]> CyberLeo.Net >> Repos - FreeBSD/releng/8.1.git/blob - sys/dev/smc/if_smc.c
Copy stable/8 to releng/8.1 in preparation for 8.1-RC1.
[FreeBSD/releng/8.1.git] / sys / dev / smc / if_smc.c
1 /*-
2  * Copyright (c) 2008 Benno Rice.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  */
24
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27
28 /*
29  * Driver for SMSC LAN91C111, may work for older variants.
30  */
31
32 #ifdef HAVE_KERNEL_OPTION_HEADERS
33 #include "opt_device_polling.h"
34 #endif
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/errno.h>
39 #include <sys/kernel.h>
40 #include <sys/sockio.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/queue.h>
44 #include <sys/socket.h>
45 #include <sys/syslog.h>
46 #include <sys/taskqueue.h>
47
48 #include <sys/module.h>
49 #include <sys/bus.h>
50
51 #include <machine/bus.h>
52 #include <machine/resource.h>
53 #include <sys/rman.h>
54
55 #include <net/ethernet.h>
56 #include <net/if.h>
57 #include <net/if_arp.h>
58 #include <net/if_dl.h>
59 #include <net/if_types.h>
60 #include <net/if_mib.h>
61 #include <net/if_media.h>
62
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #endif
69
70 #include <net/bpf.h>
71 #include <net/bpfdesc.h>
72
73 #include <dev/smc/if_smcreg.h>
74 #include <dev/smc/if_smcvar.h>
75
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78
79 #define SMC_LOCK(sc)            mtx_lock(&(sc)->smc_mtx)
80 #define SMC_UNLOCK(sc)          mtx_unlock(&(sc)->smc_mtx)
81 #define SMC_ASSERT_LOCKED(sc)   mtx_assert(&(sc)->smc_mtx, MA_OWNED)
82
83 #define SMC_INTR_PRIORITY       0
84 #define SMC_RX_PRIORITY         5
85 #define SMC_TX_PRIORITY         10
86
87 devclass_t      smc_devclass;
88
89 static const char *smc_chip_ids[16] = {
90         NULL, NULL, NULL,
91         /* 3 */ "SMSC LAN91C90 or LAN91C92",
92         /* 4 */ "SMSC LAN91C94",
93         /* 5 */ "SMSC LAN91C95",
94         /* 6 */ "SMSC LAN91C96",
95         /* 7 */ "SMSC LAN91C100",
96         /* 8 */ "SMSC LAN91C100FD",
97         /* 9 */ "SMSC LAN91C110FD or LAN91C111FD",
98         NULL, NULL, NULL,
99         NULL, NULL, NULL
100 };
101
102 static void     smc_init(void *);
103 static void     smc_start(struct ifnet *);
104 static void     smc_stop(struct smc_softc *);
105 static int      smc_ioctl(struct ifnet *, u_long, caddr_t);
106
107 static void     smc_init_locked(struct smc_softc *);
108 static void     smc_start_locked(struct ifnet *);
109 static void     smc_reset(struct smc_softc *);
110 static int      smc_mii_ifmedia_upd(struct ifnet *);
111 static void     smc_mii_ifmedia_sts(struct ifnet *, struct ifmediareq *);
112 static void     smc_mii_tick(void *);
113 static void     smc_mii_mediachg(struct smc_softc *);
114 static int      smc_mii_mediaioctl(struct smc_softc *, struct ifreq *, u_long);
115
116 static void     smc_task_intr(void *, int);
117 static void     smc_task_rx(void *, int);
118 static void     smc_task_tx(void *, int);
119
120 static driver_filter_t  smc_intr;
121 static timeout_t        smc_watchdog;
122 #ifdef DEVICE_POLLING
123 static poll_handler_t   smc_poll;
124 #endif
125
126 static __inline void
127 smc_select_bank(struct smc_softc *sc, uint16_t bank)
128 {
129
130         bus_write_2(sc->smc_reg, BSR, bank & BSR_BANK_MASK);
131 }
132
133 /* Never call this when not in bank 2. */
134 static __inline void
135 smc_mmu_wait(struct smc_softc *sc)
136 {
137
138         KASSERT((bus_read_2(sc->smc_reg, BSR) &
139             BSR_BANK_MASK) == 2, ("%s: smc_mmu_wait called when not in bank 2",
140             device_get_nameunit(sc->smc_dev)));
141         while (bus_read_2(sc->smc_reg, MMUCR) & MMUCR_BUSY)
142                 ;
143 }
144
145 static __inline uint8_t
146 smc_read_1(struct smc_softc *sc, bus_addr_t offset)
147 {
148
149         return (bus_read_1(sc->smc_reg, offset));
150 }
151
152 static __inline void
153 smc_write_1(struct smc_softc *sc, bus_addr_t offset, uint8_t val)
154 {
155
156         bus_write_1(sc->smc_reg, offset, val);
157 }
158
159 static __inline uint16_t
160 smc_read_2(struct smc_softc *sc, bus_addr_t offset)
161 {
162
163         return (bus_read_2(sc->smc_reg, offset));
164 }
165
166 static __inline void
167 smc_write_2(struct smc_softc *sc, bus_addr_t offset, uint16_t val)
168 {
169
170         bus_write_2(sc->smc_reg, offset, val);
171 }
172
173 static __inline void
174 smc_read_multi_2(struct smc_softc *sc, bus_addr_t offset, uint16_t *datap,
175     bus_size_t count)
176 {
177
178         bus_read_multi_2(sc->smc_reg, offset, datap, count);
179 }
180
181 static __inline void
182 smc_write_multi_2(struct smc_softc *sc, bus_addr_t offset, uint16_t *datap,
183     bus_size_t count)
184 {
185
186         bus_write_multi_2(sc->smc_reg, offset, datap, count);
187 }
188
189 int
190 smc_probe(device_t dev)
191 {
192         int                     rid, type, error;
193         uint16_t                val;
194         struct smc_softc        *sc;
195         struct resource         *reg;
196
197         sc = device_get_softc(dev);
198         rid = 0;
199         type = SYS_RES_IOPORT;
200         error = 0;
201
202         if (sc->smc_usemem)
203                 type = SYS_RES_MEMORY;
204
205         reg = bus_alloc_resource(dev, type, &rid, 0, ~0, 16, RF_ACTIVE);
206         if (reg == NULL) {
207                 if (bootverbose)
208                         device_printf(dev,
209                             "could not allocate I/O resource for probe\n");
210                 return (ENXIO);
211         }
212
213         /* Check for the identification value in the BSR. */
214         val = bus_read_2(reg, BSR);
215         if ((val & BSR_IDENTIFY_MASK) != BSR_IDENTIFY) {
216                 if (bootverbose)
217                         device_printf(dev, "identification value not in BSR\n");
218                 error = ENXIO;
219                 goto done;
220         }
221
222         /*
223          * Try switching banks and make sure we still get the identification
224          * value.
225          */
226         bus_write_2(reg, BSR, 0);
227         val = bus_read_2(reg, BSR);
228         if ((val & BSR_IDENTIFY_MASK) != BSR_IDENTIFY) {
229                 if (bootverbose)
230                         device_printf(dev,
231                             "identification value not in BSR after write\n");
232                 error = ENXIO;
233                 goto done;
234         }
235
236 #if 0
237         /* Check the BAR. */
238         bus_write_2(reg, BSR, 1);
239         val = bus_read_2(reg, BAR);
240         val = BAR_ADDRESS(val);
241         if (rman_get_start(reg) != val) {
242                 if (bootverbose)
243                         device_printf(dev, "BAR address %x does not match "
244                             "I/O resource address %lx\n", val,
245                             rman_get_start(reg));
246                 error = ENXIO;
247                 goto done;
248         }
249 #endif
250
251         /* Compare REV against known chip revisions. */
252         bus_write_2(reg, BSR, 3);
253         val = bus_read_2(reg, REV);
254         val = (val & REV_CHIP_MASK) >> REV_CHIP_SHIFT;
255         if (smc_chip_ids[val] == NULL) {
256                 if (bootverbose)
257                         device_printf(dev, "Unknown chip revision: %d\n", val);
258                 error = ENXIO;
259                 goto done;
260         }
261
262         device_set_desc(dev, smc_chip_ids[val]);
263
264 done:
265         bus_release_resource(dev, type, rid, reg);
266         return (error);
267 }
268
269 int
270 smc_attach(device_t dev)
271 {
272         int                     type, error;
273         uint16_t                val;
274         u_char                  eaddr[ETHER_ADDR_LEN];
275         struct smc_softc        *sc;
276         struct ifnet            *ifp;
277
278         sc = device_get_softc(dev);
279         error = 0;
280
281         sc->smc_dev = dev;
282
283         ifp = sc->smc_ifp = if_alloc(IFT_ETHER);
284         if (ifp == NULL) {
285                 error = ENOSPC;
286                 goto done;
287         }
288
289         mtx_init(&sc->smc_mtx, device_get_nameunit(dev), NULL, MTX_DEF);
290
291         /* Set up watchdog callout. */
292         callout_init_mtx(&sc->smc_watchdog, &sc->smc_mtx, 0);
293
294         type = SYS_RES_IOPORT;
295         if (sc->smc_usemem)
296                 type = SYS_RES_MEMORY;
297
298         sc->smc_reg_rid = 0;
299         sc->smc_reg = bus_alloc_resource(dev, type, &sc->smc_reg_rid, 0, ~0,
300             16, RF_ACTIVE);
301         if (sc->smc_reg == NULL) {
302                 error = ENXIO;
303                 goto done;
304         }
305
306         sc->smc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->smc_irq_rid, 0,
307             ~0, 1, RF_ACTIVE | RF_SHAREABLE);
308         if (sc->smc_irq == NULL) {
309                 error = ENXIO;
310                 goto done;
311         }
312
313         SMC_LOCK(sc);
314         smc_reset(sc);
315         SMC_UNLOCK(sc);
316
317         smc_select_bank(sc, 3);
318         val = smc_read_2(sc, REV);
319         sc->smc_chip = (val & REV_CHIP_MASK) >> REV_CHIP_SHIFT;
320         sc->smc_rev = (val * REV_REV_MASK) >> REV_REV_SHIFT;
321         if (bootverbose)
322                 device_printf(dev, "revision %x\n", sc->smc_rev);
323
324         callout_init_mtx(&sc->smc_mii_tick_ch, &sc->smc_mtx,
325             CALLOUT_RETURNUNLOCKED);
326         if (sc->smc_chip >= REV_CHIP_91110FD) {
327                 mii_phy_probe(dev, &sc->smc_miibus, smc_mii_ifmedia_upd,
328                     smc_mii_ifmedia_sts);
329                 if (sc->smc_miibus != NULL) {
330                         sc->smc_mii_tick = smc_mii_tick;
331                         sc->smc_mii_mediachg = smc_mii_mediachg;
332                         sc->smc_mii_mediaioctl = smc_mii_mediaioctl;
333                 }
334         }
335
336         smc_select_bank(sc, 1);
337         eaddr[0] = smc_read_1(sc, IAR0);
338         eaddr[1] = smc_read_1(sc, IAR1);
339         eaddr[2] = smc_read_1(sc, IAR2);
340         eaddr[3] = smc_read_1(sc, IAR3);
341         eaddr[4] = smc_read_1(sc, IAR4);
342         eaddr[5] = smc_read_1(sc, IAR5);
343
344         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
345         ifp->if_softc = sc;
346         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
347         ifp->if_init = smc_init;
348         ifp->if_ioctl = smc_ioctl;
349         ifp->if_start = smc_start;
350         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
351         IFQ_SET_READY(&ifp->if_snd);
352
353         ifp->if_capabilities = ifp->if_capenable = 0;
354
355 #ifdef DEVICE_POLLING
356         ifp->if_capabilities |= IFCAP_POLLING;
357 #endif
358
359         ether_ifattach(ifp, eaddr);
360
361         /* Set up taskqueue */
362         TASK_INIT(&sc->smc_intr, SMC_INTR_PRIORITY, smc_task_intr, ifp);
363         TASK_INIT(&sc->smc_rx, SMC_RX_PRIORITY, smc_task_rx, ifp);
364         TASK_INIT(&sc->smc_tx, SMC_TX_PRIORITY, smc_task_tx, ifp);
365         sc->smc_tq = taskqueue_create_fast("smc_taskq", M_NOWAIT,
366             taskqueue_thread_enqueue, &sc->smc_tq);
367         taskqueue_start_threads(&sc->smc_tq, 1, PI_NET, "%s taskq",
368             device_get_nameunit(sc->smc_dev));
369
370         /* Mask all interrupts. */
371         sc->smc_mask = 0;
372         smc_write_1(sc, MSK, 0);
373
374         /* Wire up interrupt */
375         error = bus_setup_intr(dev, sc->smc_irq,
376             INTR_TYPE_NET|INTR_MPSAFE, smc_intr, NULL, sc, &sc->smc_ih);
377         if (error != 0)
378                 goto done;
379
380 done:
381         if (error != 0)
382                 smc_detach(dev);
383         return (error);
384 }
385
386 int
387 smc_detach(device_t dev)
388 {
389         int                     type;
390         struct smc_softc        *sc;
391
392         sc = device_get_softc(dev);
393         SMC_LOCK(sc);
394         smc_stop(sc);
395         SMC_UNLOCK(sc);
396
397         if (sc->smc_ifp != NULL) {
398                 ether_ifdetach(sc->smc_ifp);
399         }
400         
401         callout_drain(&sc->smc_watchdog);
402         callout_drain(&sc->smc_mii_tick_ch);
403         
404 #ifdef DEVICE_POLLING
405         if (sc->smc_ifp->if_capenable & IFCAP_POLLING)
406                 ether_poll_deregister(sc->smc_ifp);
407 #endif
408
409         if (sc->smc_ih != NULL)
410                 bus_teardown_intr(sc->smc_dev, sc->smc_irq, sc->smc_ih);
411
412         if (sc->smc_tq != NULL) {
413                 taskqueue_drain(sc->smc_tq, &sc->smc_intr);
414                 taskqueue_drain(sc->smc_tq, &sc->smc_rx);
415                 taskqueue_drain(sc->smc_tq, &sc->smc_tx);
416                 taskqueue_free(sc->smc_tq);
417                 sc->smc_tq = NULL;
418         }
419
420         if (sc->smc_ifp != NULL) {
421                 if_free(sc->smc_ifp);
422         }
423
424         if (sc->smc_miibus != NULL) {
425                 device_delete_child(sc->smc_dev, sc->smc_miibus);
426                 bus_generic_detach(sc->smc_dev);
427         }
428
429         if (sc->smc_reg != NULL) {
430                 type = SYS_RES_IOPORT;
431                 if (sc->smc_usemem)
432                         type = SYS_RES_MEMORY;
433
434                 bus_release_resource(sc->smc_dev, type, sc->smc_reg_rid,
435                     sc->smc_reg);
436         }
437
438         if (sc->smc_irq != NULL)
439                 bus_release_resource(sc->smc_dev, SYS_RES_IRQ, sc->smc_irq_rid,
440                    sc->smc_irq);
441
442         if (mtx_initialized(&sc->smc_mtx))
443                 mtx_destroy(&sc->smc_mtx);
444
445         return (0);
446 }
447
448 static void
449 smc_start(struct ifnet *ifp)
450 {
451         struct smc_softc        *sc;
452
453         sc = ifp->if_softc;
454         SMC_LOCK(sc);
455         smc_start_locked(ifp);
456         SMC_UNLOCK(sc);
457 }
458
459 static void
460 smc_start_locked(struct ifnet *ifp)
461 {
462         struct smc_softc        *sc;
463         struct mbuf             *m;
464         u_int                   len, npages, spin_count;
465
466         sc = ifp->if_softc;
467         SMC_ASSERT_LOCKED(sc);
468
469         if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
470                 return;
471         if (IFQ_IS_EMPTY(&ifp->if_snd))
472                 return;
473
474         /*
475          * Grab the next packet.  If it's too big, drop it.
476          */
477         IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
478         len = m_length(m, NULL);
479         len += (len & 1);
480         if (len > ETHER_MAX_LEN - ETHER_CRC_LEN) {
481                 if_printf(ifp, "large packet discarded\n");
482                 ++ifp->if_oerrors;
483                 m_freem(m);
484                 return; /* XXX readcheck? */
485         }
486
487         /*
488          * Flag that we're busy.
489          */
490         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
491         sc->smc_pending = m;
492
493         /*
494          * Work out how many 256 byte "pages" we need.  We have to include the
495          * control data for the packet in this calculation.
496          */
497         npages = (len * PKT_CTRL_DATA_LEN) >> 8;
498         if (npages == 0)
499                 npages = 1;
500
501         /*
502          * Request memory.
503          */
504         smc_select_bank(sc, 2);
505         smc_mmu_wait(sc);
506         smc_write_2(sc, MMUCR, MMUCR_CMD_TX_ALLOC | npages);
507
508         /*
509          * Spin briefly to see if the allocation succeeds.
510          */
511         spin_count = TX_ALLOC_WAIT_TIME;
512         do {
513                 if (smc_read_1(sc, IST) & ALLOC_INT) {
514                         smc_write_1(sc, ACK, ALLOC_INT);
515                         break;
516                 }
517         } while (--spin_count);
518
519         /*
520          * If the allocation is taking too long, unmask the alloc interrupt
521          * and wait.
522          */
523         if (spin_count == 0) {
524                 sc->smc_mask |= ALLOC_INT;
525                 if ((ifp->if_capenable & IFCAP_POLLING) == 0)
526                         smc_write_1(sc, MSK, sc->smc_mask);
527                 return;
528         }
529
530         taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_tx);
531 }
532
533 static void
534 smc_task_tx(void *context, int pending)
535 {
536         struct ifnet            *ifp;
537         struct smc_softc        *sc;
538         struct mbuf             *m, *m0;
539         u_int                   packet, len;
540         uint8_t                 *data;
541
542         (void)pending;
543         ifp = (struct ifnet *)context;
544         sc = ifp->if_softc;
545
546         SMC_LOCK(sc);
547         
548         if (sc->smc_pending == NULL) {
549                 SMC_UNLOCK(sc);
550                 goto next_packet;
551         }
552
553         m = m0 = sc->smc_pending;
554         sc->smc_pending = NULL;
555         smc_select_bank(sc, 2);
556
557         /*
558          * Check the allocation result.
559          */
560         packet = smc_read_1(sc, ARR);
561
562         /*
563          * If the allocation failed, requeue the packet and retry.
564          */
565         if (packet & ARR_FAILED) {
566                 IFQ_DRV_PREPEND(&ifp->if_snd, m);
567                 ++ifp->if_oerrors;
568                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
569                 smc_start_locked(ifp);
570                 SMC_UNLOCK(sc);
571                 return;
572         }
573
574         /*
575          * Tell the device to write to our packet number.
576          */
577         smc_write_1(sc, PNR, packet);
578         smc_write_2(sc, PTR, 0 | PTR_AUTO_INCR);
579
580         /*
581          * Tell the device how long the packet is (including control data).
582          */
583         len = m_length(m, 0);
584         len += PKT_CTRL_DATA_LEN;
585         smc_write_2(sc, DATA0, 0);
586         smc_write_2(sc, DATA0, len);
587
588         /*
589          * Push the data out to the device.
590          */
591         data = NULL;
592         for (; m != NULL; m = m->m_next) {
593                 data = mtod(m, uint8_t *);
594                 smc_write_multi_2(sc, DATA0, (uint16_t *)data, m->m_len / 2);
595         }
596
597         /*
598          * Push out the control byte and and the odd byte if needed.
599          */
600         if ((len & 1) != 0 && data != NULL)
601                 smc_write_2(sc, DATA0, (CTRL_ODD << 8) | data[m->m_len - 1]);
602         else
603                 smc_write_2(sc, DATA0, 0);
604
605         /*
606          * Unmask the TX empty interrupt.
607          */
608         sc->smc_mask |= TX_EMPTY_INT;
609         if ((ifp->if_capenable & IFCAP_POLLING) == 0)
610                 smc_write_1(sc, MSK, sc->smc_mask);
611
612         /*
613          * Enqueue the packet.
614          */
615         smc_mmu_wait(sc);
616         smc_write_2(sc, MMUCR, MMUCR_CMD_ENQUEUE);
617         callout_reset(&sc->smc_watchdog, hz * 2, smc_watchdog, sc);
618
619         /*
620          * Finish up.
621          */
622         ifp->if_opackets++;
623         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
624         SMC_UNLOCK(sc);
625         BPF_MTAP(ifp, m0);
626         m_freem(m0);
627
628 next_packet:
629         /*
630          * See if there's anything else to do.
631          */
632         smc_start(ifp);
633 }
634
635 static void
636 smc_task_rx(void *context, int pending)
637 {
638         u_int                   packet, status, len;
639         uint8_t                 *data;
640         struct ifnet            *ifp;
641         struct smc_softc        *sc;
642         struct mbuf             *m, *mhead, *mtail;
643
644         (void)pending;
645         ifp = (struct ifnet *)context;
646         sc = ifp->if_softc;
647         mhead = mtail = NULL;
648
649         SMC_LOCK(sc);
650
651         packet = smc_read_1(sc, FIFO_RX);
652         while ((packet & FIFO_EMPTY) == 0) {
653                 /*
654                  * Grab an mbuf and attach a cluster.
655                  */
656                 MGETHDR(m, M_DONTWAIT, MT_DATA);
657                 if (m == NULL) {
658                         break;
659                 }
660                 MCLGET(m, M_DONTWAIT);
661                 if ((m->m_flags & M_EXT) == 0) {
662                         m_freem(m);
663                         break;
664                 }
665         
666                 /*
667                  * Point to the start of the packet.
668                  */
669                 smc_select_bank(sc, 2);
670                 smc_write_1(sc, PNR, packet);
671                 smc_write_2(sc, PTR, 0 | PTR_READ | PTR_RCV | PTR_AUTO_INCR);
672
673                 /*
674                  * Grab status and packet length.
675                  */
676                 status = smc_read_2(sc, DATA0);
677                 len = smc_read_2(sc, DATA0) & RX_LEN_MASK;
678                 len -= 6;
679                 if (status & RX_ODDFRM)
680                         len += 1;
681
682                 /*
683                  * Check for errors.
684                  */
685                 if (status & (RX_TOOSHORT | RX_TOOLNG | RX_BADCRC | RX_ALGNERR)) {
686                         smc_mmu_wait(sc);
687                         smc_write_2(sc, MMUCR, MMUCR_CMD_RELEASE);
688                         ifp->if_ierrors++;
689                         m_freem(m);
690                         break;
691                 }
692         
693                 /*
694                  * Set the mbuf up the way we want it.
695                  */
696                 m->m_pkthdr.rcvif = ifp;
697                 m->m_pkthdr.len = m->m_len = len + 2; /* XXX: Is this right? */
698                 m_adj(m, ETHER_ALIGN);
699         
700                 /*
701                  * Pull the packet out of the device.  Make sure we're in the
702                  * right bank first as things may have changed while we were
703                  * allocating our mbuf.
704                  */
705                 smc_select_bank(sc, 2);
706                 smc_write_1(sc, PNR, packet);
707                 smc_write_2(sc, PTR, 4 | PTR_READ | PTR_RCV | PTR_AUTO_INCR);
708                 data = mtod(m, uint8_t *);
709                 smc_read_multi_2(sc, DATA0, (uint16_t *)data, len >> 1);
710                 if (len & 1) {
711                         data += len & ~1;
712                         *data = smc_read_1(sc, DATA0);
713                 }
714
715                 /*
716                  * Tell the device we're done.
717                  */
718                 smc_mmu_wait(sc);
719                 smc_write_2(sc, MMUCR, MMUCR_CMD_RELEASE);
720                 if (m == NULL) {
721                         break;
722                 }
723                 
724                 if (mhead == NULL) {
725                         mhead = mtail = m;
726                         m->m_next = NULL;
727                 } else {
728                         mtail->m_next = m;
729                         mtail = m;
730                 }
731                 packet = smc_read_1(sc, FIFO_RX);
732         }
733
734         sc->smc_mask |= RCV_INT;
735         if ((ifp->if_capenable & IFCAP_POLLING) == 0)
736                 smc_write_1(sc, MSK, sc->smc_mask);
737
738         SMC_UNLOCK(sc);
739
740         while (mhead != NULL) {
741                 m = mhead;
742                 mhead = mhead->m_next;
743                 m->m_next = NULL;
744                 ifp->if_ipackets++;
745                 (*ifp->if_input)(ifp, m);
746         }
747 }
748
749 #ifdef DEVICE_POLLING
750 static void
751 smc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
752 {
753         struct smc_softc        *sc;
754
755         sc = ifp->if_softc;
756
757         SMC_LOCK(sc);
758         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
759                 SMC_UNLOCK(sc);
760                 return;
761         }
762         SMC_UNLOCK(sc);
763
764         if (cmd == POLL_AND_CHECK_STATUS)
765                 taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_intr);
766 }
767 #endif
768
769 static int
770 smc_intr(void *context)
771 {
772         struct smc_softc        *sc;
773         
774         sc = (struct smc_softc *)context;
775         taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_intr);
776         return (FILTER_HANDLED);
777 }
778
779 static void
780 smc_task_intr(void *context, int pending)
781 {
782         struct smc_softc        *sc;
783         struct ifnet            *ifp;
784         u_int                   status, packet, counter, tcr;
785
786         (void)pending;
787         ifp = (struct ifnet *)context;
788         sc = ifp->if_softc;
789
790         SMC_LOCK(sc);
791         
792         smc_select_bank(sc, 2);
793
794         /*
795          * Get the current mask, and then block all interrupts while we're
796          * working.
797          */
798         if ((ifp->if_capenable & IFCAP_POLLING) == 0)
799                 smc_write_1(sc, MSK, 0);
800
801         /*
802          * Find out what interrupts are flagged.
803          */
804         status = smc_read_1(sc, IST) & sc->smc_mask;
805
806         /*
807          * Transmit error
808          */
809         if (status & TX_INT) {
810                 /*
811                  * Kill off the packet if there is one and re-enable transmit.
812                  */
813                 packet = smc_read_1(sc, FIFO_TX);
814                 if ((packet & FIFO_EMPTY) == 0) {
815                         smc_write_1(sc, PNR, packet);
816                         smc_write_2(sc, PTR, 0 | PTR_READ | 
817                             PTR_AUTO_INCR);
818                         tcr = smc_read_2(sc, DATA0);
819                         if ((tcr & EPHSR_TX_SUC) == 0)
820                                 device_printf(sc->smc_dev,
821                                     "bad packet\n");
822                         smc_mmu_wait(sc);
823                         smc_write_2(sc, MMUCR, MMUCR_CMD_RELEASE_PKT);
824
825                         smc_select_bank(sc, 0);
826                         tcr = smc_read_2(sc, TCR);
827                         tcr |= TCR_TXENA | TCR_PAD_EN;
828                         smc_write_2(sc, TCR, tcr);
829                         smc_select_bank(sc, 2);
830                         taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_tx);
831                 }
832
833                 /*
834                  * Ack the interrupt.
835                  */
836                 smc_write_1(sc, ACK, TX_INT);
837         }
838
839         /*
840          * Receive
841          */
842         if (status & RCV_INT) {
843                 smc_write_1(sc, ACK, RCV_INT);
844                 sc->smc_mask &= ~RCV_INT;
845                 taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_rx);
846         }
847
848         /*
849          * Allocation
850          */
851         if (status & ALLOC_INT) {
852                 smc_write_1(sc, ACK, ALLOC_INT);
853                 sc->smc_mask &= ~ALLOC_INT;
854                 taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_tx);
855         }
856
857         /*
858          * Receive overrun
859          */
860         if (status & RX_OVRN_INT) {
861                 smc_write_1(sc, ACK, RX_OVRN_INT);
862                 ifp->if_ierrors++;
863         }
864
865         /*
866          * Transmit empty
867          */
868         if (status & TX_EMPTY_INT) {
869                 smc_write_1(sc, ACK, TX_EMPTY_INT);
870                 sc->smc_mask &= ~TX_EMPTY_INT;
871                 callout_stop(&sc->smc_watchdog);
872
873                 /*
874                  * Update collision stats.
875                  */
876                 smc_select_bank(sc, 0);
877                 counter = smc_read_2(sc, ECR);
878                 smc_select_bank(sc, 2);
879                 ifp->if_collisions +=
880                     (counter & ECR_SNGLCOL_MASK) >> ECR_SNGLCOL_SHIFT;
881                 ifp->if_collisions +=
882                     (counter & ECR_MULCOL_MASK) >> ECR_MULCOL_SHIFT;
883
884                 /*
885                  * See if there are any packets to transmit.
886                  */
887                 taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_tx);
888         }
889
890         /*
891          * Update the interrupt mask.
892          */
893         if ((ifp->if_capenable & IFCAP_POLLING) == 0)
894                 smc_write_1(sc, MSK, sc->smc_mask);
895
896         SMC_UNLOCK(sc);
897 }
898
899 static u_int
900 smc_mii_readbits(struct smc_softc *sc, int nbits)
901 {
902         u_int   mgmt, mask, val;
903
904         SMC_ASSERT_LOCKED(sc);
905         KASSERT((smc_read_2(sc, BSR) & BSR_BANK_MASK) == 3,
906             ("%s: smc_mii_readbits called with bank %d (!= 3)",
907             device_get_nameunit(sc->smc_dev),
908             smc_read_2(sc, BSR) & BSR_BANK_MASK));
909
910         /*
911          * Set up the MGMT (aka MII) register.
912          */
913         mgmt = smc_read_2(sc, MGMT) & ~(MGMT_MCLK | MGMT_MDOE | MGMT_MDO);
914         smc_write_2(sc, MGMT, mgmt);
915
916         /*
917          * Read the bits in.
918          */
919         for (mask = 1 << (nbits - 1), val = 0; mask; mask >>= 1) {
920                 if (smc_read_2(sc, MGMT) & MGMT_MDI)
921                         val |= mask;
922
923                 smc_write_2(sc, MGMT, mgmt);
924                 DELAY(1);
925                 smc_write_2(sc, MGMT, mgmt | MGMT_MCLK);
926                 DELAY(1);
927         }
928
929         return (val);
930 }
931
932 static void
933 smc_mii_writebits(struct smc_softc *sc, u_int val, int nbits)
934 {
935         u_int   mgmt, mask;
936
937         SMC_ASSERT_LOCKED(sc);
938         KASSERT((smc_read_2(sc, BSR) & BSR_BANK_MASK) == 3,
939             ("%s: smc_mii_writebits called with bank %d (!= 3)",
940             device_get_nameunit(sc->smc_dev),
941             smc_read_2(sc, BSR) & BSR_BANK_MASK));
942
943         /*
944          * Set up the MGMT (aka MII) register).
945          */
946         mgmt = smc_read_2(sc, MGMT) & ~(MGMT_MCLK | MGMT_MDOE | MGMT_MDO);
947         mgmt |= MGMT_MDOE;
948
949         /*
950          * Push the bits out.
951          */
952         for (mask = 1 << (nbits - 1); mask; mask >>= 1) {
953                 if (val & mask)
954                         mgmt |= MGMT_MDO;
955                 else
956                         mgmt &= ~MGMT_MDO;
957
958                 smc_write_2(sc, MGMT, mgmt);
959                 DELAY(1);
960                 smc_write_2(sc, MGMT, mgmt | MGMT_MCLK);
961                 DELAY(1);
962         }
963 }
964
965 int
966 smc_miibus_readreg(device_t dev, int phy, int reg)
967 {
968         struct smc_softc        *sc;
969         int                     val;
970
971         sc = device_get_softc(dev);
972
973         SMC_LOCK(sc);
974
975         smc_select_bank(sc, 3);
976
977         /*
978          * Send out the idle pattern.
979          */
980         smc_mii_writebits(sc, 0xffffffff, 32);
981
982         /*
983          * Start code + read opcode + phy address + phy register
984          */
985         smc_mii_writebits(sc, 6 << 10 | phy << 5 | reg, 14);
986
987         /*
988          * Turnaround + data
989          */
990         val = smc_mii_readbits(sc, 18);
991
992         /*
993          * Reset the MDIO interface.
994          */
995         smc_write_2(sc, MGMT,
996             smc_read_2(sc, MGMT) & ~(MGMT_MCLK | MGMT_MDOE | MGMT_MDO));
997
998         SMC_UNLOCK(sc);
999         return (val);
1000 }
1001
1002 int
1003 smc_miibus_writereg(device_t dev, int phy, int reg, int data)
1004 {
1005         struct smc_softc        *sc;
1006
1007         sc = device_get_softc(dev);
1008
1009         SMC_LOCK(sc);
1010
1011         smc_select_bank(sc, 3);
1012
1013         /*
1014          * Send idle pattern.
1015          */
1016         smc_mii_writebits(sc, 0xffffffff, 32);
1017
1018         /*
1019          * Start code + write opcode + phy address + phy register + turnaround
1020          * + data.
1021          */
1022         smc_mii_writebits(sc, 5 << 28 | phy << 23 | reg << 18 | 2 << 16 | data,
1023             32);
1024
1025         /*
1026          * Reset MDIO interface.
1027          */
1028         smc_write_2(sc, MGMT,
1029             smc_read_2(sc, MGMT) & ~(MGMT_MCLK | MGMT_MDOE | MGMT_MDO));
1030
1031         SMC_UNLOCK(sc);
1032         return (0);
1033 }
1034
1035 void
1036 smc_miibus_statchg(device_t dev)
1037 {
1038         struct smc_softc        *sc;
1039         struct mii_data         *mii;
1040         uint16_t                tcr;
1041
1042         sc = device_get_softc(dev);
1043         mii = device_get_softc(sc->smc_miibus);
1044
1045         SMC_LOCK(sc);
1046
1047         smc_select_bank(sc, 0);
1048         tcr = smc_read_2(sc, TCR);
1049
1050         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1051                 tcr |= TCR_SWFDUP;
1052         else
1053                 tcr &= ~TCR_SWFDUP;
1054
1055         smc_write_2(sc, TCR, tcr);
1056
1057         SMC_UNLOCK(sc);
1058 }
1059
1060 static int
1061 smc_mii_ifmedia_upd(struct ifnet *ifp)
1062 {
1063         struct smc_softc        *sc;
1064         struct mii_data         *mii;
1065
1066         sc = ifp->if_softc;
1067         if (sc->smc_miibus == NULL)
1068                 return (ENXIO);
1069
1070         mii = device_get_softc(sc->smc_miibus);
1071         return (mii_mediachg(mii));
1072 }
1073
1074 static void
1075 smc_mii_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1076 {
1077         struct smc_softc        *sc;
1078         struct mii_data         *mii;
1079
1080         sc = ifp->if_softc;
1081         if (sc->smc_miibus == NULL)
1082                 return;
1083
1084         mii = device_get_softc(sc->smc_miibus);
1085         mii_pollstat(mii);
1086         ifmr->ifm_active = mii->mii_media_active;
1087         ifmr->ifm_status = mii->mii_media_status;
1088 }
1089
1090 static void
1091 smc_mii_tick(void *context)
1092 {
1093         struct smc_softc        *sc;
1094
1095         sc = (struct smc_softc *)context;
1096
1097         if (sc->smc_miibus == NULL)
1098                 return;
1099
1100         SMC_UNLOCK(sc);
1101
1102         mii_tick(device_get_softc(sc->smc_miibus));
1103         callout_reset(&sc->smc_mii_tick_ch, hz, smc_mii_tick, sc);
1104 }
1105
1106 static void
1107 smc_mii_mediachg(struct smc_softc *sc)
1108 {
1109
1110         if (sc->smc_miibus == NULL)
1111                 return;
1112         mii_mediachg(device_get_softc(sc->smc_miibus));
1113 }
1114
1115 static int
1116 smc_mii_mediaioctl(struct smc_softc *sc, struct ifreq *ifr, u_long command)
1117 {
1118         struct mii_data *mii;
1119
1120         if (sc->smc_miibus == NULL)
1121                 return (EINVAL);
1122
1123         mii = device_get_softc(sc->smc_miibus);
1124         return (ifmedia_ioctl(sc->smc_ifp, ifr, &mii->mii_media, command));
1125 }
1126
1127 static void
1128 smc_reset(struct smc_softc *sc)
1129 {
1130         u_int   ctr;
1131
1132         SMC_ASSERT_LOCKED(sc);
1133
1134         smc_select_bank(sc, 2);
1135
1136         /*
1137          * Mask all interrupts.
1138          */
1139         smc_write_1(sc, MSK, 0);
1140
1141         /*
1142          * Tell the device to reset.
1143          */
1144         smc_select_bank(sc, 0);
1145         smc_write_2(sc, RCR, RCR_SOFT_RST);
1146
1147         /*
1148          * Set up the configuration register.
1149          */
1150         smc_select_bank(sc, 1);
1151         smc_write_2(sc, CR, CR_EPH_POWER_EN);
1152         DELAY(1);
1153
1154         /*
1155          * Turn off transmit and receive.
1156          */
1157         smc_select_bank(sc, 0);
1158         smc_write_2(sc, TCR, 0);
1159         smc_write_2(sc, RCR, 0);
1160
1161         /*
1162          * Set up the control register.
1163          */
1164         smc_select_bank(sc, 1);
1165         ctr = smc_read_2(sc, CTR);
1166         ctr |= CTR_LE_ENABLE | CTR_AUTO_RELEASE;
1167         smc_write_2(sc, CTR, ctr);
1168
1169         /*
1170          * Reset the MMU.
1171          */
1172         smc_select_bank(sc, 2);
1173         smc_mmu_wait(sc);
1174         smc_write_2(sc, MMUCR, MMUCR_CMD_MMU_RESET);
1175 }
1176
1177 static void
1178 smc_enable(struct smc_softc *sc)
1179 {
1180         struct ifnet            *ifp;
1181
1182         SMC_ASSERT_LOCKED(sc);
1183         ifp = sc->smc_ifp;
1184
1185         /*
1186          * Set up the receive/PHY control register.
1187          */
1188         smc_select_bank(sc, 0);
1189         smc_write_2(sc, RPCR, RPCR_ANEG | (RPCR_LED_LINK_ANY << RPCR_LSA_SHIFT)
1190             | (RPCR_LED_ACT_ANY << RPCR_LSB_SHIFT));
1191
1192         /*
1193          * Set up the transmit and receive control registers.
1194          */
1195         smc_write_2(sc, TCR, TCR_TXENA | TCR_PAD_EN);
1196         smc_write_2(sc, RCR, RCR_RXEN | RCR_STRIP_CRC);
1197
1198         /*
1199          * Set up the interrupt mask.
1200          */
1201         smc_select_bank(sc, 2);
1202         sc->smc_mask = EPH_INT | RX_OVRN_INT | RCV_INT | TX_INT;
1203         if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1204                 smc_write_1(sc, MSK, sc->smc_mask);
1205 }
1206
1207 static void
1208 smc_stop(struct smc_softc *sc)
1209 {
1210
1211         SMC_ASSERT_LOCKED(sc);
1212
1213         /*
1214          * Turn off callouts.
1215          */
1216         callout_stop(&sc->smc_watchdog);
1217         callout_stop(&sc->smc_mii_tick_ch);
1218
1219         /*
1220          * Mask all interrupts.
1221          */
1222         smc_select_bank(sc, 2);
1223         sc->smc_mask = 0;
1224         smc_write_1(sc, MSK, 0);
1225 #ifdef DEVICE_POLLING
1226         ether_poll_deregister(sc->smc_ifp);
1227         sc->smc_ifp->if_capenable &= ~IFCAP_POLLING;
1228         sc->smc_ifp->if_capenable &= ~IFCAP_POLLING_NOCOUNT;
1229 #endif
1230
1231         /*
1232          * Disable transmit and receive.
1233          */
1234         smc_select_bank(sc, 0);
1235         smc_write_2(sc, TCR, 0);
1236         smc_write_2(sc, RCR, 0);
1237
1238         sc->smc_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1239 }
1240
1241 static void
1242 smc_watchdog(void *arg)
1243 {
1244         struct smc_softc        *sc;
1245         
1246         sc = (struct smc_softc *)arg;
1247         device_printf(sc->smc_dev, "watchdog timeout\n");
1248         taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_intr);
1249 }
1250
1251 static void
1252 smc_init(void *context)
1253 {
1254         struct smc_softc        *sc;
1255
1256         sc = (struct smc_softc *)context;
1257         SMC_LOCK(sc);
1258         smc_init_locked(sc);
1259         SMC_UNLOCK(sc);
1260 }
1261
1262 static void
1263 smc_init_locked(struct smc_softc *sc)
1264 {
1265         struct ifnet    *ifp;
1266
1267         ifp = sc->smc_ifp;
1268
1269         SMC_ASSERT_LOCKED(sc);
1270
1271         smc_reset(sc);
1272         smc_enable(sc);
1273
1274         ifp->if_drv_flags |= IFF_DRV_RUNNING;
1275         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1276
1277         smc_start_locked(ifp);
1278
1279         if (sc->smc_mii_tick != NULL)
1280                 callout_reset(&sc->smc_mii_tick_ch, hz, sc->smc_mii_tick, sc);
1281
1282 #ifdef DEVICE_POLLING
1283         SMC_UNLOCK(sc);
1284         ether_poll_register(smc_poll, ifp);
1285         SMC_LOCK(sc);
1286         ifp->if_capenable |= IFCAP_POLLING;
1287         ifp->if_capenable |= IFCAP_POLLING_NOCOUNT;
1288 #endif
1289 }
1290
1291 static int
1292 smc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1293 {
1294         struct smc_softc        *sc;
1295         int                     error;
1296
1297         sc = ifp->if_softc;
1298         error = 0;
1299
1300         switch (cmd) {
1301         case SIOCSIFFLAGS:
1302                 if ((ifp->if_flags & IFF_UP) == 0 &&
1303                     (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1304                         SMC_LOCK(sc);
1305                         smc_stop(sc);
1306                         SMC_UNLOCK(sc);
1307                 } else {
1308                         smc_init(sc);
1309                         if (sc->smc_mii_mediachg != NULL)
1310                                 sc->smc_mii_mediachg(sc);
1311                 }
1312                 break;
1313
1314         case SIOCADDMULTI:
1315         case SIOCDELMULTI:
1316                 /* XXX
1317                 SMC_LOCK(sc);
1318                 smc_setmcast(sc);
1319                 SMC_UNLOCK(sc);
1320                 */
1321                 error = EINVAL;
1322                 break;
1323
1324         case SIOCGIFMEDIA:
1325         case SIOCSIFMEDIA:
1326                 if (sc->smc_mii_mediaioctl == NULL) {
1327                         error = EINVAL;
1328                         break;
1329                 }
1330                 sc->smc_mii_mediaioctl(sc, (struct ifreq *)data, cmd);
1331                 break;
1332
1333         default:
1334                 error = ether_ioctl(ifp, cmd, data);
1335                 break;
1336         }
1337
1338         return (error);
1339 }