]> CyberLeo.Net >> Repos - FreeBSD/releng/8.1.git/blob - sys/dev/sge/if_sge.c
Copy stable/8 to releng/8.1 in preparation for 8.1-RC1.
[FreeBSD/releng/8.1.git] / sys / dev / sge / if_sge.c
1 /*-
2  * Copyright (c) 2008-2010 Nikolay Denev <ndenev@gmail.com>
3  * Copyright (c) 2007-2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
4  * Copyright (c) 1997, 1998, 1999
5  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *      This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
23  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
25  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL AUTHORS OR
26  * THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
31  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
33  * OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38
39 /*
40  * SiS 190/191 PCI Ethernet NIC driver.
41  *
42  * Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
43  * SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
44  * Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
45  * <kmliu@sis.com>.  Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
46  * review and very useful comments.
47  *
48  * Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
49  * Linux and Solaris drivers.
50  */
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/bus.h>
55 #include <sys/endian.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/module.h>
61 #include <sys/mutex.h>
62 #include <sys/rman.h>
63 #include <sys/socket.h>
64 #include <sys/sockio.h>
65
66 #include <net/bpf.h>
67 #include <net/if.h>
68 #include <net/if_arp.h>
69 #include <net/ethernet.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_types.h>
73 #include <net/if_vlan_var.h>
74
75 #include <netinet/in.h>
76 #include <netinet/in_systm.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79
80 #include <machine/bus.h>
81 #include <machine/in_cksum.h>
82
83 #include <dev/mii/mii.h>
84 #include <dev/mii/miivar.h>
85
86 #include <dev/pci/pcireg.h>
87 #include <dev/pci/pcivar.h>
88
89 #include <dev/sge/if_sgereg.h>
90
91 MODULE_DEPEND(sge, pci, 1, 1, 1);
92 MODULE_DEPEND(sge, ether, 1, 1, 1);
93 MODULE_DEPEND(sge, miibus, 1, 1, 1);
94
95 /* "device miibus0" required.  See GENERIC if you get errors here. */
96 #include "miibus_if.h"
97
98 /*
99  * Various supported device vendors/types and their names.
100  */
101 static struct sge_type sge_devs[] = {
102         { SIS_VENDORID, SIS_DEVICEID_190, "SiS190 Fast Ethernet" },
103         { SIS_VENDORID, SIS_DEVICEID_191, "SiS191 Fast/Gigabit Ethernet" },
104         { 0, 0, NULL }
105 };
106
107 static int      sge_probe(device_t);
108 static int      sge_attach(device_t);
109 static int      sge_detach(device_t);
110 static int      sge_shutdown(device_t);
111 static int      sge_suspend(device_t);
112 static int      sge_resume(device_t);
113
114 static int      sge_miibus_readreg(device_t, int, int);
115 static int      sge_miibus_writereg(device_t, int, int, int);
116 static void     sge_miibus_statchg(device_t);
117
118 static int      sge_newbuf(struct sge_softc *, int);
119 static int      sge_encap(struct sge_softc *, struct mbuf **);
120 static __inline void
121                 sge_discard_rxbuf(struct sge_softc *, int);
122 static void     sge_rxeof(struct sge_softc *);
123 static void     sge_txeof(struct sge_softc *);
124 static void     sge_intr(void *);
125 static void     sge_tick(void *);
126 static void     sge_start(struct ifnet *);
127 static void     sge_start_locked(struct ifnet *);
128 static int      sge_ioctl(struct ifnet *, u_long, caddr_t);
129 static void     sge_init(void *);
130 static void     sge_init_locked(struct sge_softc *);
131 static void     sge_stop(struct sge_softc *);
132 static void     sge_watchdog(struct sge_softc *);
133 static int      sge_ifmedia_upd(struct ifnet *);
134 static void     sge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
135
136 static int      sge_get_mac_addr_apc(struct sge_softc *, uint8_t *);
137 static int      sge_get_mac_addr_eeprom(struct sge_softc *, uint8_t *);
138 static uint16_t sge_read_eeprom(struct sge_softc *, int);
139
140 static void     sge_rxfilter(struct sge_softc *);
141 static void     sge_setvlan(struct sge_softc *);
142 static void     sge_reset(struct sge_softc *);
143 static int      sge_list_rx_init(struct sge_softc *);
144 static int      sge_list_rx_free(struct sge_softc *);
145 static int      sge_list_tx_init(struct sge_softc *);
146 static int      sge_list_tx_free(struct sge_softc *);
147
148 static int      sge_dma_alloc(struct sge_softc *);
149 static void     sge_dma_free(struct sge_softc *);
150 static void     sge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
151
152 static device_method_t sge_methods[] = {
153         /* Device interface */
154         DEVMETHOD(device_probe,         sge_probe),
155         DEVMETHOD(device_attach,        sge_attach),
156         DEVMETHOD(device_detach,        sge_detach),
157         DEVMETHOD(device_suspend,       sge_suspend),
158         DEVMETHOD(device_resume,        sge_resume),
159         DEVMETHOD(device_shutdown,      sge_shutdown),
160
161         /* Bus interface */
162         DEVMETHOD(bus_print_child,      bus_generic_print_child),
163         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
164
165         /* MII interface */
166         DEVMETHOD(miibus_readreg,       sge_miibus_readreg),
167         DEVMETHOD(miibus_writereg,      sge_miibus_writereg),
168         DEVMETHOD(miibus_statchg,       sge_miibus_statchg),
169
170         KOBJMETHOD_END
171 };
172
173 static driver_t sge_driver = {
174         "sge", sge_methods, sizeof(struct sge_softc)
175 };
176
177 static devclass_t sge_devclass;
178
179 DRIVER_MODULE(sge, pci, sge_driver, sge_devclass, 0, 0);
180 DRIVER_MODULE(miibus, sge, miibus_driver, miibus_devclass, 0, 0);
181
182 /*
183  * Register space access macros.
184  */
185 #define CSR_WRITE_4(sc, reg, val)       bus_write_4(sc->sge_res, reg, val)
186 #define CSR_WRITE_2(sc, reg, val)       bus_write_2(sc->sge_res, reg, val)
187 #define CSR_WRITE_1(cs, reg, val)       bus_write_1(sc->sge_res, reg, val)
188
189 #define CSR_READ_4(sc, reg)             bus_read_4(sc->sge_res, reg)
190 #define CSR_READ_2(sc, reg)             bus_read_2(sc->sge_res, reg)
191 #define CSR_READ_1(sc, reg)             bus_read_1(sc->sge_res, reg)
192
193 /* Define to show Tx/Rx error status. */
194 #undef SGE_SHOW_ERRORS
195
196 #define SGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
197
198 static void
199 sge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
200 {
201         bus_addr_t *p;
202
203         if (error != 0)
204                 return;
205         KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
206         p  = arg;
207         *p = segs->ds_addr;
208 }
209
210 /*
211  * Read a sequence of words from the EEPROM.
212  */
213 static uint16_t
214 sge_read_eeprom(struct sge_softc *sc, int offset)
215 {
216         uint32_t val;
217         int i;
218
219         KASSERT(offset <= EI_OFFSET, ("EEPROM offset too big"));
220         CSR_WRITE_4(sc, ROMInterface,
221             EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
222         DELAY(500);
223         for (i = 0; i < SGE_TIMEOUT; i++) {
224                 val = CSR_READ_4(sc, ROMInterface);
225                 if ((val & EI_REQ) == 0)
226                         break;
227                 DELAY(100);
228         }
229         if (i == SGE_TIMEOUT) {
230                 device_printf(sc->sge_dev,
231                     "EEPROM read timeout : 0x%08x\n", val);
232                 return (0xffff);
233         }
234
235         return ((val & EI_DATA) >> EI_DATA_SHIFT);
236 }
237
238 static int
239 sge_get_mac_addr_eeprom(struct sge_softc *sc, uint8_t *dest)
240 {
241         uint16_t val;
242         int i;
243
244         val = sge_read_eeprom(sc, EEPROMSignature);
245         if (val == 0xffff || val == 0) {
246                 device_printf(sc->sge_dev,
247                     "invalid EEPROM signature : 0x%04x\n", val);
248                 return (EINVAL);
249         }
250
251         for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
252                 val = sge_read_eeprom(sc, EEPROMMACAddr + i / 2);
253                 dest[i + 0] = (uint8_t)val;
254                 dest[i + 1] = (uint8_t)(val >> 8);
255         }
256
257         if ((sge_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
258                 sc->sge_flags |= SGE_FLAG_RGMII;
259         return (0);
260 }
261
262 /*
263  * For SiS96x, APC CMOS RAM is used to store ethernet address.
264  * APC CMOS RAM is accessed through ISA bridge.
265  */
266 static int
267 sge_get_mac_addr_apc(struct sge_softc *sc, uint8_t *dest)
268 {
269 #if defined(__amd64__) || defined(__i386__)
270         devclass_t pci;
271         device_t bus, dev = NULL;
272         device_t *kids;
273         struct apc_tbl {
274                 uint16_t vid;
275                 uint16_t did;
276         } *tp, apc_tbls[] = {
277                 { SIS_VENDORID, 0x0965 },
278                 { SIS_VENDORID, 0x0966 },
279                 { SIS_VENDORID, 0x0968 }
280         };
281         uint8_t reg;
282         int busnum, cnt, i, j, numkids;
283
284         cnt = sizeof(apc_tbls) / sizeof(apc_tbls[0]);
285         pci = devclass_find("pci");
286         for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
287                 bus = devclass_get_device(pci, busnum);
288                 if (!bus)
289                         continue;
290                 if (device_get_children(bus, &kids, &numkids) != 0)
291                         continue;
292                 for (i = 0; i < numkids; i++) {
293                         dev = kids[i];
294                         if (pci_get_class(dev) == PCIC_BRIDGE &&
295                             pci_get_subclass(dev) == PCIS_BRIDGE_ISA) {
296                                 tp = apc_tbls;
297                                 for (j = 0; j < cnt; j++) {
298                                         if (pci_get_vendor(dev) == tp->vid &&
299                                             pci_get_device(dev) == tp->did) {
300                                                 free(kids, M_TEMP);
301                                                 goto apc_found;
302                                         }
303                                         tp++;
304                                 }
305                         }
306                 }
307                 free(kids, M_TEMP);
308         }
309         device_printf(sc->sge_dev, "couldn't find PCI-ISA bridge\n");
310         return (EINVAL);
311 apc_found:
312         /* Enable port 0x78 and 0x79 to access APC registers. */
313         reg = pci_read_config(dev, 0x48, 1);
314         pci_write_config(dev, 0x48, reg & ~0x02, 1);
315         DELAY(50);
316         pci_read_config(dev, 0x48, 1);
317         /* Read stored ethernet address. */
318         for (i = 0; i < ETHER_ADDR_LEN; i++) {
319                 outb(0x78, 0x09 + i);
320                 dest[i] = inb(0x79);
321         }
322         outb(0x78, 0x12);
323         if ((inb(0x79) & 0x80) != 0)
324                 sc->sge_flags |= SGE_FLAG_RGMII;
325         /* Restore access to APC registers. */
326         pci_write_config(dev, 0x48, reg, 1);
327
328         return (0);
329 #else
330         return (EINVAL);
331 #endif
332 }
333
334 static int
335 sge_miibus_readreg(device_t dev, int phy, int reg)
336 {
337         struct sge_softc *sc;
338         uint32_t val;
339         int i;
340
341         sc = device_get_softc(dev);
342         CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
343             (reg << GMI_REG_SHIFT) | GMI_OP_RD | GMI_REQ);
344         DELAY(10);
345         for (i = 0; i < SGE_TIMEOUT; i++) {
346                 val = CSR_READ_4(sc, GMIIControl);
347                 if ((val & GMI_REQ) == 0)
348                         break;
349                 DELAY(10);
350         }
351         if (i == SGE_TIMEOUT) {
352                 device_printf(sc->sge_dev, "PHY read timeout : %d\n", reg);
353                 return (0);
354         }
355         return ((val & GMI_DATA) >> GMI_DATA_SHIFT);
356 }
357
358 static int
359 sge_miibus_writereg(device_t dev, int phy, int reg, int data)
360 {
361         struct sge_softc *sc;
362         uint32_t val;
363         int i;
364
365         sc = device_get_softc(dev);
366         CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
367             (reg << GMI_REG_SHIFT) | (data << GMI_DATA_SHIFT) |
368             GMI_OP_WR | GMI_REQ);
369         DELAY(10);
370         for (i = 0; i < SGE_TIMEOUT; i++) {
371                 val = CSR_READ_4(sc, GMIIControl);
372                 if ((val & GMI_REQ) == 0)
373                         break;
374                 DELAY(10);
375         }
376         if (i == SGE_TIMEOUT)
377                 device_printf(sc->sge_dev, "PHY write timeout : %d\n", reg);
378         return (0);
379 }
380
381 static void
382 sge_miibus_statchg(device_t dev)
383 {
384         struct sge_softc *sc;
385         struct mii_data *mii;
386         struct ifnet *ifp;
387         uint32_t ctl, speed;
388
389         sc = device_get_softc(dev);
390         mii = device_get_softc(sc->sge_miibus);
391         ifp = sc->sge_ifp;
392         if (mii == NULL || ifp == NULL ||
393             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
394                 return;
395         speed = 0;
396         sc->sge_flags &= ~SGE_FLAG_LINK;
397         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
398             (IFM_ACTIVE | IFM_AVALID)) {
399                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
400                 case IFM_10_T:
401                         sc->sge_flags |= SGE_FLAG_LINK;
402                         speed = SC_SPEED_10;
403                         break;
404                 case IFM_100_TX:
405                         sc->sge_flags |= SGE_FLAG_LINK;
406                         speed = SC_SPEED_100;
407                         break;
408                 case IFM_1000_T:
409                         if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) {
410                                 sc->sge_flags |= SGE_FLAG_LINK;
411                                 speed = SC_SPEED_1000;
412                         }
413                         break;
414                 default:
415                         break;
416                 }
417         }
418         if ((sc->sge_flags & SGE_FLAG_LINK) == 0)
419                 return;
420         /* Reprogram MAC to resolved speed/duplex/flow-control parameters. */
421         ctl = CSR_READ_4(sc, StationControl);
422         ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
423         if (speed == SC_SPEED_1000) {
424                 ctl |= 0x07000000;
425                 sc->sge_flags |= SGE_FLAG_SPEED_1000;
426         } else {
427                 ctl |= 0x04000000;
428                 sc->sge_flags &= ~SGE_FLAG_SPEED_1000;
429         }
430 #ifdef notyet
431         if ((sc->sge_flags & SGE_FLAG_GMII) != 0)
432                 ctl |= 0x03000000;
433 #endif
434         ctl |= speed;
435         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
436                 ctl |= SC_FDX;
437                 sc->sge_flags |= SGE_FLAG_FDX;
438         } else
439                 sc->sge_flags &= ~SGE_FLAG_FDX;
440         CSR_WRITE_4(sc, StationControl, ctl);
441         if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) {
442                 CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
443                 CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
444         }
445 }
446
447 static void
448 sge_rxfilter(struct sge_softc *sc)
449 {
450         struct ifnet *ifp;
451         struct ifmultiaddr *ifma;
452         uint32_t crc, hashes[2];
453         uint16_t rxfilt;
454
455         SGE_LOCK_ASSERT(sc);
456
457         ifp = sc->sge_ifp;
458         rxfilt = CSR_READ_2(sc, RxMacControl);
459         rxfilt &= ~(AcceptBroadcast | AcceptAllPhys | AcceptMulticast);
460         rxfilt |= AcceptMyPhys;
461         if ((ifp->if_flags & IFF_BROADCAST) != 0)
462                 rxfilt |= AcceptBroadcast;
463         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
464                 if ((ifp->if_flags & IFF_PROMISC) != 0)
465                         rxfilt |= AcceptAllPhys;
466                 rxfilt |= AcceptMulticast;
467                 hashes[0] = 0xFFFFFFFF;
468                 hashes[1] = 0xFFFFFFFF;
469         } else {
470                 rxfilt |= AcceptMulticast;
471                 hashes[0] = hashes[1] = 0;
472                 /* Now program new ones. */
473                 if_maddr_rlock(ifp);
474                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
475                         if (ifma->ifma_addr->sa_family != AF_LINK)
476                                 continue;
477                         crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
478                             ifma->ifma_addr), ETHER_ADDR_LEN);
479                         hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
480                 }
481                 if_maddr_runlock(ifp);
482         }
483         CSR_WRITE_2(sc, RxMacControl, rxfilt | 0x02);
484         CSR_WRITE_4(sc, RxHashTable, hashes[0]);
485         CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
486 }
487
488 static void
489 sge_setvlan(struct sge_softc *sc)
490 {
491         struct ifnet *ifp;
492         uint16_t rxfilt;
493
494         SGE_LOCK_ASSERT(sc);
495
496         ifp = sc->sge_ifp;
497         if ((ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) == 0)
498                 return;
499         rxfilt = CSR_READ_2(sc, RxMacControl);
500         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
501                 rxfilt |= RXMAC_STRIP_VLAN;
502         else
503                 rxfilt &= ~RXMAC_STRIP_VLAN;
504         CSR_WRITE_2(sc, RxMacControl, rxfilt);
505 }
506
507 static void
508 sge_reset(struct sge_softc *sc)
509 {
510
511         CSR_WRITE_4(sc, IntrMask, 0);
512         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
513
514         /* Soft reset. */
515         CSR_WRITE_4(sc, IntrControl, 0x8000);
516         CSR_READ_4(sc, IntrControl);
517         DELAY(100);
518         CSR_WRITE_4(sc, IntrControl, 0);
519         /* Stop MAC. */
520         CSR_WRITE_4(sc, TX_CTL, 0x1a00);
521         CSR_WRITE_4(sc, RX_CTL, 0x1a00);
522
523         CSR_WRITE_4(sc, IntrMask, 0);
524         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
525
526         CSR_WRITE_4(sc, GMIIControl, 0);
527 }
528
529 /*
530  * Probe for an SiS chip. Check the PCI vendor and device
531  * IDs against our list and return a device name if we find a match.
532  */
533 static int
534 sge_probe(device_t dev)
535 {
536         struct sge_type *t;
537
538         t = sge_devs;
539         while (t->sge_name != NULL) {
540                 if ((pci_get_vendor(dev) == t->sge_vid) &&
541                     (pci_get_device(dev) == t->sge_did)) {
542                         device_set_desc(dev, t->sge_name);
543                         return (BUS_PROBE_DEFAULT);
544                 }
545                 t++;
546         }
547
548         return (ENXIO);
549 }
550
551 /*
552  * Attach the interface.  Allocate softc structures, do ifmedia
553  * setup and ethernet/BPF attach.
554  */
555 static int
556 sge_attach(device_t dev)
557 {
558         struct sge_softc *sc;
559         struct ifnet *ifp;
560         uint8_t eaddr[ETHER_ADDR_LEN];
561         int error = 0, rid;
562
563         sc = device_get_softc(dev);
564         sc->sge_dev = dev;
565
566         mtx_init(&sc->sge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
567             MTX_DEF);
568         callout_init_mtx(&sc->sge_stat_ch, &sc->sge_mtx, 0);
569
570         /*
571          * Map control/status registers.
572          */
573         pci_enable_busmaster(dev);
574
575         /* Allocate resources. */
576         sc->sge_res_id = PCIR_BAR(0);
577         sc->sge_res_type = SYS_RES_MEMORY;
578         sc->sge_res = bus_alloc_resource_any(dev, sc->sge_res_type,
579             &sc->sge_res_id, RF_ACTIVE);
580         if (sc->sge_res == NULL) {
581                 device_printf(dev, "couldn't allocate resource\n");
582                 error = ENXIO;
583                 goto fail;
584         }
585
586         rid = 0;
587         sc->sge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
588             RF_SHAREABLE | RF_ACTIVE);
589         if (sc->sge_irq == NULL) {
590                 device_printf(dev, "couldn't allocate IRQ resources\n");
591                 error = ENXIO;
592                 goto fail;
593         }
594         sc->sge_rev = pci_get_revid(dev);
595         if (pci_get_device(dev) == SIS_DEVICEID_190)
596                 sc->sge_flags |= SGE_FLAG_FASTETHER | SGE_FLAG_SIS190;
597         /* Reset the adapter. */
598         sge_reset(sc);
599
600         /* Get MAC address from the EEPROM. */
601         if ((pci_read_config(dev, 0x73, 1) & 0x01) != 0)
602                 sge_get_mac_addr_apc(sc, eaddr);
603         else
604                 sge_get_mac_addr_eeprom(sc, eaddr);
605
606         if ((error = sge_dma_alloc(sc)) != 0)
607                 goto fail;
608
609         ifp = sc->sge_ifp = if_alloc(IFT_ETHER);
610         if (ifp == NULL) {
611                 device_printf(dev, "cannot allocate ifnet structure.\n");
612                 error = ENOSPC;
613                 goto fail;
614         }
615         ifp->if_softc = sc;
616         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
617         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
618         ifp->if_ioctl = sge_ioctl;
619         ifp->if_start = sge_start;
620         ifp->if_init = sge_init;
621         ifp->if_snd.ifq_drv_maxlen = SGE_TX_RING_CNT - 1;
622         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
623         IFQ_SET_READY(&ifp->if_snd);
624         ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM | IFCAP_TSO4;
625         ifp->if_hwassist = SGE_CSUM_FEATURES | CSUM_TSO;
626         ifp->if_capenable = ifp->if_capabilities;
627         /*
628          * Do MII setup.
629          */
630         if (mii_phy_probe(dev, &sc->sge_miibus, sge_ifmedia_upd,
631             sge_ifmedia_sts)) {
632                 device_printf(dev, "no PHY found!\n");
633                 error = ENXIO;
634                 goto fail;
635         }
636
637         /*
638          * Call MI attach routine.
639          */
640         ether_ifattach(ifp, eaddr);
641
642         /* VLAN setup. */
643         ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM |
644             IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
645         ifp->if_capenable = ifp->if_capabilities;
646         /* Tell the upper layer(s) we support long frames. */
647         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
648
649         /* Hook interrupt last to avoid having to lock softc */
650         error = bus_setup_intr(dev, sc->sge_irq, INTR_TYPE_NET | INTR_MPSAFE,
651             NULL, sge_intr, sc, &sc->sge_intrhand);
652         if (error) {
653                 device_printf(dev, "couldn't set up irq\n");
654                 ether_ifdetach(ifp);
655                 goto fail;
656         }
657
658 fail:
659         if (error)
660                 sge_detach(dev);
661
662         return (error);
663 }
664
665 /*
666  * Shutdown hardware and free up resources.  This can be called any
667  * time after the mutex has been initialized.  It is called in both
668  * the error case in attach and the normal detach case so it needs
669  * to be careful about only freeing resources that have actually been
670  * allocated.
671  */
672 static int
673 sge_detach(device_t dev)
674 {
675         struct sge_softc *sc;
676         struct ifnet *ifp;
677
678         sc = device_get_softc(dev);
679         ifp = sc->sge_ifp;
680         /* These should only be active if attach succeeded. */
681         if (device_is_attached(dev)) {
682                 ether_ifdetach(ifp);
683                 SGE_LOCK(sc);
684                 sge_stop(sc);
685                 SGE_UNLOCK(sc);
686                 callout_drain(&sc->sge_stat_ch);
687         }
688         if (sc->sge_miibus)
689                 device_delete_child(dev, sc->sge_miibus);
690         bus_generic_detach(dev);
691
692         if (sc->sge_intrhand)
693                 bus_teardown_intr(dev, sc->sge_irq, sc->sge_intrhand);
694         if (sc->sge_irq)
695                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sge_irq);
696         if (sc->sge_res)
697                 bus_release_resource(dev, sc->sge_res_type, sc->sge_res_id,
698                     sc->sge_res);
699         if (ifp)
700                 if_free(ifp);
701         sge_dma_free(sc);
702         mtx_destroy(&sc->sge_mtx);
703
704         return (0);
705 }
706
707 /*
708  * Stop all chip I/O so that the kernel's probe routines don't
709  * get confused by errant DMAs when rebooting.
710  */
711 static int
712 sge_shutdown(device_t dev)
713 {
714         struct sge_softc *sc;
715
716         sc = device_get_softc(dev);
717         SGE_LOCK(sc);
718         sge_stop(sc);
719         SGE_UNLOCK(sc);
720         return (0);
721 }
722
723 static int
724 sge_suspend(device_t dev)
725 {
726         struct sge_softc *sc;
727         struct ifnet *ifp;
728
729         sc = device_get_softc(dev);
730         SGE_LOCK(sc);
731         ifp = sc->sge_ifp;
732         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
733                 sge_stop(sc);
734         SGE_UNLOCK(sc);
735         return (0);
736 }
737
738 static int
739 sge_resume(device_t dev)
740 {
741         struct sge_softc *sc;
742         struct ifnet *ifp;
743
744         sc = device_get_softc(dev);
745         SGE_LOCK(sc);
746         ifp = sc->sge_ifp;
747         if ((ifp->if_flags & IFF_UP) != 0)
748                 sge_init_locked(sc);
749         SGE_UNLOCK(sc);
750         return (0);
751 }
752
753 static int
754 sge_dma_alloc(struct sge_softc *sc)
755 {
756         struct sge_chain_data *cd;
757         struct sge_list_data *ld;
758         struct sge_rxdesc *rxd;
759         struct sge_txdesc *txd;
760         int error, i;
761
762         cd = &sc->sge_cdata;
763         ld = &sc->sge_ldata;
764         error = bus_dma_tag_create(bus_get_dma_tag(sc->sge_dev),
765             1, 0,                       /* alignment, boundary */
766             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
767             BUS_SPACE_MAXADDR,          /* highaddr */
768             NULL, NULL,                 /* filter, filterarg */
769             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
770             1,                          /* nsegments */
771             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
772             0,                          /* flags */
773             NULL,                       /* lockfunc */
774             NULL,                       /* lockarg */
775             &cd->sge_tag);
776         if (error != 0) {
777                 device_printf(sc->sge_dev,
778                     "could not create parent DMA tag.\n");
779                 goto fail;
780         }
781
782         /* RX descriptor ring */
783         error = bus_dma_tag_create(cd->sge_tag,
784             SGE_DESC_ALIGN, 0,          /* alignment, boundary */
785             BUS_SPACE_MAXADDR,          /* lowaddr */
786             BUS_SPACE_MAXADDR,          /* highaddr */
787             NULL, NULL,                 /* filter, filterarg */
788             SGE_RX_RING_SZ, 1,          /* maxsize,nsegments */
789             SGE_RX_RING_SZ,             /* maxsegsize */
790             0,                          /* flags */
791             NULL,                       /* lockfunc */
792             NULL,                       /* lockarg */
793             &cd->sge_rx_tag);
794         if (error != 0) {
795                 device_printf(sc->sge_dev,
796                     "could not create Rx ring DMA tag.\n");
797                 goto fail;
798         }
799         /* Allocate DMA'able memory and load DMA map for RX ring. */
800         error = bus_dmamem_alloc(cd->sge_rx_tag, (void **)&ld->sge_rx_ring,
801             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
802             &cd->sge_rx_dmamap);
803         if (error != 0) {
804                 device_printf(sc->sge_dev,
805                     "could not allocate DMA'able memory for Rx ring.\n");
806                 goto fail;
807         }
808         error = bus_dmamap_load(cd->sge_rx_tag, cd->sge_rx_dmamap,
809             ld->sge_rx_ring, SGE_RX_RING_SZ, sge_dma_map_addr,
810             &ld->sge_rx_paddr, BUS_DMA_NOWAIT);
811         if (error != 0) {
812                 device_printf(sc->sge_dev,
813                     "could not load DMA'able memory for Rx ring.\n");
814         }
815
816         /* TX descriptor ring */
817         error = bus_dma_tag_create(cd->sge_tag,
818             SGE_DESC_ALIGN, 0,          /* alignment, boundary */
819             BUS_SPACE_MAXADDR,          /* lowaddr */
820             BUS_SPACE_MAXADDR,          /* highaddr */
821             NULL, NULL,                 /* filter, filterarg */
822             SGE_TX_RING_SZ, 1,          /* maxsize,nsegments */
823             SGE_TX_RING_SZ,             /* maxsegsize */
824             0,                          /* flags */
825             NULL,                       /* lockfunc */
826             NULL,                       /* lockarg */
827             &cd->sge_tx_tag);
828         if (error != 0) {
829                 device_printf(sc->sge_dev,
830                     "could not create Rx ring DMA tag.\n");
831                 goto fail;
832         }
833         /* Allocate DMA'able memory and load DMA map for TX ring. */
834         error = bus_dmamem_alloc(cd->sge_tx_tag, (void **)&ld->sge_tx_ring,
835             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
836             &cd->sge_tx_dmamap);
837         if (error != 0) {
838                 device_printf(sc->sge_dev,
839                     "could not allocate DMA'able memory for Tx ring.\n");
840                 goto fail;
841         }
842         error = bus_dmamap_load(cd->sge_tx_tag, cd->sge_tx_dmamap,
843             ld->sge_tx_ring, SGE_TX_RING_SZ, sge_dma_map_addr,
844             &ld->sge_tx_paddr, BUS_DMA_NOWAIT);
845         if (error != 0) {
846                 device_printf(sc->sge_dev,
847                     "could not load DMA'able memory for Rx ring.\n");
848                 goto fail;
849         }
850
851         /* Create DMA tag for Tx buffers. */
852         error = bus_dma_tag_create(cd->sge_tag, 1, 0, BUS_SPACE_MAXADDR,
853             BUS_SPACE_MAXADDR, NULL, NULL, SGE_TSO_MAXSIZE, SGE_MAXTXSEGS,
854             SGE_TSO_MAXSEGSIZE, 0, NULL, NULL, &cd->sge_txmbuf_tag);
855         if (error != 0) {
856                 device_printf(sc->sge_dev,
857                     "could not create Tx mbuf DMA tag.\n");
858                 goto fail;
859         }
860
861         /* Create DMA tag for Rx buffers. */
862         error = bus_dma_tag_create(cd->sge_tag, SGE_RX_BUF_ALIGN, 0,
863             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
864             MCLBYTES, 0, NULL, NULL, &cd->sge_rxmbuf_tag);
865         if (error != 0) {
866                 device_printf(sc->sge_dev,
867                     "could not create Rx mbuf DMA tag.\n");
868                 goto fail;
869         }
870
871         /* Create DMA maps for Tx buffers. */
872         for (i = 0; i < SGE_TX_RING_CNT; i++) {
873                 txd = &cd->sge_txdesc[i];
874                 txd->tx_m = NULL;
875                 txd->tx_dmamap = NULL;
876                 txd->tx_ndesc = 0;
877                 error = bus_dmamap_create(cd->sge_txmbuf_tag, 0,
878                     &txd->tx_dmamap);
879                 if (error != 0) {
880                         device_printf(sc->sge_dev,
881                             "could not create Tx DMA map.\n");
882                         goto fail;
883                 }
884         }
885         /* Create spare DMA map for Rx buffer. */
886         error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &cd->sge_rx_spare_map);
887         if (error != 0) {
888                 device_printf(sc->sge_dev,
889                     "could not create spare Rx DMA map.\n");
890                 goto fail;
891         }
892         /* Create DMA maps for Rx buffers. */
893         for (i = 0; i < SGE_RX_RING_CNT; i++) {
894                 rxd = &cd->sge_rxdesc[i];
895                 rxd->rx_m = NULL;
896                 rxd->rx_dmamap = NULL;
897                 error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0,
898                     &rxd->rx_dmamap);
899                 if (error) {
900                         device_printf(sc->sge_dev,
901                             "could not create Rx DMA map.\n");
902                         goto fail;
903                 }
904         }
905 fail:
906         return (error);
907 }
908
909 static void
910 sge_dma_free(struct sge_softc *sc)
911 {
912         struct sge_chain_data *cd;
913         struct sge_list_data *ld;
914         struct sge_rxdesc *rxd;
915         struct sge_txdesc *txd;
916         int i;
917
918         cd = &sc->sge_cdata;
919         ld = &sc->sge_ldata;
920         /* Rx ring. */
921         if (cd->sge_rx_tag != NULL) {
922                 if (cd->sge_rx_dmamap != NULL)
923                         bus_dmamap_unload(cd->sge_rx_tag, cd->sge_rx_dmamap);
924                 if (cd->sge_rx_dmamap != NULL && ld->sge_rx_ring != NULL)
925                         bus_dmamem_free(cd->sge_rx_tag, ld->sge_rx_ring,
926                             cd->sge_rx_dmamap);
927                 ld->sge_rx_ring = NULL;
928                 cd->sge_rx_dmamap = NULL;
929                 bus_dma_tag_destroy(cd->sge_rx_tag);
930                 cd->sge_rx_tag = NULL;
931         }
932         /* Tx ring. */
933         if (cd->sge_tx_tag != NULL) {
934                 if (cd->sge_tx_dmamap != NULL)
935                         bus_dmamap_unload(cd->sge_tx_tag, cd->sge_tx_dmamap);
936                 if (cd->sge_tx_dmamap != NULL && ld->sge_tx_ring != NULL)
937                         bus_dmamem_free(cd->sge_tx_tag, ld->sge_tx_ring,
938                             cd->sge_tx_dmamap);
939                 ld->sge_tx_ring = NULL;
940                 cd->sge_tx_dmamap = NULL;
941                 bus_dma_tag_destroy(cd->sge_tx_tag);
942                 cd->sge_tx_tag = NULL;
943         }
944         /* Rx buffers. */
945         if (cd->sge_rxmbuf_tag != NULL) {
946                 for (i = 0; i < SGE_RX_RING_CNT; i++) {
947                         rxd = &cd->sge_rxdesc[i];
948                         if (rxd->rx_dmamap != NULL) {
949                                 bus_dmamap_destroy(cd->sge_rxmbuf_tag,
950                                     rxd->rx_dmamap);
951                                 rxd->rx_dmamap = NULL;
952                         }
953                 }
954                 if (cd->sge_rx_spare_map != NULL) {
955                         bus_dmamap_destroy(cd->sge_rxmbuf_tag,
956                             cd->sge_rx_spare_map);
957                         cd->sge_rx_spare_map = NULL;
958                 }
959                 bus_dma_tag_destroy(cd->sge_rxmbuf_tag);
960                 cd->sge_rxmbuf_tag = NULL;
961         }
962         /* Tx buffers. */
963         if (cd->sge_txmbuf_tag != NULL) {
964                 for (i = 0; i < SGE_TX_RING_CNT; i++) {
965                         txd = &cd->sge_txdesc[i];
966                         if (txd->tx_dmamap != NULL) {
967                                 bus_dmamap_destroy(cd->sge_txmbuf_tag,
968                                     txd->tx_dmamap);
969                                 txd->tx_dmamap = NULL;
970                         }
971                 }
972                 bus_dma_tag_destroy(cd->sge_txmbuf_tag);
973                 cd->sge_txmbuf_tag = NULL;
974         }
975         if (cd->sge_tag != NULL)
976                 bus_dma_tag_destroy(cd->sge_tag);
977         cd->sge_tag = NULL;
978 }
979
980 /*
981  * Initialize the TX descriptors.
982  */
983 static int
984 sge_list_tx_init(struct sge_softc *sc)
985 {
986         struct sge_list_data *ld;
987         struct sge_chain_data *cd;
988
989         SGE_LOCK_ASSERT(sc);
990         ld = &sc->sge_ldata;
991         cd = &sc->sge_cdata;
992         bzero(ld->sge_tx_ring, SGE_TX_RING_SZ);
993         ld->sge_tx_ring[SGE_TX_RING_CNT - 1].sge_flags = htole32(RING_END);
994         bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
995             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
996         cd->sge_tx_prod = 0;
997         cd->sge_tx_cons = 0;
998         cd->sge_tx_cnt = 0;
999         return (0);
1000 }
1001
1002 static int
1003 sge_list_tx_free(struct sge_softc *sc)
1004 {
1005         struct sge_chain_data *cd;
1006         struct sge_txdesc *txd;
1007         int i;
1008
1009         SGE_LOCK_ASSERT(sc);
1010         cd = &sc->sge_cdata;
1011         for (i = 0; i < SGE_TX_RING_CNT; i++) {
1012                 txd = &cd->sge_txdesc[i];
1013                 if (txd->tx_m != NULL) {
1014                         bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1015                             BUS_DMASYNC_POSTWRITE);
1016                         bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1017                         m_freem(txd->tx_m);
1018                         txd->tx_m = NULL;
1019                         txd->tx_ndesc = 0;
1020                 }
1021         }
1022
1023         return (0);
1024 }
1025
1026 /*
1027  * Initialize the RX descriptors and allocate mbufs for them.  Note that
1028  * we arrange the descriptors in a closed ring, so that the last descriptor
1029  * has RING_END flag set.
1030  */
1031 static int
1032 sge_list_rx_init(struct sge_softc *sc)
1033 {
1034         struct sge_chain_data *cd;
1035         int i;
1036
1037         SGE_LOCK_ASSERT(sc);
1038         cd = &sc->sge_cdata;
1039         cd->sge_rx_cons = 0;
1040         bzero(sc->sge_ldata.sge_rx_ring, SGE_RX_RING_SZ);
1041         for (i = 0; i < SGE_RX_RING_CNT; i++) {
1042                 if (sge_newbuf(sc, i) != 0)
1043                         return (ENOBUFS);
1044         }
1045         bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1046             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1047         return (0);
1048 }
1049
1050 static int
1051 sge_list_rx_free(struct sge_softc *sc)
1052 {
1053         struct sge_chain_data *cd;
1054         struct sge_rxdesc *rxd;
1055         int i;
1056
1057         SGE_LOCK_ASSERT(sc);
1058         cd = &sc->sge_cdata;
1059         for (i = 0; i < SGE_RX_RING_CNT; i++) {
1060                 rxd = &cd->sge_rxdesc[i];
1061                 if (rxd->rx_m != NULL) {
1062                         bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1063                             BUS_DMASYNC_POSTREAD);
1064                         bus_dmamap_unload(cd->sge_rxmbuf_tag,
1065                             rxd->rx_dmamap);
1066                         m_freem(rxd->rx_m);
1067                         rxd->rx_m = NULL;
1068                 }
1069         }
1070         return (0);
1071 }
1072
1073 /*
1074  * Initialize an RX descriptor and attach an MBUF cluster.
1075  */
1076 static int
1077 sge_newbuf(struct sge_softc *sc, int prod)
1078 {
1079         struct mbuf *m;
1080         struct sge_desc *desc;
1081         struct sge_chain_data *cd;
1082         struct sge_rxdesc *rxd;
1083         bus_dma_segment_t segs[1];
1084         bus_dmamap_t map;
1085         int error, nsegs;
1086
1087         SGE_LOCK_ASSERT(sc);
1088
1089         cd = &sc->sge_cdata;
1090         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1091         if (m == NULL)
1092                 return (ENOBUFS);
1093         m->m_len = m->m_pkthdr.len = MCLBYTES;
1094         m_adj(m, SGE_RX_BUF_ALIGN);
1095         error = bus_dmamap_load_mbuf_sg(cd->sge_rxmbuf_tag,
1096             cd->sge_rx_spare_map, m, segs, &nsegs, 0);
1097         if (error != 0) {
1098                 m_freem(m);
1099                 return (error);
1100         }
1101         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1102         rxd = &cd->sge_rxdesc[prod];
1103         if (rxd->rx_m != NULL) {
1104                 bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1105                     BUS_DMASYNC_POSTREAD);
1106                 bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap);
1107         }
1108         map = rxd->rx_dmamap;
1109         rxd->rx_dmamap = cd->sge_rx_spare_map;
1110         cd->sge_rx_spare_map = map;
1111         bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1112             BUS_DMASYNC_PREREAD);
1113         rxd->rx_m = m;
1114
1115         desc = &sc->sge_ldata.sge_rx_ring[prod];
1116         desc->sge_sts_size = 0;
1117         desc->sge_ptr = htole32(SGE_ADDR_LO(segs[0].ds_addr));
1118         desc->sge_flags = htole32(segs[0].ds_len);
1119         if (prod == SGE_RX_RING_CNT - 1)
1120                 desc->sge_flags |= htole32(RING_END);
1121         desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR | RDC_IP_CSUM |
1122             RDC_TCP_CSUM | RDC_UDP_CSUM);
1123         return (0);
1124 }
1125
1126 static __inline void
1127 sge_discard_rxbuf(struct sge_softc *sc, int index)
1128 {
1129         struct sge_desc *desc;
1130
1131         desc = &sc->sge_ldata.sge_rx_ring[index];
1132         desc->sge_sts_size = 0;
1133         desc->sge_flags = htole32(MCLBYTES - SGE_RX_BUF_ALIGN);
1134         if (index == SGE_RX_RING_CNT - 1)
1135                 desc->sge_flags |= htole32(RING_END);
1136         desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR | RDC_IP_CSUM |
1137             RDC_TCP_CSUM | RDC_UDP_CSUM);
1138 }
1139
1140 /*
1141  * A frame has been uploaded: pass the resulting mbuf chain up to
1142  * the higher level protocols.
1143  */
1144 static void
1145 sge_rxeof(struct sge_softc *sc)
1146 {
1147         struct ifnet *ifp;
1148         struct mbuf *m;
1149         struct sge_chain_data *cd;
1150         struct sge_desc *cur_rx;
1151         uint32_t rxinfo, rxstat;
1152         int cons, prog;
1153
1154         SGE_LOCK_ASSERT(sc);
1155
1156         ifp = sc->sge_ifp;
1157         cd = &sc->sge_cdata;
1158
1159         bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1160             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1161         cons = cd->sge_rx_cons;
1162         for (prog = 0; prog < SGE_RX_RING_CNT; prog++,
1163             SGE_INC(cons, SGE_RX_RING_CNT)) {
1164                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1165                         break;
1166                 cur_rx = &sc->sge_ldata.sge_rx_ring[cons];
1167                 rxinfo = le32toh(cur_rx->sge_cmdsts);
1168                 if ((rxinfo & RDC_OWN) != 0)
1169                         break;
1170                 rxstat = le32toh(cur_rx->sge_sts_size);
1171                 if ((rxstat & RDS_CRCOK) == 0 || SGE_RX_ERROR(rxstat) != 0 ||
1172                     SGE_RX_NSEGS(rxstat) != 1) {
1173                         /* XXX We don't support multi-segment frames yet. */
1174 #ifdef SGE_SHOW_ERRORS
1175                         device_printf(sc->sge_dev, "Rx error : 0x%b\n", rxstat,
1176                             RX_ERR_BITS);
1177 #endif
1178                         sge_discard_rxbuf(sc, cons);
1179                         ifp->if_ierrors++;
1180                         continue;
1181                 }
1182                 m = cd->sge_rxdesc[cons].rx_m;
1183                 if (sge_newbuf(sc, cons) != 0) {
1184                         sge_discard_rxbuf(sc, cons);
1185                         ifp->if_iqdrops++;
1186                         continue;
1187                 }
1188                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1189                         if ((rxinfo & RDC_IP_CSUM) != 0 &&
1190                             (rxinfo & RDC_IP_CSUM_OK) != 0)
1191                                 m->m_pkthdr.csum_flags |=
1192                                     CSUM_IP_CHECKED | CSUM_IP_VALID;
1193                         if (((rxinfo & RDC_TCP_CSUM) != 0 &&
1194                             (rxinfo & RDC_TCP_CSUM_OK) != 0) ||
1195                             ((rxinfo & RDC_UDP_CSUM) != 0 &&
1196                             (rxinfo & RDC_UDP_CSUM_OK) != 0)) {
1197                                 m->m_pkthdr.csum_flags |=
1198                                     CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1199                                 m->m_pkthdr.csum_data = 0xffff;
1200                         }
1201                 }
1202                 /* Check for VLAN tagged frame. */
1203                 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1204                     (rxstat & RDS_VLAN) != 0) {
1205                         m->m_pkthdr.ether_vtag = rxinfo & RDC_VLAN_MASK;
1206                         m->m_flags |= M_VLANTAG;
1207                 }
1208                 /*
1209                  * Account for 10bytes auto padding which is used
1210                  * to align IP header on 32bit boundary.  Also note,
1211                  * CRC bytes is automatically removed by the
1212                  * hardware.
1213                  */
1214                 m->m_data += SGE_RX_PAD_BYTES;
1215                 m->m_pkthdr.len = m->m_len = SGE_RX_BYTES(rxstat) -
1216                     SGE_RX_PAD_BYTES;
1217                 m->m_pkthdr.rcvif = ifp;
1218                 ifp->if_ipackets++;
1219                 SGE_UNLOCK(sc);
1220                 (*ifp->if_input)(ifp, m);
1221                 SGE_LOCK(sc);
1222         }
1223
1224         if (prog > 0) {
1225                 bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1226                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1227                 cd->sge_rx_cons = cons;
1228         }
1229 }
1230
1231 /*
1232  * A frame was downloaded to the chip.  It's safe for us to clean up
1233  * the list buffers.
1234  */
1235 static void
1236 sge_txeof(struct sge_softc *sc)
1237 {
1238         struct ifnet *ifp;
1239         struct sge_list_data *ld;
1240         struct sge_chain_data *cd;
1241         struct sge_txdesc *txd;
1242         uint32_t txstat;
1243         int cons, nsegs, prod;
1244
1245         SGE_LOCK_ASSERT(sc);
1246
1247         ifp = sc->sge_ifp;
1248         ld = &sc->sge_ldata;
1249         cd = &sc->sge_cdata;
1250
1251         if (cd->sge_tx_cnt == 0)
1252                 return;
1253         bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
1254             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1255         cons = cd->sge_tx_cons;
1256         prod = cd->sge_tx_prod;
1257         for (; cons != prod;) {
1258                 txstat = le32toh(ld->sge_tx_ring[cons].sge_cmdsts);
1259                 if ((txstat & TDC_OWN) != 0)
1260                         break;
1261                 /*
1262                  * Only the first descriptor of multi-descriptor transmission
1263                  * is updated by controller.  Driver should skip entire
1264                  * chained buffers for the transmitted frame. In other words
1265                  * TDC_OWN bit is valid only at the first descriptor of a
1266                  * multi-descriptor transmission.
1267                  */
1268                 if (SGE_TX_ERROR(txstat) != 0) {
1269 #ifdef SGE_SHOW_ERRORS
1270                         device_printf(sc->sge_dev, "Tx error : 0x%b\n",
1271                             txstat, TX_ERR_BITS);
1272 #endif
1273                         ifp->if_oerrors++;
1274                 } else {
1275 #ifdef notyet
1276                         ifp->if_collisions += (txstat & 0xFFFF) - 1;
1277 #endif
1278                         ifp->if_opackets++;
1279                 }
1280                 txd = &cd->sge_txdesc[cons];
1281                 for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
1282                         ld->sge_tx_ring[cons].sge_cmdsts = 0;
1283                         SGE_INC(cons, SGE_TX_RING_CNT);
1284                 }
1285                 /* Reclaim transmitted mbuf. */
1286                 KASSERT(txd->tx_m != NULL,
1287                     ("%s: freeing NULL mbuf\n", __func__));
1288                 bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1289                     BUS_DMASYNC_POSTWRITE);
1290                 bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1291                 m_freem(txd->tx_m);
1292                 txd->tx_m = NULL;
1293                 cd->sge_tx_cnt -= txd->tx_ndesc;
1294                 KASSERT(cd->sge_tx_cnt >= 0,
1295                     ("%s: Active Tx desc counter was garbled\n", __func__));
1296                 txd->tx_ndesc = 0;
1297                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1298         }
1299         cd->sge_tx_cons = cons;
1300         if (cd->sge_tx_cnt == 0)
1301                 sc->sge_timer = 0;
1302 }
1303
1304 static void
1305 sge_tick(void *arg)
1306 {
1307         struct sge_softc *sc;
1308         struct mii_data *mii;
1309         struct ifnet *ifp;
1310
1311         sc = arg;
1312         SGE_LOCK_ASSERT(sc);
1313
1314         ifp = sc->sge_ifp;
1315         mii = device_get_softc(sc->sge_miibus);
1316         mii_tick(mii);
1317         if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1318                 sge_miibus_statchg(sc->sge_dev);
1319                 if ((sc->sge_flags & SGE_FLAG_LINK) != 0 &&
1320                     !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1321                         sge_start_locked(ifp);
1322         }
1323         /*
1324          * Reclaim transmitted frames here as we do not request
1325          * Tx completion interrupt for every queued frames to
1326          * reduce excessive interrupts.
1327          */
1328         sge_txeof(sc);
1329         sge_watchdog(sc);
1330         callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1331 }
1332
1333 static void
1334 sge_intr(void *arg)
1335 {
1336         struct sge_softc *sc;
1337         struct ifnet *ifp;
1338         uint32_t status;
1339
1340         sc = arg;
1341         SGE_LOCK(sc);
1342         ifp = sc->sge_ifp;
1343
1344         status = CSR_READ_4(sc, IntrStatus);
1345         if (status == 0xFFFFFFFF || (status & SGE_INTRS) == 0) {
1346                 /* Not ours. */
1347                 SGE_UNLOCK(sc);
1348                 return;
1349         }
1350         /* Acknowledge interrupts. */
1351         CSR_WRITE_4(sc, IntrStatus, status);
1352         /* Disable further interrupts. */
1353         CSR_WRITE_4(sc, IntrMask, 0);
1354         /*
1355          * It seems the controller supports some kind of interrupt
1356          * moderation mechanism but we still don't know how to
1357          * enable that.  To reduce number of generated interrupts
1358          * under load we check pending interrupts in a loop.  This
1359          * will increase number of register access and is not correct
1360          * way to handle interrupt moderation but there seems to be
1361          * no other way at this time.
1362          */
1363         for (;;) {
1364                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1365                         break;
1366                 if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
1367                         sge_rxeof(sc);
1368                         /* Wakeup Rx MAC. */
1369                         if ((status & INTR_RX_IDLE) != 0)
1370                                 CSR_WRITE_4(sc, RX_CTL,
1371                                     0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1372                 }
1373                 if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
1374                         sge_txeof(sc);
1375                 status = CSR_READ_4(sc, IntrStatus);
1376                 if ((status & SGE_INTRS) == 0)
1377                         break;
1378                 /* Acknowledge interrupts. */
1379                 CSR_WRITE_4(sc, IntrStatus, status);
1380         }
1381         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1382                 /* Re-enable interrupts */
1383                 CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1384                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1385                         sge_start_locked(ifp);
1386         }
1387         SGE_UNLOCK(sc);
1388 }
1389
1390 /*
1391  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1392  * pointers to the fragment pointers.
1393  */
1394 static int
1395 sge_encap(struct sge_softc *sc, struct mbuf **m_head)
1396 {
1397         struct mbuf *m;
1398         struct sge_desc *desc;
1399         struct sge_txdesc *txd;
1400         bus_dma_segment_t txsegs[SGE_MAXTXSEGS];
1401         uint32_t cflags, mss;
1402         int error, i, nsegs, prod, si;
1403
1404         SGE_LOCK_ASSERT(sc);
1405
1406         si = prod = sc->sge_cdata.sge_tx_prod;
1407         txd = &sc->sge_cdata.sge_txdesc[prod];
1408         if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1409                 struct ether_header *eh;
1410                 struct ip *ip;
1411                 struct tcphdr *tcp;
1412                 uint32_t ip_off, poff;
1413
1414                 if (M_WRITABLE(*m_head) == 0) {
1415                         /* Get a writable copy. */
1416                         m = m_dup(*m_head, M_DONTWAIT);
1417                         m_freem(*m_head);
1418                         if (m == NULL) {
1419                                 *m_head = NULL;
1420                                 return (ENOBUFS);
1421                         }
1422                         *m_head = m;
1423                 }
1424                 ip_off = sizeof(struct ether_header);
1425                 m = m_pullup(*m_head, ip_off);
1426                 if (m == NULL) {
1427                         *m_head = NULL;
1428                         return (ENOBUFS);
1429                 }
1430                 eh = mtod(m, struct ether_header *);
1431                 /* Check the existence of VLAN tag. */
1432                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1433                         ip_off = sizeof(struct ether_vlan_header);
1434                         m = m_pullup(m, ip_off);
1435                         if (m == NULL) {
1436                                 *m_head = NULL;
1437                                 return (ENOBUFS);
1438                         }
1439                 }
1440                 m = m_pullup(m, ip_off + sizeof(struct ip));
1441                 if (m == NULL) {
1442                         *m_head = NULL;
1443                         return (ENOBUFS);
1444                 }
1445                 ip = (struct ip *)(mtod(m, char *) + ip_off);
1446                 poff = ip_off + (ip->ip_hl << 2);
1447                 m = m_pullup(m, poff + sizeof(struct tcphdr));
1448                 if (m == NULL) {
1449                         *m_head = NULL;
1450                         return (ENOBUFS);
1451                 }
1452                 tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1453                 m = m_pullup(m, poff + (tcp->th_off << 2));
1454                 if (m == NULL) {
1455                         *m_head = NULL;
1456                         return (ENOBUFS);
1457                 }
1458                 /*
1459                  * Reset IP checksum and recompute TCP pseudo
1460                  * checksum that NDIS specification requires.
1461                  */
1462                 ip->ip_sum = 0;
1463                 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1464                     htons(IPPROTO_TCP));
1465                 *m_head = m;
1466         }
1467
1468         error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1469             txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1470         if (error == EFBIG) {
1471                 m = m_collapse(*m_head, M_DONTWAIT, SGE_MAXTXSEGS);
1472                 if (m == NULL) {
1473                         m_freem(*m_head);
1474                         *m_head = NULL;
1475                         return (ENOBUFS);
1476                 }
1477                 *m_head = m;
1478                 error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1479                     txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1480                 if (error != 0) {
1481                         m_freem(*m_head);
1482                         *m_head = NULL;
1483                         return (error);
1484                 }
1485         } else if (error != 0)
1486                 return (error);
1487
1488         KASSERT(nsegs != 0, ("zero segment returned"));
1489         /* Check descriptor overrun. */
1490         if (sc->sge_cdata.sge_tx_cnt + nsegs >= SGE_TX_RING_CNT) {
1491                 bus_dmamap_unload(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap);
1492                 return (ENOBUFS);
1493         }
1494         bus_dmamap_sync(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap,
1495             BUS_DMASYNC_PREWRITE);
1496
1497         m = *m_head;
1498         cflags = 0;
1499         mss = 0;
1500         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1501                 cflags |= TDC_LS;
1502                 mss = (uint32_t)m->m_pkthdr.tso_segsz;
1503                 mss <<= 16;
1504         } else {
1505                 if (m->m_pkthdr.csum_flags & CSUM_IP)
1506                         cflags |= TDC_IP_CSUM;
1507                 if (m->m_pkthdr.csum_flags & CSUM_TCP)
1508                         cflags |= TDC_TCP_CSUM;
1509                 if (m->m_pkthdr.csum_flags & CSUM_UDP)
1510                         cflags |= TDC_UDP_CSUM;
1511         }
1512         for (i = 0; i < nsegs; i++) {
1513                 desc = &sc->sge_ldata.sge_tx_ring[prod];
1514                 if (i == 0) {
1515                         desc->sge_sts_size = htole32(m->m_pkthdr.len | mss);
1516                         desc->sge_cmdsts = 0;
1517                 } else {
1518                         desc->sge_sts_size = 0;
1519                         desc->sge_cmdsts = htole32(TDC_OWN);
1520                 }
1521                 desc->sge_ptr = htole32(SGE_ADDR_LO(txsegs[i].ds_addr));
1522                 desc->sge_flags = htole32(txsegs[i].ds_len);
1523                 if (prod == SGE_TX_RING_CNT - 1)
1524                         desc->sge_flags |= htole32(RING_END);
1525                 sc->sge_cdata.sge_tx_cnt++;
1526                 SGE_INC(prod, SGE_TX_RING_CNT);
1527         }
1528         /* Update producer index. */
1529         sc->sge_cdata.sge_tx_prod = prod;
1530
1531         desc = &sc->sge_ldata.sge_tx_ring[si];
1532         /* Configure VLAN. */
1533         if((m->m_flags & M_VLANTAG) != 0) {
1534                 cflags |= m->m_pkthdr.ether_vtag;
1535                 desc->sge_sts_size |= htole32(TDS_INS_VLAN);
1536         }
1537         desc->sge_cmdsts |= htole32(TDC_DEF | TDC_CRC | TDC_PAD | cflags);
1538 #if 1
1539         if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1540                 desc->sge_cmdsts |= htole32(TDC_BST);
1541 #else
1542         if ((sc->sge_flags & SGE_FLAG_FDX) == 0) {
1543                 desc->sge_cmdsts |= htole32(TDC_COL | TDC_CRS | TDC_BKF);
1544                 if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1545                         desc->sge_cmdsts |= htole32(TDC_EXT | TDC_BST);
1546         }
1547 #endif
1548         /* Request interrupt and give ownership to controller. */
1549         desc->sge_cmdsts |= htole32(TDC_OWN | TDC_INTR);
1550         txd->tx_m = m;
1551         txd->tx_ndesc = nsegs;
1552         return (0);
1553 }
1554
1555 static void
1556 sge_start(struct ifnet *ifp)
1557 {
1558         struct sge_softc *sc;
1559
1560         sc = ifp->if_softc;
1561         SGE_LOCK(sc);
1562         sge_start_locked(ifp);
1563         SGE_UNLOCK(sc);
1564 }
1565
1566 static void
1567 sge_start_locked(struct ifnet *ifp)
1568 {
1569         struct sge_softc *sc;
1570         struct mbuf *m_head;
1571         int queued = 0;
1572
1573         sc = ifp->if_softc;
1574         SGE_LOCK_ASSERT(sc);
1575
1576         if ((sc->sge_flags & SGE_FLAG_LINK) == 0 ||
1577             (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1578             IFF_DRV_RUNNING)
1579                 return;
1580
1581         for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1582                 if (sc->sge_cdata.sge_tx_cnt > (SGE_TX_RING_CNT -
1583                     SGE_MAXTXSEGS)) {
1584                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1585                         break;
1586                 }
1587                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1588                 if (m_head == NULL)
1589                         break;
1590                 if (sge_encap(sc, &m_head)) {
1591                         if (m_head == NULL)
1592                                 break;
1593                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1594                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1595                         break;
1596                 }
1597                 queued++;
1598                 /*
1599                  * If there's a BPF listener, bounce a copy of this frame
1600                  * to him.
1601                  */
1602                 BPF_MTAP(ifp, m_head);
1603         }
1604
1605         if (queued > 0) {
1606                 bus_dmamap_sync(sc->sge_cdata.sge_tx_tag,
1607                     sc->sge_cdata.sge_tx_dmamap,
1608                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1609                 CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
1610                 sc->sge_timer = 5;
1611         }
1612 }
1613
1614 static void
1615 sge_init(void *arg)
1616 {
1617         struct sge_softc *sc;
1618
1619         sc = arg;
1620         SGE_LOCK(sc);
1621         sge_init_locked(sc);
1622         SGE_UNLOCK(sc);
1623 }
1624
1625 static void
1626 sge_init_locked(struct sge_softc *sc)
1627 {
1628         struct ifnet *ifp;
1629         struct mii_data *mii;
1630         uint16_t rxfilt;
1631         int i;
1632
1633         SGE_LOCK_ASSERT(sc);
1634         ifp = sc->sge_ifp;
1635         mii = device_get_softc(sc->sge_miibus);
1636         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1637                 return;
1638         /*
1639          * Cancel pending I/O and free all RX/TX buffers.
1640          */
1641         sge_stop(sc);
1642         sge_reset(sc);
1643
1644         /* Init circular RX list. */
1645         if (sge_list_rx_init(sc) == ENOBUFS) {
1646                 device_printf(sc->sge_dev, "no memory for Rx buffers\n");
1647                 sge_stop(sc);
1648                 return;
1649         }
1650         /* Init TX descriptors. */
1651         sge_list_tx_init(sc);
1652         /*
1653          * Load the address of the RX and TX lists.
1654          */
1655         CSR_WRITE_4(sc, TX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_tx_paddr));
1656         CSR_WRITE_4(sc, RX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_rx_paddr));
1657
1658         CSR_WRITE_4(sc, TxMacControl, 0x60);
1659         CSR_WRITE_4(sc, RxWakeOnLan, 0);
1660         CSR_WRITE_4(sc, RxWakeOnLanData, 0);
1661         /* Allow receiving VLAN frames. */
1662         CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
1663             SGE_RX_PAD_BYTES);
1664
1665         for (i = 0; i < ETHER_ADDR_LEN; i++)
1666                 CSR_WRITE_1(sc, RxMacAddr + i, IF_LLADDR(ifp)[i]);
1667         /* Configure RX MAC. */
1668         rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB;
1669         CSR_WRITE_2(sc, RxMacControl, rxfilt);
1670         sge_rxfilter(sc);
1671         sge_setvlan(sc);
1672
1673         /* Initialize default speed/duplex information. */
1674         if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0)
1675                 sc->sge_flags |= SGE_FLAG_SPEED_1000;
1676         sc->sge_flags |= SGE_FLAG_FDX;
1677         if ((sc->sge_flags & SGE_FLAG_RGMII) != 0)
1678                 CSR_WRITE_4(sc, StationControl, 0x04008001);
1679         else
1680                 CSR_WRITE_4(sc, StationControl, 0x04000001);
1681         /*
1682          * XXX Try to mitigate interrupts.
1683          */
1684         CSR_WRITE_4(sc, IntrControl, 0x08880000);
1685 #ifdef notyet
1686         if (sc->sge_intrcontrol != 0)
1687                 CSR_WRITE_4(sc, IntrControl, sc->sge_intrcontrol);
1688         if (sc->sge_intrtimer != 0)
1689                 CSR_WRITE_4(sc, IntrTimer, sc->sge_intrtimer);
1690 #endif
1691
1692         /*
1693          * Clear and enable interrupts.
1694          */
1695         CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
1696         CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1697
1698         /* Enable receiver and transmitter. */
1699         CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
1700         CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1701
1702         ifp->if_drv_flags |= IFF_DRV_RUNNING;
1703         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1704
1705         sc->sge_flags &= ~SGE_FLAG_LINK;
1706         mii_mediachg(mii);
1707         callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1708 }
1709
1710 /*
1711  * Set media options.
1712  */
1713 static int
1714 sge_ifmedia_upd(struct ifnet *ifp)
1715 {
1716         struct sge_softc *sc;
1717         struct mii_data *mii;
1718         int error;
1719
1720         sc = ifp->if_softc;
1721         SGE_LOCK(sc);
1722         mii = device_get_softc(sc->sge_miibus);
1723         if (mii->mii_instance) {
1724                 struct mii_softc *miisc;
1725                 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1726                         mii_phy_reset(miisc);
1727         }
1728         error = mii_mediachg(mii);
1729         SGE_UNLOCK(sc);
1730
1731         return (error);
1732 }
1733
1734 /*
1735  * Report current media status.
1736  */
1737 static void
1738 sge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1739 {
1740         struct sge_softc *sc;
1741         struct mii_data *mii;
1742
1743         sc = ifp->if_softc;
1744         SGE_LOCK(sc);
1745         mii = device_get_softc(sc->sge_miibus);
1746         if ((ifp->if_flags & IFF_UP) == 0) {
1747                 SGE_UNLOCK(sc);
1748                 return;
1749         }
1750         mii_pollstat(mii);
1751         SGE_UNLOCK(sc);
1752         ifmr->ifm_active = mii->mii_media_active;
1753         ifmr->ifm_status = mii->mii_media_status;
1754 }
1755
1756 static int
1757 sge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1758 {
1759         struct sge_softc *sc;
1760         struct ifreq *ifr;
1761         struct mii_data *mii;
1762         int error = 0, mask, reinit;
1763
1764         sc = ifp->if_softc;
1765         ifr = (struct ifreq *)data;
1766
1767         switch(command) {
1768         case SIOCSIFFLAGS:
1769                 SGE_LOCK(sc);
1770                 if ((ifp->if_flags & IFF_UP) != 0) {
1771                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1772                             ((ifp->if_flags ^ sc->sge_if_flags) &
1773                             (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1774                                 sge_rxfilter(sc);
1775                         else
1776                                 sge_init_locked(sc);
1777                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1778                         sge_stop(sc);
1779                 sc->sge_if_flags = ifp->if_flags;
1780                 SGE_UNLOCK(sc);
1781                 break;
1782         case SIOCSIFCAP:
1783                 SGE_LOCK(sc);
1784                 reinit = 0;
1785                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1786                 if ((mask & IFCAP_TXCSUM) != 0 &&
1787                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1788                         ifp->if_capenable ^= IFCAP_TXCSUM;
1789                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1790                                 ifp->if_hwassist |= SGE_CSUM_FEATURES;
1791                         else
1792                                 ifp->if_hwassist &= ~SGE_CSUM_FEATURES;
1793                 }
1794                 if ((mask & IFCAP_RXCSUM) != 0 &&
1795                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
1796                         ifp->if_capenable ^= IFCAP_RXCSUM;
1797                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1798                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1799                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1800                 if ((mask & IFCAP_TSO4) != 0 &&
1801                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1802                         ifp->if_capenable ^= IFCAP_TSO4;
1803                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1804                                 ifp->if_hwassist |= CSUM_TSO;
1805                         else
1806                                 ifp->if_hwassist &= ~CSUM_TSO;
1807                 }
1808                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1809                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1810                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1811                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1812                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1813                         /*
1814                          * Due to unknown reason, toggling VLAN hardware
1815                          * tagging require interface reinitialization.
1816                          */
1817                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1818                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1819                                 ifp->if_capenable &=
1820                                     ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1821                         reinit = 1;
1822                 }
1823                 if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1824                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1825                         sge_init_locked(sc);
1826                 }
1827                 SGE_UNLOCK(sc);
1828                 VLAN_CAPABILITIES(ifp);
1829                 break;
1830         case SIOCADDMULTI:
1831         case SIOCDELMULTI:
1832                 SGE_LOCK(sc);
1833                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1834                         sge_rxfilter(sc);
1835                 SGE_UNLOCK(sc);
1836                 break;
1837         case SIOCGIFMEDIA:
1838         case SIOCSIFMEDIA:
1839                 mii = device_get_softc(sc->sge_miibus);
1840                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1841                 break;
1842         default:
1843                 error = ether_ioctl(ifp, command, data);
1844                 break;
1845         }
1846
1847         return (error);
1848 }
1849
1850 static void
1851 sge_watchdog(struct sge_softc *sc)
1852 {
1853         struct ifnet *ifp;
1854
1855         SGE_LOCK_ASSERT(sc);
1856         if (sc->sge_timer == 0 || --sc->sge_timer > 0)
1857                 return;
1858
1859         ifp = sc->sge_ifp;
1860         if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1861                 if (1 || bootverbose)
1862                         device_printf(sc->sge_dev,
1863                             "watchdog timeout (lost link)\n");
1864                 ifp->if_oerrors++;
1865                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1866                 sge_init_locked(sc);
1867                 return;
1868         }
1869         device_printf(sc->sge_dev, "watchdog timeout\n");
1870         ifp->if_oerrors++;
1871
1872         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1873         sge_init_locked(sc);
1874         if (!IFQ_DRV_IS_EMPTY(&sc->sge_ifp->if_snd))
1875                 sge_start_locked(ifp);
1876 }
1877
1878 /*
1879  * Stop the adapter and free any mbufs allocated to the
1880  * RX and TX lists.
1881  */
1882 static void
1883 sge_stop(struct sge_softc *sc)
1884 {
1885         struct ifnet *ifp;
1886
1887         ifp = sc->sge_ifp;
1888
1889         SGE_LOCK_ASSERT(sc);
1890
1891         sc->sge_timer = 0;
1892         callout_stop(&sc->sge_stat_ch);
1893         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1894
1895         CSR_WRITE_4(sc, IntrMask, 0);
1896         CSR_READ_4(sc, IntrMask);
1897         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1898         /* Stop TX/RX MAC. */
1899         CSR_WRITE_4(sc, TX_CTL, 0x1a00);
1900         CSR_WRITE_4(sc, RX_CTL, 0x1a00);
1901         /* XXX Can we assume active DMA cycles gone? */
1902         DELAY(2000);
1903         CSR_WRITE_4(sc, IntrMask, 0);
1904         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1905
1906         sc->sge_flags &= ~SGE_FLAG_LINK;
1907         sge_list_rx_free(sc);
1908         sge_list_tx_free(sc);
1909 }