]> CyberLeo.Net >> Repos - FreeBSD/releng/8.1.git/blob - sys/dev/sk/if_sk.c
Copy stable/8 to releng/8.1 in preparation for 8.1-RC1.
[FreeBSD/releng/8.1.git] / sys / dev / sk / if_sk.c
1 /*      $OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $ */
2
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *      This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 /*-
35  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36  *
37  * Permission to use, copy, modify, and distribute this software for any
38  * purpose with or without fee is hereby granted, provided that the above
39  * copyright notice and this permission notice appear in all copies.
40  *
41  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48  */
49
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  *      The XaQti XMAC II datasheet,
58  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *      The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 /*
72  * The SysKonnect gigabit ethernet adapters consist of two main
73  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75  * components and a PHY while the GEnesis controller provides a PCI
76  * interface with DMA support. Each card may have between 512K and
77  * 2MB of SRAM on board depending on the configuration.
78  *
79  * The SysKonnect GEnesis controller can have either one or two XMAC
80  * chips connected to it, allowing single or dual port NIC configurations.
81  * SysKonnect has the distinction of being the only vendor on the market
82  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84  * XMAC registers. This driver takes advantage of these features to allow
85  * both XMACs to operate as independent interfaces.
86  */
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/bus.h>
91 #include <sys/endian.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/module.h>
96 #include <sys/socket.h>
97 #include <sys/sockio.h>
98 #include <sys/queue.h>
99 #include <sys/sysctl.h>
100
101 #include <net/bpf.h>
102 #include <net/ethernet.h>
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 #include <net/if_types.h>
108 #include <net/if_vlan_var.h>
109
110 #include <netinet/in.h>
111 #include <netinet/in_systm.h>
112 #include <netinet/ip.h>
113
114 #include <machine/bus.h>
115 #include <machine/in_cksum.h>
116 #include <machine/resource.h>
117 #include <sys/rman.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/brgphyreg.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125
126 #if 0
127 #define SK_USEIOSPACE
128 #endif
129
130 #include <dev/sk/if_skreg.h>
131 #include <dev/sk/xmaciireg.h>
132 #include <dev/sk/yukonreg.h>
133
134 MODULE_DEPEND(sk, pci, 1, 1, 1);
135 MODULE_DEPEND(sk, ether, 1, 1, 1);
136 MODULE_DEPEND(sk, miibus, 1, 1, 1);
137
138 /* "device miibus" required.  See GENERIC if you get errors here. */
139 #include "miibus_if.h"
140
141 #ifndef lint
142 static const char rcsid[] =
143   "$FreeBSD$";
144 #endif
145
146 static struct sk_type sk_devs[] = {
147         {
148                 VENDORID_SK,
149                 DEVICEID_SK_V1,
150                 "SysKonnect Gigabit Ethernet (V1.0)"
151         },
152         {
153                 VENDORID_SK,
154                 DEVICEID_SK_V2,
155                 "SysKonnect Gigabit Ethernet (V2.0)"
156         },
157         {
158                 VENDORID_MARVELL,
159                 DEVICEID_SK_V2,
160                 "Marvell Gigabit Ethernet"
161         },
162         {
163                 VENDORID_MARVELL,
164                 DEVICEID_BELKIN_5005,
165                 "Belkin F5D5005 Gigabit Ethernet"
166         },
167         {
168                 VENDORID_3COM,
169                 DEVICEID_3COM_3C940,
170                 "3Com 3C940 Gigabit Ethernet"
171         },
172         {
173                 VENDORID_LINKSYS,
174                 DEVICEID_LINKSYS_EG1032,
175                 "Linksys EG1032 Gigabit Ethernet"
176         },
177         {
178                 VENDORID_DLINK,
179                 DEVICEID_DLINK_DGE530T_A1,
180                 "D-Link DGE-530T Gigabit Ethernet"
181         },
182         {
183                 VENDORID_DLINK,
184                 DEVICEID_DLINK_DGE530T_B1,
185                 "D-Link DGE-530T Gigabit Ethernet"
186         },
187         { 0, 0, NULL }
188 };
189
190 static int skc_probe(device_t);
191 static int skc_attach(device_t);
192 static int skc_detach(device_t);
193 static int skc_shutdown(device_t);
194 static int skc_suspend(device_t);
195 static int skc_resume(device_t);
196 static int sk_detach(device_t);
197 static int sk_probe(device_t);
198 static int sk_attach(device_t);
199 static void sk_tick(void *);
200 static void sk_yukon_tick(void *);
201 static void sk_intr(void *);
202 static void sk_intr_xmac(struct sk_if_softc *);
203 static void sk_intr_bcom(struct sk_if_softc *);
204 static void sk_intr_yukon(struct sk_if_softc *);
205 static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t);
206 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
207 static void sk_rxeof(struct sk_if_softc *);
208 static void sk_jumbo_rxeof(struct sk_if_softc *);
209 static void sk_txeof(struct sk_if_softc *);
210 static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *);
211 static int sk_encap(struct sk_if_softc *, struct mbuf **);
212 static void sk_start(struct ifnet *);
213 static void sk_start_locked(struct ifnet *);
214 static int sk_ioctl(struct ifnet *, u_long, caddr_t);
215 static void sk_init(void *);
216 static void sk_init_locked(struct sk_if_softc *);
217 static void sk_init_xmac(struct sk_if_softc *);
218 static void sk_init_yukon(struct sk_if_softc *);
219 static void sk_stop(struct sk_if_softc *);
220 static void sk_watchdog(void *);
221 static int sk_ifmedia_upd(struct ifnet *);
222 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
223 static void sk_reset(struct sk_softc *);
224 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
225 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
226 static int sk_newbuf(struct sk_if_softc *, int);
227 static int sk_jumbo_newbuf(struct sk_if_softc *, int);
228 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
229 static int sk_dma_alloc(struct sk_if_softc *);
230 static int sk_dma_jumbo_alloc(struct sk_if_softc *);
231 static void sk_dma_free(struct sk_if_softc *);
232 static void sk_dma_jumbo_free(struct sk_if_softc *);
233 static int sk_init_rx_ring(struct sk_if_softc *);
234 static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
235 static void sk_init_tx_ring(struct sk_if_softc *);
236 static u_int32_t sk_win_read_4(struct sk_softc *, int);
237 static u_int16_t sk_win_read_2(struct sk_softc *, int);
238 static u_int8_t sk_win_read_1(struct sk_softc *, int);
239 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
240 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
241 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
242
243 static int sk_miibus_readreg(device_t, int, int);
244 static int sk_miibus_writereg(device_t, int, int, int);
245 static void sk_miibus_statchg(device_t);
246
247 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
248 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
249                                                 int);
250 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
251
252 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
253 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
254                                                 int);
255 static void sk_marv_miibus_statchg(struct sk_if_softc *);
256
257 static uint32_t sk_xmchash(const uint8_t *);
258 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
259 static void sk_rxfilter(struct sk_if_softc *);
260 static void sk_rxfilter_genesis(struct sk_if_softc *);
261 static void sk_rxfilter_yukon(struct sk_if_softc *);
262
263 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
264 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
265
266 /* Tunables. */
267 static int jumbo_disable = 0;
268 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
269  
270 /*
271  * It seems that SK-NET GENESIS supports very simple checksum offload
272  * capability for Tx and I believe it can generate 0 checksum value for
273  * UDP packets in Tx as the hardware can't differenciate UDP packets from
274  * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
275  * means sender didn't perforam checksum computation. For the safety I
276  * disabled UDP checksum offload capability at the moment. Alternatively
277  * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum
278  * offload routine.
279  */
280 #define SK_CSUM_FEATURES        (CSUM_TCP)
281
282 /*
283  * Note that we have newbus methods for both the GEnesis controller
284  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
285  * the miibus code is a child of the XMACs. We need to do it this way
286  * so that the miibus drivers can access the PHY registers on the
287  * right PHY. It's not quite what I had in mind, but it's the only
288  * design that achieves the desired effect.
289  */
290 static device_method_t skc_methods[] = {
291         /* Device interface */
292         DEVMETHOD(device_probe,         skc_probe),
293         DEVMETHOD(device_attach,        skc_attach),
294         DEVMETHOD(device_detach,        skc_detach),
295         DEVMETHOD(device_suspend,       skc_suspend),
296         DEVMETHOD(device_resume,        skc_resume),
297         DEVMETHOD(device_shutdown,      skc_shutdown),
298
299         /* bus interface */
300         DEVMETHOD(bus_print_child,      bus_generic_print_child),
301         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
302
303         { 0, 0 }
304 };
305
306 static driver_t skc_driver = {
307         "skc",
308         skc_methods,
309         sizeof(struct sk_softc)
310 };
311
312 static devclass_t skc_devclass;
313
314 static device_method_t sk_methods[] = {
315         /* Device interface */
316         DEVMETHOD(device_probe,         sk_probe),
317         DEVMETHOD(device_attach,        sk_attach),
318         DEVMETHOD(device_detach,        sk_detach),
319         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
320
321         /* bus interface */
322         DEVMETHOD(bus_print_child,      bus_generic_print_child),
323         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
324
325         /* MII interface */
326         DEVMETHOD(miibus_readreg,       sk_miibus_readreg),
327         DEVMETHOD(miibus_writereg,      sk_miibus_writereg),
328         DEVMETHOD(miibus_statchg,       sk_miibus_statchg),
329
330         { 0, 0 }
331 };
332
333 static driver_t sk_driver = {
334         "sk",
335         sk_methods,
336         sizeof(struct sk_if_softc)
337 };
338
339 static devclass_t sk_devclass;
340
341 DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, 0, 0);
342 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
343 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
344
345 static struct resource_spec sk_res_spec_io[] = {
346         { SYS_RES_IOPORT,       PCIR_BAR(1),    RF_ACTIVE },
347         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
348         { -1,                   0,              0 }
349 };
350
351 static struct resource_spec sk_res_spec_mem[] = {
352         { SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
353         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
354         { -1,                   0,              0 }
355 };
356
357 #define SK_SETBIT(sc, reg, x)           \
358         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
359
360 #define SK_CLRBIT(sc, reg, x)           \
361         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
362
363 #define SK_WIN_SETBIT_4(sc, reg, x)     \
364         sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
365
366 #define SK_WIN_CLRBIT_4(sc, reg, x)     \
367         sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
368
369 #define SK_WIN_SETBIT_2(sc, reg, x)     \
370         sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
371
372 #define SK_WIN_CLRBIT_2(sc, reg, x)     \
373         sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
374
375 static u_int32_t
376 sk_win_read_4(sc, reg)
377         struct sk_softc         *sc;
378         int                     reg;
379 {
380 #ifdef SK_USEIOSPACE
381         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
382         return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
383 #else
384         return(CSR_READ_4(sc, reg));
385 #endif
386 }
387
388 static u_int16_t
389 sk_win_read_2(sc, reg)
390         struct sk_softc         *sc;
391         int                     reg;
392 {
393 #ifdef SK_USEIOSPACE
394         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
395         return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
396 #else
397         return(CSR_READ_2(sc, reg));
398 #endif
399 }
400
401 static u_int8_t
402 sk_win_read_1(sc, reg)
403         struct sk_softc         *sc;
404         int                     reg;
405 {
406 #ifdef SK_USEIOSPACE
407         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
408         return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
409 #else
410         return(CSR_READ_1(sc, reg));
411 #endif
412 }
413
414 static void
415 sk_win_write_4(sc, reg, val)
416         struct sk_softc         *sc;
417         int                     reg;
418         u_int32_t               val;
419 {
420 #ifdef SK_USEIOSPACE
421         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
422         CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
423 #else
424         CSR_WRITE_4(sc, reg, val);
425 #endif
426         return;
427 }
428
429 static void
430 sk_win_write_2(sc, reg, val)
431         struct sk_softc         *sc;
432         int                     reg;
433         u_int32_t               val;
434 {
435 #ifdef SK_USEIOSPACE
436         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
437         CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
438 #else
439         CSR_WRITE_2(sc, reg, val);
440 #endif
441         return;
442 }
443
444 static void
445 sk_win_write_1(sc, reg, val)
446         struct sk_softc         *sc;
447         int                     reg;
448         u_int32_t               val;
449 {
450 #ifdef SK_USEIOSPACE
451         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
452         CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
453 #else
454         CSR_WRITE_1(sc, reg, val);
455 #endif
456         return;
457 }
458
459 static int
460 sk_miibus_readreg(dev, phy, reg)
461         device_t                dev;
462         int                     phy, reg;
463 {
464         struct sk_if_softc      *sc_if;
465         int                     v;
466
467         sc_if = device_get_softc(dev);
468
469         SK_IF_MII_LOCK(sc_if);
470         switch(sc_if->sk_softc->sk_type) {
471         case SK_GENESIS:
472                 v = sk_xmac_miibus_readreg(sc_if, phy, reg);
473                 break;
474         case SK_YUKON:
475         case SK_YUKON_LITE:
476         case SK_YUKON_LP:
477                 v = sk_marv_miibus_readreg(sc_if, phy, reg);
478                 break;
479         default:
480                 v = 0;
481                 break;
482         }
483         SK_IF_MII_UNLOCK(sc_if);
484
485         return (v);
486 }
487
488 static int
489 sk_miibus_writereg(dev, phy, reg, val)
490         device_t                dev;
491         int                     phy, reg, val;
492 {
493         struct sk_if_softc      *sc_if;
494         int                     v;
495
496         sc_if = device_get_softc(dev);
497
498         SK_IF_MII_LOCK(sc_if);
499         switch(sc_if->sk_softc->sk_type) {
500         case SK_GENESIS:
501                 v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
502                 break;
503         case SK_YUKON:
504         case SK_YUKON_LITE:
505         case SK_YUKON_LP:
506                 v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
507                 break;
508         default:
509                 v = 0;
510                 break;
511         }
512         SK_IF_MII_UNLOCK(sc_if);
513
514         return (v);
515 }
516
517 static void
518 sk_miibus_statchg(dev)
519         device_t                dev;
520 {
521         struct sk_if_softc      *sc_if;
522
523         sc_if = device_get_softc(dev);
524
525         SK_IF_MII_LOCK(sc_if);
526         switch(sc_if->sk_softc->sk_type) {
527         case SK_GENESIS:
528                 sk_xmac_miibus_statchg(sc_if);
529                 break;
530         case SK_YUKON:
531         case SK_YUKON_LITE:
532         case SK_YUKON_LP:
533                 sk_marv_miibus_statchg(sc_if);
534                 break;
535         }
536         SK_IF_MII_UNLOCK(sc_if);
537
538         return;
539 }
540
541 static int
542 sk_xmac_miibus_readreg(sc_if, phy, reg)
543         struct sk_if_softc      *sc_if;
544         int                     phy, reg;
545 {
546         int                     i;
547
548         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
549                 return(0);
550
551         SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
552         SK_XM_READ_2(sc_if, XM_PHY_DATA);
553         if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
554                 for (i = 0; i < SK_TIMEOUT; i++) {
555                         DELAY(1);
556                         if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
557                             XM_MMUCMD_PHYDATARDY)
558                                 break;
559                 }
560
561                 if (i == SK_TIMEOUT) {
562                         if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
563                         return(0);
564                 }
565         }
566         DELAY(1);
567         i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
568
569         return(i);
570 }
571
572 static int
573 sk_xmac_miibus_writereg(sc_if, phy, reg, val)
574         struct sk_if_softc      *sc_if;
575         int                     phy, reg, val;
576 {
577         int                     i;
578
579         SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
580         for (i = 0; i < SK_TIMEOUT; i++) {
581                 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
582                         break;
583         }
584
585         if (i == SK_TIMEOUT) {
586                 if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
587                 return (ETIMEDOUT);
588         }
589
590         SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
591         for (i = 0; i < SK_TIMEOUT; i++) {
592                 DELAY(1);
593                 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
594                         break;
595         }
596         if (i == SK_TIMEOUT)
597                 if_printf(sc_if->sk_ifp, "phy write timed out\n");
598
599         return(0);
600 }
601
602 static void
603 sk_xmac_miibus_statchg(sc_if)
604         struct sk_if_softc      *sc_if;
605 {
606         struct mii_data         *mii;
607
608         mii = device_get_softc(sc_if->sk_miibus);
609
610         /*
611          * If this is a GMII PHY, manually set the XMAC's
612          * duplex mode accordingly.
613          */
614         if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
615                 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
616                         SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
617                 } else {
618                         SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
619                 }
620         }
621 }
622
623 static int
624 sk_marv_miibus_readreg(sc_if, phy, reg)
625         struct sk_if_softc      *sc_if;
626         int                     phy, reg;
627 {
628         u_int16_t               val;
629         int                     i;
630
631         if (phy != 0 ||
632             (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
633              sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
634                 return(0);
635         }
636
637         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
638                       YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
639
640         for (i = 0; i < SK_TIMEOUT; i++) {
641                 DELAY(1);
642                 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
643                 if (val & YU_SMICR_READ_VALID)
644                         break;
645         }
646
647         if (i == SK_TIMEOUT) {
648                 if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
649                 return(0);
650         }
651
652         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
653
654         return(val);
655 }
656
657 static int
658 sk_marv_miibus_writereg(sc_if, phy, reg, val)
659         struct sk_if_softc      *sc_if;
660         int                     phy, reg, val;
661 {
662         int                     i;
663
664         SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
665         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
666                       YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
667
668         for (i = 0; i < SK_TIMEOUT; i++) {
669                 DELAY(1);
670                 if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
671                         break;
672         }
673         if (i == SK_TIMEOUT)
674                 if_printf(sc_if->sk_ifp, "phy write timeout\n");
675
676         return(0);
677 }
678
679 static void
680 sk_marv_miibus_statchg(sc_if)
681         struct sk_if_softc      *sc_if;
682 {
683         return;
684 }
685
686 #define HASH_BITS               6
687
688 static u_int32_t
689 sk_xmchash(addr)
690         const uint8_t *addr;
691 {
692         uint32_t crc;
693
694         /* Compute CRC for the address value. */
695         crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
696
697         return (~crc & ((1 << HASH_BITS) - 1));
698 }
699
700 static void
701 sk_setfilt(sc_if, addr, slot)
702         struct sk_if_softc      *sc_if;
703         u_int16_t               *addr;
704         int                     slot;
705 {
706         int                     base;
707
708         base = XM_RXFILT_ENTRY(slot);
709
710         SK_XM_WRITE_2(sc_if, base, addr[0]);
711         SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
712         SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
713
714         return;
715 }
716
717 static void
718 sk_rxfilter(sc_if)
719         struct sk_if_softc      *sc_if;
720 {
721         struct sk_softc         *sc;
722
723         SK_IF_LOCK_ASSERT(sc_if);
724
725         sc = sc_if->sk_softc;
726         if (sc->sk_type == SK_GENESIS)
727                 sk_rxfilter_genesis(sc_if);
728         else
729                 sk_rxfilter_yukon(sc_if);
730 }
731
732 static void
733 sk_rxfilter_genesis(sc_if)
734         struct sk_if_softc      *sc_if;
735 {
736         struct ifnet            *ifp = sc_if->sk_ifp;
737         u_int32_t               hashes[2] = { 0, 0 }, mode;
738         int                     h = 0, i;
739         struct ifmultiaddr      *ifma;
740         u_int16_t               dummy[] = { 0, 0, 0 };
741         u_int16_t               maddr[(ETHER_ADDR_LEN+1)/2];
742
743         SK_IF_LOCK_ASSERT(sc_if);
744
745         mode = SK_XM_READ_4(sc_if, XM_MODE);
746         mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
747             XM_MODE_RX_USE_PERFECT);
748         /* First, zot all the existing perfect filters. */
749         for (i = 1; i < XM_RXFILT_MAX; i++)
750                 sk_setfilt(sc_if, dummy, i);
751
752         /* Now program new ones. */
753         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
754                 if (ifp->if_flags & IFF_ALLMULTI)
755                         mode |= XM_MODE_RX_USE_HASH;
756                 if (ifp->if_flags & IFF_PROMISC)
757                         mode |= XM_MODE_RX_PROMISC;
758                 hashes[0] = 0xFFFFFFFF;
759                 hashes[1] = 0xFFFFFFFF;
760         } else {
761                 i = 1;
762                 if_maddr_rlock(ifp);
763                 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
764                     ifma_link) {
765                         if (ifma->ifma_addr->sa_family != AF_LINK)
766                                 continue;
767                         /*
768                          * Program the first XM_RXFILT_MAX multicast groups
769                          * into the perfect filter.
770                          */
771                         bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
772                             maddr, ETHER_ADDR_LEN);
773                         if (i < XM_RXFILT_MAX) {
774                                 sk_setfilt(sc_if, maddr, i);
775                                 mode |= XM_MODE_RX_USE_PERFECT;
776                                 i++;
777                                 continue;
778                         }
779                         h = sk_xmchash((const uint8_t *)maddr);
780                         if (h < 32)
781                                 hashes[0] |= (1 << h);
782                         else
783                                 hashes[1] |= (1 << (h - 32));
784                         mode |= XM_MODE_RX_USE_HASH;
785                 }
786                 if_maddr_runlock(ifp);
787         }
788
789         SK_XM_WRITE_4(sc_if, XM_MODE, mode);
790         SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
791         SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
792 }
793
794 static void
795 sk_rxfilter_yukon(sc_if)
796         struct sk_if_softc      *sc_if;
797 {
798         struct ifnet            *ifp;
799         u_int32_t               crc, hashes[2] = { 0, 0 }, mode;
800         struct ifmultiaddr      *ifma;
801
802         SK_IF_LOCK_ASSERT(sc_if);
803
804         ifp = sc_if->sk_ifp;
805         mode = SK_YU_READ_2(sc_if, YUKON_RCR);
806         if (ifp->if_flags & IFF_PROMISC)
807                 mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN); 
808         else if (ifp->if_flags & IFF_ALLMULTI) {
809                 mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN; 
810                 hashes[0] = 0xFFFFFFFF;
811                 hashes[1] = 0xFFFFFFFF;
812         } else {
813                 mode |= YU_RCR_UFLEN;
814                 if_maddr_rlock(ifp);
815                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
816                         if (ifma->ifma_addr->sa_family != AF_LINK)
817                                 continue;
818                         crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
819                             ifma->ifma_addr), ETHER_ADDR_LEN);
820                         /* Just want the 6 least significant bits. */
821                         crc &= 0x3f;
822                         /* Set the corresponding bit in the hash table. */
823                         hashes[crc >> 5] |= 1 << (crc & 0x1f);
824                 }
825                 if_maddr_runlock(ifp);
826                 if (hashes[0] != 0 || hashes[1] != 0)
827                         mode |= YU_RCR_MUFLEN;
828         }
829
830         SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
831         SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
832         SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
833         SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
834         SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
835 }
836
837 static int
838 sk_init_rx_ring(sc_if)
839         struct sk_if_softc      *sc_if;
840 {
841         struct sk_ring_data     *rd;
842         bus_addr_t              addr;
843         u_int32_t               csum_start;
844         int                     i;
845
846         sc_if->sk_cdata.sk_rx_cons = 0;
847
848         csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
849             ETHER_HDR_LEN;
850         rd = &sc_if->sk_rdata;
851         bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
852         for (i = 0; i < SK_RX_RING_CNT; i++) {
853                 if (sk_newbuf(sc_if, i) != 0)
854                         return (ENOBUFS);
855                 if (i == (SK_RX_RING_CNT - 1))
856                         addr = SK_RX_RING_ADDR(sc_if, 0);
857                 else
858                         addr = SK_RX_RING_ADDR(sc_if, i + 1);
859                 rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
860                 rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
861         }
862
863         bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
864             sc_if->sk_cdata.sk_rx_ring_map,
865             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
866
867         return(0);
868 }
869
870 static int
871 sk_init_jumbo_rx_ring(sc_if)
872         struct sk_if_softc      *sc_if;
873 {
874         struct sk_ring_data     *rd;
875         bus_addr_t              addr;
876         u_int32_t               csum_start;
877         int                     i;
878
879         sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
880
881         csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
882             ETHER_HDR_LEN;
883         rd = &sc_if->sk_rdata;
884         bzero(rd->sk_jumbo_rx_ring,
885             sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
886         for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
887                 if (sk_jumbo_newbuf(sc_if, i) != 0)
888                         return (ENOBUFS);
889                 if (i == (SK_JUMBO_RX_RING_CNT - 1))
890                         addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
891                 else
892                         addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
893                 rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
894                 rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
895         }
896
897         bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
898             sc_if->sk_cdata.sk_jumbo_rx_ring_map,
899             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
900
901         return (0);
902 }
903
904 static void
905 sk_init_tx_ring(sc_if)
906         struct sk_if_softc      *sc_if;
907 {
908         struct sk_ring_data     *rd;
909         struct sk_txdesc        *txd;
910         bus_addr_t              addr;
911         int                     i;
912
913         STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
914         STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
915
916         sc_if->sk_cdata.sk_tx_prod = 0;
917         sc_if->sk_cdata.sk_tx_cons = 0;
918         sc_if->sk_cdata.sk_tx_cnt = 0;
919
920         rd = &sc_if->sk_rdata;
921         bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
922         for (i = 0; i < SK_TX_RING_CNT; i++) {
923                 if (i == (SK_TX_RING_CNT - 1))
924                         addr = SK_TX_RING_ADDR(sc_if, 0);
925                 else
926                         addr = SK_TX_RING_ADDR(sc_if, i + 1);
927                 rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
928                 txd = &sc_if->sk_cdata.sk_txdesc[i];
929                 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
930         }
931
932         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
933             sc_if->sk_cdata.sk_tx_ring_map,
934             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
935 }
936
937 static __inline void
938 sk_discard_rxbuf(sc_if, idx)
939         struct sk_if_softc      *sc_if;
940         int                     idx;
941 {
942         struct sk_rx_desc       *r;
943         struct sk_rxdesc        *rxd;
944         struct mbuf             *m;
945
946
947         r = &sc_if->sk_rdata.sk_rx_ring[idx];
948         rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
949         m = rxd->rx_m;
950         r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
951 }
952
953 static __inline void
954 sk_discard_jumbo_rxbuf(sc_if, idx)
955         struct sk_if_softc      *sc_if;
956         int                     idx;
957 {
958         struct sk_rx_desc       *r;
959         struct sk_rxdesc        *rxd;
960         struct mbuf             *m;
961
962         r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
963         rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
964         m = rxd->rx_m;
965         r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
966 }
967
968 static int
969 sk_newbuf(sc_if, idx)
970         struct sk_if_softc      *sc_if;
971         int                     idx;
972 {
973         struct sk_rx_desc       *r;
974         struct sk_rxdesc        *rxd;
975         struct mbuf             *m;
976         bus_dma_segment_t       segs[1];
977         bus_dmamap_t            map;
978         int                     nsegs;
979
980         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
981         if (m == NULL)
982                 return (ENOBUFS);
983         m->m_len = m->m_pkthdr.len = MCLBYTES;
984         m_adj(m, ETHER_ALIGN);
985
986         if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
987             sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
988                 m_freem(m);
989                 return (ENOBUFS);
990         }
991         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
992
993         rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
994         if (rxd->rx_m != NULL) {
995                 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
996                     BUS_DMASYNC_POSTREAD);
997                 bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
998         }
999         map = rxd->rx_dmamap;
1000         rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
1001         sc_if->sk_cdata.sk_rx_sparemap = map;
1002         bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
1003             BUS_DMASYNC_PREREAD);
1004         rxd->rx_m = m;
1005         r = &sc_if->sk_rdata.sk_rx_ring[idx];
1006         r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1007         r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1008         r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1009
1010         return (0);
1011 }
1012
1013 static int
1014 sk_jumbo_newbuf(sc_if, idx)
1015         struct sk_if_softc      *sc_if;
1016         int                     idx;
1017 {
1018         struct sk_rx_desc       *r;
1019         struct sk_rxdesc        *rxd;
1020         struct mbuf             *m;
1021         bus_dma_segment_t       segs[1];
1022         bus_dmamap_t            map;
1023         int                     nsegs;
1024
1025         m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1026         if (m == NULL)
1027                 return (ENOBUFS);
1028         if ((m->m_flags & M_EXT) == 0) {
1029                 m_freem(m);
1030                 return (ENOBUFS);
1031         }
1032         m->m_pkthdr.len = m->m_len = MJUM9BYTES;
1033         /*
1034          * Adjust alignment so packet payload begins on a
1035          * longword boundary. Mandatory for Alpha, useful on
1036          * x86 too.
1037          */
1038         m_adj(m, ETHER_ALIGN);
1039
1040         if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
1041             sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1042                 m_freem(m);
1043                 return (ENOBUFS);
1044         }
1045         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1046
1047         rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
1048         if (rxd->rx_m != NULL) {
1049                 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1050                     BUS_DMASYNC_POSTREAD);
1051                 bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
1052                     rxd->rx_dmamap);
1053         }
1054         map = rxd->rx_dmamap;
1055         rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
1056         sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
1057         bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1058             BUS_DMASYNC_PREREAD);
1059         rxd->rx_m = m;
1060         r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
1061         r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1062         r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1063         r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1064
1065         return (0);
1066 }
1067
1068 /*
1069  * Set media options.
1070  */
1071 static int
1072 sk_ifmedia_upd(ifp)
1073         struct ifnet            *ifp;
1074 {
1075         struct sk_if_softc      *sc_if = ifp->if_softc;
1076         struct mii_data         *mii;
1077
1078         mii = device_get_softc(sc_if->sk_miibus);
1079         sk_init(sc_if);
1080         mii_mediachg(mii);
1081
1082         return(0);
1083 }
1084
1085 /*
1086  * Report current media status.
1087  */
1088 static void
1089 sk_ifmedia_sts(ifp, ifmr)
1090         struct ifnet            *ifp;
1091         struct ifmediareq       *ifmr;
1092 {
1093         struct sk_if_softc      *sc_if;
1094         struct mii_data         *mii;
1095
1096         sc_if = ifp->if_softc;
1097         mii = device_get_softc(sc_if->sk_miibus);
1098
1099         mii_pollstat(mii);
1100         ifmr->ifm_active = mii->mii_media_active;
1101         ifmr->ifm_status = mii->mii_media_status;
1102
1103         return;
1104 }
1105
1106 static int
1107 sk_ioctl(ifp, command, data)
1108         struct ifnet            *ifp;
1109         u_long                  command;
1110         caddr_t                 data;
1111 {
1112         struct sk_if_softc      *sc_if = ifp->if_softc;
1113         struct ifreq            *ifr = (struct ifreq *) data;
1114         int                     error, mask;
1115         struct mii_data         *mii;
1116
1117         error = 0;
1118         switch(command) {
1119         case SIOCSIFMTU:
1120                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
1121                         error = EINVAL;
1122                 else if (ifp->if_mtu != ifr->ifr_mtu) {
1123                         if (sc_if->sk_jumbo_disable != 0 &&
1124                             ifr->ifr_mtu > SK_MAX_FRAMELEN)
1125                                 error = EINVAL;
1126                         else {
1127                                 SK_IF_LOCK(sc_if);
1128                                 ifp->if_mtu = ifr->ifr_mtu;
1129                                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1130                                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1131                                         sk_init_locked(sc_if);
1132                                 }
1133                                 SK_IF_UNLOCK(sc_if);
1134                         }
1135                 }
1136                 break;
1137         case SIOCSIFFLAGS:
1138                 SK_IF_LOCK(sc_if);
1139                 if (ifp->if_flags & IFF_UP) {
1140                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1141                                 if ((ifp->if_flags ^ sc_if->sk_if_flags)
1142                                     & (IFF_PROMISC | IFF_ALLMULTI))
1143                                         sk_rxfilter(sc_if);
1144                         } else
1145                                 sk_init_locked(sc_if);
1146                 } else {
1147                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1148                                 sk_stop(sc_if);
1149                 }
1150                 sc_if->sk_if_flags = ifp->if_flags;
1151                 SK_IF_UNLOCK(sc_if);
1152                 break;
1153         case SIOCADDMULTI:
1154         case SIOCDELMULTI:
1155                 SK_IF_LOCK(sc_if);
1156                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1157                         sk_rxfilter(sc_if);
1158                 SK_IF_UNLOCK(sc_if);
1159                 break;
1160         case SIOCGIFMEDIA:
1161         case SIOCSIFMEDIA:
1162                 mii = device_get_softc(sc_if->sk_miibus);
1163                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1164                 break;
1165         case SIOCSIFCAP:
1166                 SK_IF_LOCK(sc_if);
1167                 if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1168                         SK_IF_UNLOCK(sc_if);
1169                         break;
1170                 }
1171                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1172                 if (mask & IFCAP_HWCSUM) {
1173                         ifp->if_capenable ^= IFCAP_HWCSUM;
1174                         if (IFCAP_HWCSUM & ifp->if_capenable &&
1175                             IFCAP_HWCSUM & ifp->if_capabilities)
1176                                 ifp->if_hwassist = SK_CSUM_FEATURES;
1177                         else
1178                                 ifp->if_hwassist = 0;
1179                 }
1180                 SK_IF_UNLOCK(sc_if);
1181                 break;
1182         default:
1183                 error = ether_ioctl(ifp, command, data);
1184                 break;
1185         }
1186
1187         return (error);
1188 }
1189
1190 /*
1191  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1192  * IDs against our list and return a device name if we find a match.
1193  */
1194 static int
1195 skc_probe(dev)
1196         device_t                dev;
1197 {
1198         struct sk_type          *t = sk_devs;
1199
1200         while(t->sk_name != NULL) {
1201                 if ((pci_get_vendor(dev) == t->sk_vid) &&
1202                     (pci_get_device(dev) == t->sk_did)) {
1203                         /*
1204                          * Only attach to rev. 2 of the Linksys EG1032 adapter.
1205                          * Rev. 3 is supported by re(4).
1206                          */
1207                         if ((t->sk_vid == VENDORID_LINKSYS) &&
1208                                 (t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1209                                 (pci_get_subdevice(dev) !=
1210                                  SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1211                                 t++;
1212                                 continue;
1213                         }
1214                         device_set_desc(dev, t->sk_name);
1215                         return (BUS_PROBE_DEFAULT);
1216                 }
1217                 t++;
1218         }
1219
1220         return(ENXIO);
1221 }
1222
1223 /*
1224  * Force the GEnesis into reset, then bring it out of reset.
1225  */
1226 static void
1227 sk_reset(sc)
1228         struct sk_softc         *sc;
1229 {
1230
1231         CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1232         CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1233         if (SK_YUKON_FAMILY(sc->sk_type))
1234                 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1235
1236         DELAY(1000);
1237         CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1238         DELAY(2);
1239         CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1240         if (SK_YUKON_FAMILY(sc->sk_type))
1241                 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1242
1243         if (sc->sk_type == SK_GENESIS) {
1244                 /* Configure packet arbiter */
1245                 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1246                 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1247                 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1248                 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1249                 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1250         }
1251
1252         /* Enable RAM interface */
1253         sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1254
1255         /*
1256          * Configure interrupt moderation. The moderation timer
1257          * defers interrupts specified in the interrupt moderation
1258          * timer mask based on the timeout specified in the interrupt
1259          * moderation timer init register. Each bit in the timer
1260          * register represents one tick, so to specify a timeout in
1261          * microseconds, we have to multiply by the correct number of
1262          * ticks-per-microsecond.
1263          */
1264         switch (sc->sk_type) {
1265         case SK_GENESIS:
1266                 sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1267                 break;
1268         default:
1269                 sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1270                 break;
1271         }
1272         if (bootverbose)
1273                 device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1274                     sc->sk_int_mod);
1275         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1276             sc->sk_int_ticks));
1277         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1278             SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1279         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1280
1281         return;
1282 }
1283
1284 static int
1285 sk_probe(dev)
1286         device_t                dev;
1287 {
1288         struct sk_softc         *sc;
1289
1290         sc = device_get_softc(device_get_parent(dev));
1291
1292         /*
1293          * Not much to do here. We always know there will be
1294          * at least one XMAC present, and if there are two,
1295          * skc_attach() will create a second device instance
1296          * for us.
1297          */
1298         switch (sc->sk_type) {
1299         case SK_GENESIS:
1300                 device_set_desc(dev, "XaQti Corp. XMAC II");
1301                 break;
1302         case SK_YUKON:
1303         case SK_YUKON_LITE:
1304         case SK_YUKON_LP:
1305                 device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1306                 break;
1307         }
1308
1309         return (BUS_PROBE_DEFAULT);
1310 }
1311
1312 /*
1313  * Each XMAC chip is attached as a separate logical IP interface.
1314  * Single port cards will have only one logical interface of course.
1315  */
1316 static int
1317 sk_attach(dev)
1318         device_t                dev;
1319 {
1320         struct sk_softc         *sc;
1321         struct sk_if_softc      *sc_if;
1322         struct ifnet            *ifp;
1323         int                     i, port, error;
1324         u_char                  eaddr[6];
1325
1326         if (dev == NULL)
1327                 return(EINVAL);
1328
1329         error = 0;
1330         sc_if = device_get_softc(dev);
1331         sc = device_get_softc(device_get_parent(dev));
1332         port = *(int *)device_get_ivars(dev);
1333
1334         sc_if->sk_if_dev = dev;
1335         sc_if->sk_port = port;
1336         sc_if->sk_softc = sc;
1337         sc->sk_if[port] = sc_if;
1338         if (port == SK_PORT_A)
1339                 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1340         if (port == SK_PORT_B)
1341                 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1342
1343         callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1344         callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
1345
1346         if (sk_dma_alloc(sc_if) != 0) {
1347                 error = ENOMEM;
1348                 goto fail;
1349         }
1350         sk_dma_jumbo_alloc(sc_if);
1351
1352         ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1353         if (ifp == NULL) {
1354                 device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
1355                 error = ENOSPC;
1356                 goto fail;
1357         }
1358         ifp->if_softc = sc_if;
1359         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1360         ifp->if_mtu = ETHERMTU;
1361         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1362         /*
1363          * SK_GENESIS has a bug in checksum offload - From linux.
1364          */
1365         if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1366                 ifp->if_capabilities = IFCAP_HWCSUM;
1367                 ifp->if_hwassist = SK_CSUM_FEATURES;
1368         } else {
1369                 ifp->if_capabilities = 0;
1370                 ifp->if_hwassist = 0;
1371         }
1372         ifp->if_capenable = ifp->if_capabilities;
1373         ifp->if_ioctl = sk_ioctl;
1374         ifp->if_start = sk_start;
1375         ifp->if_timer = 0;
1376         ifp->if_watchdog = NULL;
1377         ifp->if_init = sk_init;
1378         IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1379         ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1380         IFQ_SET_READY(&ifp->if_snd);
1381
1382         /*
1383          * Get station address for this interface. Note that
1384          * dual port cards actually come with three station
1385          * addresses: one for each port, plus an extra. The
1386          * extra one is used by the SysKonnect driver software
1387          * as a 'virtual' station address for when both ports
1388          * are operating in failover mode. Currently we don't
1389          * use this extra address.
1390          */
1391         SK_IF_LOCK(sc_if);
1392         for (i = 0; i < ETHER_ADDR_LEN; i++)
1393                 eaddr[i] =
1394                     sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1395
1396         /*
1397          * Set up RAM buffer addresses. The NIC will have a certain
1398          * amount of SRAM on it, somewhere between 512K and 2MB. We
1399          * need to divide this up a) between the transmitter and
1400          * receiver and b) between the two XMACs, if this is a
1401          * dual port NIC. Our algotithm is to divide up the memory
1402          * evenly so that everyone gets a fair share.
1403          *
1404          * Just to be contrary, Yukon2 appears to have separate memory
1405          * for each MAC.
1406          */
1407         if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1408                 u_int32_t               chunk, val;
1409
1410                 chunk = sc->sk_ramsize / 2;
1411                 val = sc->sk_rboff / sizeof(u_int64_t);
1412                 sc_if->sk_rx_ramstart = val;
1413                 val += (chunk / sizeof(u_int64_t));
1414                 sc_if->sk_rx_ramend = val - 1;
1415                 sc_if->sk_tx_ramstart = val;
1416                 val += (chunk / sizeof(u_int64_t));
1417                 sc_if->sk_tx_ramend = val - 1;
1418         } else {
1419                 u_int32_t               chunk, val;
1420
1421                 chunk = sc->sk_ramsize / 4;
1422                 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1423                     sizeof(u_int64_t);
1424                 sc_if->sk_rx_ramstart = val;
1425                 val += (chunk / sizeof(u_int64_t));
1426                 sc_if->sk_rx_ramend = val - 1;
1427                 sc_if->sk_tx_ramstart = val;
1428                 val += (chunk / sizeof(u_int64_t));
1429                 sc_if->sk_tx_ramend = val - 1;
1430         }
1431
1432         /* Read and save PHY type and set PHY address */
1433         sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1434         if (!SK_YUKON_FAMILY(sc->sk_type)) {
1435                 switch(sc_if->sk_phytype) {
1436                 case SK_PHYTYPE_XMAC:
1437                         sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1438                         break;
1439                 case SK_PHYTYPE_BCOM:
1440                         sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1441                         break;
1442                 default:
1443                         device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1444                             sc_if->sk_phytype);
1445                         error = ENODEV;
1446                         SK_IF_UNLOCK(sc_if);
1447                         goto fail;
1448                 }
1449         } else {
1450                 if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1451                     sc->sk_pmd != 'S') {
1452                         /* not initialized, punt */
1453                         sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1454                         sc->sk_coppertype = 1;
1455                 }
1456
1457                 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1458
1459                 if (!(sc->sk_coppertype))
1460                         sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1461         }
1462
1463         /*
1464          * Call MI attach routine.  Can't hold locks when calling into ether_*.
1465          */
1466         SK_IF_UNLOCK(sc_if);
1467         ether_ifattach(ifp, eaddr);
1468         SK_IF_LOCK(sc_if);
1469
1470         /*
1471          * The hardware should be ready for VLAN_MTU by default:
1472          * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1473          * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1474          *
1475          */
1476         ifp->if_capabilities |= IFCAP_VLAN_MTU;
1477         ifp->if_capenable |= IFCAP_VLAN_MTU;
1478         /*
1479          * Tell the upper layer(s) we support long frames.
1480          * Must appear after the call to ether_ifattach() because
1481          * ether_ifattach() sets ifi_hdrlen to the default value.
1482          */
1483         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1484
1485         /*
1486          * Do miibus setup.
1487          */
1488         switch (sc->sk_type) {
1489         case SK_GENESIS:
1490                 sk_init_xmac(sc_if);
1491                 break;
1492         case SK_YUKON:
1493         case SK_YUKON_LITE:
1494         case SK_YUKON_LP:
1495                 sk_init_yukon(sc_if);
1496                 break;
1497         }
1498
1499         SK_IF_UNLOCK(sc_if);
1500         if (mii_phy_probe(dev, &sc_if->sk_miibus,
1501             sk_ifmedia_upd, sk_ifmedia_sts)) {
1502                 device_printf(sc_if->sk_if_dev, "no PHY found!\n");
1503                 ether_ifdetach(ifp);
1504                 error = ENXIO;
1505                 goto fail;
1506         }
1507
1508 fail:
1509         if (error) {
1510                 /* Access should be ok even though lock has been dropped */
1511                 sc->sk_if[port] = NULL;
1512                 sk_detach(dev);
1513         }
1514
1515         return(error);
1516 }
1517
1518 /*
1519  * Attach the interface. Allocate softc structures, do ifmedia
1520  * setup and ethernet/BPF attach.
1521  */
1522 static int
1523 skc_attach(dev)
1524         device_t                dev;
1525 {
1526         struct sk_softc         *sc;
1527         int                     error = 0, *port;
1528         uint8_t                 skrs;
1529         const char              *pname = NULL;
1530         char                    *revstr;
1531
1532         sc = device_get_softc(dev);
1533         sc->sk_dev = dev;
1534
1535         mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1536             MTX_DEF);
1537         mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1538         /*
1539          * Map control/status registers.
1540          */
1541         pci_enable_busmaster(dev);
1542
1543         /* Allocate resources */
1544 #ifdef SK_USEIOSPACE
1545         sc->sk_res_spec = sk_res_spec_io;
1546 #else
1547         sc->sk_res_spec = sk_res_spec_mem;
1548 #endif
1549         error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1550         if (error) {
1551                 if (sc->sk_res_spec == sk_res_spec_mem)
1552                         sc->sk_res_spec = sk_res_spec_io;
1553                 else
1554                         sc->sk_res_spec = sk_res_spec_mem;
1555                 error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1556                 if (error) {
1557                         device_printf(dev, "couldn't allocate %s resources\n",
1558                             sc->sk_res_spec == sk_res_spec_mem ? "memory" :
1559                             "I/O");
1560                         goto fail;
1561                 }
1562         }
1563
1564         sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1565         sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1566
1567         /* Bail out if chip is not recognized. */
1568         if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1569                 device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1570                     sc->sk_type, sc->sk_rev);
1571                 error = ENXIO;
1572                 goto fail;
1573         }
1574
1575         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1576                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1577                 OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
1578                 &sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1579                 "SK interrupt moderation");
1580
1581         /* Pull in device tunables. */
1582         sc->sk_int_mod = SK_IM_DEFAULT;
1583         error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1584                 "int_mod", &sc->sk_int_mod);
1585         if (error == 0) {
1586                 if (sc->sk_int_mod < SK_IM_MIN ||
1587                     sc->sk_int_mod > SK_IM_MAX) {
1588                         device_printf(dev, "int_mod value out of range; "
1589                             "using default: %d\n", SK_IM_DEFAULT);
1590                         sc->sk_int_mod = SK_IM_DEFAULT;
1591                 }
1592         }
1593
1594         /* Reset the adapter. */
1595         sk_reset(sc);
1596
1597         skrs = sk_win_read_1(sc, SK_EPROM0);
1598         if (sc->sk_type == SK_GENESIS) {
1599                 /* Read and save RAM size and RAMbuffer offset */
1600                 switch(skrs) {
1601                 case SK_RAMSIZE_512K_64:
1602                         sc->sk_ramsize = 0x80000;
1603                         sc->sk_rboff = SK_RBOFF_0;
1604                         break;
1605                 case SK_RAMSIZE_1024K_64:
1606                         sc->sk_ramsize = 0x100000;
1607                         sc->sk_rboff = SK_RBOFF_80000;
1608                         break;
1609                 case SK_RAMSIZE_1024K_128:
1610                         sc->sk_ramsize = 0x100000;
1611                         sc->sk_rboff = SK_RBOFF_0;
1612                         break;
1613                 case SK_RAMSIZE_2048K_128:
1614                         sc->sk_ramsize = 0x200000;
1615                         sc->sk_rboff = SK_RBOFF_0;
1616                         break;
1617                 default:
1618                         device_printf(dev, "unknown ram size: %d\n", skrs);
1619                         error = ENXIO;
1620                         goto fail;
1621                 }
1622         } else { /* SK_YUKON_FAMILY */
1623                 if (skrs == 0x00)
1624                         sc->sk_ramsize = 0x20000;
1625                 else
1626                         sc->sk_ramsize = skrs * (1<<12);
1627                 sc->sk_rboff = SK_RBOFF_0;
1628         }
1629
1630         /* Read and save physical media type */
1631          sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1632
1633          if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1634                  sc->sk_coppertype = 1;
1635          else
1636                  sc->sk_coppertype = 0;
1637
1638         /* Determine whether to name it with VPD PN or just make it up.
1639          * Marvell Yukon VPD PN seems to freqently be bogus. */
1640         switch (pci_get_device(dev)) {
1641         case DEVICEID_SK_V1:
1642         case DEVICEID_BELKIN_5005:
1643         case DEVICEID_3COM_3C940:
1644         case DEVICEID_LINKSYS_EG1032:
1645         case DEVICEID_DLINK_DGE530T_A1:
1646         case DEVICEID_DLINK_DGE530T_B1:
1647                 /* Stay with VPD PN. */
1648                 (void) pci_get_vpd_ident(dev, &pname);
1649                 break;
1650         case DEVICEID_SK_V2:
1651                 /* YUKON VPD PN might bear no resemblance to reality. */
1652                 switch (sc->sk_type) {
1653                 case SK_GENESIS:
1654                         /* Stay with VPD PN. */
1655                         (void) pci_get_vpd_ident(dev, &pname);
1656                         break;
1657                 case SK_YUKON:
1658                         pname = "Marvell Yukon Gigabit Ethernet";
1659                         break;
1660                 case SK_YUKON_LITE:
1661                         pname = "Marvell Yukon Lite Gigabit Ethernet";
1662                         break;
1663                 case SK_YUKON_LP:
1664                         pname = "Marvell Yukon LP Gigabit Ethernet";
1665                         break;
1666                 default:
1667                         pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1668                         break;
1669                 }
1670
1671                 /* Yukon Lite Rev. A0 needs special test. */
1672                 if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1673                         u_int32_t far;
1674                         u_int8_t testbyte;
1675
1676                         /* Save flash address register before testing. */
1677                         far = sk_win_read_4(sc, SK_EP_ADDR);
1678
1679                         sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1680                         testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1681
1682                         if (testbyte != 0x00) {
1683                                 /* Yukon Lite Rev. A0 detected. */
1684                                 sc->sk_type = SK_YUKON_LITE;
1685                                 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1686                                 /* Restore flash address register. */
1687                                 sk_win_write_4(sc, SK_EP_ADDR, far);
1688                         }
1689                 }
1690                 break;
1691         default:
1692                 device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1693                         "chipver=%02x, rev=%x\n",
1694                         pci_get_vendor(dev), pci_get_device(dev),
1695                         sc->sk_type, sc->sk_rev);
1696                 error = ENXIO;
1697                 goto fail;
1698         }
1699
1700         if (sc->sk_type == SK_YUKON_LITE) {
1701                 switch (sc->sk_rev) {
1702                 case SK_YUKON_LITE_REV_A0:
1703                         revstr = "A0";
1704                         break;
1705                 case SK_YUKON_LITE_REV_A1:
1706                         revstr = "A1";
1707                         break;
1708                 case SK_YUKON_LITE_REV_A3:
1709                         revstr = "A3";
1710                         break;
1711                 default:
1712                         revstr = "";
1713                         break;
1714                 }
1715         } else {
1716                 revstr = "";
1717         }
1718
1719         /* Announce the product name and more VPD data if there. */
1720         if (pname != NULL)
1721                 device_printf(dev, "%s rev. %s(0x%x)\n",
1722                         pname, revstr, sc->sk_rev);
1723
1724         if (bootverbose) {
1725                 device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1726                 device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1727                 device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1728                 device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1729         }
1730
1731         sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1732         if (sc->sk_devs[SK_PORT_A] == NULL) {
1733                 device_printf(dev, "failed to add child for PORT_A\n");
1734                 error = ENXIO;
1735                 goto fail;
1736         }
1737         port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1738         if (port == NULL) {
1739                 device_printf(dev, "failed to allocate memory for "
1740                     "ivars of PORT_A\n");
1741                 error = ENXIO;
1742                 goto fail;
1743         }
1744         *port = SK_PORT_A;
1745         device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1746
1747         if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1748                 sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1749                 if (sc->sk_devs[SK_PORT_B] == NULL) {
1750                         device_printf(dev, "failed to add child for PORT_B\n");
1751                         error = ENXIO;
1752                         goto fail;
1753                 }
1754                 port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1755                 if (port == NULL) {
1756                         device_printf(dev, "failed to allocate memory for "
1757                             "ivars of PORT_B\n");
1758                         error = ENXIO;
1759                         goto fail;
1760                 }
1761                 *port = SK_PORT_B;
1762                 device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1763         }
1764
1765         /* Turn on the 'driver is loaded' LED. */
1766         CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1767
1768         error = bus_generic_attach(dev);
1769         if (error) {
1770                 device_printf(dev, "failed to attach port(s)\n");
1771                 goto fail;
1772         }
1773
1774         /* Hook interrupt last to avoid having to lock softc */
1775         error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
1776             NULL, sk_intr, sc, &sc->sk_intrhand);
1777
1778         if (error) {
1779                 device_printf(dev, "couldn't set up irq\n");
1780                 goto fail;
1781         }
1782
1783 fail:
1784         if (error)
1785                 skc_detach(dev);
1786
1787         return(error);
1788 }
1789
1790 /*
1791  * Shutdown hardware and free up resources. This can be called any
1792  * time after the mutex has been initialized. It is called in both
1793  * the error case in attach and the normal detach case so it needs
1794  * to be careful about only freeing resources that have actually been
1795  * allocated.
1796  */
1797 static int
1798 sk_detach(dev)
1799         device_t                dev;
1800 {
1801         struct sk_if_softc      *sc_if;
1802         struct ifnet            *ifp;
1803
1804         sc_if = device_get_softc(dev);
1805         KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1806             ("sk mutex not initialized in sk_detach"));
1807         SK_IF_LOCK(sc_if);
1808
1809         ifp = sc_if->sk_ifp;
1810         /* These should only be active if attach_xmac succeeded */
1811         if (device_is_attached(dev)) {
1812                 sk_stop(sc_if);
1813                 /* Can't hold locks while calling detach */
1814                 SK_IF_UNLOCK(sc_if);
1815                 callout_drain(&sc_if->sk_tick_ch);
1816                 callout_drain(&sc_if->sk_watchdog_ch);
1817                 ether_ifdetach(ifp);
1818                 SK_IF_LOCK(sc_if);
1819         }
1820         if (ifp)
1821                 if_free(ifp);
1822         /*
1823          * We're generally called from skc_detach() which is using
1824          * device_delete_child() to get to here. It's already trashed
1825          * miibus for us, so don't do it here or we'll panic.
1826          */
1827         /*
1828         if (sc_if->sk_miibus != NULL)
1829                 device_delete_child(dev, sc_if->sk_miibus);
1830         */
1831         bus_generic_detach(dev);
1832         sk_dma_jumbo_free(sc_if);
1833         sk_dma_free(sc_if);
1834         SK_IF_UNLOCK(sc_if);
1835
1836         return(0);
1837 }
1838
1839 static int
1840 skc_detach(dev)
1841         device_t                dev;
1842 {
1843         struct sk_softc         *sc;
1844
1845         sc = device_get_softc(dev);
1846         KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1847
1848         if (device_is_alive(dev)) {
1849                 if (sc->sk_devs[SK_PORT_A] != NULL) {
1850                         free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1851                         device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1852                 }
1853                 if (sc->sk_devs[SK_PORT_B] != NULL) {
1854                         free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1855                         device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1856                 }
1857                 bus_generic_detach(dev);
1858         }
1859
1860         if (sc->sk_intrhand)
1861                 bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
1862         bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
1863
1864         mtx_destroy(&sc->sk_mii_mtx);
1865         mtx_destroy(&sc->sk_mtx);
1866
1867         return(0);
1868 }
1869
1870 struct sk_dmamap_arg {
1871         bus_addr_t      sk_busaddr;
1872 };
1873
1874 static void
1875 sk_dmamap_cb(arg, segs, nseg, error)
1876         void                    *arg;
1877         bus_dma_segment_t       *segs;
1878         int                     nseg;
1879         int                     error;
1880 {
1881         struct sk_dmamap_arg    *ctx;
1882
1883         if (error != 0)
1884                 return;
1885
1886         ctx = arg;
1887         ctx->sk_busaddr = segs[0].ds_addr;
1888 }
1889
1890 /*
1891  * Allocate jumbo buffer storage. The SysKonnect adapters support
1892  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1893  * use them in their drivers. In order for us to use them, we need
1894  * large 9K receive buffers, however standard mbuf clusters are only
1895  * 2048 bytes in size. Consequently, we need to allocate and manage
1896  * our own jumbo buffer pool. Fortunately, this does not require an
1897  * excessive amount of additional code.
1898  */
1899 static int
1900 sk_dma_alloc(sc_if)
1901         struct sk_if_softc      *sc_if;
1902 {
1903         struct sk_dmamap_arg    ctx;
1904         struct sk_txdesc        *txd;
1905         struct sk_rxdesc        *rxd;
1906         int                     error, i;
1907
1908         /* create parent tag */
1909         /*
1910          * XXX
1911          * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
1912          * in bus_dma_tag_create(9) as the NIC would support DAC mode.
1913          * However bz@ reported that it does not work on amd64 with > 4GB
1914          * RAM. Until we have more clues of the breakage, disable DAC mode
1915          * by limiting DMA address to be in 32bit address space.
1916          */
1917         error = bus_dma_tag_create(
1918                     bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1919                     1, 0,                       /* algnmnt, boundary */
1920                     BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
1921                     BUS_SPACE_MAXADDR,          /* highaddr */
1922                     NULL, NULL,                 /* filter, filterarg */
1923                     BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
1924                     0,                          /* nsegments */
1925                     BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
1926                     0,                          /* flags */
1927                     NULL, NULL,                 /* lockfunc, lockarg */
1928                     &sc_if->sk_cdata.sk_parent_tag);
1929         if (error != 0) {
1930                 device_printf(sc_if->sk_if_dev,
1931                     "failed to create parent DMA tag\n");
1932                 goto fail;
1933         }
1934
1935         /* create tag for Tx ring */
1936         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1937                     SK_RING_ALIGN, 0,           /* algnmnt, boundary */
1938                     BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
1939                     BUS_SPACE_MAXADDR,          /* highaddr */
1940                     NULL, NULL,                 /* filter, filterarg */
1941                     SK_TX_RING_SZ,              /* maxsize */
1942                     1,                          /* nsegments */
1943                     SK_TX_RING_SZ,              /* maxsegsize */
1944                     0,                          /* flags */
1945                     NULL, NULL,                 /* lockfunc, lockarg */
1946                     &sc_if->sk_cdata.sk_tx_ring_tag);
1947         if (error != 0) {
1948                 device_printf(sc_if->sk_if_dev,
1949                     "failed to allocate Tx ring DMA tag\n");
1950                 goto fail;
1951         }
1952
1953         /* create tag for Rx ring */
1954         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1955                     SK_RING_ALIGN, 0,           /* algnmnt, boundary */
1956                     BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
1957                     BUS_SPACE_MAXADDR,          /* highaddr */
1958                     NULL, NULL,                 /* filter, filterarg */
1959                     SK_RX_RING_SZ,              /* maxsize */
1960                     1,                          /* nsegments */
1961                     SK_RX_RING_SZ,              /* maxsegsize */
1962                     0,                          /* flags */
1963                     NULL, NULL,                 /* lockfunc, lockarg */
1964                     &sc_if->sk_cdata.sk_rx_ring_tag);
1965         if (error != 0) {
1966                 device_printf(sc_if->sk_if_dev,
1967                     "failed to allocate Rx ring DMA tag\n");
1968                 goto fail;
1969         }
1970
1971         /* create tag for Tx buffers */
1972         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1973                     1, 0,                       /* algnmnt, boundary */
1974                     BUS_SPACE_MAXADDR,          /* lowaddr */
1975                     BUS_SPACE_MAXADDR,          /* highaddr */
1976                     NULL, NULL,                 /* filter, filterarg */
1977                     MCLBYTES * SK_MAXTXSEGS,    /* maxsize */
1978                     SK_MAXTXSEGS,               /* nsegments */
1979                     MCLBYTES,                   /* maxsegsize */
1980                     0,                          /* flags */
1981                     NULL, NULL,                 /* lockfunc, lockarg */
1982                     &sc_if->sk_cdata.sk_tx_tag);
1983         if (error != 0) {
1984                 device_printf(sc_if->sk_if_dev,
1985                     "failed to allocate Tx DMA tag\n");
1986                 goto fail;
1987         }
1988
1989         /* create tag for Rx buffers */
1990         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1991                     1, 0,                       /* algnmnt, boundary */
1992                     BUS_SPACE_MAXADDR,          /* lowaddr */
1993                     BUS_SPACE_MAXADDR,          /* highaddr */
1994                     NULL, NULL,                 /* filter, filterarg */
1995                     MCLBYTES,                   /* maxsize */
1996                     1,                          /* nsegments */
1997                     MCLBYTES,                   /* maxsegsize */
1998                     0,                          /* flags */
1999                     NULL, NULL,                 /* lockfunc, lockarg */
2000                     &sc_if->sk_cdata.sk_rx_tag);
2001         if (error != 0) {
2002                 device_printf(sc_if->sk_if_dev,
2003                     "failed to allocate Rx DMA tag\n");
2004                 goto fail;
2005         }
2006
2007         /* allocate DMA'able memory and load the DMA map for Tx ring */
2008         error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
2009             (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2010             &sc_if->sk_cdata.sk_tx_ring_map);
2011         if (error != 0) {
2012                 device_printf(sc_if->sk_if_dev,
2013                     "failed to allocate DMA'able memory for Tx ring\n");
2014                 goto fail;
2015         }
2016
2017         ctx.sk_busaddr = 0;
2018         error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
2019             sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
2020             SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2021         if (error != 0) {
2022                 device_printf(sc_if->sk_if_dev,
2023                     "failed to load DMA'able memory for Tx ring\n");
2024                 goto fail;
2025         }
2026         sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
2027
2028         /* allocate DMA'able memory and load the DMA map for Rx ring */
2029         error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
2030             (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2031             &sc_if->sk_cdata.sk_rx_ring_map);
2032         if (error != 0) {
2033                 device_printf(sc_if->sk_if_dev,
2034                     "failed to allocate DMA'able memory for Rx ring\n");
2035                 goto fail;
2036         }
2037
2038         ctx.sk_busaddr = 0;
2039         error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
2040             sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
2041             SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2042         if (error != 0) {
2043                 device_printf(sc_if->sk_if_dev,
2044                     "failed to load DMA'able memory for Rx ring\n");
2045                 goto fail;
2046         }
2047         sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
2048
2049         /* create DMA maps for Tx buffers */
2050         for (i = 0; i < SK_TX_RING_CNT; i++) {
2051                 txd = &sc_if->sk_cdata.sk_txdesc[i];
2052                 txd->tx_m = NULL;
2053                 txd->tx_dmamap = NULL;
2054                 error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2055                     &txd->tx_dmamap);
2056                 if (error != 0) {
2057                         device_printf(sc_if->sk_if_dev,
2058                             "failed to create Tx dmamap\n");
2059                         goto fail;
2060                 }
2061         }
2062
2063         /* create DMA maps for Rx buffers */
2064         if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2065             &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2066                 device_printf(sc_if->sk_if_dev,
2067                     "failed to create spare Rx dmamap\n");
2068                 goto fail;
2069         }
2070         for (i = 0; i < SK_RX_RING_CNT; i++) {
2071                 rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2072                 rxd->rx_m = NULL;
2073                 rxd->rx_dmamap = NULL;
2074                 error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2075                     &rxd->rx_dmamap);
2076                 if (error != 0) {
2077                         device_printf(sc_if->sk_if_dev,
2078                             "failed to create Rx dmamap\n");
2079                         goto fail;
2080                 }
2081         }
2082
2083 fail:
2084         return (error);
2085 }
2086
2087 static int
2088 sk_dma_jumbo_alloc(sc_if)
2089         struct sk_if_softc      *sc_if;
2090 {
2091         struct sk_dmamap_arg    ctx;
2092         struct sk_rxdesc        *jrxd;
2093         int                     error, i;
2094
2095         if (jumbo_disable != 0) {
2096                 device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
2097                 sc_if->sk_jumbo_disable = 1;
2098                 return (0);
2099         }
2100         /* create tag for jumbo Rx ring */
2101         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2102                     SK_RING_ALIGN, 0,           /* algnmnt, boundary */
2103                     BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
2104                     BUS_SPACE_MAXADDR,          /* highaddr */
2105                     NULL, NULL,                 /* filter, filterarg */
2106                     SK_JUMBO_RX_RING_SZ,        /* maxsize */
2107                     1,                          /* nsegments */
2108                     SK_JUMBO_RX_RING_SZ,        /* maxsegsize */
2109                     0,                          /* flags */
2110                     NULL, NULL,                 /* lockfunc, lockarg */
2111                     &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2112         if (error != 0) {
2113                 device_printf(sc_if->sk_if_dev,
2114                     "failed to allocate jumbo Rx ring DMA tag\n");
2115                 goto jumbo_fail;
2116         }
2117
2118         /* create tag for jumbo Rx buffers */
2119         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2120                     1, 0,                       /* algnmnt, boundary */
2121                     BUS_SPACE_MAXADDR,          /* lowaddr */
2122                     BUS_SPACE_MAXADDR,          /* highaddr */
2123                     NULL, NULL,                 /* filter, filterarg */
2124                     MJUM9BYTES,                 /* maxsize */
2125                     1,                          /* nsegments */
2126                     MJUM9BYTES,                 /* maxsegsize */
2127                     0,                          /* flags */
2128                     NULL, NULL,                 /* lockfunc, lockarg */
2129                     &sc_if->sk_cdata.sk_jumbo_rx_tag);
2130         if (error != 0) {
2131                 device_printf(sc_if->sk_if_dev,
2132                     "failed to allocate jumbo Rx DMA tag\n");
2133                 goto jumbo_fail;
2134         }
2135
2136         /* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2137         error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2138             (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring,
2139             BUS_DMA_NOWAIT|BUS_DMA_ZERO, &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2140         if (error != 0) {
2141                 device_printf(sc_if->sk_if_dev,
2142                     "failed to allocate DMA'able memory for jumbo Rx ring\n");
2143                 goto jumbo_fail;
2144         }
2145
2146         ctx.sk_busaddr = 0;
2147         error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2148             sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2149             sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2150             &ctx, BUS_DMA_NOWAIT);
2151         if (error != 0) {
2152                 device_printf(sc_if->sk_if_dev,
2153                     "failed to load DMA'able memory for jumbo Rx ring\n");
2154                 goto jumbo_fail;
2155         }
2156         sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2157
2158         /* create DMA maps for jumbo Rx buffers */
2159         if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2160             &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2161                 device_printf(sc_if->sk_if_dev,
2162                     "failed to create spare jumbo Rx dmamap\n");
2163                 goto jumbo_fail;
2164         }
2165         for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2166                 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2167                 jrxd->rx_m = NULL;
2168                 jrxd->rx_dmamap = NULL;
2169                 error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2170                     &jrxd->rx_dmamap);
2171                 if (error != 0) {
2172                         device_printf(sc_if->sk_if_dev,
2173                             "failed to create jumbo Rx dmamap\n");
2174                         goto jumbo_fail;
2175                 }
2176         }
2177
2178         return (0);
2179
2180 jumbo_fail:
2181         sk_dma_jumbo_free(sc_if);
2182         device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
2183             "resource shortage\n");
2184         sc_if->sk_jumbo_disable = 1;
2185         return (0);
2186 }
2187
2188 static void
2189 sk_dma_free(sc_if)
2190         struct sk_if_softc      *sc_if;
2191 {
2192         struct sk_txdesc        *txd;
2193         struct sk_rxdesc        *rxd;
2194         int                     i;
2195
2196         /* Tx ring */
2197         if (sc_if->sk_cdata.sk_tx_ring_tag) {
2198                 if (sc_if->sk_cdata.sk_tx_ring_map)
2199                         bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2200                             sc_if->sk_cdata.sk_tx_ring_map);
2201                 if (sc_if->sk_cdata.sk_tx_ring_map &&
2202                     sc_if->sk_rdata.sk_tx_ring)
2203                         bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2204                             sc_if->sk_rdata.sk_tx_ring,
2205                             sc_if->sk_cdata.sk_tx_ring_map);
2206                 sc_if->sk_rdata.sk_tx_ring = NULL;
2207                 sc_if->sk_cdata.sk_tx_ring_map = NULL;
2208                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2209                 sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2210         }
2211         /* Rx ring */
2212         if (sc_if->sk_cdata.sk_rx_ring_tag) {
2213                 if (sc_if->sk_cdata.sk_rx_ring_map)
2214                         bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2215                             sc_if->sk_cdata.sk_rx_ring_map);
2216                 if (sc_if->sk_cdata.sk_rx_ring_map &&
2217                     sc_if->sk_rdata.sk_rx_ring)
2218                         bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2219                             sc_if->sk_rdata.sk_rx_ring,
2220                             sc_if->sk_cdata.sk_rx_ring_map);
2221                 sc_if->sk_rdata.sk_rx_ring = NULL;
2222                 sc_if->sk_cdata.sk_rx_ring_map = NULL;
2223                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2224                 sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2225         }
2226         /* Tx buffers */
2227         if (sc_if->sk_cdata.sk_tx_tag) {
2228                 for (i = 0; i < SK_TX_RING_CNT; i++) {
2229                         txd = &sc_if->sk_cdata.sk_txdesc[i];
2230                         if (txd->tx_dmamap) {
2231                                 bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2232                                     txd->tx_dmamap);
2233                                 txd->tx_dmamap = NULL;
2234                         }
2235                 }
2236                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2237                 sc_if->sk_cdata.sk_tx_tag = NULL;
2238         }
2239         /* Rx buffers */
2240         if (sc_if->sk_cdata.sk_rx_tag) {
2241                 for (i = 0; i < SK_RX_RING_CNT; i++) {
2242                         rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2243                         if (rxd->rx_dmamap) {
2244                                 bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2245                                     rxd->rx_dmamap);
2246                                 rxd->rx_dmamap = NULL;
2247                         }
2248                 }
2249                 if (sc_if->sk_cdata.sk_rx_sparemap) {
2250                         bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2251                             sc_if->sk_cdata.sk_rx_sparemap);
2252                         sc_if->sk_cdata.sk_rx_sparemap = NULL;
2253                 }
2254                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2255                 sc_if->sk_cdata.sk_rx_tag = NULL;
2256         }
2257
2258         if (sc_if->sk_cdata.sk_parent_tag) {
2259                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2260                 sc_if->sk_cdata.sk_parent_tag = NULL;
2261         }
2262 }
2263
2264 static void
2265 sk_dma_jumbo_free(sc_if)
2266         struct sk_if_softc      *sc_if;
2267 {
2268         struct sk_rxdesc        *jrxd;
2269         int                     i;
2270
2271         /* jumbo Rx ring */
2272         if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2273                 if (sc_if->sk_cdata.sk_jumbo_rx_ring_map)
2274                         bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2275                             sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2276                 if (sc_if->sk_cdata.sk_jumbo_rx_ring_map &&
2277                     sc_if->sk_rdata.sk_jumbo_rx_ring)
2278                         bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2279                             sc_if->sk_rdata.sk_jumbo_rx_ring,
2280                             sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2281                 sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2282                 sc_if->sk_cdata.sk_jumbo_rx_ring_map = NULL;
2283                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2284                 sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2285         }
2286
2287         /* jumbo Rx buffers */
2288         if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2289                 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2290                         jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2291                         if (jrxd->rx_dmamap) {
2292                                 bus_dmamap_destroy(
2293                                     sc_if->sk_cdata.sk_jumbo_rx_tag,
2294                                     jrxd->rx_dmamap);
2295                                 jrxd->rx_dmamap = NULL;
2296                         }
2297                 }
2298                 if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2299                         bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2300                             sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2301                         sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
2302                 }
2303                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2304                 sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2305         }
2306 }
2307
2308 static void
2309 sk_txcksum(ifp, m, f)
2310         struct ifnet            *ifp;
2311         struct mbuf             *m;
2312         struct sk_tx_desc       *f;
2313 {
2314         struct ip               *ip;
2315         u_int16_t               offset;
2316         u_int8_t                *p;
2317
2318         offset = sizeof(struct ip) + ETHER_HDR_LEN;
2319         for(; m && m->m_len == 0; m = m->m_next)
2320                 ;
2321         if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2322                 if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2323                 /* checksum may be corrupted */
2324                 goto sendit;
2325         }
2326         if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2327                 if (m->m_len != ETHER_HDR_LEN) {
2328                         if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2329                             __func__);
2330                         /* checksum may be corrupted */
2331                         goto sendit;
2332                 }
2333                 for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2334                         ;
2335                 if (m == NULL) {
2336                         offset = sizeof(struct ip) + ETHER_HDR_LEN;
2337                         /* checksum may be corrupted */
2338                         goto sendit;
2339                 }
2340                 ip = mtod(m, struct ip *);
2341         } else {
2342                 p = mtod(m, u_int8_t *);
2343                 p += ETHER_HDR_LEN;
2344                 ip = (struct ip *)p;
2345         }
2346         offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2347
2348 sendit:
2349         f->sk_csum_startval = 0;
2350         f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2351             (offset << 16));
2352 }
2353
2354 static int
2355 sk_encap(sc_if, m_head)
2356         struct sk_if_softc      *sc_if;
2357         struct mbuf             **m_head;
2358 {
2359         struct sk_txdesc        *txd;
2360         struct sk_tx_desc       *f = NULL;
2361         struct mbuf             *m;
2362         bus_dma_segment_t       txsegs[SK_MAXTXSEGS];
2363         u_int32_t               cflags, frag, si, sk_ctl;
2364         int                     error, i, nseg;
2365
2366         SK_IF_LOCK_ASSERT(sc_if);
2367
2368         if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2369                 return (ENOBUFS);
2370
2371         error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2372             txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2373         if (error == EFBIG) {
2374                 m = m_defrag(*m_head, M_DONTWAIT);
2375                 if (m == NULL) {
2376                         m_freem(*m_head);
2377                         *m_head = NULL;
2378                         return (ENOMEM);
2379                 }
2380                 *m_head = m;
2381                 error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2382                     txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2383                 if (error != 0) {
2384                         m_freem(*m_head);
2385                         *m_head = NULL;
2386                         return (error);
2387                 }
2388         } else if (error != 0)
2389                 return (error);
2390         if (nseg == 0) {
2391                 m_freem(*m_head);
2392                 *m_head = NULL;
2393                 return (EIO);
2394         }
2395         if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2396                 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2397                 return (ENOBUFS);
2398         }
2399
2400         m = *m_head;
2401         if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0)
2402                 cflags = SK_OPCODE_CSUM;
2403         else
2404                 cflags = SK_OPCODE_DEFAULT;
2405         si = frag = sc_if->sk_cdata.sk_tx_prod;
2406         for (i = 0; i < nseg; i++) {
2407                 f = &sc_if->sk_rdata.sk_tx_ring[frag];
2408                 f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2409                 f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2410                 sk_ctl = txsegs[i].ds_len | cflags;
2411                 if (i == 0) {
2412                         if (cflags == SK_OPCODE_CSUM)
2413                                 sk_txcksum(sc_if->sk_ifp, m, f);
2414                         sk_ctl |= SK_TXCTL_FIRSTFRAG;
2415                 } else
2416                         sk_ctl |= SK_TXCTL_OWN;
2417                 f->sk_ctl = htole32(sk_ctl);
2418                 sc_if->sk_cdata.sk_tx_cnt++;
2419                 SK_INC(frag, SK_TX_RING_CNT);
2420         }
2421         sc_if->sk_cdata.sk_tx_prod = frag;
2422
2423         /* set EOF on the last desciptor */
2424         frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2425         f = &sc_if->sk_rdata.sk_tx_ring[frag];
2426         f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2427
2428         /* turn the first descriptor ownership to NIC */
2429         f = &sc_if->sk_rdata.sk_tx_ring[si];
2430         f->sk_ctl |= htole32(SK_TXCTL_OWN);
2431
2432         STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2433         STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2434         txd->tx_m = m;
2435
2436         /* sync descriptors */
2437         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2438             BUS_DMASYNC_PREWRITE);
2439         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2440             sc_if->sk_cdata.sk_tx_ring_map,
2441             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2442
2443         return (0);
2444 }
2445
2446 static void
2447 sk_start(ifp)
2448         struct ifnet            *ifp;
2449 {
2450         struct sk_if_softc *sc_if;
2451
2452         sc_if = ifp->if_softc;
2453
2454         SK_IF_LOCK(sc_if);
2455         sk_start_locked(ifp);
2456         SK_IF_UNLOCK(sc_if);
2457
2458         return;
2459 }
2460
2461 static void
2462 sk_start_locked(ifp)
2463         struct ifnet            *ifp;
2464 {
2465         struct sk_softc         *sc;
2466         struct sk_if_softc      *sc_if;
2467         struct mbuf             *m_head;
2468         int                     enq;
2469
2470         sc_if = ifp->if_softc;
2471         sc = sc_if->sk_softc;
2472
2473         SK_IF_LOCK_ASSERT(sc_if);
2474
2475         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2476             sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2477                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2478                 if (m_head == NULL)
2479                         break;
2480
2481                 /*
2482                  * Pack the data into the transmit ring. If we
2483                  * don't have room, set the OACTIVE flag and wait
2484                  * for the NIC to drain the ring.
2485                  */
2486                 if (sk_encap(sc_if, &m_head)) {
2487                         if (m_head == NULL)
2488                                 break;
2489                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2490                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2491                         break;
2492                 }
2493
2494                 enq++;
2495                 /*
2496                  * If there's a BPF listener, bounce a copy of this frame
2497                  * to him.
2498                  */
2499                 BPF_MTAP(ifp, m_head);
2500         }
2501
2502         if (enq > 0) {
2503                 /* Transmit */
2504                 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2505
2506                 /* Set a timeout in case the chip goes out to lunch. */
2507                 sc_if->sk_watchdog_timer = 5;
2508         }
2509 }
2510
2511
2512 static void
2513 sk_watchdog(arg)
2514         void                    *arg;
2515 {
2516         struct sk_if_softc      *sc_if;
2517         struct ifnet            *ifp;
2518
2519         ifp = arg;
2520         sc_if = ifp->if_softc;
2521
2522         SK_IF_LOCK_ASSERT(sc_if);
2523
2524         if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
2525                 goto done;
2526
2527         /*
2528          * Reclaim first as there is a possibility of losing Tx completion
2529          * interrupts.
2530          */
2531         sk_txeof(sc_if);
2532         if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2533                 if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2534                 ifp->if_oerrors++;
2535                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2536                 sk_init_locked(sc_if);
2537         }
2538
2539 done:
2540         callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
2541
2542         return;
2543 }
2544
2545 static int
2546 skc_shutdown(dev)
2547         device_t                dev;
2548 {
2549         struct sk_softc         *sc;
2550
2551         sc = device_get_softc(dev);
2552         SK_LOCK(sc);
2553
2554         /* Turn off the 'driver is loaded' LED. */
2555         CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2556
2557         /*
2558          * Reset the GEnesis controller. Doing this should also
2559          * assert the resets on the attached XMAC(s).
2560          */
2561         sk_reset(sc);
2562         SK_UNLOCK(sc);
2563
2564         return (0);
2565 }
2566
2567 static int
2568 skc_suspend(dev)
2569         device_t                dev;
2570 {
2571         struct sk_softc         *sc;
2572         struct sk_if_softc      *sc_if0, *sc_if1;
2573         struct ifnet            *ifp0 = NULL, *ifp1 = NULL;
2574
2575         sc = device_get_softc(dev);
2576
2577         SK_LOCK(sc);
2578
2579         sc_if0 = sc->sk_if[SK_PORT_A];
2580         sc_if1 = sc->sk_if[SK_PORT_B];
2581         if (sc_if0 != NULL)
2582                 ifp0 = sc_if0->sk_ifp;
2583         if (sc_if1 != NULL)
2584                 ifp1 = sc_if1->sk_ifp;
2585         if (ifp0 != NULL)
2586                 sk_stop(sc_if0);
2587         if (ifp1 != NULL)
2588                 sk_stop(sc_if1);
2589         sc->sk_suspended = 1;
2590
2591         SK_UNLOCK(sc);
2592
2593         return (0);
2594 }
2595
2596 static int
2597 skc_resume(dev)
2598         device_t                dev;
2599 {
2600         struct sk_softc         *sc;
2601         struct sk_if_softc      *sc_if0, *sc_if1;
2602         struct ifnet            *ifp0 = NULL, *ifp1 = NULL;
2603
2604         sc = device_get_softc(dev);
2605
2606         SK_LOCK(sc);
2607
2608         sc_if0 = sc->sk_if[SK_PORT_A];
2609         sc_if1 = sc->sk_if[SK_PORT_B];
2610         if (sc_if0 != NULL)
2611                 ifp0 = sc_if0->sk_ifp;
2612         if (sc_if1 != NULL)
2613                 ifp1 = sc_if1->sk_ifp;
2614         if (ifp0 != NULL && ifp0->if_flags & IFF_UP)
2615                 sk_init_locked(sc_if0);
2616         if (ifp1 != NULL && ifp1->if_flags & IFF_UP)
2617                 sk_init_locked(sc_if1);
2618         sc->sk_suspended = 0;
2619
2620         SK_UNLOCK(sc);
2621
2622         return (0);
2623 }
2624
2625 /*
2626  * According to the data sheet from SK-NET GENESIS the hardware can compute
2627  * two Rx checksums at the same time(Each checksum start position is
2628  * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2629  * does not work at least on my Yukon hardware. I tried every possible ways
2630  * to get correct checksum value but couldn't get correct one. So TCP/UDP
2631  * checksum offload was disabled at the moment and only IP checksum offload
2632  * was enabled.
2633  * As nomral IP header size is 20 bytes I can't expect it would give an
2634  * increase in throughput. However it seems it doesn't hurt performance in
2635  * my testing. If there is a more detailed information for checksum secret
2636  * of the hardware in question please contact yongari@FreeBSD.org to add
2637  * TCP/UDP checksum offload support.
2638  */
2639 static __inline void
2640 sk_rxcksum(ifp, m, csum)
2641         struct ifnet            *ifp;
2642         struct mbuf             *m;
2643         u_int32_t               csum;
2644 {
2645         struct ether_header     *eh;
2646         struct ip               *ip;
2647         int32_t                 hlen, len, pktlen;
2648         u_int16_t               csum1, csum2, ipcsum;
2649
2650         pktlen = m->m_pkthdr.len;
2651         if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2652                 return;
2653         eh = mtod(m, struct ether_header *);
2654         if (eh->ether_type != htons(ETHERTYPE_IP))
2655                 return;
2656         ip = (struct ip *)(eh + 1);
2657         if (ip->ip_v != IPVERSION)
2658                 return;
2659         hlen = ip->ip_hl << 2;
2660         pktlen -= sizeof(struct ether_header);
2661         if (hlen < sizeof(struct ip))
2662                 return;
2663         if (ntohs(ip->ip_len) < hlen)
2664                 return;
2665         if (ntohs(ip->ip_len) != pktlen)
2666                 return;
2667
2668         csum1 = htons(csum & 0xffff);
2669         csum2 = htons((csum >> 16) & 0xffff);
2670         ipcsum = in_addword(csum1, ~csum2 & 0xffff);
2671         /* checksum fixup for IP options */
2672         len = hlen - sizeof(struct ip);
2673         if (len > 0) {
2674                 /*
2675                  * If the second checksum value is correct we can compute IP
2676                  * checksum with simple math. Unfortunately the second checksum
2677                  * value is wrong so we can't verify the checksum from the
2678                  * value(It seems there is some magic here to get correct
2679                  * value). If the second checksum value is correct it also
2680                  * means we can get TCP/UDP checksum) here. However, it still
2681                  * needs pseudo header checksum calculation due to hardware
2682                  * limitations.
2683                  */
2684                 return;
2685         }
2686         m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2687         if (ipcsum == 0xffff)
2688                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2689 }
2690
2691 static __inline int
2692 sk_rxvalid(sc, stat, len)
2693         struct sk_softc         *sc;
2694         u_int32_t               stat, len;
2695 {
2696
2697         if (sc->sk_type == SK_GENESIS) {
2698                 if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
2699                     XM_RXSTAT_BYTES(stat) != len)
2700                         return (0);
2701         } else {
2702                 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2703                     YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2704                     YU_RXSTAT_JABBER)) != 0 ||
2705                     (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2706                     YU_RXSTAT_BYTES(stat) != len)
2707                         return (0);
2708         }
2709
2710         return (1);
2711 }
2712
2713 static void
2714 sk_rxeof(sc_if)
2715         struct sk_if_softc      *sc_if;
2716 {
2717         struct sk_softc         *sc;
2718         struct mbuf             *m;
2719         struct ifnet            *ifp;
2720         struct sk_rx_desc       *cur_rx;
2721         struct sk_rxdesc        *rxd;
2722         int                     cons, prog;
2723         u_int32_t               csum, rxstat, sk_ctl;
2724
2725         sc = sc_if->sk_softc;
2726         ifp = sc_if->sk_ifp;
2727
2728         SK_IF_LOCK_ASSERT(sc_if);
2729
2730         bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2731             sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
2732
2733         prog = 0;
2734         for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
2735             prog++, SK_INC(cons, SK_RX_RING_CNT)) {
2736                 cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
2737                 sk_ctl = le32toh(cur_rx->sk_ctl);
2738                 if ((sk_ctl & SK_RXCTL_OWN) != 0)
2739                         break;
2740                 rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
2741                 rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2742
2743                 if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2744                     SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2745                     SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2746                     SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2747                     SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
2748                     sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2749                         ifp->if_ierrors++;
2750                         sk_discard_rxbuf(sc_if, cons);
2751                         continue;
2752                 }
2753
2754                 m = rxd->rx_m;
2755                 csum = le32toh(cur_rx->sk_csum);
2756                 if (sk_newbuf(sc_if, cons) != 0) {
2757                         ifp->if_iqdrops++;
2758                         /* reuse old buffer */
2759                         sk_discard_rxbuf(sc_if, cons);
2760                         continue;
2761                 }
2762                 m->m_pkthdr.rcvif = ifp;
2763                 m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2764                 ifp->if_ipackets++;
2765                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2766                         sk_rxcksum(ifp, m, csum);
2767                 SK_IF_UNLOCK(sc_if);
2768                 (*ifp->if_input)(ifp, m);
2769                 SK_IF_LOCK(sc_if);
2770         }
2771
2772         if (prog > 0) {
2773                 sc_if->sk_cdata.sk_rx_cons = cons;
2774                 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2775                     sc_if->sk_cdata.sk_rx_ring_map,
2776                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2777         }
2778 }
2779
2780 static void
2781 sk_jumbo_rxeof(sc_if)
2782         struct sk_if_softc      *sc_if;
2783 {
2784         struct sk_softc         *sc;
2785         struct mbuf             *m;
2786         struct ifnet            *ifp;
2787         struct sk_rx_desc       *cur_rx;
2788         struct sk_rxdesc        *jrxd;
2789         int                     cons, prog;
2790         u_int32_t               csum, rxstat, sk_ctl;
2791
2792         sc = sc_if->sk_softc;
2793         ifp = sc_if->sk_ifp;
2794
2795         SK_IF_LOCK_ASSERT(sc_if);
2796
2797         bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2798             sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
2799
2800         prog = 0;
2801         for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
2802             prog < SK_JUMBO_RX_RING_CNT;
2803             prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
2804                 cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
2805                 sk_ctl = le32toh(cur_rx->sk_ctl);
2806                 if ((sk_ctl & SK_RXCTL_OWN) != 0)
2807                         break;
2808                 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
2809                 rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2810
2811                 if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2812                     SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2813                     SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2814                     SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2815                     SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
2816                     sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2817                         ifp->if_ierrors++;
2818                         sk_discard_jumbo_rxbuf(sc_if, cons);
2819                         continue;
2820                 }
2821
2822                 m = jrxd->rx_m;
2823                 csum = le32toh(cur_rx->sk_csum);
2824                 if (sk_jumbo_newbuf(sc_if, cons) != 0) {
2825                         ifp->if_iqdrops++;
2826                         /* reuse old buffer */
2827                         sk_discard_jumbo_rxbuf(sc_if, cons);
2828                         continue;
2829                 }
2830                 m->m_pkthdr.rcvif = ifp;
2831                 m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2832                 ifp->if_ipackets++;
2833                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2834                         sk_rxcksum(ifp, m, csum);
2835                 SK_IF_UNLOCK(sc_if);
2836                 (*ifp->if_input)(ifp, m);
2837                 SK_IF_LOCK(sc_if);
2838         }
2839
2840         if (prog > 0) {
2841                 sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
2842                 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2843                     sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2844                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2845         }
2846 }
2847
2848 static void
2849 sk_txeof(sc_if)
2850         struct sk_if_softc      *sc_if;
2851 {
2852         struct sk_softc         *sc;
2853         struct sk_txdesc        *txd;
2854         struct sk_tx_desc       *cur_tx;
2855         struct ifnet            *ifp;
2856         u_int32_t               idx, sk_ctl;
2857
2858         sc = sc_if->sk_softc;
2859         ifp = sc_if->sk_ifp;
2860
2861         txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2862         if (txd == NULL)
2863                 return;
2864         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2865             sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2866         /*
2867          * Go through our tx ring and free mbufs for those
2868          * frames that have been sent.
2869          */
2870         for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
2871                 if (sc_if->sk_cdata.sk_tx_cnt <= 0)
2872                         break;
2873                 cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2874                 sk_ctl = le32toh(cur_tx->sk_ctl);
2875                 if (sk_ctl & SK_TXCTL_OWN)
2876                         break;
2877                 sc_if->sk_cdata.sk_tx_cnt--;
2878                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2879                 if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
2880                         continue;
2881                 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2882                     BUS_DMASYNC_POSTWRITE);
2883                 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2884
2885                 ifp->if_opackets++;
2886                 m_freem(txd->tx_m);
2887                 txd->tx_m = NULL;
2888                 STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
2889                 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
2890                 txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2891         }
2892         sc_if->sk_cdata.sk_tx_cons = idx;
2893         sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2894
2895         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2896             sc_if->sk_cdata.sk_tx_ring_map,
2897             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2898 }
2899
2900 static void
2901 sk_tick(xsc_if)
2902         void                    *xsc_if;
2903 {
2904         struct sk_if_softc      *sc_if;
2905         struct mii_data         *mii;
2906         struct ifnet            *ifp;
2907         int                     i;
2908
2909         sc_if = xsc_if;
2910         ifp = sc_if->sk_ifp;
2911         mii = device_get_softc(sc_if->sk_miibus);
2912
2913         if (!(ifp->if_flags & IFF_UP))
2914                 return;
2915
2916         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2917                 sk_intr_bcom(sc_if);
2918                 return;
2919         }
2920
2921         /*
2922          * According to SysKonnect, the correct way to verify that
2923          * the link has come back up is to poll bit 0 of the GPIO
2924          * register three times. This pin has the signal from the
2925          * link_sync pin connected to it; if we read the same link
2926          * state 3 times in a row, we know the link is up.
2927          */
2928         for (i = 0; i < 3; i++) {
2929                 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2930                         break;
2931         }
2932
2933         if (i != 3) {
2934                 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2935                 return;
2936         }
2937
2938         /* Turn the GP0 interrupt back on. */
2939         SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2940         SK_XM_READ_2(sc_if, XM_ISR);
2941         mii_tick(mii);
2942         callout_stop(&sc_if->sk_tick_ch);
2943 }
2944
2945 static void
2946 sk_yukon_tick(xsc_if)
2947         void                    *xsc_if;
2948 {
2949         struct sk_if_softc      *sc_if;
2950         struct mii_data         *mii;
2951
2952         sc_if = xsc_if;
2953         mii = device_get_softc(sc_if->sk_miibus);
2954
2955         mii_tick(mii);
2956         callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
2957 }
2958
2959 static void
2960 sk_intr_bcom(sc_if)
2961         struct sk_if_softc      *sc_if;
2962 {
2963         struct mii_data         *mii;
2964         struct ifnet            *ifp;
2965         int                     status;
2966         mii = device_get_softc(sc_if->sk_miibus);
2967         ifp = sc_if->sk_ifp;
2968
2969         SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2970
2971         /*
2972          * Read the PHY interrupt register to make sure
2973          * we clear any pending interrupts.
2974          */
2975         status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2976
2977         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2978                 sk_init_xmac(sc_if);
2979                 return;
2980         }
2981
2982         if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2983                 int                     lstat;
2984                 lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2985                     BRGPHY_MII_AUXSTS);
2986
2987                 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2988                         mii_mediachg(mii);
2989                         /* Turn off the link LED. */
2990                         SK_IF_WRITE_1(sc_if, 0,
2991                             SK_LINKLED1_CTL, SK_LINKLED_OFF);
2992                         sc_if->sk_link = 0;
2993                 } else if (status & BRGPHY_ISR_LNK_CHG) {
2994                         sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2995                             BRGPHY_MII_IMR, 0xFF00);
2996                         mii_tick(mii);
2997                         sc_if->sk_link = 1;
2998                         /* Turn on the link LED. */
2999                         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3000                             SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
3001                             SK_LINKLED_BLINK_OFF);
3002                 } else {
3003                         mii_tick(mii);
3004                         callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3005                 }
3006         }
3007
3008         SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3009
3010         return;
3011 }
3012
3013 static void
3014 sk_intr_xmac(sc_if)
3015         struct sk_if_softc      *sc_if;
3016 {
3017         struct sk_softc         *sc;
3018         u_int16_t               status;
3019
3020         sc = sc_if->sk_softc;
3021         status = SK_XM_READ_2(sc_if, XM_ISR);
3022
3023         /*
3024          * Link has gone down. Start MII tick timeout to
3025          * watch for link resync.
3026          */
3027         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
3028                 if (status & XM_ISR_GP0_SET) {
3029                         SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
3030                         callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3031                 }
3032
3033                 if (status & XM_ISR_AUTONEG_DONE) {
3034                         callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3035                 }
3036         }
3037
3038         if (status & XM_IMR_TX_UNDERRUN)
3039                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
3040
3041         if (status & XM_IMR_RX_OVERRUN)
3042                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
3043
3044         status = SK_XM_READ_2(sc_if, XM_ISR);
3045
3046         return;
3047 }
3048
3049 static void
3050 sk_intr_yukon(sc_if)
3051         struct sk_if_softc      *sc_if;
3052 {
3053         u_int8_t status;
3054
3055         status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
3056         /* RX overrun */
3057         if ((status & SK_GMAC_INT_RX_OVER) != 0) {
3058                 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3059                     SK_RFCTL_RX_FIFO_OVER);
3060         }
3061         /* TX underrun */
3062         if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
3063                 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3064                     SK_TFCTL_TX_FIFO_UNDER);
3065         }
3066 }
3067
3068 static void
3069 sk_intr(xsc)
3070         void                    *xsc;
3071 {
3072         struct sk_softc         *sc = xsc;
3073         struct sk_if_softc      *sc_if0, *sc_if1;
3074         struct ifnet            *ifp0 = NULL, *ifp1 = NULL;
3075         u_int32_t               status;
3076
3077         SK_LOCK(sc);
3078
3079         status = CSR_READ_4(sc, SK_ISSR);
3080         if (status == 0 || status == 0xffffffff || sc->sk_suspended)
3081                 goto done_locked;
3082
3083         sc_if0 = sc->sk_if[SK_PORT_A];
3084         sc_if1 = sc->sk_if[SK_PORT_B];
3085
3086         if (sc_if0 != NULL)
3087                 ifp0 = sc_if0->sk_ifp;
3088         if (sc_if1 != NULL)
3089                 ifp1 = sc_if1->sk_ifp;
3090
3091         for (; (status &= sc->sk_intrmask) != 0;) {
3092                 /* Handle receive interrupts first. */
3093                 if (status & SK_ISR_RX1_EOF) {
3094                         if (ifp0->if_mtu > SK_MAX_FRAMELEN)
3095                                 sk_jumbo_rxeof(sc_if0);
3096                         else
3097                                 sk_rxeof(sc_if0);
3098                         CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3099                             SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3100                 }
3101                 if (status & SK_ISR_RX2_EOF) {
3102                         if (ifp1->if_mtu > SK_MAX_FRAMELEN)
3103                                 sk_jumbo_rxeof(sc_if1);
3104                         else
3105                                 sk_rxeof(sc_if1);
3106                         CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3107                             SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3108                 }
3109
3110                 /* Then transmit interrupts. */
3111                 if (status & SK_ISR_TX1_S_EOF) {
3112                         sk_txeof(sc_if0);
3113                         CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3114                 }
3115                 if (status & SK_ISR_TX2_S_EOF) {
3116                         sk_txeof(sc_if1);
3117                         CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3118                 }
3119
3120                 /* Then MAC interrupts. */
3121                 if (status & SK_ISR_MAC1 &&
3122                     ifp0->if_drv_flags & IFF_DRV_RUNNING) {
3123                         if (sc->sk_type == SK_GENESIS)
3124                                 sk_intr_xmac(sc_if0);
3125                         else
3126                                 sk_intr_yukon(sc_if0);
3127                 }
3128
3129                 if (status & SK_ISR_MAC2 &&
3130                     ifp1->if_drv_flags & IFF_DRV_RUNNING) {
3131                         if (sc->sk_type == SK_GENESIS)
3132                                 sk_intr_xmac(sc_if1);
3133                         else
3134                                 sk_intr_yukon(sc_if1);
3135                 }
3136
3137                 if (status & SK_ISR_EXTERNAL_REG) {
3138                         if (ifp0 != NULL &&
3139                             sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3140                                 sk_intr_bcom(sc_if0);
3141                         if (ifp1 != NULL &&
3142                             sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3143                                 sk_intr_bcom(sc_if1);
3144                 }
3145                 status = CSR_READ_4(sc, SK_ISSR);
3146         }
3147
3148         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3149
3150         if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3151                 sk_start_locked(ifp0);
3152         if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3153                 sk_start_locked(ifp1);
3154
3155 done_locked:
3156         SK_UNLOCK(sc);
3157 }
3158
3159 static void
3160 sk_init_xmac(sc_if)
3161         struct sk_if_softc      *sc_if;
3162 {
3163         struct sk_softc         *sc;
3164         struct ifnet            *ifp;
3165         u_int16_t               eaddr[(ETHER_ADDR_LEN+1)/2];
3166         struct sk_bcom_hack     bhack[] = {
3167         { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3168         { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3169         { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3170         { 0, 0 } };
3171
3172         SK_IF_LOCK_ASSERT(sc_if);
3173
3174         sc = sc_if->sk_softc;
3175         ifp = sc_if->sk_ifp;
3176
3177         /* Unreset the XMAC. */
3178         SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3179         DELAY(1000);
3180
3181         /* Reset the XMAC's internal state. */
3182         SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3183
3184         /* Save the XMAC II revision */
3185         sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3186
3187         /*
3188          * Perform additional initialization for external PHYs,
3189          * namely for the 1000baseTX cards that use the XMAC's
3190          * GMII mode.
3191          */
3192         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3193                 int                     i = 0;
3194                 u_int32_t               val;
3195
3196                 /* Take PHY out of reset. */
3197                 val = sk_win_read_4(sc, SK_GPIO);
3198                 if (sc_if->sk_port == SK_PORT_A)
3199                         val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3200                 else
3201                         val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3202                 sk_win_write_4(sc, SK_GPIO, val);
3203
3204                 /* Enable GMII mode on the XMAC. */
3205                 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3206
3207                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3208                     BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3209                 DELAY(10000);
3210                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3211                     BRGPHY_MII_IMR, 0xFFF0);
3212
3213                 /*
3214                  * Early versions of the BCM5400 apparently have
3215                  * a bug that requires them to have their reserved
3216                  * registers initialized to some magic values. I don't
3217                  * know what the numbers do, I'm just the messenger.
3218                  */
3219                 if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3220                     == 0x6041) {
3221                         while(bhack[i].reg) {
3222                                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3223                                     bhack[i].reg, bhack[i].val);
3224                                 i++;
3225                         }
3226                 }
3227         }
3228
3229         /* Set station address */
3230         bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3231         SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3232         SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3233         SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3234         SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3235
3236         if (ifp->if_flags & IFF_BROADCAST) {
3237                 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3238         } else {
3239                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3240         }
3241
3242         /* We don't need the FCS appended to the packet. */
3243         SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3244
3245         /* We want short frames padded to 60 bytes. */
3246         SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3247
3248         /*
3249          * Enable the reception of all error frames. This is is
3250          * a necessary evil due to the design of the XMAC. The
3251          * XMAC's receive FIFO is only 8K in size, however jumbo
3252          * frames can be up to 9000 bytes in length. When bad
3253          * frame filtering is enabled, the XMAC's RX FIFO operates
3254          * in 'store and forward' mode. For this to work, the
3255          * entire frame has to fit into the FIFO, but that means
3256          * that jumbo frames larger than 8192 bytes will be
3257          * truncated. Disabling all bad frame filtering causes
3258          * the RX FIFO to operate in streaming mode, in which
3259          * case the XMAC will start transfering frames out of the
3260          * RX FIFO as soon as the FIFO threshold is reached.
3261          */
3262         if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3263                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3264                     XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3265                     XM_MODE_RX_INRANGELEN);
3266                 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3267         } else
3268                 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3269
3270         /*
3271          * Bump up the transmit threshold. This helps hold off transmit
3272          * underruns when we're blasting traffic from both ports at once.
3273          */
3274         SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3275
3276         /* Set Rx filter */
3277         sk_rxfilter_genesis(sc_if);
3278
3279         /* Clear and enable interrupts */
3280         SK_XM_READ_2(sc_if, XM_ISR);
3281         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3282                 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3283         else
3284                 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3285
3286         /* Configure MAC arbiter */
3287         switch(sc_if->sk_xmac_rev) {
3288         case XM_XMAC_REV_B2:
3289                 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3290                 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3291                 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3292                 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3293                 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3294                 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3295                 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3296                 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3297                 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3298                 break;
3299         case XM_XMAC_REV_C1:
3300                 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3301                 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3302                 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3303                 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3304                 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3305                 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3306                 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3307                 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3308                 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3309                 break;
3310         default:
3311                 break;
3312         }
3313         sk_win_write_2(sc, SK_MACARB_CTL,
3314             SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3315
3316         sc_if->sk_link = 1;
3317
3318         return;
3319 }
3320
3321 static void
3322 sk_init_yukon(sc_if)
3323         struct sk_if_softc      *sc_if;
3324 {
3325         u_int32_t               phy, v;
3326         u_int16_t               reg;
3327         struct sk_softc         *sc;
3328         struct ifnet            *ifp;
3329         int                     i;
3330
3331         SK_IF_LOCK_ASSERT(sc_if);
3332
3333         sc = sc_if->sk_softc;
3334         ifp = sc_if->sk_ifp;
3335
3336         if (sc->sk_type == SK_YUKON_LITE &&
3337             sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3338                 /*
3339                  * Workaround code for COMA mode, set PHY reset.
3340                  * Otherwise it will not correctly take chip out of
3341                  * powerdown (coma)
3342                  */
3343                 v = sk_win_read_4(sc, SK_GPIO);
3344                 v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3345                 sk_win_write_4(sc, SK_GPIO, v);
3346         }
3347
3348         /* GMAC and GPHY Reset */
3349         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3350         SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3351         DELAY(1000);
3352
3353         if (sc->sk_type == SK_YUKON_LITE &&
3354             sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3355                 /*
3356                  * Workaround code for COMA mode, clear PHY reset
3357                  */
3358                 v = sk_win_read_4(sc, SK_GPIO);
3359                 v |= SK_GPIO_DIR9;
3360                 v &= ~SK_GPIO_DAT9;
3361                 sk_win_write_4(sc, SK_GPIO, v);
3362         }
3363
3364         phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3365                 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3366
3367         if (sc->sk_coppertype)
3368                 phy |= SK_GPHY_COPPER;
3369         else
3370                 phy |= SK_GPHY_FIBER;
3371
3372         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3373         DELAY(1000);
3374         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3375         SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3376                       SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3377
3378         /* unused read of the interrupt source register */
3379         SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3380
3381         reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3382
3383         /* MIB Counter Clear Mode set */
3384         reg |= YU_PAR_MIB_CLR;
3385         SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3386
3387         /* MIB Counter Clear Mode clear */
3388         reg &= ~YU_PAR_MIB_CLR;
3389         SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3390
3391         /* receive control reg */
3392         SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3393
3394         /* transmit parameter register */
3395         SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3396                       YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3397
3398         /* serial mode register */
3399         reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3400         if (ifp->if_mtu > SK_MAX_FRAMELEN)
3401                 reg |= YU_SMR_MFL_JUMBO;
3402         SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3403
3404         /* Setup Yukon's address */
3405         for (i = 0; i < 3; i++) {
3406                 /* Write Source Address 1 (unicast filter) */
3407                 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3408                               IF_LLADDR(sc_if->sk_ifp)[i * 2] |
3409                               IF_LLADDR(sc_if->sk_ifp)[i * 2 + 1] << 8);
3410         }
3411
3412         for (i = 0; i < 3; i++) {
3413                 reg = sk_win_read_2(sc_if->sk_softc,
3414                                     SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
3415                 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
3416         }
3417
3418         /* Set Rx filter */
3419         sk_rxfilter_yukon(sc_if);
3420
3421         /* enable interrupt mask for counter overflows */
3422         SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3423         SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3424         SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3425
3426         /* Configure RX MAC FIFO Flush Mask */
3427         v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3428             YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3429             YU_RXSTAT_JABBER;
3430         SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3431
3432         /* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3433         if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3434                 v = SK_TFCTL_OPERATION_ON;
3435         else
3436                 v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3437         /* Configure RX MAC FIFO */
3438         SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3439         SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3440
3441         /* Increase flush threshould to 64 bytes */
3442         SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3443             SK_RFCTL_FIFO_THRESHOLD + 1);
3444
3445         /* Configure TX MAC FIFO */
3446         SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3447         SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3448 }
3449
3450 /*
3451  * Note that to properly initialize any part of the GEnesis chip,
3452  * you first have to take it out of reset mode.
3453  */
3454 static void
3455 sk_init(xsc)
3456         void                    *xsc;
3457 {
3458         struct sk_if_softc      *sc_if = xsc;
3459
3460         SK_IF_LOCK(sc_if);
3461         sk_init_locked(sc_if);
3462         SK_IF_UNLOCK(sc_if);
3463
3464         return;
3465 }
3466
3467 static void
3468 sk_init_locked(sc_if)
3469         struct sk_if_softc      *sc_if;
3470 {
3471         struct sk_softc         *sc;
3472         struct ifnet            *ifp;
3473         struct mii_data         *mii;
3474         u_int16_t               reg;
3475         u_int32_t               imr;
3476         int                     error;
3477
3478         SK_IF_LOCK_ASSERT(sc_if);
3479
3480         ifp = sc_if->sk_ifp;
3481         sc = sc_if->sk_softc;
3482         mii = device_get_softc(sc_if->sk_miibus);
3483
3484         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3485                 return;
3486
3487         /* Cancel pending I/O and free all RX/TX buffers. */
3488         sk_stop(sc_if);
3489
3490         if (sc->sk_type == SK_GENESIS) {
3491                 /* Configure LINK_SYNC LED */
3492                 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3493                 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3494                         SK_LINKLED_LINKSYNC_ON);
3495
3496                 /* Configure RX LED */
3497                 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3498                         SK_RXLEDCTL_COUNTER_START);
3499
3500                 /* Configure TX LED */
3501                 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3502                         SK_TXLEDCTL_COUNTER_START);
3503         }
3504
3505         /*
3506          * Configure descriptor poll timer
3507          *
3508          * SK-NET GENESIS data sheet says that possibility of losing Start
3509          * transmit command due to CPU/cache related interim storage problems
3510          * under certain conditions. The document recommends a polling
3511          * mechanism to send a Start transmit command to initiate transfer
3512          * of ready descriptors regulary. To cope with this issue sk(4) now
3513          * enables descriptor poll timer to initiate descriptor processing
3514          * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3515          * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3516          * command instead of waiting for next descriptor polling time.
3517          * The same rule may apply to Rx side too but it seems that is not
3518          * needed at the moment.
3519          * Since sk(4) uses descriptor polling as a last resort there is no
3520          * need to set smaller polling time than maximum allowable one.
3521          */
3522         SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3523
3524         /* Configure I2C registers */
3525
3526         /* Configure XMAC(s) */
3527         switch (sc->sk_type) {
3528         case SK_GENESIS:
3529                 sk_init_xmac(sc_if);
3530                 break;
3531         case SK_YUKON:
3532         case SK_YUKON_LITE:
3533         case SK_YUKON_LP:
3534                 sk_init_yukon(sc_if);
3535                 break;
3536         }
3537         mii_mediachg(mii);
3538
3539         if (sc->sk_type == SK_GENESIS) {
3540                 /* Configure MAC FIFOs */
3541                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3542                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3543                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3544
3545                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3546                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3547                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3548         }
3549
3550         /* Configure transmit arbiter(s) */
3551         SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3552             SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3553
3554         /* Configure RAMbuffers */
3555         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3556         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3557         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3558         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3559         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3560         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3561
3562         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3563         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3564         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3565         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3566         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3567         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3568         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3569
3570         /* Configure BMUs */
3571         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3572         if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3573                 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3574                     SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3575                 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3576                     SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3577         } else {
3578                 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3579                     SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3580                 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3581                     SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3582         }
3583
3584         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3585         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3586             SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3587         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3588             SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3589
3590         /* Init descriptors */
3591         if (ifp->if_mtu > SK_MAX_FRAMELEN)
3592                 error = sk_init_jumbo_rx_ring(sc_if);
3593         else
3594                 error = sk_init_rx_ring(sc_if);
3595         if (error != 0) {
3596                 device_printf(sc_if->sk_if_dev,
3597                     "initialization failed: no memory for rx buffers\n");
3598                 sk_stop(sc_if);
3599                 return;
3600         }
3601         sk_init_tx_ring(sc_if);
3602
3603         /* Set interrupt moderation if changed via sysctl. */
3604         imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3605         if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3606                 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3607                     sc->sk_int_ticks));
3608                 if (bootverbose)
3609                         device_printf(sc_if->sk_if_dev,
3610                             "interrupt moderation is %d us.\n",
3611                             sc->sk_int_mod);
3612         }
3613
3614         /* Configure interrupt handling */
3615         CSR_READ_4(sc, SK_ISSR);
3616         if (sc_if->sk_port == SK_PORT_A)
3617                 sc->sk_intrmask |= SK_INTRS1;
3618         else
3619                 sc->sk_intrmask |= SK_INTRS2;
3620
3621         sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3622
3623         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3624
3625         /* Start BMUs. */
3626         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3627
3628         switch(sc->sk_type) {
3629         case SK_GENESIS:
3630                 /* Enable XMACs TX and RX state machines */
3631                 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3632                 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3633                 break;
3634         case SK_YUKON:
3635         case SK_YUKON_LITE:
3636         case SK_YUKON_LP:
3637                 reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3638                 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3639 #if 0
3640                 /* XXX disable 100Mbps and full duplex mode? */
3641                 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3642 #endif
3643                 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3644         }
3645
3646         /* Activate descriptor polling timer */
3647         SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
3648         /* start transfer of Tx descriptors */
3649         CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
3650
3651         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3652         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3653
3654         switch (sc->sk_type) {
3655         case SK_YUKON:
3656         case SK_YUKON_LITE:
3657         case SK_YUKON_LP:
3658                 callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3659                 break;
3660         }
3661
3662         callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
3663
3664         return;
3665 }
3666
3667 static void
3668 sk_stop(sc_if)
3669         struct sk_if_softc      *sc_if;
3670 {
3671         int                     i;
3672         struct sk_softc         *sc;
3673         struct sk_txdesc        *txd;
3674         struct sk_rxdesc        *rxd;
3675         struct sk_rxdesc        *jrxd;
3676         struct ifnet            *ifp;
3677         u_int32_t               val;
3678
3679         SK_IF_LOCK_ASSERT(sc_if);
3680         sc = sc_if->sk_softc;
3681         ifp = sc_if->sk_ifp;
3682
3683         callout_stop(&sc_if->sk_tick_ch);
3684         callout_stop(&sc_if->sk_watchdog_ch);
3685
3686         /* stop Tx descriptor polling timer */
3687         SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
3688         /* stop transfer of Tx descriptors */
3689         CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
3690         for (i = 0; i < SK_TIMEOUT; i++) {
3691                 val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
3692                 if ((val & SK_TXBMU_TX_STOP) == 0)
3693                         break;
3694                 DELAY(1);
3695         }
3696         if (i == SK_TIMEOUT)
3697                 device_printf(sc_if->sk_if_dev,
3698                     "can not stop transfer of Tx descriptor\n");
3699         /* stop transfer of Rx descriptors */
3700         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
3701         for (i = 0; i < SK_TIMEOUT; i++) {
3702                 val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
3703                 if ((val & SK_RXBMU_RX_STOP) == 0)
3704                         break;
3705                 DELAY(1);
3706         }
3707         if (i == SK_TIMEOUT)
3708                 device_printf(sc_if->sk_if_dev,
3709                     "can not stop transfer of Rx descriptor\n");
3710
3711         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3712                 /* Put PHY back into reset. */
3713                 val = sk_win_read_4(sc, SK_GPIO);
3714                 if (sc_if->sk_port == SK_PORT_A) {
3715                         val |= SK_GPIO_DIR0;
3716                         val &= ~SK_GPIO_DAT0;
3717                 } else {
3718                         val |= SK_GPIO_DIR2;
3719                         val &= ~SK_GPIO_DAT2;
3720                 }
3721                 sk_win_write_4(sc, SK_GPIO, val);
3722         }
3723
3724         /* Turn off various components of this interface. */
3725         SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3726         switch (sc->sk_type) {
3727         case SK_GENESIS:
3728                 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
3729                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
3730                 break;
3731         case SK_YUKON:
3732         case SK_YUKON_LITE:
3733         case SK_YUKON_LP:
3734                 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3735                 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3736                 break;
3737         }
3738         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3739         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3740         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3741         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3742         SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3743         SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3744         SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3745         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3746         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3747
3748         /* Disable interrupts */
3749         if (sc_if->sk_port == SK_PORT_A)
3750                 sc->sk_intrmask &= ~SK_INTRS1;
3751         else
3752                 sc->sk_intrmask &= ~SK_INTRS2;
3753         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3754
3755         SK_XM_READ_2(sc_if, XM_ISR);
3756         SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3757
3758         /* Free RX and TX mbufs still in the queues. */
3759         for (i = 0; i < SK_RX_RING_CNT; i++) {
3760                 rxd = &sc_if->sk_cdata.sk_rxdesc[i];
3761                 if (rxd->rx_m != NULL) {
3762                         bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
3763                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3764                         bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
3765                             rxd->rx_dmamap);
3766                         m_freem(rxd->rx_m);
3767                         rxd->rx_m = NULL;
3768                 }
3769         }
3770         for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
3771                 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
3772                 if (jrxd->rx_m != NULL) {
3773                         bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
3774                             jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3775                         bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
3776                             jrxd->rx_dmamap);
3777                         m_freem(jrxd->rx_m);
3778                         jrxd->rx_m = NULL;
3779                 }
3780         }
3781         for (i = 0; i < SK_TX_RING_CNT; i++) {
3782                 txd = &sc_if->sk_cdata.sk_txdesc[i];
3783                 if (txd->tx_m != NULL) {
3784                         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
3785                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3786                         bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
3787                             txd->tx_dmamap);
3788                         m_freem(txd->tx_m);
3789                         txd->tx_m = NULL;
3790                 }
3791         }
3792
3793         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
3794
3795         return;
3796 }
3797
3798 static int
3799 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3800 {
3801         int error, value;
3802
3803         if (!arg1)
3804                 return (EINVAL);
3805         value = *(int *)arg1;
3806         error = sysctl_handle_int(oidp, &value, 0, req);
3807         if (error || !req->newptr)
3808                 return (error);
3809         if (value < low || value > high)
3810                 return (EINVAL);
3811         *(int *)arg1 = value;
3812         return (0);
3813 }
3814
3815 static int
3816 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3817 {
3818         return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3819 }