) && (pcount-- > 0)) {
1310                 int actcount;
1311
1312                 KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1313                     ("vm_pageout_page_stats: page %p isn't active", m));
1314
1315                 next = TAILQ_NEXT(m, pageq);
1316                 object = m->object;
1317
1318                 if ((m->flags & PG_MARKER) != 0) {
1319                         m = next;
1320                         continue;
1321                 }
1322                 if (!VM_OBJECT_TRYLOCK(object) &&
1323                     !vm_pageout_fallback_object_lock(m, &next)) {
1324                         VM_OBJECT_UNLOCK(object);
1325                         m = next;
1326                         continue;
1327                 }
1328
1329                 /*
1330                  * Don't deactivate pages that are busy.
1331                  */
1332                 if ((m->busy != 0) ||
1333                     (m->oflags & VPO_BUSY) ||
1334                     (m->hold_count != 0)) {
1335                         VM_OBJECT_UNLOCK(object);
1336                         vm_page_requeue(m);
1337                         m = next;
1338                         continue;
1339                 }
1340
1341                 actcount = 0;
1342                 if (m->flags & PG_REFERENCED) {
1343                         vm_page_flag_clear(m, PG_REFERENCED);
1344                         actcount += 1;
1345                 }
1346
1347                 actcount += pmap_ts_referenced(m);
1348                 if (actcount) {
1349                         m->act_count += ACT_ADVANCE + actcount;
1350                         if (m->act_count > ACT_MAX)
1351                                 m->act_count = ACT_MAX;
1352                         vm_page_requeue(m);
1353                 } else {
1354                         if (m->act_count == 0) {
1355                                 /*
1356                                  * We turn off page access, so that we have
1357                                  * more accurate RSS stats.  We don't do this
1358                                  * in the normal page deactivation when the
1359                                  * system is loaded VM wise, because the
1360                                  * cost of the large number of page protect
1361                                  * operations would be higher than the value
1362                                  * of doing the operation.
1363                                  */
1364                                 pmap_remove_all(m);
1365                                 vm_page_deactivate(m);
1366                         } else {
1367                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1368                                 vm_page_requeue(m);
1369                         }
1370                 }
1371                 VM_OBJECT_UNLOCK(object);
1372                 m = next;
1373         }
1374 }
1375
1376 /*
1377  *      vm_pageout is the high level pageout daemon.
1378  */
1379 static void
1380 vm_pageout()
1381 {
1382         int error, pass;
1383
1384         /*
1385          * Initialize some paging parameters.
1386          */
1387         cnt.v_interrupt_free_min = 2;
1388         if (cnt.v_page_count < 2000)
1389                 vm_pageout_page_count = 8;
1390
1391         /*
1392          * v_free_reserved needs to include enough for the largest
1393          * swap pager structures plus enough for any pv_entry structs
1394          * when paging. 
1395          */
1396         if (cnt.v_page_count > 1024)
1397                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1398         else
1399                 cnt.v_free_min = 4;
1400         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1401             cnt.v_interrupt_free_min;
1402         cnt.v_free_reserved = vm_pageout_page_count +
1403             cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1404         cnt.v_free_severe = cnt.v_free_min / 2;
1405         cnt.v_free_min += cnt.v_free_reserved;
1406         cnt.v_free_severe += cnt.v_free_reserved;
1407
1408         /*
1409          * v_free_target and v_cache_min control pageout hysteresis.  Note
1410          * that these are more a measure of the VM cache queue hysteresis
1411          * then the VM free queue.  Specifically, v_free_target is the
1412          * high water mark (free+cache pages).
1413          *
1414          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1415          * low water mark, while v_free_min is the stop.  v_cache_min must
1416          * be big enough to handle memory needs while the pageout daemon
1417          * is signalled and run to free more pages.
1418          */
1419         if (cnt.v_free_count > 6144)
1420                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1421         else
1422                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1423
1424         if (cnt.v_free_count > 2048) {
1425                 cnt.v_cache_min = cnt.v_free_target;
1426                 cnt.v_cache_max = 2 * cnt.v_cache_min;
1427                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1428         } else {
1429                 cnt.v_cache_min = 0;
1430                 cnt.v_cache_max = 0;
1431                 cnt.v_inactive_target = cnt.v_free_count / 4;
1432         }
1433         if (cnt.v_inactive_target > cnt.v_free_count / 3)
1434                 cnt.v_inactive_target = cnt.v_free_count / 3;
1435
1436         /* XXX does not really belong here */
1437         if (vm_page_max_wired == 0)
1438                 vm_page_max_wired = cnt.v_free_count / 3;
1439
1440         if (vm_pageout_stats_max == 0)
1441                 vm_pageout_stats_max = cnt.v_free_target;
1442
1443         /*
1444          * Set interval in seconds for stats scan.
1445          */
1446         if (vm_pageout_stats_interval == 0)
1447                 vm_pageout_stats_interval = 5;
1448         if (vm_pageout_full_stats_interval == 0)
1449                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1450
1451         swap_pager_swap_init();
1452         pass = 0;
1453         /*
1454          * The pageout daemon is never done, so loop forever.
1455          */
1456         while (TRUE) {
1457                 /*
1458                  * If we have enough free memory, wakeup waiters.  Do
1459                  * not clear vm_pages_needed until we reach our target,
1460                  * otherwise we may be woken up over and over again and
1461                  * waste a lot of cpu.
1462                  */
1463                 mtx_lock(&vm_page_queue_free_mtx);
1464                 if (vm_pages_needed && !vm_page_count_min()) {
1465                         if (!vm_paging_needed())
1466                                 vm_pages_needed = 0;
1467                         wakeup(&cnt.v_free_count);
1468                 }
1469                 if (vm_pages_needed) {
1470                         /*
1471                          * Still not done, take a second pass without waiting
1472                          * (unlimited dirty cleaning), otherwise sleep a bit
1473                          * and try again.
1474                          */
1475                         ++pass;
1476                         if (pass > 1)
1477                                 msleep(&vm_pages_needed,
1478                                     &vm_page_queue_free_mtx, PVM, "psleep",
1479                                     hz / 2);
1480                 } else {
1481                         /*
1482                          * Good enough, sleep & handle stats.  Prime the pass
1483                          * for the next run.
1484                          */
1485                         if (pass > 1)
1486                                 pass = 1;
1487                         else
1488                                 pass = 0;
1489                         error = msleep(&vm_pages_needed,
1490                             &vm_page_queue_free_mtx, PVM, "psleep",
1491                             vm_pageout_stats_interval * hz);
1492                         if (error && !vm_pages_needed) {
1493                                 mtx_unlock(&vm_page_queue_free_mtx);
1494                                 pass = 0;
1495                                 vm_page_lock_queues();
1496                                 vm_pageout_page_stats();
1497                                 vm_page_unlock_queues();
1498                                 continue;
1499                         }
1500                 }
1501                 if (vm_pages_needed)
1502                         cnt.v_pdwakeups++;
1503                 mtx_unlock(&vm_page_queue_free_mtx);
1504                 vm_pageout_scan(pass);
1505         }
1506 }
1507
1508 /*
1509  * Unless the free page queue lock is held by the caller, this function
1510  * should be regarded as advisory.  Specifically, the caller should
1511  * not msleep() on &cnt.v_free_count following this function unless
1512  * the free page queue lock is held until the msleep() is performed.
1513  */
1514 void
1515 pagedaemon_wakeup()
1516 {
1517
1518         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1519                 vm_pages_needed = 1;
1520                 wakeup(&vm_pages_needed);
1521         }
1522 }
1523
1524 #if !defined(NO_SWAPPING)
1525 static void
1526 vm_req_vmdaemon(int req)
1527 {
1528         static int lastrun = 0;
1529
1530         mtx_lock(&vm_daemon_mtx);
1531         vm_pageout_req_swapout |= req;
1532         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1533                 wakeup(&vm_daemon_needed);
1534                 lastrun = ticks;
1535         }
1536         mtx_unlock(&vm_daemon_mtx);
1537 }
1538
1539 static void
1540 vm_daemon()
1541 {
1542         struct rlimit rsslim;
1543         struct proc *p;
1544         struct thread *td;
1545         struct vmspace *vm;
1546         int breakout, swapout_flags;
1547
1548         while (TRUE) {
1549                 mtx_lock(&vm_daemon_mtx);
1550                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1551                 swapout_flags = vm_pageout_req_swapout;
1552                 vm_pageout_req_swapout = 0;
1553                 mtx_unlock(&vm_daemon_mtx);
1554                 if (swapout_flags)
1555                         swapout_procs(swapout_flags);
1556
1557                 /*
1558                  * scan the processes for exceeding their rlimits or if
1559                  * process is swapped out -- deactivate pages
1560                  */
1561                 sx_slock(&allproc_lock);
1562                 FOREACH_PROC_IN_SYSTEM(p) {
1563                         vm_pindex_t limit, size;
1564
1565                         /*
1566                          * if this is a system process or if we have already
1567                          * looked at this process, skip it.
1568                          */
1569                         PROC_LOCK(p);
1570                         if (p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1571                                 PROC_UNLOCK(p);
1572                                 continue;
1573                         }
1574                         /*
1575                          * if the process is in a non-running type state,
1576                          * don't touch it.
1577                          */
1578                         breakout = 0;
1579                         FOREACH_THREAD_IN_PROC(p, td) {
1580                                 thread_lock(td);
1581                                 if (!TD_ON_RUNQ(td) &&
1582                                     !TD_IS_RUNNING(td) &&
1583                                     !TD_IS_SLEEPING(td)) {
1584                                         thread_unlock(td);
1585                                         breakout = 1;
1586                                         break;
1587                                 }
1588                                 thread_unlock(td);
1589                         }
1590                         if (breakout) {
1591                                 PROC_UNLOCK(p);
1592                                 continue;
1593                         }
1594                         /*
1595                          * get a limit
1596                          */
1597                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
1598                         limit = OFF_TO_IDX(
1599                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1600
1601                         /*
1602                          * let processes that are swapped out really be
1603                          * swapped out set the limit to nothing (will force a
1604                          * swap-out.)
1605                          */
1606                         if ((p->p_flag & P_INMEM) == 0)
1607                                 limit = 0;      /* XXX */
1608                         vm = vmspace_acquire_ref(p);
1609                         PROC_UNLOCK(p);
1610                         if (vm == NULL)
1611                                 continue;
1612
1613                         size = vmspace_resident_count(vm);
1614                         if (limit >= 0 && size >= limit) {
1615                                 vm_pageout_map_deactivate_pages(
1616                                     &vm->vm_map, limit);
1617                         }
1618                         vmspace_free(vm);
1619                 }
1620                 sx_sunlock(&allproc_lock);
1621         }
1622 }
1623 #endif                  /* !defined(NO_SWAPPING) */