]> CyberLeo.Net >> Repos - FreeBSD/releng/8.1.git/blob - lib/libdevstat/devstat.c
Copy stable/8 to releng/8.1 in preparation for 8.1-RC1.
[FreeBSD/releng/8.1.git] / lib / libdevstat / devstat.c
1 /*
2  * Copyright (c) 1997, 1998 Kenneth D. Merry.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/types.h>
33 #include <sys/sysctl.h>
34 #include <sys/errno.h>
35 #include <sys/resource.h>
36 #include <sys/queue.h>
37
38 #include <ctype.h>
39 #include <err.h>
40 #include <fcntl.h>
41 #include <limits.h>
42 #include <stdio.h>
43 #include <stdlib.h>
44 #include <string.h>
45 #include <stdarg.h>
46 #include <kvm.h>
47 #include <nlist.h>
48
49 #include "devstat.h"
50
51 int
52 compute_stats(struct devstat *current, struct devstat *previous,
53               long double etime, u_int64_t *total_bytes,
54               u_int64_t *total_transfers, u_int64_t *total_blocks,
55               long double *kb_per_transfer, long double *transfers_per_second,
56               long double *mb_per_second, long double *blocks_per_second,
57               long double *ms_per_transaction);
58
59 typedef enum {
60         DEVSTAT_ARG_NOTYPE,
61         DEVSTAT_ARG_UINT64,
62         DEVSTAT_ARG_LD,
63         DEVSTAT_ARG_SKIP
64 } devstat_arg_type;
65
66 char devstat_errbuf[DEVSTAT_ERRBUF_SIZE];
67
68 /*
69  * Table to match descriptive strings with device types.  These are in
70  * order from most common to least common to speed search time.
71  */
72 struct devstat_match_table match_table[] = {
73         {"da",          DEVSTAT_TYPE_DIRECT,    DEVSTAT_MATCH_TYPE},
74         {"cd",          DEVSTAT_TYPE_CDROM,     DEVSTAT_MATCH_TYPE},
75         {"scsi",        DEVSTAT_TYPE_IF_SCSI,   DEVSTAT_MATCH_IF},
76         {"ide",         DEVSTAT_TYPE_IF_IDE,    DEVSTAT_MATCH_IF},
77         {"other",       DEVSTAT_TYPE_IF_OTHER,  DEVSTAT_MATCH_IF},
78         {"worm",        DEVSTAT_TYPE_WORM,      DEVSTAT_MATCH_TYPE},
79         {"sa",          DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE},
80         {"pass",        DEVSTAT_TYPE_PASS,      DEVSTAT_MATCH_PASS},
81         {"optical",     DEVSTAT_TYPE_OPTICAL,   DEVSTAT_MATCH_TYPE},
82         {"array",       DEVSTAT_TYPE_STORARRAY, DEVSTAT_MATCH_TYPE},
83         {"changer",     DEVSTAT_TYPE_CHANGER,   DEVSTAT_MATCH_TYPE},
84         {"scanner",     DEVSTAT_TYPE_SCANNER,   DEVSTAT_MATCH_TYPE},
85         {"printer",     DEVSTAT_TYPE_PRINTER,   DEVSTAT_MATCH_TYPE},
86         {"floppy",      DEVSTAT_TYPE_FLOPPY,    DEVSTAT_MATCH_TYPE},
87         {"proc",        DEVSTAT_TYPE_PROCESSOR, DEVSTAT_MATCH_TYPE},
88         {"comm",        DEVSTAT_TYPE_COMM,      DEVSTAT_MATCH_TYPE},
89         {"enclosure",   DEVSTAT_TYPE_ENCLOSURE, DEVSTAT_MATCH_TYPE},
90         {NULL,          0,                      0}
91 };
92
93 struct devstat_args {
94         devstat_metric          metric;
95         devstat_arg_type        argtype;
96 } devstat_arg_list[] = {
97         { DSM_NONE, DEVSTAT_ARG_NOTYPE },
98         { DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 },
99         { DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 },
100         { DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 },
101         { DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 },
102         { DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 },
103         { DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 },
104         { DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 },
105         { DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 },
106         { DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 },
107         { DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 },
108         { DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD },
109         { DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD },
110         { DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD },
111         { DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD },
112         { DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD },
113         { DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
114         { DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD },
115         { DSM_MB_PER_SECOND, DEVSTAT_ARG_LD },
116         { DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD },
117         { DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
118         { DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD },
119         { DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD },
120         { DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
121         { DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD },
122         { DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD },
123         { DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD },
124         { DSM_SKIP, DEVSTAT_ARG_SKIP },
125         { DSM_TOTAL_BYTES_FREE, DEVSTAT_ARG_UINT64 },
126         { DSM_TOTAL_TRANSFERS_FREE, DEVSTAT_ARG_UINT64 },
127         { DSM_TOTAL_BLOCKS_FREE, DEVSTAT_ARG_UINT64 },
128         { DSM_KB_PER_TRANSFER_FREE, DEVSTAT_ARG_LD },
129         { DSM_MB_PER_SECOND_FREE, DEVSTAT_ARG_LD },
130         { DSM_TRANSFERS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
131         { DSM_BLOCKS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
132         { DSM_MS_PER_TRANSACTION_OTHER, DEVSTAT_ARG_LD },
133         { DSM_MS_PER_TRANSACTION_FREE, DEVSTAT_ARG_LD },
134         { DSM_BUSY_PCT, DEVSTAT_ARG_LD },
135         { DSM_QUEUE_LENGTH, DEVSTAT_ARG_UINT64 },
136 };
137
138 static const char *namelist[] = {
139 #define X_NUMDEVS       0
140         "_devstat_num_devs",
141 #define X_GENERATION    1
142         "_devstat_generation",
143 #define X_VERSION       2
144         "_devstat_version",
145 #define X_DEVICE_STATQ  3
146         "_device_statq",
147 #define X_END           4
148 };
149
150 /*
151  * Local function declarations.
152  */
153 static int compare_select(const void *arg1, const void *arg2);
154 static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes);
155 static int readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes);
156 static char *get_devstat_kvm(kvm_t *kd);
157
158 #define KREADNL(kd, var, val) \
159         readkmem_nl(kd, namelist[var], &val, sizeof(val))
160
161 int
162 devstat_getnumdevs(kvm_t *kd)
163 {
164         size_t numdevsize;
165         int numdevs;
166
167         numdevsize = sizeof(int);
168
169         /*
170          * Find out how many devices we have in the system.
171          */
172         if (kd == NULL) {
173                 if (sysctlbyname("kern.devstat.numdevs", &numdevs,
174                                  &numdevsize, NULL, 0) == -1) {
175                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
176                                  "%s: error getting number of devices\n"
177                                  "%s: %s", __func__, __func__, 
178                                  strerror(errno));
179                         return(-1);
180                 } else
181                         return(numdevs);
182         } else {
183
184                 if (KREADNL(kd, X_NUMDEVS, numdevs) == -1)
185                         return(-1);
186                 else
187                         return(numdevs);
188         }
189 }
190
191 /*
192  * This is an easy way to get the generation number, but the generation is
193  * supplied in a more atmoic manner by the kern.devstat.all sysctl.
194  * Because this generation sysctl is separate from the statistics sysctl,
195  * the device list and the generation could change between the time that
196  * this function is called and the device list is retreived.
197  */
198 long
199 devstat_getgeneration(kvm_t *kd)
200 {
201         size_t gensize;
202         long generation;
203
204         gensize = sizeof(long);
205
206         /*
207          * Get the current generation number.
208          */
209         if (kd == NULL) {
210                 if (sysctlbyname("kern.devstat.generation", &generation, 
211                                  &gensize, NULL, 0) == -1) {
212                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
213                                  "%s: error getting devstat generation\n%s: %s",
214                                  __func__, __func__, strerror(errno));
215                         return(-1);
216                 } else
217                         return(generation);
218         } else {
219                 if (KREADNL(kd, X_GENERATION, generation) == -1)
220                         return(-1);
221                 else
222                         return(generation);
223         }
224 }
225
226 /*
227  * Get the current devstat version.  The return value of this function
228  * should be compared with DEVSTAT_VERSION, which is defined in
229  * sys/devicestat.h.  This will enable userland programs to determine
230  * whether they are out of sync with the kernel.
231  */
232 int
233 devstat_getversion(kvm_t *kd)
234 {
235         size_t versize;
236         int version;
237
238         versize = sizeof(int);
239
240         /*
241          * Get the current devstat version.
242          */
243         if (kd == NULL) {
244                 if (sysctlbyname("kern.devstat.version", &version, &versize,
245                                  NULL, 0) == -1) {
246                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
247                                  "%s: error getting devstat version\n%s: %s",
248                                  __func__, __func__, strerror(errno));
249                         return(-1);
250                 } else
251                         return(version);
252         } else {
253                 if (KREADNL(kd, X_VERSION, version) == -1)
254                         return(-1);
255                 else
256                         return(version);
257         }
258 }
259
260 /*
261  * Check the devstat version we know about against the devstat version the
262  * kernel knows about.  If they don't match, print an error into the
263  * devstat error buffer, and return -1.  If they match, return 0.
264  */
265 int
266 devstat_checkversion(kvm_t *kd)
267 {
268         int buflen, res, retval = 0, version;
269
270         version = devstat_getversion(kd);
271
272         if (version != DEVSTAT_VERSION) {
273                 /*
274                  * If getversion() returns an error (i.e. -1), then it
275                  * has printed an error message in the buffer.  Therefore,
276                  * we need to add a \n to the end of that message before we
277                  * print our own message in the buffer.
278                  */
279                 if (version == -1)
280                         buflen = strlen(devstat_errbuf);
281                 else
282                         buflen = 0;
283
284                 res = snprintf(devstat_errbuf + buflen,
285                                DEVSTAT_ERRBUF_SIZE - buflen,
286                                "%s%s: userland devstat version %d is not "
287                                "the same as the kernel\n%s: devstat "
288                                "version %d\n", version == -1 ? "\n" : "",
289                                __func__, DEVSTAT_VERSION, __func__, version);
290
291                 if (res < 0)
292                         devstat_errbuf[buflen] = '\0';
293
294                 buflen = strlen(devstat_errbuf);
295                 if (version < DEVSTAT_VERSION)
296                         res = snprintf(devstat_errbuf + buflen,
297                                        DEVSTAT_ERRBUF_SIZE - buflen,
298                                        "%s: libdevstat newer than kernel\n",
299                                        __func__);
300                 else
301                         res = snprintf(devstat_errbuf + buflen,
302                                        DEVSTAT_ERRBUF_SIZE - buflen,
303                                        "%s: kernel newer than libdevstat\n",
304                                        __func__);
305
306                 if (res < 0)
307                         devstat_errbuf[buflen] = '\0';
308
309                 retval = -1;
310         }
311
312         return(retval);
313 }
314
315 /*
316  * Get the current list of devices and statistics, and the current
317  * generation number.
318  * 
319  * Return values:
320  * -1  -- error
321  *  0  -- device list is unchanged
322  *  1  -- device list has changed
323  */
324 int
325 devstat_getdevs(kvm_t *kd, struct statinfo *stats)
326 {
327         int error;
328         size_t dssize;
329         int oldnumdevs;
330         long oldgeneration;
331         int retval = 0;
332         struct devinfo *dinfo;
333         struct timespec ts;
334
335         dinfo = stats->dinfo;
336
337         if (dinfo == NULL) {
338                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
339                          "%s: stats->dinfo was NULL", __func__);
340                 return(-1);
341         }
342
343         oldnumdevs = dinfo->numdevs;
344         oldgeneration = dinfo->generation;
345
346         clock_gettime(CLOCK_MONOTONIC, &ts);
347         stats->snap_time = ts.tv_sec + ts.tv_nsec * 1e-9;
348
349         if (kd == NULL) {
350                 /* If this is our first time through, mem_ptr will be null. */
351                 if (dinfo->mem_ptr == NULL) {
352                         /*
353                          * Get the number of devices.  If it's negative, it's an
354                          * error.  Don't bother setting the error string, since
355                          * getnumdevs() has already done that for us.
356                          */
357                         if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
358                                 return(-1);
359                         
360                         /*
361                          * The kern.devstat.all sysctl returns the current 
362                          * generation number, as well as all the devices.  
363                          * So we need four bytes more.
364                          */
365                         dssize = (dinfo->numdevs * sizeof(struct devstat)) +
366                                  sizeof(long);
367                         dinfo->mem_ptr = (u_int8_t *)malloc(dssize);
368                 } else
369                         dssize = (dinfo->numdevs * sizeof(struct devstat)) +
370                                  sizeof(long);
371
372                 /*
373                  * Request all of the devices.  We only really allow for one
374                  * ENOMEM failure.  It would, of course, be possible to just go
375                  * in a loop and keep reallocing the device structure until we
376                  * don't get ENOMEM back.  I'm not sure it's worth it, though.
377                  * If devices are being added to the system that quickly, maybe
378                  * the user can just wait until all devices are added.
379                  */
380                 for (;;) {
381                         error = sysctlbyname("kern.devstat.all",
382                                              dinfo->mem_ptr, 
383                                              &dssize, NULL, 0);
384                         if (error != -1 || errno != EBUSY)
385                                 break;
386                 }
387                 if (error == -1) {
388                         /*
389                          * If we get ENOMEM back, that means that there are 
390                          * more devices now, so we need to allocate more 
391                          * space for the device array.
392                          */
393                         if (errno == ENOMEM) {
394                                 /*
395                                  * No need to set the error string here, 
396                                  * devstat_getnumdevs() will do that if it fails.
397                                  */
398                                 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
399                                         return(-1);
400
401                                 dssize = (dinfo->numdevs * 
402                                         sizeof(struct devstat)) + sizeof(long);
403                                 dinfo->mem_ptr = (u_int8_t *)
404                                         realloc(dinfo->mem_ptr, dssize);
405                                 if ((error = sysctlbyname("kern.devstat.all", 
406                                     dinfo->mem_ptr, &dssize, NULL, 0)) == -1) {
407                                         snprintf(devstat_errbuf,
408                                                  sizeof(devstat_errbuf),
409                                                  "%s: error getting device "
410                                                  "stats\n%s: %s", __func__,
411                                                  __func__, strerror(errno));
412                                         return(-1);
413                                 }
414                         } else {
415                                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
416                                          "%s: error getting device stats\n"
417                                          "%s: %s", __func__, __func__,
418                                          strerror(errno));
419                                 return(-1);
420                         }
421                 } 
422
423         } else {
424                 /* 
425                  * This is of course non-atomic, but since we are working
426                  * on a core dump, the generation is unlikely to change
427                  */
428                 if ((dinfo->numdevs = devstat_getnumdevs(kd)) == -1)
429                         return(-1);
430                 if ((dinfo->mem_ptr = (u_int8_t *)get_devstat_kvm(kd)) == NULL)
431                         return(-1);
432         }
433         /*
434          * The sysctl spits out the generation as the first four bytes,
435          * then all of the device statistics structures.
436          */
437         dinfo->generation = *(long *)dinfo->mem_ptr;
438
439         /*
440          * If the generation has changed, and if the current number of
441          * devices is not the same as the number of devices recorded in the
442          * devinfo structure, it is likely that the device list has shrunk.
443          * The reason that it is likely that the device list has shrunk in
444          * this case is that if the device list has grown, the sysctl above
445          * will return an ENOMEM error, and we will reset the number of
446          * devices and reallocate the device array.  If the second sysctl
447          * fails, we will return an error and therefore never get to this
448          * point.  If the device list has shrunk, the sysctl will not
449          * return an error since we have more space allocated than is
450          * necessary.  So, in the shrinkage case, we catch it here and
451          * reallocate the array so that we don't use any more space than is
452          * necessary.
453          */
454         if (oldgeneration != dinfo->generation) {
455                 if (devstat_getnumdevs(kd) != dinfo->numdevs) {
456                         if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
457                                 return(-1);
458                         dssize = (dinfo->numdevs * sizeof(struct devstat)) +
459                                 sizeof(long);
460                         dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr,
461                                                              dssize);
462                 }
463                 retval = 1;
464         }
465
466         dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long));
467
468         return(retval);
469 }
470
471 /*
472  * selectdevs():
473  *
474  * Devices are selected/deselected based upon the following criteria:
475  * - devices specified by the user on the command line
476  * - devices matching any device type expressions given on the command line
477  * - devices with the highest I/O, if 'top' mode is enabled
478  * - the first n unselected devices in the device list, if maxshowdevs
479  *   devices haven't already been selected and if the user has not
480  *   specified any devices on the command line and if we're in "add" mode.
481  *
482  * Input parameters:
483  * - device selection list (dev_select)
484  * - current number of devices selected (num_selected)
485  * - total number of devices in the selection list (num_selections)
486  * - devstat generation as of the last time selectdevs() was called
487  *   (select_generation)
488  * - current devstat generation (current_generation)
489  * - current list of devices and statistics (devices)
490  * - number of devices in the current device list (numdevs)
491  * - compiled version of the command line device type arguments (matches)
492  *   - This is optional.  If the number of devices is 0, this will be ignored.
493  *   - The matching code pays attention to the current selection mode.  So
494  *     if you pass in a matching expression, it will be evaluated based
495  *     upon the selection mode that is passed in.  See below for details.
496  * - number of device type matching expressions (num_matches)
497  *   - Set to 0 to disable the matching code.
498  * - list of devices specified on the command line by the user (dev_selections)
499  * - number of devices selected on the command line by the user
500  *   (num_dev_selections)
501  * - Our selection mode.  There are four different selection modes:
502  *      - add mode.  (DS_SELECT_ADD) Any devices matching devices explicitly
503  *        selected by the user or devices matching a pattern given by the
504  *        user will be selected in addition to devices that are already
505  *        selected.  Additional devices will be selected, up to maxshowdevs
506  *        number of devices. 
507  *      - only mode. (DS_SELECT_ONLY)  Only devices matching devices
508  *        explicitly given by the user or devices matching a pattern
509  *        given by the user will be selected.  No other devices will be
510  *        selected.
511  *      - addonly mode.  (DS_SELECT_ADDONLY)  This is similar to add and
512  *        only.  Basically, this will not de-select any devices that are
513  *        current selected, as only mode would, but it will also not
514  *        gratuitously select up to maxshowdevs devices as add mode would.
515  *      - remove mode.  (DS_SELECT_REMOVE)  Any devices matching devices
516  *        explicitly selected by the user or devices matching a pattern
517  *        given by the user will be de-selected.
518  * - maximum number of devices we can select (maxshowdevs)
519  * - flag indicating whether or not we're in 'top' mode (perf_select)
520  *
521  * Output data:
522  * - the device selection list may be modified and passed back out
523  * - the number of devices selected and the total number of items in the
524  *   device selection list may be changed
525  * - the selection generation may be changed to match the current generation
526  * 
527  * Return values:
528  * -1  -- error
529  *  0  -- selected devices are unchanged
530  *  1  -- selected devices changed
531  */
532 int
533 devstat_selectdevs(struct device_selection **dev_select, int *num_selected,
534                    int *num_selections, long *select_generation, 
535                    long current_generation, struct devstat *devices,
536                    int numdevs, struct devstat_match *matches, int num_matches,
537                    char **dev_selections, int num_dev_selections,
538                    devstat_select_mode select_mode, int maxshowdevs,
539                    int perf_select)
540 {
541         int i, j, k;
542         int init_selections = 0, init_selected_var = 0;
543         struct device_selection *old_dev_select = NULL;
544         int old_num_selections = 0, old_num_selected;
545         int selection_number = 0;
546         int changed = 0, found = 0;
547
548         if ((dev_select == NULL) || (devices == NULL) || (numdevs < 0))
549                 return(-1);
550
551         /*
552          * We always want to make sure that we have as many dev_select
553          * entries as there are devices. 
554          */
555         /*
556          * In this case, we haven't selected devices before.
557          */
558         if (*dev_select == NULL) {
559                 *dev_select = (struct device_selection *)malloc(numdevs *
560                         sizeof(struct device_selection));
561                 *select_generation = current_generation;
562                 init_selections = 1;
563                 changed = 1;
564         /*
565          * In this case, we have selected devices before, but the device
566          * list has changed since we last selected devices, so we need to
567          * either enlarge or reduce the size of the device selection list.
568          */
569         } else if (*num_selections != numdevs) {
570                 *dev_select = (struct device_selection *)realloc(*dev_select,
571                         numdevs * sizeof(struct device_selection));
572                 *select_generation = current_generation;
573                 init_selections = 1;
574         /*
575          * In this case, we've selected devices before, and the selection
576          * list is the same size as it was the last time, but the device
577          * list has changed.
578          */
579         } else if (*select_generation < current_generation) {
580                 *select_generation = current_generation;
581                 init_selections = 1;
582         }
583
584         /*
585          * If we're in "only" mode, we want to clear out the selected
586          * variable since we're going to select exactly what the user wants
587          * this time through.
588          */
589         if (select_mode == DS_SELECT_ONLY)
590                 init_selected_var = 1;
591
592         /*
593          * In all cases, we want to back up the number of selected devices.
594          * It is a quick and accurate way to determine whether the selected
595          * devices have changed.
596          */
597         old_num_selected = *num_selected;
598
599         /*
600          * We want to make a backup of the current selection list if 
601          * the list of devices has changed, or if we're in performance 
602          * selection mode.  In both cases, we don't want to make a backup
603          * if we already know for sure that the list will be different.
604          * This is certainly the case if this is our first time through the
605          * selection code.
606          */
607         if (((init_selected_var != 0) || (init_selections != 0)
608          || (perf_select != 0)) && (changed == 0)){
609                 old_dev_select = (struct device_selection *)malloc(
610                     *num_selections * sizeof(struct device_selection));
611                 old_num_selections = *num_selections;
612                 bcopy(*dev_select, old_dev_select, 
613                     sizeof(struct device_selection) * *num_selections);
614         }
615
616         if (init_selections != 0) {
617                 bzero(*dev_select, sizeof(struct device_selection) * numdevs);
618
619                 for (i = 0; i < numdevs; i++) {
620                         (*dev_select)[i].device_number = 
621                                 devices[i].device_number;
622                         strncpy((*dev_select)[i].device_name,
623                                 devices[i].device_name,
624                                 DEVSTAT_NAME_LEN);
625                         (*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0';
626                         (*dev_select)[i].unit_number = devices[i].unit_number;
627                         (*dev_select)[i].position = i;
628                 }
629                 *num_selections = numdevs;
630         } else if (init_selected_var != 0) {
631                 for (i = 0; i < numdevs; i++) 
632                         (*dev_select)[i].selected = 0;
633         }
634
635         /* we haven't gotten around to selecting anything yet.. */
636         if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0)
637          || (init_selected_var != 0))
638                 *num_selected = 0;
639
640         /*
641          * Look through any devices the user specified on the command line
642          * and see if they match known devices.  If so, select them.
643          */
644         for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) {
645                 char tmpstr[80];
646
647                 snprintf(tmpstr, sizeof(tmpstr), "%s%d",
648                          (*dev_select)[i].device_name,
649                          (*dev_select)[i].unit_number);
650                 for (j = 0; j < num_dev_selections; j++) {
651                         if (strcmp(tmpstr, dev_selections[j]) == 0) {
652                                 /*
653                                  * Here we do different things based on the
654                                  * mode we're in.  If we're in add or
655                                  * addonly mode, we only select this device
656                                  * if it hasn't already been selected.
657                                  * Otherwise, we would be unnecessarily
658                                  * changing the selection order and
659                                  * incrementing the selection count.  If
660                                  * we're in only mode, we unconditionally
661                                  * select this device, since in only mode
662                                  * any previous selections are erased and
663                                  * manually specified devices are the first
664                                  * ones to be selected.  If we're in remove
665                                  * mode, we de-select the specified device and
666                                  * decrement the selection count.
667                                  */
668                                 switch(select_mode) {
669                                 case DS_SELECT_ADD:
670                                 case DS_SELECT_ADDONLY:
671                                         if ((*dev_select)[i].selected)
672                                                 break;
673                                         /* FALLTHROUGH */
674                                 case DS_SELECT_ONLY:
675                                         (*dev_select)[i].selected =
676                                                 ++selection_number;
677                                         (*num_selected)++;
678                                         break;
679                                 case DS_SELECT_REMOVE:
680                                         (*dev_select)[i].selected = 0;
681                                         (*num_selected)--;
682                                         /*
683                                          * This isn't passed back out, we
684                                          * just use it to keep track of
685                                          * how many devices we've removed.
686                                          */
687                                         num_dev_selections--;
688                                         break;
689                                 }
690                                 break;
691                         }
692                 }
693         }
694
695         /*
696          * Go through the user's device type expressions and select devices
697          * accordingly.  We only do this if the number of devices already
698          * selected is less than the maximum number we can show.
699          */
700         for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) {
701                 /* We should probably indicate some error here */
702                 if ((matches[i].match_fields == DEVSTAT_MATCH_NONE)
703                  || (matches[i].num_match_categories <= 0))
704                         continue;
705
706                 for (j = 0; j < numdevs; j++) {
707                         int num_match_categories;
708
709                         num_match_categories = matches[i].num_match_categories;
710
711                         /*
712                          * Determine whether or not the current device
713                          * matches the given matching expression.  This if
714                          * statement consists of three components:
715                          *   - the device type check
716                          *   - the device interface check
717                          *   - the passthrough check
718                          * If a the matching test is successful, it 
719                          * decrements the number of matching categories,
720                          * and if we've reached the last element that
721                          * needed to be matched, the if statement succeeds.
722                          * 
723                          */
724                         if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0)
725                           && ((devices[j].device_type & DEVSTAT_TYPE_MASK) ==
726                                 (matches[i].device_type & DEVSTAT_TYPE_MASK))
727                           &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
728                            || (((matches[i].match_fields & 
729                                 DEVSTAT_MATCH_PASS) == 0)
730                             && ((devices[j].device_type &
731                                 DEVSTAT_TYPE_PASS) == 0)))
732                           && (--num_match_categories == 0)) 
733                          || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0)
734                           && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) ==
735                                 (matches[i].device_type & DEVSTAT_TYPE_IF_MASK))
736                           &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
737                            || (((matches[i].match_fields &
738                                 DEVSTAT_MATCH_PASS) == 0)
739                             && ((devices[j].device_type & 
740                                 DEVSTAT_TYPE_PASS) == 0)))
741                           && (--num_match_categories == 0))
742                          || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
743                           && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0)
744                           && (--num_match_categories == 0))) {
745
746                                 /*
747                                  * This is probably a non-optimal solution
748                                  * to the problem that the devices in the
749                                  * device list will not be in the same
750                                  * order as the devices in the selection
751                                  * array.
752                                  */
753                                 for (k = 0; k < numdevs; k++) {
754                                         if ((*dev_select)[k].position == j) {
755                                                 found = 1;
756                                                 break;
757                                         }
758                                 }
759
760                                 /*
761                                  * There shouldn't be a case where a device
762                                  * in the device list is not in the
763                                  * selection list...but it could happen.
764                                  */
765                                 if (found != 1) {
766                                         fprintf(stderr, "selectdevs: couldn't"
767                                                 " find %s%d in selection "
768                                                 "list\n",
769                                                 devices[j].device_name,
770                                                 devices[j].unit_number);
771                                         break;
772                                 }
773
774                                 /*
775                                  * We do different things based upon the
776                                  * mode we're in.  If we're in add or only
777                                  * mode, we go ahead and select this device
778                                  * if it hasn't already been selected.  If
779                                  * it has already been selected, we leave
780                                  * it alone so we don't mess up the
781                                  * selection ordering.  Manually specified
782                                  * devices have already been selected, and
783                                  * they have higher priority than pattern
784                                  * matched devices.  If we're in remove
785                                  * mode, we de-select the given device and
786                                  * decrement the selected count.
787                                  */
788                                 switch(select_mode) {
789                                 case DS_SELECT_ADD:
790                                 case DS_SELECT_ADDONLY:
791                                 case DS_SELECT_ONLY:
792                                         if ((*dev_select)[k].selected != 0)
793                                                 break;
794                                         (*dev_select)[k].selected =
795                                                 ++selection_number;
796                                         (*num_selected)++;
797                                         break;
798                                 case DS_SELECT_REMOVE:
799                                         (*dev_select)[k].selected = 0;
800                                         (*num_selected)--;
801                                         break;
802                                 }
803                         }
804                 }
805         }
806
807         /*
808          * Here we implement "top" mode.  Devices are sorted in the
809          * selection array based on two criteria:  whether or not they are
810          * selected (not selection number, just the fact that they are
811          * selected!) and the number of bytes in the "bytes" field of the
812          * selection structure.  The bytes field generally must be kept up
813          * by the user.  In the future, it may be maintained by library
814          * functions, but for now the user has to do the work.
815          *
816          * At first glance, it may seem wrong that we don't go through and
817          * select every device in the case where the user hasn't specified
818          * any devices or patterns.  In fact, though, it won't make any
819          * difference in the device sorting.  In that particular case (i.e.
820          * when we're in "add" or "only" mode, and the user hasn't
821          * specified anything) the first time through no devices will be
822          * selected, so the only criterion used to sort them will be their
823          * performance.  The second time through, and every time thereafter,
824          * all devices will be selected, so again selection won't matter.
825          */
826         if (perf_select != 0) {
827
828                 /* Sort the device array by throughput  */
829                 qsort(*dev_select, *num_selections,
830                       sizeof(struct device_selection),
831                       compare_select);
832
833                 if (*num_selected == 0) {
834                         /*
835                          * Here we select every device in the array, if it
836                          * isn't already selected.  Because the 'selected'
837                          * variable in the selection array entries contains
838                          * the selection order, the devstats routine can show
839                          * the devices that were selected first.
840                          */
841                         for (i = 0; i < *num_selections; i++) {
842                                 if ((*dev_select)[i].selected == 0) {
843                                         (*dev_select)[i].selected =
844                                                 ++selection_number;
845                                         (*num_selected)++;
846                                 }
847                         }
848                 } else {
849                         selection_number = 0;
850                         for (i = 0; i < *num_selections; i++) {
851                                 if ((*dev_select)[i].selected != 0) {
852                                         (*dev_select)[i].selected =
853                                                 ++selection_number;
854                                 }
855                         }
856                 }
857         }
858
859         /*
860          * If we're in the "add" selection mode and if we haven't already
861          * selected maxshowdevs number of devices, go through the array and
862          * select any unselected devices.  If we're in "only" mode, we
863          * obviously don't want to select anything other than what the user
864          * specifies.  If we're in "remove" mode, it probably isn't a good
865          * idea to go through and select any more devices, since we might
866          * end up selecting something that the user wants removed.  Through
867          * more complicated logic, we could actually figure this out, but
868          * that would probably require combining this loop with the various
869          * selections loops above.
870          */
871         if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) {
872                 for (i = 0; i < *num_selections; i++)
873                         if ((*dev_select)[i].selected == 0) {
874                                 (*dev_select)[i].selected = ++selection_number;
875                                 (*num_selected)++;
876                         }
877         }
878
879         /*
880          * Look at the number of devices that have been selected.  If it
881          * has changed, set the changed variable.  Otherwise, if we've
882          * made a backup of the selection list, compare it to the current
883          * selection list to see if the selected devices have changed.
884          */
885         if ((changed == 0) && (old_num_selected != *num_selected))
886                 changed = 1;
887         else if ((changed == 0) && (old_dev_select != NULL)) {
888                 /*
889                  * Now we go through the selection list and we look at
890                  * it three different ways.
891                  */
892                 for (i = 0; (i < *num_selections) && (changed == 0) && 
893                      (i < old_num_selections); i++) {
894                         /*
895                          * If the device at index i in both the new and old
896                          * selection arrays has the same device number and
897                          * selection status, it hasn't changed.  We
898                          * continue on to the next index.
899                          */
900                         if (((*dev_select)[i].device_number ==
901                              old_dev_select[i].device_number)
902                          && ((*dev_select)[i].selected == 
903                              old_dev_select[i].selected))
904                                 continue;
905
906                         /*
907                          * Now, if we're still going through the if
908                          * statement, the above test wasn't true.  So we
909                          * check here to see if the device at index i in
910                          * the current array is the same as the device at
911                          * index i in the old array.  If it is, that means
912                          * that its selection number has changed.  Set
913                          * changed to 1 and exit the loop.
914                          */
915                         else if ((*dev_select)[i].device_number ==
916                                   old_dev_select[i].device_number) {
917                                 changed = 1;
918                                 break;
919                         }
920                         /*
921                          * If we get here, then the device at index i in
922                          * the current array isn't the same device as the
923                          * device at index i in the old array.
924                          */
925                         else {
926                                 found = 0;
927
928                                 /*
929                                  * Search through the old selection array
930                                  * looking for a device with the same
931                                  * device number as the device at index i
932                                  * in the current array.  If the selection
933                                  * status is the same, then we mark it as
934                                  * found.  If the selection status isn't
935                                  * the same, we break out of the loop.
936                                  * Since found isn't set, changed will be
937                                  * set to 1 below.
938                                  */
939                                 for (j = 0; j < old_num_selections; j++) {
940                                         if (((*dev_select)[i].device_number ==
941                                               old_dev_select[j].device_number)
942                                          && ((*dev_select)[i].selected ==
943                                               old_dev_select[j].selected)){
944                                                 found = 1;
945                                                 break;
946                                         }
947                                         else if ((*dev_select)[i].device_number
948                                             == old_dev_select[j].device_number)
949                                                 break;
950                                 }
951                                 if (found == 0)
952                                         changed = 1;
953                         }
954                 }
955         }
956         if (old_dev_select != NULL)
957                 free(old_dev_select);
958
959         return(changed);
960 }
961
962 /*
963  * Comparison routine for qsort() above.  Note that the comparison here is
964  * backwards -- generally, it should return a value to indicate whether
965  * arg1 is <, =, or > arg2.  Instead, it returns the opposite.  The reason
966  * it returns the opposite is so that the selection array will be sorted in
967  * order of decreasing performance.  We sort on two parameters.  The first
968  * sort key is whether or not one or the other of the devices in question
969  * has been selected.  If one of them has, and the other one has not, the
970  * selected device is automatically more important than the unselected
971  * device.  If neither device is selected, we judge the devices based upon
972  * performance.
973  */
974 static int
975 compare_select(const void *arg1, const void *arg2)
976 {
977         if ((((const struct device_selection *)arg1)->selected)
978          && (((const struct device_selection *)arg2)->selected == 0))
979                 return(-1);
980         else if ((((const struct device_selection *)arg1)->selected == 0)
981               && (((const struct device_selection *)arg2)->selected))
982                 return(1);
983         else if (((const struct device_selection *)arg2)->bytes <
984                  ((const struct device_selection *)arg1)->bytes)
985                 return(-1);
986         else if (((const struct device_selection *)arg2)->bytes >
987                  ((const struct device_selection *)arg1)->bytes)
988                 return(1);
989         else
990                 return(0);
991 }
992
993 /*
994  * Take a string with the general format "arg1,arg2,arg3", and build a
995  * device matching expression from it.
996  */
997 int
998 devstat_buildmatch(char *match_str, struct devstat_match **matches,
999                    int *num_matches)
1000 {
1001         char *tstr[5];
1002         char **tempstr;
1003         int num_args;
1004         int i, j;
1005
1006         /* We can't do much without a string to parse */
1007         if (match_str == NULL) {
1008                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1009                          "%s: no match expression", __func__);
1010                 return(-1);
1011         }
1012
1013         /*
1014          * Break the (comma delimited) input string out into separate strings.
1015          */
1016         for (tempstr = tstr, num_args  = 0; 
1017              (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5); 
1018              num_args++)
1019                 if (**tempstr != '\0')
1020                         if (++tempstr >= &tstr[5])
1021                                 break;
1022
1023         /* The user gave us too many type arguments */
1024         if (num_args > 3) {
1025                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1026                          "%s: too many type arguments", __func__);
1027                 return(-1);
1028         }
1029
1030         /*
1031          * Since you can't realloc a pointer that hasn't been malloced
1032          * first, we malloc first and then realloc.
1033          */
1034         if (*num_matches == 0)
1035                 *matches = (struct devstat_match *)malloc(
1036                            sizeof(struct devstat_match));
1037         else
1038                 *matches = (struct devstat_match *)realloc(*matches,
1039                           sizeof(struct devstat_match) * (*num_matches + 1));
1040                           
1041         /* Make sure the current entry is clear */
1042         bzero(&matches[0][*num_matches], sizeof(struct devstat_match));
1043
1044         /*
1045          * Step through the arguments the user gave us and build a device
1046          * matching expression from them.
1047          */
1048         for (i = 0; i < num_args; i++) {
1049                 char *tempstr2, *tempstr3;
1050
1051                 /*
1052                  * Get rid of leading white space.
1053                  */
1054                 tempstr2 = tstr[i];
1055                 while (isspace(*tempstr2) && (*tempstr2 != '\0'))
1056                         tempstr2++;
1057
1058                 /*
1059                  * Get rid of trailing white space.
1060                  */
1061                 tempstr3 = &tempstr2[strlen(tempstr2) - 1];
1062
1063                 while ((*tempstr3 != '\0') && (tempstr3 > tempstr2)
1064                     && (isspace(*tempstr3))) {
1065                         *tempstr3 = '\0';
1066                         tempstr3--;
1067                 }
1068
1069                 /*
1070                  * Go through the match table comparing the user's
1071                  * arguments to known device types, interfaces, etc.  
1072                  */
1073                 for (j = 0; match_table[j].match_str != NULL; j++) {
1074                         /*
1075                          * We do case-insensitive matching, in case someone
1076                          * wants to enter "SCSI" instead of "scsi" or
1077                          * something like that.  Only compare as many 
1078                          * characters as are in the string in the match 
1079                          * table.  This should help if someone tries to use 
1080                          * a super-long match expression.  
1081                          */
1082                         if (strncasecmp(tempstr2, match_table[j].match_str,
1083                             strlen(match_table[j].match_str)) == 0) {
1084                                 /*
1085                                  * Make sure the user hasn't specified two
1086                                  * items of the same type, like "da" and
1087                                  * "cd".  One device cannot be both.
1088                                  */
1089                                 if (((*matches)[*num_matches].match_fields &
1090                                     match_table[j].match_field) != 0) {
1091                                         snprintf(devstat_errbuf,
1092                                                  sizeof(devstat_errbuf),
1093                                                  "%s: cannot have more than "
1094                                                  "one match item in a single "
1095                                                  "category", __func__);
1096                                         return(-1);
1097                                 }
1098                                 /*
1099                                  * If we've gotten this far, we have a
1100                                  * winner.  Set the appropriate fields in
1101                                  * the match entry.
1102                                  */
1103                                 (*matches)[*num_matches].match_fields |=
1104                                         match_table[j].match_field;
1105                                 (*matches)[*num_matches].device_type |=
1106                                         match_table[j].type;
1107                                 (*matches)[*num_matches].num_match_categories++;
1108                                 break;
1109                         }
1110                 }
1111                 /*
1112                  * We should have found a match in the above for loop.  If
1113                  * not, that means the user entered an invalid device type
1114                  * or interface.
1115                  */
1116                 if ((*matches)[*num_matches].num_match_categories != (i + 1)) {
1117                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1118                                  "%s: unknown match item \"%s\"", __func__,
1119                                  tstr[i]);
1120                         return(-1);
1121                 }
1122         }
1123
1124         (*num_matches)++;
1125
1126         return(0);
1127 }
1128
1129 /*
1130  * Compute a number of device statistics.  Only one field is mandatory, and
1131  * that is "current".  Everything else is optional.  The caller passes in
1132  * pointers to variables to hold the various statistics he desires.  If he
1133  * doesn't want a particular staistic, he should pass in a NULL pointer.
1134  * Return values:
1135  * 0   -- success
1136  * -1  -- failure
1137  */
1138 int
1139 compute_stats(struct devstat *current, struct devstat *previous,
1140               long double etime, u_int64_t *total_bytes,
1141               u_int64_t *total_transfers, u_int64_t *total_blocks,
1142               long double *kb_per_transfer, long double *transfers_per_second,
1143               long double *mb_per_second, long double *blocks_per_second,
1144               long double *ms_per_transaction)
1145 {
1146         return(devstat_compute_statistics(current, previous, etime,
1147                total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP,
1148                total_bytes,
1149                total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP,
1150                total_transfers,
1151                total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP,
1152                total_blocks,
1153                kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP,
1154                kb_per_transfer,
1155                transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP,
1156                transfers_per_second,
1157                mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP,
1158                mb_per_second,
1159                blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP,
1160                blocks_per_second,
1161                ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP,
1162                ms_per_transaction,
1163                DSM_NONE));
1164 }
1165
1166
1167 /* This is 1/2^64 */
1168 #define BINTIME_SCALE 5.42101086242752217003726400434970855712890625e-20
1169
1170 long double
1171 devstat_compute_etime(struct bintime *cur_time, struct bintime *prev_time)
1172 {
1173         long double etime;
1174
1175         etime = cur_time->sec;
1176         etime += cur_time->frac * BINTIME_SCALE;
1177         if (prev_time != NULL) {
1178                 etime -= prev_time->sec;
1179                 etime -= prev_time->frac * BINTIME_SCALE;
1180         }
1181         return(etime);
1182 }
1183
1184 #define DELTA(field, index)                             \
1185         (current->field[(index)] - (previous ? previous->field[(index)] : 0))
1186
1187 #define DELTA_T(field)                                  \
1188         devstat_compute_etime(&current->field,          \
1189         (previous ? &previous->field : NULL))
1190
1191 int
1192 devstat_compute_statistics(struct devstat *current, struct devstat *previous,
1193                            long double etime, ...)
1194 {
1195         u_int64_t totalbytes, totalbytesread, totalbyteswrite, totalbytesfree;
1196         u_int64_t totaltransfers, totaltransfersread, totaltransferswrite;
1197         u_int64_t totaltransfersother, totalblocks, totalblocksread;
1198         u_int64_t totalblockswrite, totaltransfersfree, totalblocksfree;
1199         va_list ap;
1200         devstat_metric metric;
1201         u_int64_t *destu64;
1202         long double *destld;
1203         int retval, i;
1204
1205         retval = 0;
1206
1207         /*
1208          * current is the only mandatory field.
1209          */
1210         if (current == NULL) {
1211                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1212                          "%s: current stats structure was NULL", __func__);
1213                 return(-1);
1214         }
1215
1216         totalbytesread = DELTA(bytes, DEVSTAT_READ);
1217         totalbyteswrite = DELTA(bytes, DEVSTAT_WRITE);
1218         totalbytesfree = DELTA(bytes, DEVSTAT_FREE);
1219         totalbytes = totalbytesread + totalbyteswrite + totalbytesfree;
1220
1221         totaltransfersread = DELTA(operations, DEVSTAT_READ);
1222         totaltransferswrite = DELTA(operations, DEVSTAT_WRITE);
1223         totaltransfersother = DELTA(operations, DEVSTAT_NO_DATA);
1224         totaltransfersfree = DELTA(operations, DEVSTAT_FREE);
1225         totaltransfers = totaltransfersread + totaltransferswrite +
1226                          totaltransfersother + totaltransfersfree;
1227
1228         totalblocks = totalbytes;
1229         totalblocksread = totalbytesread;
1230         totalblockswrite = totalbyteswrite;
1231         totalblocksfree = totalbytesfree;
1232
1233         if (current->block_size > 0) {
1234                 totalblocks /= current->block_size;
1235                 totalblocksread /= current->block_size;
1236                 totalblockswrite /= current->block_size;
1237                 totalblocksfree /= current->block_size;
1238         } else {
1239                 totalblocks /= 512;
1240                 totalblocksread /= 512;
1241                 totalblockswrite /= 512;
1242                 totalblocksfree /= 512;
1243         }
1244
1245         va_start(ap, etime);
1246
1247         while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) {
1248
1249                 if (metric == DSM_NONE)
1250                         break;
1251
1252                 if (metric >= DSM_MAX) {
1253                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1254                                  "%s: metric %d is out of range", __func__,
1255                                  metric);
1256                         retval = -1;
1257                         goto bailout;
1258                 }
1259
1260                 switch (devstat_arg_list[metric].argtype) {
1261                 case DEVSTAT_ARG_UINT64:
1262                         destu64 = (u_int64_t *)va_arg(ap, u_int64_t *);
1263                         break;
1264                 case DEVSTAT_ARG_LD:
1265                         destld = (long double *)va_arg(ap, long double *);
1266                         break;
1267                 case DEVSTAT_ARG_SKIP:
1268                         destld = (long double *)va_arg(ap, long double *);
1269                         break;
1270                 default:
1271                         retval = -1;
1272                         goto bailout;
1273                         break; /* NOTREACHED */
1274                 }
1275
1276                 if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP)
1277                         continue;
1278
1279                 switch (metric) {
1280                 case DSM_TOTAL_BYTES:
1281                         *destu64 = totalbytes;
1282                         break;
1283                 case DSM_TOTAL_BYTES_READ:
1284                         *destu64 = totalbytesread;
1285                         break;
1286                 case DSM_TOTAL_BYTES_WRITE:
1287                         *destu64 = totalbyteswrite;
1288                         break;
1289                 case DSM_TOTAL_BYTES_FREE:
1290                         *destu64 = totalbytesfree;
1291                         break;
1292                 case DSM_TOTAL_TRANSFERS:
1293                         *destu64 = totaltransfers;
1294                         break;
1295                 case DSM_TOTAL_TRANSFERS_READ:
1296                         *destu64 = totaltransfersread;
1297                         break;
1298                 case DSM_TOTAL_TRANSFERS_WRITE:
1299                         *destu64 = totaltransferswrite;
1300                         break;
1301                 case DSM_TOTAL_TRANSFERS_FREE:
1302                         *destu64 = totaltransfersfree;
1303                         break;
1304                 case DSM_TOTAL_TRANSFERS_OTHER:
1305                         *destu64 = totaltransfersother;
1306                         break;
1307                 case DSM_TOTAL_BLOCKS:
1308                         *destu64 = totalblocks;
1309                         break;
1310                 case DSM_TOTAL_BLOCKS_READ:
1311                         *destu64 = totalblocksread;
1312                         break;
1313                 case DSM_TOTAL_BLOCKS_WRITE:
1314                         *destu64 = totalblockswrite;
1315                         break;
1316                 case DSM_TOTAL_BLOCKS_FREE:
1317                         *destu64 = totalblocksfree;
1318                         break;
1319                 case DSM_KB_PER_TRANSFER:
1320                         *destld = totalbytes;
1321                         *destld /= 1024;
1322                         if (totaltransfers > 0)
1323                                 *destld /= totaltransfers;
1324                         else
1325                                 *destld = 0.0;
1326                         break;
1327                 case DSM_KB_PER_TRANSFER_READ:
1328                         *destld = totalbytesread;
1329                         *destld /= 1024;
1330                         if (totaltransfersread > 0)
1331                                 *destld /= totaltransfersread;
1332                         else
1333                                 *destld = 0.0;
1334                         break;
1335                 case DSM_KB_PER_TRANSFER_WRITE:
1336                         *destld = totalbyteswrite;
1337                         *destld /= 1024;
1338                         if (totaltransferswrite > 0)
1339                                 *destld /= totaltransferswrite;
1340                         else
1341                                 *destld = 0.0;
1342                         break;
1343                 case DSM_KB_PER_TRANSFER_FREE:
1344                         *destld = totalbytesfree;
1345                         *destld /= 1024;
1346                         if (totaltransfersfree > 0)
1347                                 *destld /= totaltransfersfree;
1348                         else
1349                                 *destld = 0.0;
1350                         break;
1351                 case DSM_TRANSFERS_PER_SECOND:
1352                         if (etime > 0.0) {
1353                                 *destld = totaltransfers;
1354                                 *destld /= etime;
1355                         } else
1356                                 *destld = 0.0;
1357                         break;
1358                 case DSM_TRANSFERS_PER_SECOND_READ:
1359                         if (etime > 0.0) {
1360                                 *destld = totaltransfersread;
1361                                 *destld /= etime;
1362                         } else
1363                                 *destld = 0.0;
1364                         break;
1365                 case DSM_TRANSFERS_PER_SECOND_WRITE:
1366                         if (etime > 0.0) {
1367                                 *destld = totaltransferswrite;
1368                                 *destld /= etime;
1369                         } else
1370                                 *destld = 0.0;
1371                         break;
1372                 case DSM_TRANSFERS_PER_SECOND_FREE:
1373                         if (etime > 0.0) {
1374                                 *destld = totaltransfersfree;
1375                                 *destld /= etime;
1376                         } else
1377                                 *destld = 0.0;
1378                         break;
1379                 case DSM_TRANSFERS_PER_SECOND_OTHER:
1380                         if (etime > 0.0) {
1381                                 *destld = totaltransfersother;
1382                                 *destld /= etime;
1383                         } else
1384                                 *destld = 0.0;
1385                         break;
1386                 case DSM_MB_PER_SECOND:
1387                         *destld = totalbytes;
1388                         *destld /= 1024 * 1024;
1389                         if (etime > 0.0)
1390                                 *destld /= etime;
1391                         else
1392                                 *destld = 0.0;
1393                         break;
1394                 case DSM_MB_PER_SECOND_READ:
1395                         *destld = totalbytesread;
1396                         *destld /= 1024 * 1024;
1397                         if (etime > 0.0)
1398                                 *destld /= etime;
1399                         else
1400                                 *destld = 0.0;
1401                         break;
1402                 case DSM_MB_PER_SECOND_WRITE:
1403                         *destld = totalbyteswrite;
1404                         *destld /= 1024 * 1024;
1405                         if (etime > 0.0)
1406                                 *destld /= etime;
1407                         else
1408                                 *destld = 0.0;
1409                         break;
1410                 case DSM_MB_PER_SECOND_FREE:
1411                         *destld = totalbytesfree;
1412                         *destld /= 1024 * 1024;
1413                         if (etime > 0.0)
1414                                 *destld /= etime;
1415                         else
1416                                 *destld = 0.0;
1417                         break;
1418                 case DSM_BLOCKS_PER_SECOND:
1419                         *destld = totalblocks;
1420                         if (etime > 0.0)
1421                                 *destld /= etime;
1422                         else
1423                                 *destld = 0.0;
1424                         break;
1425                 case DSM_BLOCKS_PER_SECOND_READ:
1426                         *destld = totalblocksread;
1427                         if (etime > 0.0)
1428                                 *destld /= etime;
1429                         else
1430                                 *destld = 0.0;
1431                         break;
1432                 case DSM_BLOCKS_PER_SECOND_WRITE:
1433                         *destld = totalblockswrite;
1434                         if (etime > 0.0)
1435                                 *destld /= etime;
1436                         else
1437                                 *destld = 0.0;
1438                         break;
1439                 case DSM_BLOCKS_PER_SECOND_FREE:
1440                         *destld = totalblocksfree;
1441                         if (etime > 0.0)
1442                                 *destld /= etime;
1443                         else
1444                                 *destld = 0.0;
1445                         break;
1446                 /*
1447                  * This calculation is somewhat bogus.  It simply divides
1448                  * the elapsed time by the total number of transactions
1449                  * completed.  While that does give the caller a good
1450                  * picture of the average rate of transaction completion,
1451                  * it doesn't necessarily give the caller a good view of
1452                  * how long transactions took to complete on average.
1453                  * Those two numbers will be different for a device that
1454                  * can handle more than one transaction at a time.  e.g.
1455                  * SCSI disks doing tagged queueing.
1456                  *
1457                  * The only way to accurately determine the real average
1458                  * time per transaction would be to compute and store the
1459                  * time on a per-transaction basis.  That currently isn't
1460                  * done in the kernel, and would only be desireable if it
1461                  * could be implemented in a somewhat non-intrusive and high
1462                  * performance way.
1463                  */
1464                 case DSM_MS_PER_TRANSACTION:
1465                         if (totaltransfers > 0) {
1466                                 *destld = 0;
1467                                 for (i = 0; i < DEVSTAT_N_TRANS_FLAGS; i++)
1468                                         *destld += DELTA_T(duration[i]);
1469                                 *destld /= totaltransfers;
1470                                 *destld *= 1000;
1471                         } else
1472                                 *destld = 0.0;
1473                         break;
1474                 /*
1475                  * As above, these next two really only give the average
1476                  * rate of completion for read and write transactions, not
1477                  * the average time the transaction took to complete.
1478                  */
1479                 case DSM_MS_PER_TRANSACTION_READ:
1480                         if (totaltransfersread > 0) {
1481                                 *destld = DELTA_T(duration[DEVSTAT_READ]);
1482                                 *destld /= totaltransfersread;
1483                                 *destld *= 1000;
1484                         } else
1485                                 *destld = 0.0;
1486                         break;
1487                 case DSM_MS_PER_TRANSACTION_WRITE:
1488                         if (totaltransferswrite > 0) {
1489                                 *destld = DELTA_T(duration[DEVSTAT_WRITE]);
1490                                 *destld /= totaltransferswrite;
1491                                 *destld *= 1000;
1492                         } else
1493                                 *destld = 0.0;
1494                         break;
1495                 case DSM_MS_PER_TRANSACTION_FREE:
1496                         if (totaltransfersfree > 0) {
1497                                 *destld = DELTA_T(duration[DEVSTAT_FREE]);
1498                                 *destld /= totaltransfersfree;
1499                                 *destld *= 1000;
1500                         } else
1501                                 *destld = 0.0;
1502                         break;
1503                 case DSM_MS_PER_TRANSACTION_OTHER:
1504                         if (totaltransfersother > 0) {
1505                                 *destld = DELTA_T(duration[DEVSTAT_NO_DATA]);
1506                                 *destld /= totaltransfersother;
1507                                 *destld *= 1000;
1508                         } else
1509                                 *destld = 0.0;
1510                         break;
1511                 case DSM_BUSY_PCT:
1512                         *destld = DELTA_T(busy_time);
1513                         if (*destld < 0)
1514                                 *destld = 0;
1515                         *destld /= etime;
1516                         *destld *= 100;
1517                         if (*destld < 0)
1518                                 *destld = 0;
1519                         break;
1520                 case DSM_QUEUE_LENGTH:
1521                         *destu64 = current->start_count - current->end_count;
1522                         break;
1523 /*
1524  * XXX: comment out the default block to see if any case's are missing.
1525  */
1526 #if 1
1527                 default:
1528                         /*
1529                          * This shouldn't happen, since we should have
1530                          * caught any out of range metrics at the top of
1531                          * the loop.
1532                          */
1533                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1534                                  "%s: unknown metric %d", __func__, metric);
1535                         retval = -1;
1536                         goto bailout;
1537                         break; /* NOTREACHED */
1538 #endif
1539                 }
1540         }
1541
1542 bailout:
1543
1544         va_end(ap);
1545         return(retval);
1546 }
1547
1548 static int 
1549 readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes)
1550 {
1551
1552         if (kvm_read(kd, addr, buf, nbytes) == -1) {
1553                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1554                          "%s: error reading value (kvm_read): %s", __func__,
1555                          kvm_geterr(kd));
1556                 return(-1);
1557         }
1558         return(0);
1559 }
1560
1561 static int
1562 readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes)
1563 {
1564         struct nlist nl[2];
1565
1566         nl[0].n_name = (char *)name;
1567         nl[1].n_name = NULL;
1568
1569         if (kvm_nlist(kd, nl) == -1) {
1570                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1571                          "%s: error getting name list (kvm_nlist): %s",
1572                          __func__, kvm_geterr(kd));
1573                 return(-1);
1574         }
1575         return(readkmem(kd, nl[0].n_value, buf, nbytes));
1576 }
1577
1578 /*
1579  * This duplicates the functionality of the kernel sysctl handler for poking
1580  * through crash dumps.
1581  */
1582 static char *
1583 get_devstat_kvm(kvm_t *kd)
1584 {
1585         int i, wp;
1586         long gen;
1587         struct devstat *nds;
1588         struct devstat ds;
1589         struct devstatlist dhead;
1590         int num_devs;
1591         char *rv = NULL;
1592
1593         if ((num_devs = devstat_getnumdevs(kd)) <= 0)
1594                 return(NULL);
1595         if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1)
1596                 return(NULL);
1597
1598         nds = STAILQ_FIRST(&dhead);
1599         
1600         if ((rv = malloc(sizeof(gen))) == NULL) {
1601                 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 
1602                          "%s: out of memory (initial malloc failed)",
1603                          __func__);
1604                 return(NULL);
1605         }
1606         gen = devstat_getgeneration(kd);
1607         memcpy(rv, &gen, sizeof(gen));
1608         wp = sizeof(gen);
1609         /*
1610          * Now push out all the devices.
1611          */
1612         for (i = 0; (nds != NULL) && (i < num_devs);  
1613              nds = STAILQ_NEXT(nds, dev_links), i++) {
1614                 if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) {
1615                         free(rv);
1616                         return(NULL);
1617                 }
1618                 nds = &ds;
1619                 rv = (char *)reallocf(rv, sizeof(gen) + 
1620                                       sizeof(ds) * (i + 1));
1621                 if (rv == NULL) {
1622                         snprintf(devstat_errbuf, sizeof(devstat_errbuf), 
1623                                  "%s: out of memory (malloc failed)",
1624                                  __func__);
1625                         return(NULL);
1626                 }
1627                 memcpy(rv + wp, &ds, sizeof(ds));
1628                 wp += sizeof(ds);
1629         }
1630         return(rv);
1631 }