]> CyberLeo.Net >> Repos - FreeBSD/releng/8.1.git/blob - sys/dev/safe/safe.c
Copy stable/8 to releng/8.1 in preparation for 8.1-RC1.
[FreeBSD/releng/8.1.git] / sys / dev / safe / safe.c
1 /*-
2  * Copyright (c) 2003 Sam Leffler, Errno Consulting
3  * Copyright (c) 2003 Global Technology Associates, Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 /*
32  * SafeNet SafeXcel-1141 hardware crypto accelerator
33  */
34 #include "opt_safe.h"
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/errno.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/sysctl.h>
47 #include <sys/endian.h>
48
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <sys/bus.h>
55 #include <sys/rman.h>
56
57 #include <crypto/sha1.h>
58 #include <opencrypto/cryptodev.h>
59 #include <opencrypto/cryptosoft.h>
60 #include <sys/md5.h>
61 #include <sys/random.h>
62 #include <sys/kobj.h>
63
64 #include "cryptodev_if.h"
65
66 #include <dev/pci/pcivar.h>
67 #include <dev/pci/pcireg.h>
68
69 #ifdef SAFE_RNDTEST
70 #include <dev/rndtest/rndtest.h>
71 #endif
72 #include <dev/safe/safereg.h>
73 #include <dev/safe/safevar.h>
74
75 #ifndef bswap32
76 #define bswap32 NTOHL
77 #endif
78
79 /*
80  * Prototypes and count for the pci_device structure
81  */
82 static  int safe_probe(device_t);
83 static  int safe_attach(device_t);
84 static  int safe_detach(device_t);
85 static  int safe_suspend(device_t);
86 static  int safe_resume(device_t);
87 static  int safe_shutdown(device_t);
88
89 static  int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
90 static  int safe_freesession(device_t, u_int64_t);
91 static  int safe_process(device_t, struct cryptop *, int);
92
93 static device_method_t safe_methods[] = {
94         /* Device interface */
95         DEVMETHOD(device_probe,         safe_probe),
96         DEVMETHOD(device_attach,        safe_attach),
97         DEVMETHOD(device_detach,        safe_detach),
98         DEVMETHOD(device_suspend,       safe_suspend),
99         DEVMETHOD(device_resume,        safe_resume),
100         DEVMETHOD(device_shutdown,      safe_shutdown),
101
102         /* bus interface */
103         DEVMETHOD(bus_print_child,      bus_generic_print_child),
104         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
105
106         /* crypto device methods */
107         DEVMETHOD(cryptodev_newsession, safe_newsession),
108         DEVMETHOD(cryptodev_freesession,safe_freesession),
109         DEVMETHOD(cryptodev_process,    safe_process),
110
111         { 0, 0 }
112 };
113 static driver_t safe_driver = {
114         "safe",
115         safe_methods,
116         sizeof (struct safe_softc)
117 };
118 static devclass_t safe_devclass;
119
120 DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
121 MODULE_DEPEND(safe, crypto, 1, 1, 1);
122 #ifdef SAFE_RNDTEST
123 MODULE_DEPEND(safe, rndtest, 1, 1, 1);
124 #endif
125
126 static  void safe_intr(void *);
127 static  void safe_callback(struct safe_softc *, struct safe_ringentry *);
128 static  void safe_feed(struct safe_softc *, struct safe_ringentry *);
129 static  void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
130 #ifndef SAFE_NO_RNG
131 static  void safe_rng_init(struct safe_softc *);
132 static  void safe_rng(void *);
133 #endif /* SAFE_NO_RNG */
134 static  int safe_dma_malloc(struct safe_softc *, bus_size_t,
135                 struct safe_dma_alloc *, int);
136 #define safe_dma_sync(_dma, _flags) \
137         bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
138 static  void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
139 static  int safe_dmamap_aligned(const struct safe_operand *);
140 static  int safe_dmamap_uniform(const struct safe_operand *);
141
142 static  void safe_reset_board(struct safe_softc *);
143 static  void safe_init_board(struct safe_softc *);
144 static  void safe_init_pciregs(device_t dev);
145 static  void safe_cleanchip(struct safe_softc *);
146 static  void safe_totalreset(struct safe_softc *);
147
148 static  int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
149
150 SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0, "SafeNet driver parameters");
151
152 #ifdef SAFE_DEBUG
153 static  void safe_dump_dmastatus(struct safe_softc *, const char *);
154 static  void safe_dump_ringstate(struct safe_softc *, const char *);
155 static  void safe_dump_intrstate(struct safe_softc *, const char *);
156 static  void safe_dump_request(struct safe_softc *, const char *,
157                 struct safe_ringentry *);
158
159 static  struct safe_softc *safec;               /* for use by hw.safe.dump */
160
161 static  int safe_debug = 0;
162 SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
163             0, "control debugging msgs");
164 #define DPRINTF(_x)     if (safe_debug) printf _x
165 #else
166 #define DPRINTF(_x)
167 #endif
168
169 #define READ_REG(sc,r) \
170         bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
171
172 #define WRITE_REG(sc,reg,val) \
173         bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
174
175 struct safe_stats safestats;
176 SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
177             safe_stats, "driver statistics");
178 #ifndef SAFE_NO_RNG
179 static  int safe_rnginterval = 1;               /* poll once a second */
180 SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
181             0, "RNG polling interval (secs)");
182 static  int safe_rngbufsize = 16;               /* 64 bytes each poll  */
183 SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
184             0, "RNG polling buffer size (32-bit words)");
185 static  int safe_rngmaxalarm = 8;               /* max alarms before reset */
186 SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
187             0, "RNG max alarms before reset");
188 #endif /* SAFE_NO_RNG */
189
190 static int
191 safe_probe(device_t dev)
192 {
193         if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
194             pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
195                 return (BUS_PROBE_DEFAULT);
196         return (ENXIO);
197 }
198
199 static const char*
200 safe_partname(struct safe_softc *sc)
201 {
202         /* XXX sprintf numbers when not decoded */
203         switch (pci_get_vendor(sc->sc_dev)) {
204         case PCI_VENDOR_SAFENET:
205                 switch (pci_get_device(sc->sc_dev)) {
206                 case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
207                 }
208                 return "SafeNet unknown-part";
209         }
210         return "Unknown-vendor unknown-part";
211 }
212
213 #ifndef SAFE_NO_RNG
214 static void
215 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
216 {
217         random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
218 }
219 #endif /* SAFE_NO_RNG */
220
221 static int
222 safe_attach(device_t dev)
223 {
224         struct safe_softc *sc = device_get_softc(dev);
225         u_int32_t raddr;
226         u_int32_t cmd, i, devinfo;
227         int rid;
228
229         bzero(sc, sizeof (*sc));
230         sc->sc_dev = dev;
231
232         /* XXX handle power management */
233  
234         cmd = pci_read_config(dev, PCIR_COMMAND, 4);
235         cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
236         pci_write_config(dev, PCIR_COMMAND, cmd, 4);
237         cmd = pci_read_config(dev, PCIR_COMMAND, 4);
238
239         if (!(cmd & PCIM_CMD_MEMEN)) {
240                 device_printf(dev, "failed to enable memory mapping\n");
241                 goto bad;
242         }
243
244         if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
245                 device_printf(dev, "failed to enable bus mastering\n");
246                 goto bad;
247         }
248
249         /* 
250          * Setup memory-mapping of PCI registers.
251          */
252         rid = BS_BAR;
253         sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
254                                            RF_ACTIVE);
255         if (sc->sc_sr == NULL) {
256                 device_printf(dev, "cannot map register space\n");
257                 goto bad;
258         }
259         sc->sc_st = rman_get_bustag(sc->sc_sr);
260         sc->sc_sh = rman_get_bushandle(sc->sc_sr);
261
262         /*
263          * Arrange interrupt line.
264          */
265         rid = 0;
266         sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
267                                             RF_SHAREABLE|RF_ACTIVE);
268         if (sc->sc_irq == NULL) {
269                 device_printf(dev, "could not map interrupt\n");
270                 goto bad1;
271         }
272         /*
273          * NB: Network code assumes we are blocked with splimp()
274          *     so make sure the IRQ is mapped appropriately.
275          */
276         if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
277                            NULL, safe_intr, sc, &sc->sc_ih)) {
278                 device_printf(dev, "could not establish interrupt\n");
279                 goto bad2;
280         }
281
282         sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
283         if (sc->sc_cid < 0) {
284                 device_printf(dev, "could not get crypto driver id\n");
285                 goto bad3;
286         }
287
288         sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
289                 (SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
290
291         /*
292          * Setup DMA descriptor area.
293          */
294         if (bus_dma_tag_create(NULL,                    /* parent */
295                                1,                       /* alignment */
296                                SAFE_DMA_BOUNDARY,       /* boundary */
297                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
298                                BUS_SPACE_MAXADDR,       /* highaddr */
299                                NULL, NULL,              /* filter, filterarg */
300                                SAFE_MAX_DMA,            /* maxsize */
301                                SAFE_MAX_PART,           /* nsegments */
302                                SAFE_MAX_SSIZE,          /* maxsegsize */
303                                BUS_DMA_ALLOCNOW,        /* flags */
304                                NULL, NULL,              /* locking */
305                                &sc->sc_srcdmat)) {
306                 device_printf(dev, "cannot allocate DMA tag\n");
307                 goto bad4;
308         }
309         if (bus_dma_tag_create(NULL,                    /* parent */
310                                1,                       /* alignment */
311                                SAFE_MAX_DSIZE,          /* boundary */
312                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
313                                BUS_SPACE_MAXADDR,       /* highaddr */
314                                NULL, NULL,              /* filter, filterarg */
315                                SAFE_MAX_DMA,            /* maxsize */
316                                SAFE_MAX_PART,           /* nsegments */
317                                SAFE_MAX_DSIZE,          /* maxsegsize */
318                                BUS_DMA_ALLOCNOW,        /* flags */
319                                NULL, NULL,              /* locking */
320                                &sc->sc_dstdmat)) {
321                 device_printf(dev, "cannot allocate DMA tag\n");
322                 goto bad4;
323         }
324
325         /*
326          * Allocate packet engine descriptors.
327          */
328         if (safe_dma_malloc(sc,
329             SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
330             &sc->sc_ringalloc, 0)) {
331                 device_printf(dev, "cannot allocate PE descriptor ring\n");
332                 bus_dma_tag_destroy(sc->sc_srcdmat);
333                 goto bad4;
334         }
335         /*
336          * Hookup the static portion of all our data structures.
337          */
338         sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
339         sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
340         sc->sc_front = sc->sc_ring;
341         sc->sc_back = sc->sc_ring;
342         raddr = sc->sc_ringalloc.dma_paddr;
343         bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
344         for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
345                 struct safe_ringentry *re = &sc->sc_ring[i];
346
347                 re->re_desc.d_sa = raddr +
348                         offsetof(struct safe_ringentry, re_sa);
349                 re->re_sa.sa_staterec = raddr +
350                         offsetof(struct safe_ringentry, re_sastate);
351
352                 raddr += sizeof (struct safe_ringentry);
353         }
354         mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
355                 "packet engine ring", MTX_DEF);
356
357         /*
358          * Allocate scatter and gather particle descriptors.
359          */
360         if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
361             &sc->sc_spalloc, 0)) {
362                 device_printf(dev, "cannot allocate source particle "
363                         "descriptor ring\n");
364                 mtx_destroy(&sc->sc_ringmtx);
365                 safe_dma_free(sc, &sc->sc_ringalloc);
366                 bus_dma_tag_destroy(sc->sc_srcdmat);
367                 goto bad4;
368         }
369         sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
370         sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
371         sc->sc_spfree = sc->sc_spring;
372         bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
373
374         if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
375             &sc->sc_dpalloc, 0)) {
376                 device_printf(dev, "cannot allocate destination particle "
377                         "descriptor ring\n");
378                 mtx_destroy(&sc->sc_ringmtx);
379                 safe_dma_free(sc, &sc->sc_spalloc);
380                 safe_dma_free(sc, &sc->sc_ringalloc);
381                 bus_dma_tag_destroy(sc->sc_dstdmat);
382                 goto bad4;
383         }
384         sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
385         sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
386         sc->sc_dpfree = sc->sc_dpring;
387         bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
388
389         device_printf(sc->sc_dev, "%s", safe_partname(sc));
390
391         devinfo = READ_REG(sc, SAFE_DEVINFO);
392         if (devinfo & SAFE_DEVINFO_RNG) {
393                 sc->sc_flags |= SAFE_FLAGS_RNG;
394                 printf(" rng");
395         }
396         if (devinfo & SAFE_DEVINFO_PKEY) {
397 #if 0
398                 printf(" key");
399                 sc->sc_flags |= SAFE_FLAGS_KEY;
400                 crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
401                 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
402 #endif
403         }
404         if (devinfo & SAFE_DEVINFO_DES) {
405                 printf(" des/3des");
406                 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
407                 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
408         }
409         if (devinfo & SAFE_DEVINFO_AES) {
410                 printf(" aes");
411                 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
412         }
413         if (devinfo & SAFE_DEVINFO_MD5) {
414                 printf(" md5");
415                 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
416         }
417         if (devinfo & SAFE_DEVINFO_SHA1) {
418                 printf(" sha1");
419                 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
420         }
421         printf(" null");
422         crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
423         crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
424         /* XXX other supported algorithms */
425         printf("\n");
426
427         safe_reset_board(sc);           /* reset h/w */
428         safe_init_pciregs(dev);         /* init pci settings */
429         safe_init_board(sc);            /* init h/w */
430
431 #ifndef SAFE_NO_RNG
432         if (sc->sc_flags & SAFE_FLAGS_RNG) {
433 #ifdef SAFE_RNDTEST
434                 sc->sc_rndtest = rndtest_attach(dev);
435                 if (sc->sc_rndtest)
436                         sc->sc_harvest = rndtest_harvest;
437                 else
438                         sc->sc_harvest = default_harvest;
439 #else
440                 sc->sc_harvest = default_harvest;
441 #endif
442                 safe_rng_init(sc);
443
444                 callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
445                 callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
446         }
447 #endif /* SAFE_NO_RNG */
448 #ifdef SAFE_DEBUG
449         safec = sc;                     /* for use by hw.safe.dump */
450 #endif
451         return (0);
452 bad4:
453         crypto_unregister_all(sc->sc_cid);
454 bad3:
455         bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
456 bad2:
457         bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
458 bad1:
459         bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
460 bad:
461         return (ENXIO);
462 }
463
464 /*
465  * Detach a device that successfully probed.
466  */
467 static int
468 safe_detach(device_t dev)
469 {
470         struct safe_softc *sc = device_get_softc(dev);
471
472         /* XXX wait/abort active ops */
473
474         WRITE_REG(sc, SAFE_HI_MASK, 0);         /* disable interrupts */
475
476         callout_stop(&sc->sc_rngto);
477
478         crypto_unregister_all(sc->sc_cid);
479
480 #ifdef SAFE_RNDTEST
481         if (sc->sc_rndtest)
482                 rndtest_detach(sc->sc_rndtest);
483 #endif
484
485         safe_cleanchip(sc);
486         safe_dma_free(sc, &sc->sc_dpalloc);
487         safe_dma_free(sc, &sc->sc_spalloc);
488         mtx_destroy(&sc->sc_ringmtx);
489         safe_dma_free(sc, &sc->sc_ringalloc);
490
491         bus_generic_detach(dev);
492         bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
493         bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
494
495         bus_dma_tag_destroy(sc->sc_srcdmat);
496         bus_dma_tag_destroy(sc->sc_dstdmat);
497         bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
498
499         return (0);
500 }
501
502 /*
503  * Stop all chip i/o so that the kernel's probe routines don't
504  * get confused by errant DMAs when rebooting.
505  */
506 static int
507 safe_shutdown(device_t dev)
508 {
509 #ifdef notyet
510         safe_stop(device_get_softc(dev));
511 #endif
512         return (0);
513 }
514
515 /*
516  * Device suspend routine.
517  */
518 static int
519 safe_suspend(device_t dev)
520 {
521         struct safe_softc *sc = device_get_softc(dev);
522
523 #ifdef notyet
524         /* XXX stop the device and save PCI settings */
525 #endif
526         sc->sc_suspended = 1;
527
528         return (0);
529 }
530
531 static int
532 safe_resume(device_t dev)
533 {
534         struct safe_softc *sc = device_get_softc(dev);
535
536 #ifdef notyet
537         /* XXX retore PCI settings and start the device */
538 #endif
539         sc->sc_suspended = 0;
540         return (0);
541 }
542
543 /*
544  * SafeXcel Interrupt routine
545  */
546 static void
547 safe_intr(void *arg)
548 {
549         struct safe_softc *sc = arg;
550         volatile u_int32_t stat;
551
552         stat = READ_REG(sc, SAFE_HM_STAT);
553         if (stat == 0)                  /* shared irq, not for us */
554                 return;
555
556         WRITE_REG(sc, SAFE_HI_CLR, stat);       /* IACK */
557
558         if ((stat & SAFE_INT_PE_DDONE)) {
559                 /*
560                  * Descriptor(s) done; scan the ring and
561                  * process completed operations.
562                  */
563                 mtx_lock(&sc->sc_ringmtx);
564                 while (sc->sc_back != sc->sc_front) {
565                         struct safe_ringentry *re = sc->sc_back;
566 #ifdef SAFE_DEBUG
567                         if (safe_debug) {
568                                 safe_dump_ringstate(sc, __func__);
569                                 safe_dump_request(sc, __func__, re);
570                         }
571 #endif
572                         /*
573                          * safe_process marks ring entries that were allocated
574                          * but not used with a csr of zero.  This insures the
575                          * ring front pointer never needs to be set backwards
576                          * in the event that an entry is allocated but not used
577                          * because of a setup error.
578                          */
579                         if (re->re_desc.d_csr != 0) {
580                                 if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
581                                         break;
582                                 if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
583                                         break;
584                                 sc->sc_nqchip--;
585                                 safe_callback(sc, re);
586                         }
587                         if (++(sc->sc_back) == sc->sc_ringtop)
588                                 sc->sc_back = sc->sc_ring;
589                 }
590                 mtx_unlock(&sc->sc_ringmtx);
591         }
592
593         /*
594          * Check to see if we got any DMA Error
595          */
596         if (stat & SAFE_INT_PE_ERROR) {
597                 DPRINTF(("dmaerr dmastat %08x\n",
598                         READ_REG(sc, SAFE_PE_DMASTAT)));
599                 safestats.st_dmaerr++;
600                 safe_totalreset(sc);
601 #if 0
602                 safe_feed(sc);
603 #endif
604         }
605
606         if (sc->sc_needwakeup) {                /* XXX check high watermark */
607                 int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
608                 DPRINTF(("%s: wakeup crypto %x\n", __func__,
609                         sc->sc_needwakeup));
610                 sc->sc_needwakeup &= ~wakeup;
611                 crypto_unblock(sc->sc_cid, wakeup);
612         }
613 }
614
615 /*
616  * safe_feed() - post a request to chip
617  */
618 static void
619 safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
620 {
621         bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
622         if (re->re_dst_map != NULL)
623                 bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
624                         BUS_DMASYNC_PREREAD);
625         /* XXX have no smaller granularity */
626         safe_dma_sync(&sc->sc_ringalloc,
627                 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
628         safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
629         safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
630
631 #ifdef SAFE_DEBUG
632         if (safe_debug) {
633                 safe_dump_ringstate(sc, __func__);
634                 safe_dump_request(sc, __func__, re);
635         }
636 #endif
637         sc->sc_nqchip++;
638         if (sc->sc_nqchip > safestats.st_maxqchip)
639                 safestats.st_maxqchip = sc->sc_nqchip;
640         /* poke h/w to check descriptor ring, any value can be written */
641         WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
642 }
643
644 #define N(a)    (sizeof(a) / sizeof (a[0]))
645 static void
646 safe_setup_enckey(struct safe_session *ses, caddr_t key)
647 {
648         int i;
649
650         bcopy(key, ses->ses_key, ses->ses_klen / 8);
651
652         /* PE is little-endian, insure proper byte order */
653         for (i = 0; i < N(ses->ses_key); i++)
654                 ses->ses_key[i] = htole32(ses->ses_key[i]);
655 }
656
657 static void
658 safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
659 {
660         MD5_CTX md5ctx;
661         SHA1_CTX sha1ctx;
662         int i;
663
664
665         for (i = 0; i < klen; i++)
666                 key[i] ^= HMAC_IPAD_VAL;
667
668         if (algo == CRYPTO_MD5_HMAC) {
669                 MD5Init(&md5ctx);
670                 MD5Update(&md5ctx, key, klen);
671                 MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
672                 bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
673         } else {
674                 SHA1Init(&sha1ctx);
675                 SHA1Update(&sha1ctx, key, klen);
676                 SHA1Update(&sha1ctx, hmac_ipad_buffer,
677                     SHA1_HMAC_BLOCK_LEN - klen);
678                 bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
679         }
680
681         for (i = 0; i < klen; i++)
682                 key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
683
684         if (algo == CRYPTO_MD5_HMAC) {
685                 MD5Init(&md5ctx);
686                 MD5Update(&md5ctx, key, klen);
687                 MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
688                 bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
689         } else {
690                 SHA1Init(&sha1ctx);
691                 SHA1Update(&sha1ctx, key, klen);
692                 SHA1Update(&sha1ctx, hmac_opad_buffer,
693                     SHA1_HMAC_BLOCK_LEN - klen);
694                 bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
695         }
696
697         for (i = 0; i < klen; i++)
698                 key[i] ^= HMAC_OPAD_VAL;
699
700         /* PE is little-endian, insure proper byte order */
701         for (i = 0; i < N(ses->ses_hminner); i++) {
702                 ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
703                 ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
704         }
705 }
706 #undef N
707
708 /*
709  * Allocate a new 'session' and return an encoded session id.  'sidp'
710  * contains our registration id, and should contain an encoded session
711  * id on successful allocation.
712  */
713 static int
714 safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
715 {
716         struct safe_softc *sc = device_get_softc(dev);
717         struct cryptoini *c, *encini = NULL, *macini = NULL;
718         struct safe_session *ses = NULL;
719         int sesn;
720
721         if (sidp == NULL || cri == NULL || sc == NULL)
722                 return (EINVAL);
723
724         for (c = cri; c != NULL; c = c->cri_next) {
725                 if (c->cri_alg == CRYPTO_MD5_HMAC ||
726                     c->cri_alg == CRYPTO_SHA1_HMAC ||
727                     c->cri_alg == CRYPTO_NULL_HMAC) {
728                         if (macini)
729                                 return (EINVAL);
730                         macini = c;
731                 } else if (c->cri_alg == CRYPTO_DES_CBC ||
732                     c->cri_alg == CRYPTO_3DES_CBC ||
733                     c->cri_alg == CRYPTO_AES_CBC ||
734                     c->cri_alg == CRYPTO_NULL_CBC) {
735                         if (encini)
736                                 return (EINVAL);
737                         encini = c;
738                 } else
739                         return (EINVAL);
740         }
741         if (encini == NULL && macini == NULL)
742                 return (EINVAL);
743         if (encini) {                   /* validate key length */
744                 switch (encini->cri_alg) {
745                 case CRYPTO_DES_CBC:
746                         if (encini->cri_klen != 64)
747                                 return (EINVAL);
748                         break;
749                 case CRYPTO_3DES_CBC:
750                         if (encini->cri_klen != 192)
751                                 return (EINVAL);
752                         break;
753                 case CRYPTO_AES_CBC:
754                         if (encini->cri_klen != 128 &&
755                             encini->cri_klen != 192 &&
756                             encini->cri_klen != 256)
757                                 return (EINVAL);
758                         break;
759                 }
760         }
761
762         if (sc->sc_sessions == NULL) {
763                 ses = sc->sc_sessions = (struct safe_session *)malloc(
764                     sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
765                 if (ses == NULL)
766                         return (ENOMEM);
767                 sesn = 0;
768                 sc->sc_nsessions = 1;
769         } else {
770                 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
771                         if (sc->sc_sessions[sesn].ses_used == 0) {
772                                 ses = &sc->sc_sessions[sesn];
773                                 break;
774                         }
775                 }
776
777                 if (ses == NULL) {
778                         sesn = sc->sc_nsessions;
779                         ses = (struct safe_session *)malloc((sesn + 1) *
780                             sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
781                         if (ses == NULL)
782                                 return (ENOMEM);
783                         bcopy(sc->sc_sessions, ses, sesn *
784                             sizeof(struct safe_session));
785                         bzero(sc->sc_sessions, sesn *
786                             sizeof(struct safe_session));
787                         free(sc->sc_sessions, M_DEVBUF);
788                         sc->sc_sessions = ses;
789                         ses = &sc->sc_sessions[sesn];
790                         sc->sc_nsessions++;
791                 }
792         }
793
794         bzero(ses, sizeof(struct safe_session));
795         ses->ses_used = 1;
796
797         if (encini) {
798                 /* get an IV */
799                 /* XXX may read fewer than requested */
800                 read_random(ses->ses_iv, sizeof(ses->ses_iv));
801
802                 ses->ses_klen = encini->cri_klen;
803                 if (encini->cri_key != NULL)
804                         safe_setup_enckey(ses, encini->cri_key);
805         }
806
807         if (macini) {
808                 ses->ses_mlen = macini->cri_mlen;
809                 if (ses->ses_mlen == 0) {
810                         if (macini->cri_alg == CRYPTO_MD5_HMAC)
811                                 ses->ses_mlen = MD5_HASH_LEN;
812                         else
813                                 ses->ses_mlen = SHA1_HASH_LEN;
814                 }
815
816                 if (macini->cri_key != NULL) {
817                         safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
818                             macini->cri_klen / 8);
819                 }
820         }
821
822         *sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
823         return (0);
824 }
825
826 /*
827  * Deallocate a session.
828  */
829 static int
830 safe_freesession(device_t dev, u_int64_t tid)
831 {
832         struct safe_softc *sc = device_get_softc(dev);
833         int session, ret;
834         u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
835
836         if (sc == NULL)
837                 return (EINVAL);
838
839         session = SAFE_SESSION(sid);
840         if (session < sc->sc_nsessions) {
841                 bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
842                 ret = 0;
843         } else
844                 ret = EINVAL;
845         return (ret);
846 }
847
848 static void
849 safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
850 {
851         struct safe_operand *op = arg;
852
853         DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
854                 (u_int) mapsize, nsegs, error));
855         if (error != 0)
856                 return;
857         op->mapsize = mapsize;
858         op->nsegs = nsegs;
859         bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
860 }
861
862 static int
863 safe_process(device_t dev, struct cryptop *crp, int hint)
864 {
865         struct safe_softc *sc = device_get_softc(dev);
866         int err = 0, i, nicealign, uniform;
867         struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
868         int bypass, oplen, ivsize;
869         caddr_t iv;
870         int16_t coffset;
871         struct safe_session *ses;
872         struct safe_ringentry *re;
873         struct safe_sarec *sa;
874         struct safe_pdesc *pd;
875         u_int32_t cmd0, cmd1, staterec;
876
877         if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
878                 safestats.st_invalid++;
879                 return (EINVAL);
880         }
881         if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
882                 safestats.st_badsession++;
883                 return (EINVAL);
884         }
885
886         mtx_lock(&sc->sc_ringmtx);
887         if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
888                 safestats.st_ringfull++;
889                 sc->sc_needwakeup |= CRYPTO_SYMQ;
890                 mtx_unlock(&sc->sc_ringmtx);
891                 return (ERESTART);
892         }
893         re = sc->sc_front;
894
895         staterec = re->re_sa.sa_staterec;       /* save */
896         /* NB: zero everything but the PE descriptor */
897         bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
898         re->re_sa.sa_staterec = staterec;       /* restore */
899
900         re->re_crp = crp;
901         re->re_sesn = SAFE_SESSION(crp->crp_sid);
902
903         if (crp->crp_flags & CRYPTO_F_IMBUF) {
904                 re->re_src_m = (struct mbuf *)crp->crp_buf;
905                 re->re_dst_m = (struct mbuf *)crp->crp_buf;
906         } else if (crp->crp_flags & CRYPTO_F_IOV) {
907                 re->re_src_io = (struct uio *)crp->crp_buf;
908                 re->re_dst_io = (struct uio *)crp->crp_buf;
909         } else {
910                 safestats.st_badflags++;
911                 err = EINVAL;
912                 goto errout;    /* XXX we don't handle contiguous blocks! */
913         }
914
915         sa = &re->re_sa;
916         ses = &sc->sc_sessions[re->re_sesn];
917
918         crd1 = crp->crp_desc;
919         if (crd1 == NULL) {
920                 safestats.st_nodesc++;
921                 err = EINVAL;
922                 goto errout;
923         }
924         crd2 = crd1->crd_next;
925
926         cmd0 = SAFE_SA_CMD0_BASIC;              /* basic group operation */
927         cmd1 = 0;
928         if (crd2 == NULL) {
929                 if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
930                     crd1->crd_alg == CRYPTO_SHA1_HMAC ||
931                     crd1->crd_alg == CRYPTO_NULL_HMAC) {
932                         maccrd = crd1;
933                         enccrd = NULL;
934                         cmd0 |= SAFE_SA_CMD0_OP_HASH;
935                 } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
936                     crd1->crd_alg == CRYPTO_3DES_CBC ||
937                     crd1->crd_alg == CRYPTO_AES_CBC ||
938                     crd1->crd_alg == CRYPTO_NULL_CBC) {
939                         maccrd = NULL;
940                         enccrd = crd1;
941                         cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
942                 } else {
943                         safestats.st_badalg++;
944                         err = EINVAL;
945                         goto errout;
946                 }
947         } else {
948                 if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
949                     crd1->crd_alg == CRYPTO_SHA1_HMAC ||
950                     crd1->crd_alg == CRYPTO_NULL_HMAC) &&
951                     (crd2->crd_alg == CRYPTO_DES_CBC ||
952                         crd2->crd_alg == CRYPTO_3DES_CBC ||
953                         crd2->crd_alg == CRYPTO_AES_CBC ||
954                         crd2->crd_alg == CRYPTO_NULL_CBC) &&
955                     ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
956                         maccrd = crd1;
957                         enccrd = crd2;
958                 } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
959                     crd1->crd_alg == CRYPTO_3DES_CBC ||
960                     crd1->crd_alg == CRYPTO_AES_CBC ||
961                     crd1->crd_alg == CRYPTO_NULL_CBC) &&
962                     (crd2->crd_alg == CRYPTO_MD5_HMAC ||
963                         crd2->crd_alg == CRYPTO_SHA1_HMAC ||
964                         crd2->crd_alg == CRYPTO_NULL_HMAC) &&
965                     (crd1->crd_flags & CRD_F_ENCRYPT)) {
966                         enccrd = crd1;
967                         maccrd = crd2;
968                 } else {
969                         safestats.st_badalg++;
970                         err = EINVAL;
971                         goto errout;
972                 }
973                 cmd0 |= SAFE_SA_CMD0_OP_BOTH;
974         }
975
976         if (enccrd) {
977                 if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
978                         safe_setup_enckey(ses, enccrd->crd_key);
979
980                 if (enccrd->crd_alg == CRYPTO_DES_CBC) {
981                         cmd0 |= SAFE_SA_CMD0_DES;
982                         cmd1 |= SAFE_SA_CMD1_CBC;
983                         ivsize = 2*sizeof(u_int32_t);
984                 } else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
985                         cmd0 |= SAFE_SA_CMD0_3DES;
986                         cmd1 |= SAFE_SA_CMD1_CBC;
987                         ivsize = 2*sizeof(u_int32_t);
988                 } else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
989                         cmd0 |= SAFE_SA_CMD0_AES;
990                         cmd1 |= SAFE_SA_CMD1_CBC;
991                         if (ses->ses_klen == 128)
992                              cmd1 |=  SAFE_SA_CMD1_AES128;
993                         else if (ses->ses_klen == 192)
994                              cmd1 |=  SAFE_SA_CMD1_AES192;
995                         else
996                              cmd1 |=  SAFE_SA_CMD1_AES256;
997                         ivsize = 4*sizeof(u_int32_t);
998                 } else {
999                         cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
1000                         ivsize = 0;
1001                 }
1002
1003                 /*
1004                  * Setup encrypt/decrypt state.  When using basic ops
1005                  * we can't use an inline IV because hash/crypt offset
1006                  * must be from the end of the IV to the start of the
1007                  * crypt data and this leaves out the preceding header
1008                  * from the hash calculation.  Instead we place the IV
1009                  * in the state record and set the hash/crypt offset to
1010                  * copy both the header+IV.
1011                  */
1012                 if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1013                         cmd0 |= SAFE_SA_CMD0_OUTBOUND;
1014
1015                         if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1016                                 iv = enccrd->crd_iv;
1017                         else
1018                                 iv = (caddr_t) ses->ses_iv;
1019                         if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1020                                 crypto_copyback(crp->crp_flags, crp->crp_buf,
1021                                     enccrd->crd_inject, ivsize, iv);
1022                         }
1023                         bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1024                         cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1025                         re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1026                 } else {
1027                         cmd0 |= SAFE_SA_CMD0_INBOUND;
1028
1029                         if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
1030                                 bcopy(enccrd->crd_iv,
1031                                         re->re_sastate.sa_saved_iv, ivsize);
1032                         } else {
1033                                 crypto_copydata(crp->crp_flags, crp->crp_buf,
1034                                     enccrd->crd_inject, ivsize,
1035                                     (caddr_t)re->re_sastate.sa_saved_iv);
1036                         }
1037                         cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1038                 }
1039                 /*
1040                  * For basic encryption use the zero pad algorithm.
1041                  * This pads results to an 8-byte boundary and
1042                  * suppresses padding verification for inbound (i.e.
1043                  * decrypt) operations.
1044                  *
1045                  * NB: Not sure if the 8-byte pad boundary is a problem.
1046                  */
1047                 cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1048
1049                 /* XXX assert key bufs have the same size */
1050                 bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1051         }
1052
1053         if (maccrd) {
1054                 if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1055                         safe_setup_mackey(ses, maccrd->crd_alg,
1056                             maccrd->crd_key, maccrd->crd_klen / 8);
1057                 }
1058
1059                 if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1060                         cmd0 |= SAFE_SA_CMD0_MD5;
1061                         cmd1 |= SAFE_SA_CMD1_HMAC;      /* NB: enable HMAC */
1062                 } else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1063                         cmd0 |= SAFE_SA_CMD0_SHA1;
1064                         cmd1 |= SAFE_SA_CMD1_HMAC;      /* NB: enable HMAC */
1065                 } else {
1066                         cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1067                 }
1068                 /*
1069                  * Digest data is loaded from the SA and the hash
1070                  * result is saved to the state block where we
1071                  * retrieve it for return to the caller.
1072                  */
1073                 /* XXX assert digest bufs have the same size */
1074                 bcopy(ses->ses_hminner, sa->sa_indigest,
1075                         sizeof(sa->sa_indigest));
1076                 bcopy(ses->ses_hmouter, sa->sa_outdigest,
1077                         sizeof(sa->sa_outdigest));
1078
1079                 cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1080                 re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1081         }
1082
1083         if (enccrd && maccrd) {
1084                 /*
1085                  * The offset from hash data to the start of
1086                  * crypt data is the difference in the skips.
1087                  */
1088                 bypass = maccrd->crd_skip;
1089                 coffset = enccrd->crd_skip - maccrd->crd_skip;
1090                 if (coffset < 0) {
1091                         DPRINTF(("%s: hash does not precede crypt; "
1092                                 "mac skip %u enc skip %u\n",
1093                                 __func__, maccrd->crd_skip, enccrd->crd_skip));
1094                         safestats.st_skipmismatch++;
1095                         err = EINVAL;
1096                         goto errout;
1097                 }
1098                 oplen = enccrd->crd_skip + enccrd->crd_len;
1099                 if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1100                         DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1101                                 __func__, maccrd->crd_skip + maccrd->crd_len,
1102                                 oplen));
1103                         safestats.st_lenmismatch++;
1104                         err = EINVAL;
1105                         goto errout;
1106                 }
1107 #ifdef SAFE_DEBUG
1108                 if (safe_debug) {
1109                         printf("mac: skip %d, len %d, inject %d\n",
1110                             maccrd->crd_skip, maccrd->crd_len,
1111                             maccrd->crd_inject);
1112                         printf("enc: skip %d, len %d, inject %d\n",
1113                             enccrd->crd_skip, enccrd->crd_len,
1114                             enccrd->crd_inject);
1115                         printf("bypass %d coffset %d oplen %d\n",
1116                                 bypass, coffset, oplen);
1117                 }
1118 #endif
1119                 if (coffset & 3) {      /* offset must be 32-bit aligned */
1120                         DPRINTF(("%s: coffset %u misaligned\n",
1121                                 __func__, coffset));
1122                         safestats.st_coffmisaligned++;
1123                         err = EINVAL;
1124                         goto errout;
1125                 }
1126                 coffset >>= 2;
1127                 if (coffset > 255) {    /* offset must be <256 dwords */
1128                         DPRINTF(("%s: coffset %u too big\n",
1129                                 __func__, coffset));
1130                         safestats.st_cofftoobig++;
1131                         err = EINVAL;
1132                         goto errout;
1133                 }
1134                 /*
1135                  * Tell the hardware to copy the header to the output.
1136                  * The header is defined as the data from the end of
1137                  * the bypass to the start of data to be encrypted. 
1138                  * Typically this is the inline IV.  Note that you need
1139                  * to do this even if src+dst are the same; it appears
1140                  * that w/o this bit the crypted data is written
1141                  * immediately after the bypass data.
1142                  */
1143                 cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1144                 /*
1145                  * Disable IP header mutable bit handling.  This is
1146                  * needed to get correct HMAC calculations.
1147                  */
1148                 cmd1 |= SAFE_SA_CMD1_MUTABLE;
1149         } else {
1150                 if (enccrd) {
1151                         bypass = enccrd->crd_skip;
1152                         oplen = bypass + enccrd->crd_len;
1153                 } else {
1154                         bypass = maccrd->crd_skip;
1155                         oplen = bypass + maccrd->crd_len;
1156                 }
1157                 coffset = 0;
1158         }
1159         /* XXX verify multiple of 4 when using s/g */
1160         if (bypass > 96) {              /* bypass offset must be <= 96 bytes */
1161                 DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1162                 safestats.st_bypasstoobig++;
1163                 err = EINVAL;
1164                 goto errout;
1165         }
1166
1167         if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1168                 safestats.st_nomap++;
1169                 err = ENOMEM;
1170                 goto errout;
1171         }
1172         if (crp->crp_flags & CRYPTO_F_IMBUF) {
1173                 if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1174                     re->re_src_m, safe_op_cb,
1175                     &re->re_src, BUS_DMA_NOWAIT) != 0) {
1176                         bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1177                         re->re_src_map = NULL;
1178                         safestats.st_noload++;
1179                         err = ENOMEM;
1180                         goto errout;
1181                 }
1182         } else if (crp->crp_flags & CRYPTO_F_IOV) {
1183                 if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1184                     re->re_src_io, safe_op_cb,
1185                     &re->re_src, BUS_DMA_NOWAIT) != 0) {
1186                         bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1187                         re->re_src_map = NULL;
1188                         safestats.st_noload++;
1189                         err = ENOMEM;
1190                         goto errout;
1191                 }
1192         }
1193         nicealign = safe_dmamap_aligned(&re->re_src);
1194         uniform = safe_dmamap_uniform(&re->re_src);
1195
1196         DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1197                 nicealign, uniform, re->re_src.nsegs));
1198         if (re->re_src.nsegs > 1) {
1199                 re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1200                         ((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1201                 for (i = 0; i < re->re_src_nsegs; i++) {
1202                         /* NB: no need to check if there's space */
1203                         pd = sc->sc_spfree;
1204                         if (++(sc->sc_spfree) == sc->sc_springtop)
1205                                 sc->sc_spfree = sc->sc_spring;
1206
1207                         KASSERT((pd->pd_flags&3) == 0 ||
1208                                 (pd->pd_flags&3) == SAFE_PD_DONE,
1209                                 ("bogus source particle descriptor; flags %x",
1210                                 pd->pd_flags));
1211                         pd->pd_addr = re->re_src_segs[i].ds_addr;
1212                         pd->pd_size = re->re_src_segs[i].ds_len;
1213                         pd->pd_flags = SAFE_PD_READY;
1214                 }
1215                 cmd0 |= SAFE_SA_CMD0_IGATHER;
1216         } else {
1217                 /*
1218                  * No need for gather, reference the operand directly.
1219                  */
1220                 re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1221         }
1222
1223         if (enccrd == NULL && maccrd != NULL) {
1224                 /*
1225                  * Hash op; no destination needed.
1226                  */
1227         } else {
1228                 if (crp->crp_flags & CRYPTO_F_IOV) {
1229                         if (!nicealign) {
1230                                 safestats.st_iovmisaligned++;
1231                                 err = EINVAL;
1232                                 goto errout;
1233                         }
1234                         if (uniform != 1) {
1235                                 /*
1236                                  * Source is not suitable for direct use as
1237                                  * the destination.  Create a new scatter/gather
1238                                  * list based on the destination requirements
1239                                  * and check if that's ok.
1240                                  */
1241                                 if (bus_dmamap_create(sc->sc_dstdmat,
1242                                     BUS_DMA_NOWAIT, &re->re_dst_map)) {
1243                                         safestats.st_nomap++;
1244                                         err = ENOMEM;
1245                                         goto errout;
1246                                 }
1247                                 if (bus_dmamap_load_uio(sc->sc_dstdmat,
1248                                     re->re_dst_map, re->re_dst_io,
1249                                     safe_op_cb, &re->re_dst,
1250                                     BUS_DMA_NOWAIT) != 0) {
1251                                         bus_dmamap_destroy(sc->sc_dstdmat,
1252                                                 re->re_dst_map);
1253                                         re->re_dst_map = NULL;
1254                                         safestats.st_noload++;
1255                                         err = ENOMEM;
1256                                         goto errout;
1257                                 }
1258                                 uniform = safe_dmamap_uniform(&re->re_dst);
1259                                 if (!uniform) {
1260                                         /*
1261                                          * There's no way to handle the DMA
1262                                          * requirements with this uio.  We
1263                                          * could create a separate DMA area for
1264                                          * the result and then copy it back,
1265                                          * but for now we just bail and return
1266                                          * an error.  Note that uio requests
1267                                          * > SAFE_MAX_DSIZE are handled because
1268                                          * the DMA map and segment list for the
1269                                          * destination wil result in a
1270                                          * destination particle list that does
1271                                          * the necessary scatter DMA.
1272                                          */ 
1273                                         safestats.st_iovnotuniform++;
1274                                         err = EINVAL;
1275                                         goto errout;
1276                                 }
1277                         } else
1278                                 re->re_dst = re->re_src;
1279                 } else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1280                         if (nicealign && uniform == 1) {
1281                                 /*
1282                                  * Source layout is suitable for direct
1283                                  * sharing of the DMA map and segment list.
1284                                  */
1285                                 re->re_dst = re->re_src;
1286                         } else if (nicealign && uniform == 2) {
1287                                 /*
1288                                  * The source is properly aligned but requires a
1289                                  * different particle list to handle DMA of the
1290                                  * result.  Create a new map and do the load to
1291                                  * create the segment list.  The particle
1292                                  * descriptor setup code below will handle the
1293                                  * rest.
1294                                  */
1295                                 if (bus_dmamap_create(sc->sc_dstdmat,
1296                                     BUS_DMA_NOWAIT, &re->re_dst_map)) {
1297                                         safestats.st_nomap++;
1298                                         err = ENOMEM;
1299                                         goto errout;
1300                                 }
1301                                 if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1302                                     re->re_dst_map, re->re_dst_m,
1303                                     safe_op_cb, &re->re_dst,
1304                                     BUS_DMA_NOWAIT) != 0) {
1305                                         bus_dmamap_destroy(sc->sc_dstdmat,
1306                                                 re->re_dst_map);
1307                                         re->re_dst_map = NULL;
1308                                         safestats.st_noload++;
1309                                         err = ENOMEM;
1310                                         goto errout;
1311                                 }
1312                         } else {                /* !(aligned and/or uniform) */
1313                                 int totlen, len;
1314                                 struct mbuf *m, *top, **mp;
1315
1316                                 /*
1317                                  * DMA constraints require that we allocate a
1318                                  * new mbuf chain for the destination.  We
1319                                  * allocate an entire new set of mbufs of
1320                                  * optimal/required size and then tell the
1321                                  * hardware to copy any bits that are not
1322                                  * created as a byproduct of the operation.
1323                                  */
1324                                 if (!nicealign)
1325                                         safestats.st_unaligned++;
1326                                 if (!uniform)
1327                                         safestats.st_notuniform++;
1328                                 totlen = re->re_src_mapsize;
1329                                 if (re->re_src_m->m_flags & M_PKTHDR) {
1330                                         len = MHLEN;
1331                                         MGETHDR(m, M_DONTWAIT, MT_DATA);
1332                                         if (m && !m_dup_pkthdr(m, re->re_src_m,
1333                                             M_DONTWAIT)) {
1334                                                 m_free(m);
1335                                                 m = NULL;
1336                                         }
1337                                 } else {
1338                                         len = MLEN;
1339                                         MGET(m, M_DONTWAIT, MT_DATA);
1340                                 }
1341                                 if (m == NULL) {
1342                                         safestats.st_nombuf++;
1343                                         err = sc->sc_nqchip ? ERESTART : ENOMEM;
1344                                         goto errout;
1345                                 }
1346                                 if (totlen >= MINCLSIZE) {
1347                                         MCLGET(m, M_DONTWAIT);
1348                                         if ((m->m_flags & M_EXT) == 0) {
1349                                                 m_free(m);
1350                                                 safestats.st_nomcl++;
1351                                                 err = sc->sc_nqchip ?
1352                                                         ERESTART : ENOMEM;
1353                                                 goto errout;
1354                                         }
1355                                         len = MCLBYTES;
1356                                 }
1357                                 m->m_len = len;
1358                                 top = NULL;
1359                                 mp = &top;
1360
1361                                 while (totlen > 0) {
1362                                         if (top) {
1363                                                 MGET(m, M_DONTWAIT, MT_DATA);
1364                                                 if (m == NULL) {
1365                                                         m_freem(top);
1366                                                         safestats.st_nombuf++;
1367                                                         err = sc->sc_nqchip ?
1368                                                             ERESTART : ENOMEM;
1369                                                         goto errout;
1370                                                 }
1371                                                 len = MLEN;
1372                                         }
1373                                         if (top && totlen >= MINCLSIZE) {
1374                                                 MCLGET(m, M_DONTWAIT);
1375                                                 if ((m->m_flags & M_EXT) == 0) {
1376                                                         *mp = m;
1377                                                         m_freem(top);
1378                                                         safestats.st_nomcl++;
1379                                                         err = sc->sc_nqchip ?
1380                                                             ERESTART : ENOMEM;
1381                                                         goto errout;
1382                                                 }
1383                                                 len = MCLBYTES;
1384                                         }
1385                                         m->m_len = len = min(totlen, len);
1386                                         totlen -= len;
1387                                         *mp = m;
1388                                         mp = &m->m_next;
1389                                 }
1390                                 re->re_dst_m = top;
1391                                 if (bus_dmamap_create(sc->sc_dstdmat, 
1392                                     BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1393                                         safestats.st_nomap++;
1394                                         err = ENOMEM;
1395                                         goto errout;
1396                                 }
1397                                 if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1398                                     re->re_dst_map, re->re_dst_m,
1399                                     safe_op_cb, &re->re_dst,
1400                                     BUS_DMA_NOWAIT) != 0) {
1401                                         bus_dmamap_destroy(sc->sc_dstdmat,
1402                                         re->re_dst_map);
1403                                         re->re_dst_map = NULL;
1404                                         safestats.st_noload++;
1405                                         err = ENOMEM;
1406                                         goto errout;
1407                                 }
1408                                 if (re->re_src.mapsize > oplen) {
1409                                         /*
1410                                          * There's data following what the
1411                                          * hardware will copy for us.  If this
1412                                          * isn't just the ICV (that's going to
1413                                          * be written on completion), copy it
1414                                          * to the new mbufs
1415                                          */
1416                                         if (!(maccrd &&
1417                                             (re->re_src.mapsize-oplen) == 12 &&
1418                                             maccrd->crd_inject == oplen))
1419                                                 safe_mcopy(re->re_src_m,
1420                                                            re->re_dst_m,
1421                                                            oplen);
1422                                         else
1423                                                 safestats.st_noicvcopy++;
1424                                 }
1425                         }
1426                 } else {
1427                         safestats.st_badflags++;
1428                         err = EINVAL;
1429                         goto errout;
1430                 }
1431
1432                 if (re->re_dst.nsegs > 1) {
1433                         re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1434                             ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1435                         for (i = 0; i < re->re_dst_nsegs; i++) {
1436                                 pd = sc->sc_dpfree;
1437                                 KASSERT((pd->pd_flags&3) == 0 ||
1438                                         (pd->pd_flags&3) == SAFE_PD_DONE,
1439                                         ("bogus dest particle descriptor; flags %x",
1440                                                 pd->pd_flags));
1441                                 if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1442                                         sc->sc_dpfree = sc->sc_dpring;
1443                                 pd->pd_addr = re->re_dst_segs[i].ds_addr;
1444                                 pd->pd_flags = SAFE_PD_READY;
1445                         }
1446                         cmd0 |= SAFE_SA_CMD0_OSCATTER;
1447                 } else {
1448                         /*
1449                          * No need for scatter, reference the operand directly.
1450                          */
1451                         re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1452                 }
1453         }
1454
1455         /*
1456          * All done with setup; fillin the SA command words
1457          * and the packet engine descriptor.  The operation
1458          * is now ready for submission to the hardware.
1459          */
1460         sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1461         sa->sa_cmd1 = cmd1
1462                     | (coffset << SAFE_SA_CMD1_OFFSET_S)
1463                     | SAFE_SA_CMD1_SAREV1       /* Rev 1 SA data structure */
1464                     | SAFE_SA_CMD1_SRPCI
1465                     ;
1466         /*
1467          * NB: the order of writes is important here.  In case the
1468          * chip is scanning the ring because of an outstanding request
1469          * it might nab this one too.  In that case we need to make
1470          * sure the setup is complete before we write the length
1471          * field of the descriptor as it signals the descriptor is
1472          * ready for processing.
1473          */
1474         re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1475         if (maccrd)
1476                 re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1477         re->re_desc.d_len = oplen
1478                           | SAFE_PE_LEN_READY
1479                           | (bypass << SAFE_PE_LEN_BYPASS_S)
1480                           ;
1481
1482         safestats.st_ipackets++;
1483         safestats.st_ibytes += oplen;
1484
1485         if (++(sc->sc_front) == sc->sc_ringtop)
1486                 sc->sc_front = sc->sc_ring;
1487
1488         /* XXX honor batching */
1489         safe_feed(sc, re);
1490         mtx_unlock(&sc->sc_ringmtx);
1491         return (0);
1492
1493 errout:
1494         if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1495                 m_freem(re->re_dst_m);
1496
1497         if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1498                 bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1499                 bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1500         }
1501         if (re->re_src_map != NULL) {
1502                 bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1503                 bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1504         }
1505         mtx_unlock(&sc->sc_ringmtx);
1506         if (err != ERESTART) {
1507                 crp->crp_etype = err;
1508                 crypto_done(crp);
1509         } else {
1510                 sc->sc_needwakeup |= CRYPTO_SYMQ;
1511         }
1512         return (err);
1513 }
1514
1515 static void
1516 safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1517 {
1518         struct cryptop *crp = (struct cryptop *)re->re_crp;
1519         struct cryptodesc *crd;
1520
1521         safestats.st_opackets++;
1522         safestats.st_obytes += re->re_dst.mapsize;
1523
1524         safe_dma_sync(&sc->sc_ringalloc,
1525                 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1526         if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1527                 device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1528                         re->re_desc.d_csr,
1529                         re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1530                 safestats.st_peoperr++;
1531                 crp->crp_etype = EIO;           /* something more meaningful? */
1532         }
1533         if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1534                 bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1535                     BUS_DMASYNC_POSTREAD);
1536                 bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1537                 bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1538         }
1539         bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1540         bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1541         bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1542
1543         /* 
1544          * If result was written to a differet mbuf chain, swap
1545          * it in as the return value and reclaim the original.
1546          */
1547         if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1548                 m_freem(re->re_src_m);
1549                 crp->crp_buf = (caddr_t)re->re_dst_m;
1550         }
1551
1552         if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1553                 /* copy out IV for future use */
1554                 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1555                         int ivsize;
1556
1557                         if (crd->crd_alg == CRYPTO_DES_CBC ||
1558                             crd->crd_alg == CRYPTO_3DES_CBC) {
1559                                 ivsize = 2*sizeof(u_int32_t);
1560                         } else if (crd->crd_alg == CRYPTO_AES_CBC) {
1561                                 ivsize = 4*sizeof(u_int32_t);
1562                         } else
1563                                 continue;
1564                         crypto_copydata(crp->crp_flags, crp->crp_buf,
1565                             crd->crd_skip + crd->crd_len - ivsize, ivsize,
1566                             (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1567                         break;
1568                 }
1569         }
1570
1571         if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1572                 /* copy out ICV result */
1573                 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1574                         if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1575                             crd->crd_alg == CRYPTO_SHA1_HMAC ||
1576                             crd->crd_alg == CRYPTO_NULL_HMAC))
1577                                 continue;
1578                         if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1579                                 /*
1580                                  * SHA-1 ICV's are byte-swapped; fix 'em up
1581                                  * before copy them to their destination.
1582                                  */
1583                                 bswap32(re->re_sastate.sa_saved_indigest[0]);
1584                                 bswap32(re->re_sastate.sa_saved_indigest[1]);
1585                                 bswap32(re->re_sastate.sa_saved_indigest[2]);
1586                         }
1587                         crypto_copyback(crp->crp_flags, crp->crp_buf,
1588                             crd->crd_inject,
1589                             sc->sc_sessions[re->re_sesn].ses_mlen,
1590                             (caddr_t)re->re_sastate.sa_saved_indigest);
1591                         break;
1592                 }
1593         }
1594         crypto_done(crp);
1595 }
1596
1597 /*
1598  * Copy all data past offset from srcm to dstm.
1599  */
1600 static void
1601 safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1602 {
1603         u_int j, dlen, slen;
1604         caddr_t dptr, sptr;
1605
1606         /*
1607          * Advance src and dst to offset.
1608          */
1609         j = offset;
1610         while (j >= 0) {
1611                 if (srcm->m_len > j)
1612                         break;
1613                 j -= srcm->m_len;
1614                 srcm = srcm->m_next;
1615                 if (srcm == NULL)
1616                         return;
1617         }
1618         sptr = mtod(srcm, caddr_t) + j;
1619         slen = srcm->m_len - j;
1620
1621         j = offset;
1622         while (j >= 0) {
1623                 if (dstm->m_len > j)
1624                         break;
1625                 j -= dstm->m_len;
1626                 dstm = dstm->m_next;
1627                 if (dstm == NULL)
1628                         return;
1629         }
1630         dptr = mtod(dstm, caddr_t) + j;
1631         dlen = dstm->m_len - j;
1632
1633         /*
1634          * Copy everything that remains.
1635          */
1636         for (;;) {
1637                 j = min(slen, dlen);
1638                 bcopy(sptr, dptr, j);
1639                 if (slen == j) {
1640                         srcm = srcm->m_next;
1641                         if (srcm == NULL)
1642                                 return;
1643                         sptr = srcm->m_data;
1644                         slen = srcm->m_len;
1645                 } else
1646                         sptr += j, slen -= j;
1647                 if (dlen == j) {
1648                         dstm = dstm->m_next;
1649                         if (dstm == NULL)
1650                                 return;
1651                         dptr = dstm->m_data;
1652                         dlen = dstm->m_len;
1653                 } else
1654                         dptr += j, dlen -= j;
1655         }
1656 }
1657
1658 #ifndef SAFE_NO_RNG
1659 #define SAFE_RNG_MAXWAIT        1000
1660
1661 static void
1662 safe_rng_init(struct safe_softc *sc)
1663 {
1664         u_int32_t w, v;
1665         int i;
1666
1667         WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1668         /* use default value according to the manual */
1669         WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);    /* magic from SafeNet */
1670         WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1671
1672         /*
1673          * There is a bug in rev 1.0 of the 1140 that when the RNG
1674          * is brought out of reset the ready status flag does not
1675          * work until the RNG has finished its internal initialization.
1676          *
1677          * So in order to determine the device is through its
1678          * initialization we must read the data register, using the
1679          * status reg in the read in case it is initialized.  Then read
1680          * the data register until it changes from the first read.
1681          * Once it changes read the data register until it changes
1682          * again.  At this time the RNG is considered initialized. 
1683          * This could take between 750ms - 1000ms in time.
1684          */
1685         i = 0;
1686         w = READ_REG(sc, SAFE_RNG_OUT);
1687         do {
1688                 v = READ_REG(sc, SAFE_RNG_OUT);
1689                 if (v != w) {
1690                         w = v;
1691                         break;
1692                 }
1693                 DELAY(10);
1694         } while (++i < SAFE_RNG_MAXWAIT);
1695
1696         /* Wait Until data changes again */
1697         i = 0;
1698         do {
1699                 v = READ_REG(sc, SAFE_RNG_OUT);
1700                 if (v != w)
1701                         break;
1702                 DELAY(10);
1703         } while (++i < SAFE_RNG_MAXWAIT);
1704 }
1705
1706 static __inline void
1707 safe_rng_disable_short_cycle(struct safe_softc *sc)
1708 {
1709         WRITE_REG(sc, SAFE_RNG_CTRL,
1710                 READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1711 }
1712
1713 static __inline void
1714 safe_rng_enable_short_cycle(struct safe_softc *sc)
1715 {
1716         WRITE_REG(sc, SAFE_RNG_CTRL, 
1717                 READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1718 }
1719
1720 static __inline u_int32_t
1721 safe_rng_read(struct safe_softc *sc)
1722 {
1723         int i;
1724
1725         i = 0;
1726         while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1727                 ;
1728         return READ_REG(sc, SAFE_RNG_OUT);
1729 }
1730
1731 static void
1732 safe_rng(void *arg)
1733 {
1734         struct safe_softc *sc = arg;
1735         u_int32_t buf[SAFE_RNG_MAXBUFSIZ];      /* NB: maybe move to softc */
1736         u_int maxwords;
1737         int i;
1738
1739         safestats.st_rng++;
1740         /*
1741          * Fetch the next block of data.
1742          */
1743         maxwords = safe_rngbufsize;
1744         if (maxwords > SAFE_RNG_MAXBUFSIZ)
1745                 maxwords = SAFE_RNG_MAXBUFSIZ;
1746 retry:
1747         for (i = 0; i < maxwords; i++)
1748                 buf[i] = safe_rng_read(sc);
1749         /*
1750          * Check the comparator alarm count and reset the h/w if
1751          * it exceeds our threshold.  This guards against the
1752          * hardware oscillators resonating with external signals.
1753          */
1754         if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1755                 u_int32_t freq_inc, w;
1756
1757                 DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1758                         READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1759                 safestats.st_rngalarm++;
1760                 safe_rng_enable_short_cycle(sc);
1761                 freq_inc = 18;
1762                 for (i = 0; i < 64; i++) {
1763                         w = READ_REG(sc, SAFE_RNG_CNFG);
1764                         freq_inc = ((w + freq_inc) & 0x3fL);
1765                         w = ((w & ~0x3fL) | freq_inc);
1766                         WRITE_REG(sc, SAFE_RNG_CNFG, w);
1767
1768                         WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1769
1770                         (void) safe_rng_read(sc);
1771                         DELAY(25);
1772
1773                         if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1774                                 safe_rng_disable_short_cycle(sc);
1775                                 goto retry;
1776                         }
1777                         freq_inc = 1;
1778                 }
1779                 safe_rng_disable_short_cycle(sc);
1780         } else
1781                 WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1782
1783         (*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1784         callout_reset(&sc->sc_rngto,
1785                 hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1786 }
1787 #endif /* SAFE_NO_RNG */
1788
1789 static void
1790 safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1791 {
1792         bus_addr_t *paddr = (bus_addr_t*) arg;
1793         *paddr = segs->ds_addr;
1794 }
1795
1796 static int
1797 safe_dma_malloc(
1798         struct safe_softc *sc,
1799         bus_size_t size,
1800         struct safe_dma_alloc *dma,
1801         int mapflags
1802 )
1803 {
1804         int r;
1805
1806         r = bus_dma_tag_create(NULL,                    /* parent */
1807                                sizeof(u_int32_t), 0,    /* alignment, bounds */
1808                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1809                                BUS_SPACE_MAXADDR,       /* highaddr */
1810                                NULL, NULL,              /* filter, filterarg */
1811                                size,                    /* maxsize */
1812                                1,                       /* nsegments */
1813                                size,                    /* maxsegsize */
1814                                BUS_DMA_ALLOCNOW,        /* flags */
1815                                NULL, NULL,              /* locking */
1816                                &dma->dma_tag);
1817         if (r != 0) {
1818                 device_printf(sc->sc_dev, "safe_dma_malloc: "
1819                         "bus_dma_tag_create failed; error %u\n", r);
1820                 goto fail_0;
1821         }
1822
1823         r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1824         if (r != 0) {
1825                 device_printf(sc->sc_dev, "safe_dma_malloc: "
1826                         "bus_dmamap_create failed; error %u\n", r);
1827                 goto fail_1;
1828         }
1829
1830         r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1831                              BUS_DMA_NOWAIT, &dma->dma_map);
1832         if (r != 0) {
1833                 device_printf(sc->sc_dev, "safe_dma_malloc: "
1834                         "bus_dmammem_alloc failed; size %zu, error %u\n",
1835                         size, r);
1836                 goto fail_2;
1837         }
1838
1839         r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1840                             size,
1841                             safe_dmamap_cb,
1842                             &dma->dma_paddr,
1843                             mapflags | BUS_DMA_NOWAIT);
1844         if (r != 0) {
1845                 device_printf(sc->sc_dev, "safe_dma_malloc: "
1846                         "bus_dmamap_load failed; error %u\n", r);
1847                 goto fail_3;
1848         }
1849
1850         dma->dma_size = size;
1851         return (0);
1852
1853 fail_3:
1854         bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1855 fail_2:
1856         bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1857 fail_1:
1858         bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1859         bus_dma_tag_destroy(dma->dma_tag);
1860 fail_0:
1861         dma->dma_map = NULL;
1862         dma->dma_tag = NULL;
1863         return (r);
1864 }
1865
1866 static void
1867 safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1868 {
1869         bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1870         bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1871         bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1872         bus_dma_tag_destroy(dma->dma_tag);
1873 }
1874
1875 /*
1876  * Resets the board.  Values in the regesters are left as is
1877  * from the reset (i.e. initial values are assigned elsewhere).
1878  */
1879 static void
1880 safe_reset_board(struct safe_softc *sc)
1881 {
1882         u_int32_t v;
1883         /*
1884          * Reset the device.  The manual says no delay
1885          * is needed between marking and clearing reset.
1886          */
1887         v = READ_REG(sc, SAFE_PE_DMACFG) &~
1888                 (SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1889                  SAFE_PE_DMACFG_SGRESET);
1890         WRITE_REG(sc, SAFE_PE_DMACFG, v
1891                                     | SAFE_PE_DMACFG_PERESET
1892                                     | SAFE_PE_DMACFG_PDRRESET
1893                                     | SAFE_PE_DMACFG_SGRESET);
1894         WRITE_REG(sc, SAFE_PE_DMACFG, v);
1895 }
1896
1897 /*
1898  * Initialize registers we need to touch only once.
1899  */
1900 static void
1901 safe_init_board(struct safe_softc *sc)
1902 {
1903         u_int32_t v, dwords;
1904
1905         v = READ_REG(sc, SAFE_PE_DMACFG);
1906         v &=~ SAFE_PE_DMACFG_PEMODE;
1907         v |= SAFE_PE_DMACFG_FSENA               /* failsafe enable */
1908           |  SAFE_PE_DMACFG_GPRPCI              /* gather ring on PCI */
1909           |  SAFE_PE_DMACFG_SPRPCI              /* scatter ring on PCI */
1910           |  SAFE_PE_DMACFG_ESDESC              /* endian-swap descriptors */
1911           |  SAFE_PE_DMACFG_ESSA                /* endian-swap SA's */
1912           |  SAFE_PE_DMACFG_ESPDESC             /* endian-swap part. desc's */
1913           ;
1914         WRITE_REG(sc, SAFE_PE_DMACFG, v);
1915 #if 0
1916         /* XXX select byte swap based on host byte order */
1917         WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1918 #endif
1919         if (sc->sc_chiprev == SAFE_REV(1,0)) {
1920                 /*
1921                  * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1922                  * "target mode transfers" done while the chip is DMA'ing
1923                  * >1020 bytes cause the hardware to lockup.  To avoid this
1924                  * we reduce the max PCI transfer size and use small source
1925                  * particle descriptors (<= 256 bytes).
1926                  */
1927                 WRITE_REG(sc, SAFE_DMA_CFG, 256);
1928                 device_printf(sc->sc_dev,
1929                         "Reduce max DMA size to %u words for rev %u.%u WAR\n",
1930                         (READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1931                         SAFE_REV_MAJ(sc->sc_chiprev),
1932                         SAFE_REV_MIN(sc->sc_chiprev));
1933         }
1934
1935         /* NB: operands+results are overlaid */
1936         WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1937         WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1938         /*
1939          * Configure ring entry size and number of items in the ring.
1940          */
1941         KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1942                 ("PE ring entry not 32-bit aligned!"));
1943         dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1944         WRITE_REG(sc, SAFE_PE_RINGCFG,
1945                 (dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1946         WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);     /* disable polling */
1947
1948         WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1949         WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1950         WRITE_REG(sc, SAFE_PE_PARTSIZE,
1951                 (SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1952         /*
1953          * NB: destination particles are fixed size.  We use
1954          *     an mbuf cluster and require all results go to
1955          *     clusters or smaller.
1956          */
1957         WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1958
1959         /* it's now safe to enable PE mode, do it */
1960         WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1961
1962         /*
1963          * Configure hardware to use level-triggered interrupts and
1964          * to interrupt after each descriptor is processed.
1965          */
1966         WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1967         WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1968         WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1969 }
1970
1971 /*
1972  * Init PCI registers
1973  */
1974 static void
1975 safe_init_pciregs(device_t dev)
1976 {
1977 }
1978
1979 /*
1980  * Clean up after a chip crash.
1981  * It is assumed that the caller in splimp()
1982  */
1983 static void
1984 safe_cleanchip(struct safe_softc *sc)
1985 {
1986
1987         if (sc->sc_nqchip != 0) {
1988                 struct safe_ringentry *re = sc->sc_back;
1989
1990                 while (re != sc->sc_front) {
1991                         if (re->re_desc.d_csr != 0)
1992                                 safe_free_entry(sc, re);
1993                         if (++re == sc->sc_ringtop)
1994                                 re = sc->sc_ring;
1995                 }
1996                 sc->sc_back = re;
1997                 sc->sc_nqchip = 0;
1998         }
1999 }
2000
2001 /*
2002  * free a safe_q
2003  * It is assumed that the caller is within splimp().
2004  */
2005 static int
2006 safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
2007 {
2008         struct cryptop *crp;
2009
2010         /*
2011          * Free header MCR
2012          */
2013         if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
2014                 m_freem(re->re_dst_m);
2015
2016         crp = (struct cryptop *)re->re_crp;
2017         
2018         re->re_desc.d_csr = 0;
2019         
2020         crp->crp_etype = EFAULT;
2021         crypto_done(crp);
2022         return(0);
2023 }
2024
2025 /*
2026  * Routine to reset the chip and clean up.
2027  * It is assumed that the caller is in splimp()
2028  */
2029 static void
2030 safe_totalreset(struct safe_softc *sc)
2031 {
2032         safe_reset_board(sc);
2033         safe_init_board(sc);
2034         safe_cleanchip(sc);
2035 }
2036
2037 /*
2038  * Is the operand suitable aligned for direct DMA.  Each
2039  * segment must be aligned on a 32-bit boundary and all
2040  * but the last segment must be a multiple of 4 bytes.
2041  */
2042 static int
2043 safe_dmamap_aligned(const struct safe_operand *op)
2044 {
2045         int i;
2046
2047         for (i = 0; i < op->nsegs; i++) {
2048                 if (op->segs[i].ds_addr & 3)
2049                         return (0);
2050                 if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2051                         return (0);
2052         }
2053         return (1);
2054 }
2055
2056 /*
2057  * Is the operand suitable for direct DMA as the destination
2058  * of an operation.  The hardware requires that each ``particle''
2059  * but the last in an operation result have the same size.  We
2060  * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2061  * 0 if some segment is not a multiple of of this size, 1 if all
2062  * segments are exactly this size, or 2 if segments are at worst
2063  * a multple of this size.
2064  */
2065 static int
2066 safe_dmamap_uniform(const struct safe_operand *op)
2067 {
2068         int result = 1;
2069
2070         if (op->nsegs > 0) {
2071                 int i;
2072
2073                 for (i = 0; i < op->nsegs-1; i++) {
2074                         if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2075                                 return (0);
2076                         if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2077                                 result = 2;
2078                 }
2079         }
2080         return (result);
2081 }
2082
2083 #ifdef SAFE_DEBUG
2084 static void
2085 safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2086 {
2087         printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2088                 , tag
2089                 , READ_REG(sc, SAFE_DMA_ENDIAN)
2090                 , READ_REG(sc, SAFE_DMA_SRCADDR)
2091                 , READ_REG(sc, SAFE_DMA_DSTADDR)
2092                 , READ_REG(sc, SAFE_DMA_STAT)
2093         );
2094 }
2095
2096 static void
2097 safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2098 {
2099         printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2100                 , tag
2101                 , READ_REG(sc, SAFE_HI_CFG)
2102                 , READ_REG(sc, SAFE_HI_MASK)
2103                 , READ_REG(sc, SAFE_HI_DESC_CNT)
2104                 , READ_REG(sc, SAFE_HU_STAT)
2105                 , READ_REG(sc, SAFE_HM_STAT)
2106         );
2107 }
2108
2109 static void
2110 safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2111 {
2112         u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2113
2114         /* NB: assume caller has lock on ring */
2115         printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2116                 tag,
2117                 estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2118                 (unsigned long)(sc->sc_back - sc->sc_ring),
2119                 (unsigned long)(sc->sc_front - sc->sc_ring));
2120 }
2121
2122 static void
2123 safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2124 {
2125         int ix, nsegs;
2126
2127         ix = re - sc->sc_ring;
2128         printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2129                 , tag
2130                 , re, ix
2131                 , re->re_desc.d_csr
2132                 , re->re_desc.d_src
2133                 , re->re_desc.d_dst
2134                 , re->re_desc.d_sa
2135                 , re->re_desc.d_len
2136         );
2137         if (re->re_src.nsegs > 1) {
2138                 ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2139                         sizeof(struct safe_pdesc);
2140                 for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2141                         printf(" spd[%u] %p: %p size %u flags %x"
2142                                 , ix, &sc->sc_spring[ix]
2143                                 , (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2144                                 , sc->sc_spring[ix].pd_size
2145                                 , sc->sc_spring[ix].pd_flags
2146                         );
2147                         if (sc->sc_spring[ix].pd_size == 0)
2148                                 printf(" (zero!)");
2149                         printf("\n");
2150                         if (++ix == SAFE_TOTAL_SPART)
2151                                 ix = 0;
2152                 }
2153         }
2154         if (re->re_dst.nsegs > 1) {
2155                 ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2156                         sizeof(struct safe_pdesc);
2157                 for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2158                         printf(" dpd[%u] %p: %p flags %x\n"
2159                                 , ix, &sc->sc_dpring[ix]
2160                                 , (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2161                                 , sc->sc_dpring[ix].pd_flags
2162                         );
2163                         if (++ix == SAFE_TOTAL_DPART)
2164                                 ix = 0;
2165                 }
2166         }
2167         printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2168                 re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2169         printf("sa: key %x %x %x %x %x %x %x %x\n"
2170                 , re->re_sa.sa_key[0]
2171                 , re->re_sa.sa_key[1]
2172                 , re->re_sa.sa_key[2]
2173                 , re->re_sa.sa_key[3]
2174                 , re->re_sa.sa_key[4]
2175                 , re->re_sa.sa_key[5]
2176                 , re->re_sa.sa_key[6]
2177                 , re->re_sa.sa_key[7]
2178         );
2179         printf("sa: indigest %x %x %x %x %x\n"
2180                 , re->re_sa.sa_indigest[0]
2181                 , re->re_sa.sa_indigest[1]
2182                 , re->re_sa.sa_indigest[2]
2183                 , re->re_sa.sa_indigest[3]
2184                 , re->re_sa.sa_indigest[4]
2185         );
2186         printf("sa: outdigest %x %x %x %x %x\n"
2187                 , re->re_sa.sa_outdigest[0]
2188                 , re->re_sa.sa_outdigest[1]
2189                 , re->re_sa.sa_outdigest[2]
2190                 , re->re_sa.sa_outdigest[3]
2191                 , re->re_sa.sa_outdigest[4]
2192         );
2193         printf("sr: iv %x %x %x %x\n"
2194                 , re->re_sastate.sa_saved_iv[0]
2195                 , re->re_sastate.sa_saved_iv[1]
2196                 , re->re_sastate.sa_saved_iv[2]
2197                 , re->re_sastate.sa_saved_iv[3]
2198         );
2199         printf("sr: hashbc %u indigest %x %x %x %x %x\n"
2200                 , re->re_sastate.sa_saved_hashbc
2201                 , re->re_sastate.sa_saved_indigest[0]
2202                 , re->re_sastate.sa_saved_indigest[1]
2203                 , re->re_sastate.sa_saved_indigest[2]
2204                 , re->re_sastate.sa_saved_indigest[3]
2205                 , re->re_sastate.sa_saved_indigest[4]
2206         );
2207 }
2208
2209 static void
2210 safe_dump_ring(struct safe_softc *sc, const char *tag)
2211 {
2212         mtx_lock(&sc->sc_ringmtx);
2213         printf("\nSafeNet Ring State:\n");
2214         safe_dump_intrstate(sc, tag);
2215         safe_dump_dmastatus(sc, tag);
2216         safe_dump_ringstate(sc, tag);
2217         if (sc->sc_nqchip) {
2218                 struct safe_ringentry *re = sc->sc_back;
2219                 do {
2220                         safe_dump_request(sc, tag, re);
2221                         if (++re == sc->sc_ringtop)
2222                                 re = sc->sc_ring;
2223                 } while (re != sc->sc_front);
2224         }
2225         mtx_unlock(&sc->sc_ringmtx);
2226 }
2227
2228 static int
2229 sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2230 {
2231         char dmode[64];
2232         int error;
2233
2234         strncpy(dmode, "", sizeof(dmode) - 1);
2235         dmode[sizeof(dmode) - 1] = '\0';
2236         error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2237
2238         if (error == 0 && req->newptr != NULL) {
2239                 struct safe_softc *sc = safec;
2240
2241                 if (!sc)
2242                         return EINVAL;
2243                 if (strncmp(dmode, "dma", 3) == 0)
2244                         safe_dump_dmastatus(sc, "safe0");
2245                 else if (strncmp(dmode, "int", 3) == 0)
2246                         safe_dump_intrstate(sc, "safe0");
2247                 else if (strncmp(dmode, "ring", 4) == 0)
2248                         safe_dump_ring(sc, "safe0");
2249                 else
2250                         return EINVAL;
2251         }
2252         return error;
2253 }
2254 SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2255         0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2256 #endif /* SAFE_DEBUG */