]> CyberLeo.Net >> Repos - FreeBSD/releng/8.1.git/blob - contrib/binutils/gas/itbl-ops.c
Copy stable/8 to releng/8.1 in preparation for 8.1-RC1.
[FreeBSD/releng/8.1.git] / contrib / binutils / gas / itbl-ops.c
1 /* itbl-ops.c
2    Copyright 1997, 1999, 2000, 2001 Free Software Foundation, Inc.
3
4    This file is part of GAS, the GNU Assembler.
5
6    GAS is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 2, or (at your option)
9    any later version.
10
11    GAS is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15
16    You should have received a copy of the GNU General Public License
17    along with GAS; see the file COPYING.  If not, write to the Free
18    Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19    02111-1307, USA.  */
20
21 /*======================================================================*/
22 /*
23  * Herein lies the support for dynamic specification of processor
24  * instructions and registers.  Mnemonics, values, and formats for each
25  * instruction and register are specified in an ascii file consisting of
26  * table entries.  The grammar for the table is defined in the document
27  * "Processor instruction table specification".
28  *
29  * Instructions use the gnu assembler syntax, with the addition of
30  * allowing mnemonics for register.
31  * Eg. "func $2,reg3,0x100,symbol ; comment"
32  *      func - opcode name
33  *      $n - register n
34  *      reg3 - mnemonic for processor's register defined in table
35  *      0xddd..d - immediate value
36  *      symbol - address of label or external symbol
37  *
38  * First, itbl_parse reads in the table of register and instruction
39  * names and formats, and builds a list of entries for each
40  * processor/type combination.  lex and yacc are used to parse
41  * the entries in the table and call functions defined here to
42  * add each entry to our list.
43  *
44  * Then, when assembling or disassembling, these functions are called to
45  * 1) get information on a processor's registers and
46  * 2) assemble/disassemble an instruction.
47  * To assemble(disassemble) an instruction, the function
48  * itbl_assemble(itbl_disassemble) is called to search the list of
49  * instruction entries, and if a match is found, uses the format
50  * described in the instruction entry structure to complete the action.
51  *
52  * Eg. Suppose we have a Mips coprocessor "cop3" with data register "d2"
53  * and we want to define function "pig" which takes two operands.
54  *
55  * Given the table entries:
56  *      "p3 insn pig 0x1:24-21 dreg:20-16 immed:15-0"
57  *      "p3 dreg d2 0x2"
58  * and that the instruction encoding for coprocessor pz has encoding:
59  *      #define MIPS_ENCODE_COP_NUM(z) ((0x21|(z<<1))<<25)
60  *      #define ITBL_ENCODE_PNUM(pnum) MIPS_ENCODE_COP_NUM(pnum)
61  *
62  * a structure to describe the instruction might look something like:
63  *      struct itbl_entry = {
64  *      e_processor processor = e_p3
65  *      e_type type = e_insn
66  *      char *name = "pig"
67  *      uint value = 0x1
68  *      uint flags = 0
69  *      struct itbl_range range = 24-21
70  *      struct itbl_field *field = {
71  *              e_type type = e_dreg
72  *              struct itbl_range range = 20-16
73  *              struct itbl_field *next = {
74  *                      e_type type = e_immed
75  *                      struct itbl_range range = 15-0
76  *                      struct itbl_field *next = 0
77  *                      };
78  *              };
79  *      struct itbl_entry *next = 0
80  *      };
81  *
82  * And the assembler instructions:
83  *      "pig d2,0x100"
84  *      "pig $2,0x100"
85  *
86  * would both assemble to the hex value:
87  *      "0x4e220100"
88  *
89  */
90
91 #include <stdio.h>
92 #include <stdlib.h>
93 #include <string.h>
94 #include "itbl-ops.h"
95 #include <itbl-parse.h>
96
97 /* #define DEBUG */
98
99 #ifdef DEBUG
100 #include <assert.h>
101 #define ASSERT(x) assert(x)
102 #define DBG(x) printf x
103 #else
104 #define ASSERT(x)
105 #define DBG(x)
106 #endif
107
108 #ifndef min
109 #define min(a,b) (a<b?a:b)
110 #endif
111
112 int itbl_have_entries = 0;
113
114 /*======================================================================*/
115 /* structures for keeping itbl format entries */
116
117 struct itbl_range {
118   int sbit;                     /* mask starting bit position */
119   int ebit;                     /* mask ending bit position */
120 };
121
122 struct itbl_field {
123   e_type type;                  /* dreg/creg/greg/immed/symb */
124   struct itbl_range range;      /* field's bitfield range within instruction */
125   unsigned long flags;          /* field flags */
126   struct itbl_field *next;      /* next field in list */
127 };
128
129 /* These structures define the instructions and registers for a processor.
130  * If the type is an instruction, the structure defines the format of an
131  * instruction where the fields are the list of operands.
132  * The flags field below uses the same values as those defined in the
133  * gnu assembler and are machine specific.  */
134 struct itbl_entry {
135   e_processor processor;        /* processor number */
136   e_type type;                  /* dreg/creg/greg/insn */
137   char *name;                   /* mnemionic name for insn/register */
138   unsigned long value;          /* opcode/instruction mask/register number */
139   unsigned long flags;          /* effects of the instruction */
140   struct itbl_range range;      /* bit range within instruction for value */
141   struct itbl_field *fields;    /* list of operand definitions (if any) */
142   struct itbl_entry *next;      /* next entry */
143 };
144
145 /* local data and structures */
146
147 static int itbl_num_opcodes = 0;
148 /* Array of entries for each processor and entry type */
149 static struct itbl_entry *entries[e_nprocs][e_ntypes] = {
150   {0, 0, 0, 0, 0, 0},
151   {0, 0, 0, 0, 0, 0},
152   {0, 0, 0, 0, 0, 0},
153   {0, 0, 0, 0, 0, 0}
154 };
155
156 /* local prototypes */
157 static unsigned long build_opcode (struct itbl_entry *e);
158 static e_type get_type (int yytype);
159 static e_processor get_processor (int yyproc);
160 static struct itbl_entry **get_entries (e_processor processor,
161                                         e_type type);
162 static struct itbl_entry *find_entry_byname (e_processor processor,
163                                         e_type type, char *name);
164 static struct itbl_entry *find_entry_byval (e_processor processor,
165                         e_type type, unsigned long val, struct itbl_range *r);
166 static struct itbl_entry *alloc_entry (e_processor processor,
167                 e_type type, char *name, unsigned long value);
168 static unsigned long apply_range (unsigned long value, struct itbl_range r);
169 static unsigned long extract_range (unsigned long value, struct itbl_range r);
170 static struct itbl_field *alloc_field (e_type type, int sbit,
171                                         int ebit, unsigned long flags);
172
173 /*======================================================================*/
174 /* Interfaces to the parser */
175
176 /* Open the table and use lex and yacc to parse the entries.
177  * Return 1 for failure; 0 for success.  */
178
179 int
180 itbl_parse (char *insntbl)
181 {
182   extern FILE *yyin;
183   extern int yyparse (void);
184
185   yyin = fopen (insntbl, FOPEN_RT);
186   if (yyin == 0)
187     {
188       printf ("Can't open processor instruction specification file \"%s\"\n",
189               insntbl);
190       return 1;
191     }
192
193   while (yyparse ())
194     ;
195
196   fclose (yyin);
197   itbl_have_entries = 1;
198   return 0;
199 }
200
201 /* Add a register entry */
202
203 struct itbl_entry *
204 itbl_add_reg (int yyprocessor, int yytype, char *regname,
205               int regnum)
206 {
207 #if 0
208 #include "as.h"
209 #include "symbols.h"
210   /* Since register names don't have a prefix, we put them in the symbol table so
211      they can't be used as symbols.  This also simplifies argument parsing as
212      we can let gas parse registers for us.  The recorded register number is
213      regnum.  */
214   /* Use symbol_create here instead of symbol_new so we don't try to
215      output registers into the object file's symbol table.  */
216   symbol_table_insert (symbol_create (regname, reg_section,
217                                       regnum, &zero_address_frag));
218 #endif
219   return alloc_entry (get_processor (yyprocessor), get_type (yytype), regname,
220                       (unsigned long) regnum);
221 }
222
223 /* Add an instruction entry */
224
225 struct itbl_entry *
226 itbl_add_insn (int yyprocessor, char *name, unsigned long value,
227                int sbit, int ebit, unsigned long flags)
228 {
229   struct itbl_entry *e;
230   e = alloc_entry (get_processor (yyprocessor), e_insn, name, value);
231   if (e)
232     {
233       e->range.sbit = sbit;
234       e->range.ebit = ebit;
235       e->flags = flags;
236       itbl_num_opcodes++;
237     }
238   return e;
239 }
240
241 /* Add an operand to an instruction entry */
242
243 struct itbl_field *
244 itbl_add_operand (struct itbl_entry *e, int yytype, int sbit,
245                   int ebit, unsigned long flags)
246 {
247   struct itbl_field *f, **last_f;
248   if (!e)
249     return 0;
250   /* Add to end of fields' list.  */
251   f = alloc_field (get_type (yytype), sbit, ebit, flags);
252   if (f)
253     {
254       last_f = &e->fields;
255       while (*last_f)
256         last_f = &(*last_f)->next;
257       *last_f = f;
258       f->next = 0;
259     }
260   return f;
261 }
262
263 /*======================================================================*/
264 /* Interfaces for assembler and disassembler */
265
266 #ifndef STAND_ALONE
267 #include "as.h"
268 #include "symbols.h"
269 static void append_insns_as_macros (void);
270
271 /* Initialize for gas.  */
272
273 void
274 itbl_init (void)
275 {
276   struct itbl_entry *e, **es;
277   e_processor procn;
278   e_type type;
279
280   if (!itbl_have_entries)
281     return;
282
283   /* Since register names don't have a prefix, put them in the symbol table so
284      they can't be used as symbols.  This simplifies argument parsing as
285      we can let gas parse registers for us.  */
286   /* Use symbol_create instead of symbol_new so we don't try to
287      output registers into the object file's symbol table.  */
288
289   for (type = e_regtype0; type < e_nregtypes; type++)
290     for (procn = e_p0; procn < e_nprocs; procn++)
291       {
292         es = get_entries (procn, type);
293         for (e = *es; e; e = e->next)
294           {
295             symbol_table_insert (symbol_create (e->name, reg_section,
296                                                 e->value, &zero_address_frag));
297           }
298       }
299   append_insns_as_macros ();
300 }
301
302 /* Append insns to opcodes table and increase number of opcodes
303  * Structure of opcodes table:
304  * struct itbl_opcode
305  * {
306  *   const char *name;
307  *   const char *args;          - string describing the arguments.
308  *   unsigned long match;       - opcode, or ISA level if pinfo=INSN_MACRO
309  *   unsigned long mask;        - opcode mask, or macro id if pinfo=INSN_MACRO
310  *   unsigned long pinfo;       - insn flags, or INSN_MACRO
311  * };
312  * examples:
313  *      {"li",      "t,i",  0x34000000, 0xffe00000, WR_t    },
314  *      {"li",      "t,I",  0,    (int) M_LI,   INSN_MACRO  },
315  */
316
317 static char *form_args (struct itbl_entry *e);
318 static void
319 append_insns_as_macros (void)
320 {
321   struct ITBL_OPCODE_STRUCT *new_opcodes, *o;
322   struct itbl_entry *e, **es;
323   int n, id, size, new_size, new_num_opcodes;
324
325   if (!itbl_have_entries)
326     return;
327
328   if (!itbl_num_opcodes)        /* no new instructions to add! */
329     {
330       return;
331     }
332   DBG (("previous num_opcodes=%d\n", ITBL_NUM_OPCODES));
333
334   new_num_opcodes = ITBL_NUM_OPCODES + itbl_num_opcodes;
335   ASSERT (new_num_opcodes >= itbl_num_opcodes);
336
337   size = sizeof (struct ITBL_OPCODE_STRUCT) * ITBL_NUM_OPCODES;
338   ASSERT (size >= 0);
339   DBG (("I get=%d\n", size / sizeof (ITBL_OPCODES[0])));
340
341   new_size = sizeof (struct ITBL_OPCODE_STRUCT) * new_num_opcodes;
342   ASSERT (new_size > size);
343
344   /* FIXME since ITBL_OPCODES culd be a static table,
345                 we can't realloc or delete the old memory.  */
346   new_opcodes = (struct ITBL_OPCODE_STRUCT *) malloc (new_size);
347   if (!new_opcodes)
348     {
349       printf (_("Unable to allocate memory for new instructions\n"));
350       return;
351     }
352   if (size)                     /* copy preexisting opcodes table */
353     memcpy (new_opcodes, ITBL_OPCODES, size);
354
355   /* FIXME! some NUMOPCODES are calculated expressions.
356                 These need to be changed before itbls can be supported.  */
357
358   id = ITBL_NUM_MACROS;         /* begin the next macro id after the last */
359   o = &new_opcodes[ITBL_NUM_OPCODES];   /* append macro to opcodes list */
360   for (n = e_p0; n < e_nprocs; n++)
361     {
362       es = get_entries (n, e_insn);
363       for (e = *es; e; e = e->next)
364         {
365           /* name,    args,   mask,       match,  pinfo
366                  * {"li",      "t,i",  0x34000000, 0xffe00000, WR_t    },
367                  * {"li",      "t,I",  0,    (int) M_LI,   INSN_MACRO  },
368                  * Construct args from itbl_fields.
369                 */
370           o->name = e->name;
371           o->args = strdup (form_args (e));
372           o->mask = apply_range (e->value, e->range);
373           /* FIXME how to catch during assembly? */
374           /* mask to identify this insn */
375           o->match = apply_range (e->value, e->range);
376           o->pinfo = 0;
377
378 #ifdef USE_MACROS
379           o->mask = id++;       /* FIXME how to catch during assembly? */
380           o->match = 0;         /* for macros, the insn_isa number */
381           o->pinfo = INSN_MACRO;
382 #endif
383
384           /* Don't add instructions which caused an error */
385           if (o->args)
386             o++;
387           else
388             new_num_opcodes--;
389         }
390     }
391   ITBL_OPCODES = new_opcodes;
392   ITBL_NUM_OPCODES = new_num_opcodes;
393
394   /* FIXME
395                 At this point, we can free the entries, as they should have
396                 been added to the assembler's tables.
397                 Don't free name though, since name is being used by the new
398                 opcodes table.
399
400                 Eventually, we should also free the new opcodes table itself
401                 on exit.
402         */
403 }
404
405 static char *
406 form_args (struct itbl_entry *e)
407 {
408   static char s[31];
409   char c = 0, *p = s;
410   struct itbl_field *f;
411
412   ASSERT (e);
413   for (f = e->fields; f; f = f->next)
414     {
415       switch (f->type)
416         {
417         case e_dreg:
418           c = 'd';
419           break;
420         case e_creg:
421           c = 't';
422           break;
423         case e_greg:
424           c = 's';
425           break;
426         case e_immed:
427           c = 'i';
428           break;
429         case e_addr:
430           c = 'a';
431           break;
432         default:
433           c = 0;                /* ignore; unknown field type */
434         }
435       if (c)
436         {
437           if (p != s)
438             *p++ = ',';
439           *p++ = c;
440         }
441     }
442   *p = 0;
443   return s;
444 }
445 #endif /* !STAND_ALONE */
446
447 /* Get processor's register name from val */
448
449 int
450 itbl_get_reg_val (char *name, unsigned long *pval)
451 {
452   e_type t;
453   e_processor p;
454
455   for (p = e_p0; p < e_nprocs; p++)
456     {
457       for (t = e_regtype0; t < e_nregtypes; t++)
458         {
459           if (itbl_get_val (p, t, name, pval))
460             return 1;
461         }
462     }
463   return 0;
464 }
465
466 char *
467 itbl_get_name (e_processor processor, e_type type, unsigned long val)
468 {
469   struct itbl_entry *r;
470   /* type depends on instruction passed */
471   r = find_entry_byval (processor, type, val, 0);
472   if (r)
473     return r->name;
474   else
475     return 0;                   /* error; invalid operand */
476 }
477
478 /* Get processor's register value from name */
479
480 int
481 itbl_get_val (e_processor processor, e_type type, char *name,
482               unsigned long *pval)
483 {
484   struct itbl_entry *r;
485   /* type depends on instruction passed */
486   r = find_entry_byname (processor, type, name);
487   if (r == NULL)
488     return 0;
489   *pval = r->value;
490   return 1;
491 }
492
493 /* Assemble instruction "name" with operands "s".
494  * name - name of instruction
495  * s - operands
496  * returns - long word for assembled instruction */
497
498 unsigned long
499 itbl_assemble (char *name, char *s)
500 {
501   unsigned long opcode;
502   struct itbl_entry *e = NULL;
503   struct itbl_field *f;
504   char *n;
505   int processor;
506
507   if (!name || !*name)
508     return 0;                   /* error!  must have an opcode name/expr */
509
510   /* find entry in list of instructions for all processors */
511   for (processor = 0; processor < e_nprocs; processor++)
512     {
513       e = find_entry_byname (processor, e_insn, name);
514       if (e)
515         break;
516     }
517   if (!e)
518     return 0;                   /* opcode not in table; invalid instruction */
519   opcode = build_opcode (e);
520
521   /* parse opcode's args (if any) */
522   for (f = e->fields; f; f = f->next)   /* for each arg, ...  */
523     {
524       struct itbl_entry *r;
525       unsigned long value;
526       if (!s || !*s)
527         return 0;               /* error - not enough operands */
528       n = itbl_get_field (&s);
529       /* n should be in form $n or 0xhhh (are symbol names valid?? */
530       switch (f->type)
531         {
532         case e_dreg:
533         case e_creg:
534         case e_greg:
535           /* Accept either a string name
536                          * or '$' followed by the register number */
537           if (*n == '$')
538             {
539               n++;
540               value = strtol (n, 0, 10);
541               /* FIXME! could have "0l"... then what?? */
542               if (value == 0 && *n != '0')
543                 return 0;       /* error; invalid operand */
544             }
545           else
546             {
547               r = find_entry_byname (e->processor, f->type, n);
548               if (r)
549                 value = r->value;
550               else
551                 return 0;       /* error; invalid operand */
552             }
553           break;
554         case e_addr:
555           /* use assembler's symbol table to find symbol */
556           /* FIXME!! Do we need this?
557                                 if so, what about relocs??
558                                 my_getExpression (&imm_expr, s);
559                                 return 0;       /-* error; invalid operand *-/
560                                 break;
561                         */
562           /* If not a symbol, fall thru to IMMED */
563         case e_immed:
564           if (*n == '0' && *(n + 1) == 'x')     /* hex begins 0x...  */
565             {
566               n += 2;
567               value = strtol (n, 0, 16);
568               /* FIXME! could have "0xl"... then what?? */
569             }
570           else
571             {
572               value = strtol (n, 0, 10);
573               /* FIXME! could have "0l"... then what?? */
574               if (value == 0 && *n != '0')
575                 return 0;       /* error; invalid operand */
576             }
577           break;
578         default:
579           return 0;             /* error; invalid field spec */
580         }
581       opcode |= apply_range (value, f->range);
582     }
583   if (s && *s)
584     return 0;                   /* error - too many operands */
585   return opcode;                /* done! */
586 }
587
588 /* Disassemble instruction "insn".
589  * insn - instruction
590  * s - buffer to hold disassembled instruction
591  * returns - 1 if succeeded; 0 if failed
592  */
593
594 int
595 itbl_disassemble (char *s, unsigned long insn)
596 {
597   e_processor processor;
598   struct itbl_entry *e;
599   struct itbl_field *f;
600
601   if (!ITBL_IS_INSN (insn))
602     return 0;                   /* error */
603   processor = get_processor (ITBL_DECODE_PNUM (insn));
604
605   /* find entry in list */
606   e = find_entry_byval (processor, e_insn, insn, 0);
607   if (!e)
608     return 0;                   /* opcode not in table; invalid instruction */
609   strcpy (s, e->name);
610
611   /* Parse insn's args (if any).  */
612   for (f = e->fields; f; f = f->next)   /* for each arg, ...  */
613     {
614       struct itbl_entry *r;
615       unsigned long value;
616
617       if (f == e->fields)       /* First operand is preceded by tab.  */
618         strcat (s, "\t");
619       else                      /* ','s separate following operands.  */
620         strcat (s, ",");
621       value = extract_range (insn, f->range);
622       /* n should be in form $n or 0xhhh (are symbol names valid?? */
623       switch (f->type)
624         {
625         case e_dreg:
626         case e_creg:
627         case e_greg:
628           /* Accept either a string name
629              or '$' followed by the register number.  */
630           r = find_entry_byval (e->processor, f->type, value, &f->range);
631           if (r)
632             strcat (s, r->name);
633           else
634             sprintf (s, "%s$%lu", s, value);
635           break;
636         case e_addr:
637           /* Use assembler's symbol table to find symbol.  */
638           /* FIXME!! Do we need this?  If so, what about relocs??  */
639           /* If not a symbol, fall through to IMMED.  */
640         case e_immed:
641           sprintf (s, "%s0x%lx", s, value);
642           break;
643         default:
644           return 0;             /* error; invalid field spec */
645         }
646     }
647   return 1;                     /* Done!  */
648 }
649
650 /*======================================================================*/
651 /*
652  * Local functions for manipulating private structures containing
653  * the names and format for the new instructions and registers
654  * for each processor.
655  */
656
657 /* Calculate instruction's opcode and function values from entry */
658
659 static unsigned long
660 build_opcode (struct itbl_entry *e)
661 {
662   unsigned long opcode;
663
664   opcode = apply_range (e->value, e->range);
665   opcode |= ITBL_ENCODE_PNUM (e->processor);
666   return opcode;
667 }
668
669 /* Calculate absolute value given the relative value and bit position range
670  * within the instruction.
671  * The range is inclusive where 0 is least significant bit.
672  * A range of { 24, 20 } will have a mask of
673  * bit   3           2            1
674  * pos: 1098 7654 3210 9876 5432 1098 7654 3210
675  * bin: 0000 0001 1111 0000 0000 0000 0000 0000
676  * hex:    0    1    f    0    0    0    0    0
677  * mask: 0x01f00000.
678  */
679
680 static unsigned long
681 apply_range (unsigned long rval, struct itbl_range r)
682 {
683   unsigned long mask;
684   unsigned long aval;
685   int len = MAX_BITPOS - r.sbit;
686
687   ASSERT (r.sbit >= r.ebit);
688   ASSERT (MAX_BITPOS >= r.sbit);
689   ASSERT (r.ebit >= 0);
690
691   /* create mask by truncating 1s by shifting */
692   mask = 0xffffffff << len;
693   mask = mask >> len;
694   mask = mask >> r.ebit;
695   mask = mask << r.ebit;
696
697   aval = (rval << r.ebit) & mask;
698   return aval;
699 }
700
701 /* Calculate relative value given the absolute value and bit position range
702  * within the instruction.  */
703
704 static unsigned long
705 extract_range (unsigned long aval, struct itbl_range r)
706 {
707   unsigned long mask;
708   unsigned long rval;
709   int len = MAX_BITPOS - r.sbit;
710
711   /* create mask by truncating 1s by shifting */
712   mask = 0xffffffff << len;
713   mask = mask >> len;
714   mask = mask >> r.ebit;
715   mask = mask << r.ebit;
716
717   rval = (aval & mask) >> r.ebit;
718   return rval;
719 }
720
721 /* Extract processor's assembly instruction field name from s;
722  * forms are "n args" "n,args" or "n" */
723 /* Return next argument from string pointer "s" and advance s.
724  * delimiters are " ,()" */
725
726 char *
727 itbl_get_field (char **S)
728 {
729   static char n[128];
730   char *s;
731   int len;
732
733   s = *S;
734   if (!s || !*s)
735     return 0;
736   /* FIXME: This is a weird set of delimiters.  */
737   len = strcspn (s, " \t,()");
738   ASSERT (128 > len + 1);
739   strncpy (n, s, len);
740   n[len] = 0;
741   if (s[len] == '\0')
742     s = 0;                      /* no more args */
743   else
744     s += len + 1;               /* advance to next arg */
745
746   *S = s;
747   return n;
748 }
749
750 /* Search entries for a given processor and type
751  * to find one matching the name "n".
752  * Return a pointer to the entry */
753
754 static struct itbl_entry *
755 find_entry_byname (e_processor processor,
756                    e_type type, char *n)
757 {
758   struct itbl_entry *e, **es;
759
760   es = get_entries (processor, type);
761   for (e = *es; e; e = e->next) /* for each entry, ...  */
762     {
763       if (!strcmp (e->name, n))
764         return e;
765     }
766   return 0;
767 }
768
769 /* Search entries for a given processor and type
770  * to find one matching the value "val" for the range "r".
771  * Return a pointer to the entry.
772  * This function is used for disassembling fields of an instruction.
773  */
774
775 static struct itbl_entry *
776 find_entry_byval (e_processor processor, e_type type,
777                   unsigned long val, struct itbl_range *r)
778 {
779   struct itbl_entry *e, **es;
780   unsigned long eval;
781
782   es = get_entries (processor, type);
783   for (e = *es; e; e = e->next) /* for each entry, ...  */
784     {
785       if (processor != e->processor)
786         continue;
787       /* For insns, we might not know the range of the opcode,
788          * so a range of 0 will allow this routine to match against
789          * the range of the entry to be compared with.
790          * This could cause ambiguities.
791          * For operands, we get an extracted value and a range.
792          */
793       /* if range is 0, mask val against the range of the compared entry.  */
794       if (r == 0)               /* if no range passed, must be whole 32-bits
795                          * so create 32-bit value from entry's range */
796         {
797           eval = apply_range (e->value, e->range);
798           val &= apply_range (0xffffffff, e->range);
799         }
800       else if ((r->sbit == e->range.sbit && r->ebit == e->range.ebit)
801                || (e->range.sbit == 0 && e->range.ebit == 0))
802         {
803           eval = apply_range (e->value, *r);
804           val = apply_range (val, *r);
805         }
806       else
807         continue;
808       if (val == eval)
809         return e;
810     }
811   return 0;
812 }
813
814 /* Return a pointer to the list of entries for a given processor and type.  */
815
816 static struct itbl_entry **
817 get_entries (e_processor processor, e_type type)
818 {
819   return &entries[processor][type];
820 }
821
822 /* Return an integral value for the processor passed from yyparse.  */
823
824 static e_processor
825 get_processor (int yyproc)
826 {
827   /* translate from yacc's processor to enum */
828   if (yyproc >= e_p0 && yyproc < e_nprocs)
829     return (e_processor) yyproc;
830   return e_invproc;             /* error; invalid processor */
831 }
832
833 /* Return an integral value for the entry type passed from yyparse.  */
834
835 static e_type
836 get_type (int yytype)
837 {
838   switch (yytype)
839     {
840       /* translate from yacc's type to enum */
841     case INSN:
842       return e_insn;
843     case DREG:
844       return e_dreg;
845     case CREG:
846       return e_creg;
847     case GREG:
848       return e_greg;
849     case ADDR:
850       return e_addr;
851     case IMMED:
852       return e_immed;
853     default:
854       return e_invtype;         /* error; invalid type */
855     }
856 }
857
858 /* Allocate and initialize an entry */
859
860 static struct itbl_entry *
861 alloc_entry (e_processor processor, e_type type,
862              char *name, unsigned long value)
863 {
864   struct itbl_entry *e, **es;
865   if (!name)
866     return 0;
867   e = (struct itbl_entry *) malloc (sizeof (struct itbl_entry));
868   if (e)
869     {
870       memset (e, 0, sizeof (struct itbl_entry));
871       e->name = (char *) malloc (sizeof (strlen (name)) + 1);
872       if (e->name)
873         strcpy (e->name, name);
874       e->processor = processor;
875       e->type = type;
876       e->value = value;
877       es = get_entries (e->processor, e->type);
878       e->next = *es;
879       *es = e;
880     }
881   return e;
882 }
883
884 /* Allocate and initialize an entry's field */
885
886 static struct itbl_field *
887 alloc_field (e_type type, int sbit, int ebit,
888              unsigned long flags)
889 {
890   struct itbl_field *f;
891   f = (struct itbl_field *) malloc (sizeof (struct itbl_field));
892   if (f)
893     {
894       memset (f, 0, sizeof (struct itbl_field));
895       f->type = type;
896       f->range.sbit = sbit;
897       f->range.ebit = ebit;
898       f->flags = flags;
899     }
900   return f;
901 }