]> CyberLeo.Net >> Repos - FreeBSD/releng/8.1.git/blob - sys/dev/ti/if_ti.c
Copy stable/8 to releng/8.1 in preparation for 8.1-RC1.
[FreeBSD/releng/8.1.git] / sys / dev / ti / if_ti.c
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 /*
34  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35  * Manuals, sample driver and firmware source kits are available
36  * from http://www.alteon.com/support/openkits.
37  *
38  * Written by Bill Paul <wpaul@ctr.columbia.edu>
39  * Electrical Engineering Department
40  * Columbia University, New York City
41  */
42
43 /*
44  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48  * filtering and jumbo (9014 byte) frames. The hardware is largely
49  * controlled by firmware, which must be loaded into the NIC during
50  * initialization.
51  *
52  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53  * revision, which supports new features such as extended commands,
54  * extended jumbo receive ring desciptors and a mini receive ring.
55  *
56  * Alteon Networks is to be commended for releasing such a vast amount
57  * of development material for the Tigon NIC without requiring an NDA
58  * (although they really should have done it a long time ago). With
59  * any luck, the other vendors will finally wise up and follow Alteon's
60  * stellar example.
61  *
62  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63  * this driver by #including it as a C header file. This bloats the
64  * driver somewhat, but it's the easiest method considering that the
65  * driver code and firmware code need to be kept in sync. The source
66  * for the firmware is not provided with the FreeBSD distribution since
67  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68  *
69  * The following people deserve special thanks:
70  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71  *   for testing
72  * - Raymond Lee of Netgear, for providing a pair of Netgear
73  *   GA620 Tigon 2 boards for testing
74  * - Ulf Zimmermann, for bringing the GA260 to my attention and
75  *   convincing me to write this driver.
76  * - Andrew Gallatin for providing FreeBSD/Alpha support.
77  */
78
79 #include <sys/cdefs.h>
80 __FBSDID("$FreeBSD$");
81
82 #include "opt_ti.h"
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/kernel.h>
90 #include <sys/module.h>
91 #include <sys/socket.h>
92 #include <sys/queue.h>
93 #include <sys/conf.h>
94 #include <sys/sf_buf.h>
95
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/ethernet.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_types.h>
102 #include <net/if_vlan_var.h>
103
104 #include <net/bpf.h>
105
106 #include <netinet/in_systm.h>
107 #include <netinet/in.h>
108 #include <netinet/ip.h>
109
110 #include <machine/bus.h>
111 #include <machine/resource.h>
112 #include <sys/bus.h>
113 #include <sys/rman.h>
114
115 /* #define TI_PRIVATE_JUMBOS */
116 #ifndef TI_PRIVATE_JUMBOS
117 #include <vm/vm.h>
118 #include <vm/vm_page.h>
119 #endif
120
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123
124 #include <sys/tiio.h>
125 #include <dev/ti/if_tireg.h>
126 #include <dev/ti/ti_fw.h>
127 #include <dev/ti/ti_fw2.h>
128
129 #define TI_CSUM_FEATURES        (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
130 /*
131  * We can only turn on header splitting if we're using extended receive
132  * BDs.
133  */
134 #if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
135 #error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
136 #endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
137
138 typedef enum {
139         TI_SWAP_HTON,
140         TI_SWAP_NTOH
141 } ti_swap_type;
142
143
144 /*
145  * Various supported device vendors/types and their names.
146  */
147
148 static struct ti_type ti_devs[] = {
149         { ALT_VENDORID, ALT_DEVICEID_ACENIC,
150                 "Alteon AceNIC 1000baseSX Gigabit Ethernet" },
151         { ALT_VENDORID, ALT_DEVICEID_ACENIC_COPPER,
152                 "Alteon AceNIC 1000baseT Gigabit Ethernet" },
153         { TC_VENDORID,  TC_DEVICEID_3C985,
154                 "3Com 3c985-SX Gigabit Ethernet" },
155         { NG_VENDORID, NG_DEVICEID_GA620,
156                 "Netgear GA620 1000baseSX Gigabit Ethernet" },
157         { NG_VENDORID, NG_DEVICEID_GA620T,
158                 "Netgear GA620 1000baseT Gigabit Ethernet" },
159         { SGI_VENDORID, SGI_DEVICEID_TIGON,
160                 "Silicon Graphics Gigabit Ethernet" },
161         { DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
162                 "Farallon PN9000SX Gigabit Ethernet" },
163         { 0, 0, NULL }
164 };
165
166
167 static  d_open_t        ti_open;
168 static  d_close_t       ti_close;
169 static  d_ioctl_t       ti_ioctl2;
170
171 static struct cdevsw ti_cdevsw = {
172         .d_version =    D_VERSION,
173         .d_flags =      0,
174         .d_open =       ti_open,
175         .d_close =      ti_close,
176         .d_ioctl =      ti_ioctl2,
177         .d_name =       "ti",
178 };
179
180 static int ti_probe(device_t);
181 static int ti_attach(device_t);
182 static int ti_detach(device_t);
183 static void ti_txeof(struct ti_softc *);
184 static void ti_rxeof(struct ti_softc *);
185
186 static void ti_stats_update(struct ti_softc *);
187 static int ti_encap(struct ti_softc *, struct mbuf **);
188
189 static void ti_intr(void *);
190 static void ti_start(struct ifnet *);
191 static void ti_start_locked(struct ifnet *);
192 static int ti_ioctl(struct ifnet *, u_long, caddr_t);
193 static void ti_init(void *);
194 static void ti_init_locked(void *);
195 static void ti_init2(struct ti_softc *);
196 static void ti_stop(struct ti_softc *);
197 static void ti_watchdog(struct ifnet *);
198 static int ti_shutdown(device_t);
199 static int ti_ifmedia_upd(struct ifnet *);
200 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
201
202 static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
203 static u_int8_t ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
204 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
205
206 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
207 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
208 static void ti_setmulti(struct ti_softc *);
209
210 static void ti_mem_read(struct ti_softc *, u_int32_t, u_int32_t, void *);
211 static void ti_mem_write(struct ti_softc *, u_int32_t, u_int32_t, void *);
212 static void ti_mem_zero(struct ti_softc *, u_int32_t, u_int32_t);
213 static int ti_copy_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t, int, int);
214 static int ti_copy_scratch(struct ti_softc *, u_int32_t, u_int32_t, caddr_t,
215                 int, int, int);
216 static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
217 static void ti_loadfw(struct ti_softc *);
218 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
219 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
220 static void ti_handle_events(struct ti_softc *);
221 static int ti_alloc_dmamaps(struct ti_softc *);
222 static void ti_free_dmamaps(struct ti_softc *);
223 static int ti_alloc_jumbo_mem(struct ti_softc *);
224 #ifdef TI_PRIVATE_JUMBOS
225 static void *ti_jalloc(struct ti_softc *);
226 static void ti_jfree(void *, void *);
227 #endif /* TI_PRIVATE_JUMBOS */
228 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
229 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
230 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
231 static int ti_init_rx_ring_std(struct ti_softc *);
232 static void ti_free_rx_ring_std(struct ti_softc *);
233 static int ti_init_rx_ring_jumbo(struct ti_softc *);
234 static void ti_free_rx_ring_jumbo(struct ti_softc *);
235 static int ti_init_rx_ring_mini(struct ti_softc *);
236 static void ti_free_rx_ring_mini(struct ti_softc *);
237 static void ti_free_tx_ring(struct ti_softc *);
238 static int ti_init_tx_ring(struct ti_softc *);
239
240 static int ti_64bitslot_war(struct ti_softc *);
241 static int ti_chipinit(struct ti_softc *);
242 static int ti_gibinit(struct ti_softc *);
243
244 #ifdef TI_JUMBO_HDRSPLIT
245 static __inline void ti_hdr_split       (struct mbuf *top, int hdr_len,
246                                              int pkt_len, int idx);
247 #endif /* TI_JUMBO_HDRSPLIT */
248
249 static device_method_t ti_methods[] = {
250         /* Device interface */
251         DEVMETHOD(device_probe,         ti_probe),
252         DEVMETHOD(device_attach,        ti_attach),
253         DEVMETHOD(device_detach,        ti_detach),
254         DEVMETHOD(device_shutdown,      ti_shutdown),
255         { 0, 0 }
256 };
257
258 static driver_t ti_driver = {
259         "ti",
260         ti_methods,
261         sizeof(struct ti_softc)
262 };
263
264 static devclass_t ti_devclass;
265
266 DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
267 MODULE_DEPEND(ti, pci, 1, 1, 1);
268 MODULE_DEPEND(ti, ether, 1, 1, 1);
269
270 /*
271  * Send an instruction or address to the EEPROM, check for ACK.
272  */
273 static u_int32_t ti_eeprom_putbyte(sc, byte)
274         struct ti_softc         *sc;
275         int                     byte;
276 {
277         int                     i, ack = 0;
278
279         /*
280          * Make sure we're in TX mode.
281          */
282         TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
283
284         /*
285          * Feed in each bit and stobe the clock.
286          */
287         for (i = 0x80; i; i >>= 1) {
288                 if (byte & i) {
289                         TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
290                 } else {
291                         TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
292                 }
293                 DELAY(1);
294                 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
295                 DELAY(1);
296                 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
297         }
298
299         /*
300          * Turn off TX mode.
301          */
302         TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
303
304         /*
305          * Check for ack.
306          */
307         TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
308         ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
309         TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
310
311         return (ack);
312 }
313
314 /*
315  * Read a byte of data stored in the EEPROM at address 'addr.'
316  * We have to send two address bytes since the EEPROM can hold
317  * more than 256 bytes of data.
318  */
319 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
320         struct ti_softc         *sc;
321         int                     addr;
322         u_int8_t                *dest;
323 {
324         int                     i;
325         u_int8_t                byte = 0;
326
327         EEPROM_START;
328
329         /*
330          * Send write control code to EEPROM.
331          */
332         if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
333                 device_printf(sc->ti_dev,
334                     "failed to send write command, status: %x\n",
335                     CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
336                 return (1);
337         }
338
339         /*
340          * Send first byte of address of byte we want to read.
341          */
342         if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
343                 device_printf(sc->ti_dev, "failed to send address, status: %x\n",
344                     CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
345                 return (1);
346         }
347         /*
348          * Send second byte address of byte we want to read.
349          */
350         if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
351                 device_printf(sc->ti_dev, "failed to send address, status: %x\n",
352                     CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
353                 return (1);
354         }
355
356         EEPROM_STOP;
357         EEPROM_START;
358         /*
359          * Send read control code to EEPROM.
360          */
361         if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
362                 device_printf(sc->ti_dev,
363                     "failed to send read command, status: %x\n",
364                     CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
365                 return (1);
366         }
367
368         /*
369          * Start reading bits from EEPROM.
370          */
371         TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
372         for (i = 0x80; i; i >>= 1) {
373                 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
374                 DELAY(1);
375                 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
376                         byte |= i;
377                 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
378                 DELAY(1);
379         }
380
381         EEPROM_STOP;
382
383         /*
384          * No ACK generated for read, so just return byte.
385          */
386
387         *dest = byte;
388
389         return (0);
390 }
391
392 /*
393  * Read a sequence of bytes from the EEPROM.
394  */
395 static int
396 ti_read_eeprom(sc, dest, off, cnt)
397         struct ti_softc         *sc;
398         caddr_t                 dest;
399         int                     off;
400         int                     cnt;
401 {
402         int                     err = 0, i;
403         u_int8_t                byte = 0;
404
405         for (i = 0; i < cnt; i++) {
406                 err = ti_eeprom_getbyte(sc, off + i, &byte);
407                 if (err)
408                         break;
409                 *(dest + i) = byte;
410         }
411
412         return (err ? 1 : 0);
413 }
414
415 /*
416  * NIC memory read function.
417  * Can be used to copy data from NIC local memory.
418  */
419 static void
420 ti_mem_read(sc, addr, len, buf)
421         struct ti_softc         *sc;
422         u_int32_t               addr, len;
423         void                    *buf;
424 {
425         int                     segptr, segsize, cnt;
426         char                    *ptr;
427
428         segptr = addr;
429         cnt = len;
430         ptr = buf;
431
432         while (cnt) {
433                 if (cnt < TI_WINLEN)
434                         segsize = cnt;
435                 else
436                         segsize = TI_WINLEN - (segptr % TI_WINLEN);
437                 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
438                 bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
439                     TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
440                     segsize / 4);
441                 ptr += segsize;
442                 segptr += segsize;
443                 cnt -= segsize;
444         }
445 }
446
447
448 /*
449  * NIC memory write function.
450  * Can be used to copy data into NIC local memory.
451  */
452 static void
453 ti_mem_write(sc, addr, len, buf)
454         struct ti_softc         *sc;
455         u_int32_t               addr, len;
456         void                    *buf;
457 {
458         int                     segptr, segsize, cnt;
459         char                    *ptr;
460
461         segptr = addr;
462         cnt = len;
463         ptr = buf;
464
465         while (cnt) {
466                 if (cnt < TI_WINLEN)
467                         segsize = cnt;
468                 else
469                         segsize = TI_WINLEN - (segptr % TI_WINLEN);
470                 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
471                 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
472                     TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
473                     segsize / 4);
474                 ptr += segsize;
475                 segptr += segsize;
476                 cnt -= segsize;
477         }
478 }
479
480 /*
481  * NIC memory read function.
482  * Can be used to clear a section of NIC local memory.
483  */
484 static void
485 ti_mem_zero(sc, addr, len)
486         struct ti_softc         *sc;
487         u_int32_t               addr, len;
488 {
489         int                     segptr, segsize, cnt;
490
491         segptr = addr;
492         cnt = len;
493
494         while (cnt) {
495                 if (cnt < TI_WINLEN)
496                         segsize = cnt;
497                 else
498                         segsize = TI_WINLEN - (segptr % TI_WINLEN);
499                 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
500                 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
501                     TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
502                 segptr += segsize;
503                 cnt -= segsize;
504         }
505 }
506
507 static int
508 ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
509         struct ti_softc         *sc;
510         u_int32_t               tigon_addr, len;
511         caddr_t                 buf;
512         int                     useraddr, readdata;
513 {
514         int             segptr, segsize, cnt;
515         caddr_t         ptr;
516         u_int32_t       origwin;
517         u_int8_t        tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
518         int             resid, segresid;
519         int             first_pass;
520
521         TI_LOCK_ASSERT(sc);
522
523         /*
524          * At the moment, we don't handle non-aligned cases, we just bail.
525          * If this proves to be a problem, it will be fixed.
526          */
527         if ((readdata == 0)
528          && (tigon_addr & 0x3)) {
529                 device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
530                     "word-aligned\n", __func__, tigon_addr);
531                 device_printf(sc->ti_dev, "%s: unaligned writes aren't "
532                     "yet supported\n", __func__);
533                 return (EINVAL);
534         }
535
536         segptr = tigon_addr & ~0x3;
537         segresid = tigon_addr - segptr;
538
539         /*
540          * This is the non-aligned amount left over that we'll need to
541          * copy.
542          */
543         resid = len & 0x3;
544
545         /* Add in the left over amount at the front of the buffer */
546         resid += segresid;
547
548         cnt = len & ~0x3;
549         /*
550          * If resid + segresid is >= 4, add multiples of 4 to the count and
551          * decrease the residual by that much.
552          */
553         cnt += resid & ~0x3;
554         resid -= resid & ~0x3;
555
556         ptr = buf;
557
558         first_pass = 1;
559
560         /*
561          * Save the old window base value.
562          */
563         origwin = CSR_READ_4(sc, TI_WINBASE);
564
565         while (cnt) {
566                 bus_size_t ti_offset;
567
568                 if (cnt < TI_WINLEN)
569                         segsize = cnt;
570                 else
571                         segsize = TI_WINLEN - (segptr % TI_WINLEN);
572                 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
573
574                 ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
575
576                 if (readdata) {
577
578                         bus_space_read_region_4(sc->ti_btag,
579                                                 sc->ti_bhandle, ti_offset,
580                                                 (u_int32_t *)tmparray,
581                                                 segsize >> 2);
582                         if (useraddr) {
583                                 /*
584                                  * Yeah, this is a little on the kludgy
585                                  * side, but at least this code is only
586                                  * used for debugging.
587                                  */
588                                 ti_bcopy_swap(tmparray, tmparray2, segsize,
589                                               TI_SWAP_NTOH);
590
591                                 TI_UNLOCK(sc);
592                                 if (first_pass) {
593                                         copyout(&tmparray2[segresid], ptr,
594                                                 segsize - segresid);
595                                         first_pass = 0;
596                                 } else
597                                         copyout(tmparray2, ptr, segsize);
598                                 TI_LOCK(sc);
599                         } else {
600                                 if (first_pass) {
601
602                                         ti_bcopy_swap(tmparray, tmparray2,
603                                                       segsize, TI_SWAP_NTOH);
604                                         TI_UNLOCK(sc);
605                                         bcopy(&tmparray2[segresid], ptr,
606                                               segsize - segresid);
607                                         TI_LOCK(sc);
608                                         first_pass = 0;
609                                 } else
610                                         ti_bcopy_swap(tmparray, ptr, segsize,
611                                                       TI_SWAP_NTOH);
612                         }
613
614                 } else {
615                         if (useraddr) {
616                                 TI_UNLOCK(sc);
617                                 copyin(ptr, tmparray2, segsize);
618                                 TI_LOCK(sc);
619                                 ti_bcopy_swap(tmparray2, tmparray, segsize,
620                                               TI_SWAP_HTON);
621                         } else
622                                 ti_bcopy_swap(ptr, tmparray, segsize,
623                                               TI_SWAP_HTON);
624
625                         bus_space_write_region_4(sc->ti_btag,
626                                                  sc->ti_bhandle, ti_offset,
627                                                  (u_int32_t *)tmparray,
628                                                  segsize >> 2);
629                 }
630                 segptr += segsize;
631                 ptr += segsize;
632                 cnt -= segsize;
633         }
634
635         /*
636          * Handle leftover, non-word-aligned bytes.
637          */
638         if (resid != 0) {
639                 u_int32_t       tmpval, tmpval2;
640                 bus_size_t      ti_offset;
641
642                 /*
643                  * Set the segment pointer.
644                  */
645                 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
646
647                 ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
648
649                 /*
650                  * First, grab whatever is in our source/destination.
651                  * We'll obviously need this for reads, but also for
652                  * writes, since we'll be doing read/modify/write.
653                  */
654                 bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
655                                         ti_offset, &tmpval, 1);
656
657                 /*
658                  * Next, translate this from little-endian to big-endian
659                  * (at least on i386 boxes).
660                  */
661                 tmpval2 = ntohl(tmpval);
662
663                 if (readdata) {
664                         /*
665                          * If we're reading, just copy the leftover number
666                          * of bytes from the host byte order buffer to
667                          * the user's buffer.
668                          */
669                         if (useraddr) {
670                                 TI_UNLOCK(sc);
671                                 copyout(&tmpval2, ptr, resid);
672                                 TI_LOCK(sc);
673                         } else
674                                 bcopy(&tmpval2, ptr, resid);
675                 } else {
676                         /*
677                          * If we're writing, first copy the bytes to be
678                          * written into the network byte order buffer,
679                          * leaving the rest of the buffer with whatever was
680                          * originally in there.  Then, swap the bytes
681                          * around into host order and write them out.
682                          *
683                          * XXX KDM the read side of this has been verified
684                          * to work, but the write side of it has not been
685                          * verified.  So user beware.
686                          */
687                         if (useraddr) {
688                                 TI_UNLOCK(sc);
689                                 copyin(ptr, &tmpval2, resid);
690                                 TI_LOCK(sc);
691                         } else
692                                 bcopy(ptr, &tmpval2, resid);
693
694                         tmpval = htonl(tmpval2);
695
696                         bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
697                                                  ti_offset, &tmpval, 1);
698                 }
699         }
700
701         CSR_WRITE_4(sc, TI_WINBASE, origwin);
702
703         return (0);
704 }
705
706 static int
707 ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
708         struct ti_softc         *sc;
709         u_int32_t               tigon_addr, len;
710         caddr_t                 buf;
711         int                     useraddr, readdata;
712         int                     cpu;
713 {
714         u_int32_t       segptr;
715         int             cnt;
716         u_int32_t       tmpval, tmpval2;
717         caddr_t         ptr;
718
719         TI_LOCK_ASSERT(sc);
720
721         /*
722          * At the moment, we don't handle non-aligned cases, we just bail.
723          * If this proves to be a problem, it will be fixed.
724          */
725         if (tigon_addr & 0x3) {
726                 device_printf(sc->ti_dev, "%s: tigon address %#x "
727                     "isn't word-aligned\n", __func__, tigon_addr);
728                 return (EINVAL);
729         }
730
731         if (len & 0x3) {
732                 device_printf(sc->ti_dev, "%s: transfer length %d "
733                     "isn't word-aligned\n", __func__, len);
734                 return (EINVAL);
735         }
736
737         segptr = tigon_addr;
738         cnt = len;
739         ptr = buf;
740
741         while (cnt) {
742                 CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
743
744                 if (readdata) {
745                         tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
746
747                         tmpval = ntohl(tmpval2);
748
749                         /*
750                          * Note:  I've used this debugging interface
751                          * extensively with Alteon's 12.3.15 firmware,
752                          * compiled with GCC 2.7.2.1 and binutils 2.9.1.
753                          *
754                          * When you compile the firmware without
755                          * optimization, which is necessary sometimes in
756                          * order to properly step through it, you sometimes
757                          * read out a bogus value of 0xc0017c instead of
758                          * whatever was supposed to be in that scratchpad
759                          * location.  That value is on the stack somewhere,
760                          * but I've never been able to figure out what was
761                          * causing the problem.
762                          *
763                          * The address seems to pop up in random places,
764                          * often not in the same place on two subsequent
765                          * reads.
766                          *
767                          * In any case, the underlying data doesn't seem
768                          * to be affected, just the value read out.
769                          *
770                          * KDM, 3/7/2000
771                          */
772
773                         if (tmpval2 == 0xc0017c)
774                                 device_printf(sc->ti_dev, "found 0xc0017c at "
775                                     "%#x (tmpval2)\n", segptr);
776
777                         if (tmpval == 0xc0017c)
778                                 device_printf(sc->ti_dev, "found 0xc0017c at "
779                                     "%#x (tmpval)\n", segptr);
780
781                         if (useraddr)
782                                 copyout(&tmpval, ptr, 4);
783                         else
784                                 bcopy(&tmpval, ptr, 4);
785                 } else {
786                         if (useraddr)
787                                 copyin(ptr, &tmpval2, 4);
788                         else
789                                 bcopy(ptr, &tmpval2, 4);
790
791                         tmpval = htonl(tmpval2);
792
793                         CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
794                 }
795
796                 cnt -= 4;
797                 segptr += 4;
798                 ptr += 4;
799         }
800
801         return (0);
802 }
803
804 static int
805 ti_bcopy_swap(src, dst, len, swap_type)
806         const void      *src;
807         void            *dst;
808         size_t          len;
809         ti_swap_type    swap_type;
810 {
811         const u_int8_t *tmpsrc;
812         u_int8_t *tmpdst;
813         size_t tmplen;
814
815         if (len & 0x3) {
816                 printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
817                        len);
818                 return (-1);
819         }
820
821         tmpsrc = src;
822         tmpdst = dst;
823         tmplen = len;
824
825         while (tmplen) {
826                 if (swap_type == TI_SWAP_NTOH)
827                         *(u_int32_t *)tmpdst =
828                                 ntohl(*(const u_int32_t *)tmpsrc);
829                 else
830                         *(u_int32_t *)tmpdst =
831                                 htonl(*(const u_int32_t *)tmpsrc);
832
833                 tmpsrc += 4;
834                 tmpdst += 4;
835                 tmplen -= 4;
836         }
837
838         return (0);
839 }
840
841 /*
842  * Load firmware image into the NIC. Check that the firmware revision
843  * is acceptable and see if we want the firmware for the Tigon 1 or
844  * Tigon 2.
845  */
846 static void
847 ti_loadfw(sc)
848         struct ti_softc         *sc;
849 {
850
851         TI_LOCK_ASSERT(sc);
852
853         switch (sc->ti_hwrev) {
854         case TI_HWREV_TIGON:
855                 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
856                     tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
857                     tigonFwReleaseFix != TI_FIRMWARE_FIX) {
858                         device_printf(sc->ti_dev, "firmware revision mismatch; "
859                             "want %d.%d.%d, got %d.%d.%d\n",
860                             TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
861                             TI_FIRMWARE_FIX, tigonFwReleaseMajor,
862                             tigonFwReleaseMinor, tigonFwReleaseFix);
863                         return;
864                 }
865                 ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
866                 ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
867                 ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
868                     tigonFwRodata);
869                 ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
870                 ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
871                 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
872                 break;
873         case TI_HWREV_TIGON_II:
874                 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
875                     tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
876                     tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
877                         device_printf(sc->ti_dev, "firmware revision mismatch; "
878                             "want %d.%d.%d, got %d.%d.%d\n",
879                             TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
880                             TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
881                             tigon2FwReleaseMinor, tigon2FwReleaseFix);
882                         return;
883                 }
884                 ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
885                     tigon2FwText);
886                 ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
887                     tigon2FwData);
888                 ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
889                     tigon2FwRodata);
890                 ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
891                 ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
892                 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
893                 break;
894         default:
895                 device_printf(sc->ti_dev,
896                     "can't load firmware: unknown hardware rev\n");
897                 break;
898         }
899 }
900
901 /*
902  * Send the NIC a command via the command ring.
903  */
904 static void
905 ti_cmd(sc, cmd)
906         struct ti_softc         *sc;
907         struct ti_cmd_desc      *cmd;
908 {
909         int                     index;
910
911         index = sc->ti_cmd_saved_prodidx;
912         CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
913         TI_INC(index, TI_CMD_RING_CNT);
914         CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
915         sc->ti_cmd_saved_prodidx = index;
916 }
917
918 /*
919  * Send the NIC an extended command. The 'len' parameter specifies the
920  * number of command slots to include after the initial command.
921  */
922 static void
923 ti_cmd_ext(sc, cmd, arg, len)
924         struct ti_softc         *sc;
925         struct ti_cmd_desc      *cmd;
926         caddr_t                 arg;
927         int                     len;
928 {
929         int                     index;
930         int                     i;
931
932         index = sc->ti_cmd_saved_prodidx;
933         CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
934         TI_INC(index, TI_CMD_RING_CNT);
935         for (i = 0; i < len; i++) {
936                 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
937                     *(u_int32_t *)(&arg[i * 4]));
938                 TI_INC(index, TI_CMD_RING_CNT);
939         }
940         CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
941         sc->ti_cmd_saved_prodidx = index;
942 }
943
944 /*
945  * Handle events that have triggered interrupts.
946  */
947 static void
948 ti_handle_events(sc)
949         struct ti_softc         *sc;
950 {
951         struct ti_event_desc    *e;
952
953         if (sc->ti_rdata->ti_event_ring == NULL)
954                 return;
955
956         while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
957                 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
958                 switch (TI_EVENT_EVENT(e)) {
959                 case TI_EV_LINKSTAT_CHANGED:
960                         sc->ti_linkstat = TI_EVENT_CODE(e);
961                         if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
962                                 device_printf(sc->ti_dev, "10/100 link up\n");
963                         else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
964                                 device_printf(sc->ti_dev, "gigabit link up\n");
965                         else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
966                                 device_printf(sc->ti_dev, "link down\n");
967                         break;
968                 case TI_EV_ERROR:
969                         if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
970                                 device_printf(sc->ti_dev, "invalid command\n");
971                         else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
972                                 device_printf(sc->ti_dev, "unknown command\n");
973                         else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
974                                 device_printf(sc->ti_dev, "bad config data\n");
975                         break;
976                 case TI_EV_FIRMWARE_UP:
977                         ti_init2(sc);
978                         break;
979                 case TI_EV_STATS_UPDATED:
980                         ti_stats_update(sc);
981                         break;
982                 case TI_EV_RESET_JUMBO_RING:
983                 case TI_EV_MCAST_UPDATED:
984                         /* Who cares. */
985                         break;
986                 default:
987                         device_printf(sc->ti_dev, "unknown event: %d\n",
988                             TI_EVENT_EVENT(e));
989                         break;
990                 }
991                 /* Advance the consumer index. */
992                 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
993                 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
994         }
995 }
996
997 static int
998 ti_alloc_dmamaps(struct ti_softc *sc)
999 {
1000         int i;
1001
1002         for (i = 0; i < TI_TX_RING_CNT; i++) {
1003                 sc->ti_cdata.ti_txdesc[i].tx_m = NULL;
1004                 sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
1005                 if (bus_dmamap_create(sc->ti_mbuftx_dmat, 0,
1006                                       &sc->ti_cdata.ti_txdesc[i].tx_dmamap))
1007                         return (ENOBUFS);
1008         }
1009         for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1010                 if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1011                                       &sc->ti_cdata.ti_rx_std_maps[i]))
1012                         return (ENOBUFS);
1013         }
1014
1015         for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1016                 if (bus_dmamap_create(sc->ti_jumbo_dmat, 0,
1017                                       &sc->ti_cdata.ti_rx_jumbo_maps[i]))
1018                         return (ENOBUFS);
1019         }
1020         for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1021                 if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1022                                       &sc->ti_cdata.ti_rx_mini_maps[i]))
1023                         return (ENOBUFS);
1024         }
1025
1026         return (0);
1027 }
1028
1029 static void
1030 ti_free_dmamaps(struct ti_softc *sc)
1031 {
1032         int i;
1033
1034         if (sc->ti_mbuftx_dmat)
1035                 for (i = 0; i < TI_TX_RING_CNT; i++)
1036                         if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1037                                 bus_dmamap_destroy(sc->ti_mbuftx_dmat,
1038                                     sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1039                                 sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
1040                         }
1041
1042         if (sc->ti_mbufrx_dmat)
1043                 for (i = 0; i < TI_STD_RX_RING_CNT; i++)
1044                         if (sc->ti_cdata.ti_rx_std_maps[i]) {
1045                                 bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1046                                     sc->ti_cdata.ti_rx_std_maps[i]);
1047                                 sc->ti_cdata.ti_rx_std_maps[i] = 0;
1048                         }
1049
1050         if (sc->ti_jumbo_dmat)
1051                 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++)
1052                         if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1053                                 bus_dmamap_destroy(sc->ti_jumbo_dmat,
1054                                     sc->ti_cdata.ti_rx_jumbo_maps[i]);
1055                                 sc->ti_cdata.ti_rx_jumbo_maps[i] = 0;
1056                         }
1057         if (sc->ti_mbufrx_dmat)
1058                 for (i = 0; i < TI_MINI_RX_RING_CNT; i++)
1059                         if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1060                                 bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1061                                     sc->ti_cdata.ti_rx_mini_maps[i]);
1062                                 sc->ti_cdata.ti_rx_mini_maps[i] = 0;
1063                         }
1064 }
1065
1066 #ifdef TI_PRIVATE_JUMBOS
1067
1068 /*
1069  * Memory management for the jumbo receive ring is a pain in the
1070  * butt. We need to allocate at least 9018 bytes of space per frame,
1071  * _and_ it has to be contiguous (unless you use the extended
1072  * jumbo descriptor format). Using malloc() all the time won't
1073  * work: malloc() allocates memory in powers of two, which means we
1074  * would end up wasting a considerable amount of space by allocating
1075  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
1076  * to do our own memory management.
1077  *
1078  * The driver needs to allocate a contiguous chunk of memory at boot
1079  * time. We then chop this up ourselves into 9K pieces and use them
1080  * as external mbuf storage.
1081  *
1082  * One issue here is how much memory to allocate. The jumbo ring has
1083  * 256 slots in it, but at 9K per slot than can consume over 2MB of
1084  * RAM. This is a bit much, especially considering we also need
1085  * RAM for the standard ring and mini ring (on the Tigon 2). To
1086  * save space, we only actually allocate enough memory for 64 slots
1087  * by default, which works out to between 500 and 600K. This can
1088  * be tuned by changing a #define in if_tireg.h.
1089  */
1090
1091 static int
1092 ti_alloc_jumbo_mem(sc)
1093         struct ti_softc         *sc;
1094 {
1095         caddr_t                 ptr;
1096         int                     i;
1097         struct ti_jpool_entry   *entry;
1098
1099         /*
1100          * Grab a big chunk o' storage.  Since we are chopping this pool up
1101          * into ~9k chunks, there doesn't appear to be a need to use page
1102          * alignment.
1103          */
1104         if (bus_dma_tag_create(sc->ti_parent_dmat,      /* parent */
1105                                 1, 0,                   /* algnmnt, boundary */
1106                                 BUS_SPACE_MAXADDR,      /* lowaddr */
1107                                 BUS_SPACE_MAXADDR,      /* highaddr */
1108                                 NULL, NULL,             /* filter, filterarg */
1109                                 TI_JMEM,                /* maxsize */
1110                                 1,                      /* nsegments */
1111                                 TI_JMEM,                /* maxsegsize */
1112                                 0,                      /* flags */
1113                                 NULL, NULL,             /* lockfunc, lockarg */
1114                                 &sc->ti_jumbo_dmat) != 0) {
1115                 device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1116                 return (ENOBUFS);
1117         }
1118
1119         if (bus_dmamem_alloc(sc->ti_jumbo_dmat,
1120                              (void**)&sc->ti_cdata.ti_jumbo_buf,
1121                              BUS_DMA_NOWAIT, &sc->ti_jumbo_dmamap) != 0) {
1122                 device_printf(sc->ti_dev, "Failed to allocate jumbo memory\n");
1123                 return (ENOBUFS);
1124         }
1125
1126         SLIST_INIT(&sc->ti_jfree_listhead);
1127         SLIST_INIT(&sc->ti_jinuse_listhead);
1128
1129         /*
1130          * Now divide it up into 9K pieces and save the addresses
1131          * in an array.
1132          */
1133         ptr = sc->ti_cdata.ti_jumbo_buf;
1134         for (i = 0; i < TI_JSLOTS; i++) {
1135                 sc->ti_cdata.ti_jslots[i] = ptr;
1136                 ptr += TI_JLEN;
1137                 entry = malloc(sizeof(struct ti_jpool_entry),
1138                                M_DEVBUF, M_NOWAIT);
1139                 if (entry == NULL) {
1140                         device_printf(sc->ti_dev, "no memory for jumbo "
1141                             "buffer queue!\n");
1142                         return (ENOBUFS);
1143                 }
1144                 entry->slot = i;
1145                 SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1146         }
1147
1148         return (0);
1149 }
1150
1151 /*
1152  * Allocate a jumbo buffer.
1153  */
1154 static void *ti_jalloc(sc)
1155         struct ti_softc         *sc;
1156 {
1157         struct ti_jpool_entry   *entry;
1158
1159         entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1160
1161         if (entry == NULL) {
1162                 device_printf(sc->ti_dev, "no free jumbo buffers\n");
1163                 return (NULL);
1164         }
1165
1166         SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1167         SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1168         return (sc->ti_cdata.ti_jslots[entry->slot]);
1169 }
1170
1171 /*
1172  * Release a jumbo buffer.
1173  */
1174 static void
1175 ti_jfree(buf, args)
1176         void                    *buf;
1177         void                    *args;
1178 {
1179         struct ti_softc         *sc;
1180         int                     i;
1181         struct ti_jpool_entry   *entry;
1182
1183         /* Extract the softc struct pointer. */
1184         sc = (struct ti_softc *)args;
1185
1186         if (sc == NULL)
1187                 panic("ti_jfree: didn't get softc pointer!");
1188
1189         /* calculate the slot this buffer belongs to */
1190         i = ((vm_offset_t)buf
1191              - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1192
1193         if ((i < 0) || (i >= TI_JSLOTS))
1194                 panic("ti_jfree: asked to free buffer that we don't manage!");
1195
1196         entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1197         if (entry == NULL)
1198                 panic("ti_jfree: buffer not in use!");
1199         entry->slot = i;
1200         SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1201         SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1202 }
1203
1204 #else
1205
1206 static int
1207 ti_alloc_jumbo_mem(sc)
1208         struct ti_softc         *sc;
1209 {
1210
1211         /*
1212          * The VM system will take care of providing aligned pages.  Alignment
1213          * is set to 1 here so that busdma resources won't be wasted.
1214          */
1215         if (bus_dma_tag_create(sc->ti_parent_dmat,      /* parent */
1216                                 1, 0,                   /* algnmnt, boundary */
1217                                 BUS_SPACE_MAXADDR,      /* lowaddr */
1218                                 BUS_SPACE_MAXADDR,      /* highaddr */
1219                                 NULL, NULL,             /* filter, filterarg */
1220                                 PAGE_SIZE * 4 /*XXX*/,  /* maxsize */
1221                                 4,                      /* nsegments */
1222                                 PAGE_SIZE,              /* maxsegsize */
1223                                 0,                      /* flags */
1224                                 NULL, NULL,             /* lockfunc, lockarg */
1225                                 &sc->ti_jumbo_dmat) != 0) {
1226                 device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1227                 return (ENOBUFS);
1228         }
1229
1230         return (0);
1231 }
1232
1233 #endif /* TI_PRIVATE_JUMBOS */
1234
1235 /*
1236  * Intialize a standard receive ring descriptor.
1237  */
1238 static int
1239 ti_newbuf_std(sc, i, m)
1240         struct ti_softc         *sc;
1241         int                     i;
1242         struct mbuf             *m;
1243 {
1244         bus_dmamap_t            map;
1245         bus_dma_segment_t       segs;
1246         struct mbuf             *m_new = NULL;
1247         struct ti_rx_desc       *r;
1248         int                     nsegs;
1249
1250         nsegs = 0;
1251         if (m == NULL) {
1252                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1253                 if (m_new == NULL)
1254                         return (ENOBUFS);
1255
1256                 MCLGET(m_new, M_DONTWAIT);
1257                 if (!(m_new->m_flags & M_EXT)) {
1258                         m_freem(m_new);
1259                         return (ENOBUFS);
1260                 }
1261                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1262         } else {
1263                 m_new = m;
1264                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1265                 m_new->m_data = m_new->m_ext.ext_buf;
1266         }
1267
1268         m_adj(m_new, ETHER_ALIGN);
1269         sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1270         r = &sc->ti_rdata->ti_rx_std_ring[i];
1271         map = sc->ti_cdata.ti_rx_std_maps[i];
1272         if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1273                                     &nsegs, 0))
1274                 return (ENOBUFS);
1275         if (nsegs != 1)
1276                 return (ENOBUFS);
1277         ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1278         r->ti_len = segs.ds_len;
1279         r->ti_type = TI_BDTYPE_RECV_BD;
1280         r->ti_flags = 0;
1281         if (sc->ti_ifp->if_hwassist)
1282                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1283         r->ti_idx = i;
1284
1285         bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1286         return (0);
1287 }
1288
1289 /*
1290  * Intialize a mini receive ring descriptor. This only applies to
1291  * the Tigon 2.
1292  */
1293 static int
1294 ti_newbuf_mini(sc, i, m)
1295         struct ti_softc         *sc;
1296         int                     i;
1297         struct mbuf             *m;
1298 {
1299         bus_dma_segment_t       segs;
1300         bus_dmamap_t            map;
1301         struct mbuf             *m_new = NULL;
1302         struct ti_rx_desc       *r;
1303         int                     nsegs;
1304
1305         nsegs = 0;
1306         if (m == NULL) {
1307                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1308                 if (m_new == NULL) {
1309                         return (ENOBUFS);
1310                 }
1311                 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1312         } else {
1313                 m_new = m;
1314                 m_new->m_data = m_new->m_pktdat;
1315                 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1316         }
1317
1318         m_adj(m_new, ETHER_ALIGN);
1319         r = &sc->ti_rdata->ti_rx_mini_ring[i];
1320         sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1321         map = sc->ti_cdata.ti_rx_mini_maps[i];
1322         if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1323                                     &nsegs, 0))
1324                 return (ENOBUFS);
1325         if (nsegs != 1)
1326                 return (ENOBUFS);
1327         ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1328         r->ti_len = segs.ds_len;
1329         r->ti_type = TI_BDTYPE_RECV_BD;
1330         r->ti_flags = TI_BDFLAG_MINI_RING;
1331         if (sc->ti_ifp->if_hwassist)
1332                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1333         r->ti_idx = i;
1334
1335         bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1336         return (0);
1337 }
1338
1339 #ifdef TI_PRIVATE_JUMBOS
1340
1341 /*
1342  * Initialize a jumbo receive ring descriptor. This allocates
1343  * a jumbo buffer from the pool managed internally by the driver.
1344  */
1345 static int
1346 ti_newbuf_jumbo(sc, i, m)
1347         struct ti_softc         *sc;
1348         int                     i;
1349         struct mbuf             *m;
1350 {
1351         bus_dmamap_t            map;
1352         struct mbuf             *m_new = NULL;
1353         struct ti_rx_desc       *r;
1354         int                     nsegs;
1355         bus_dma_segment_t       segs;
1356
1357         if (m == NULL) {
1358                 caddr_t                 *buf = NULL;
1359
1360                 /* Allocate the mbuf. */
1361                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1362                 if (m_new == NULL) {
1363                         return (ENOBUFS);
1364                 }
1365
1366                 /* Allocate the jumbo buffer */
1367                 buf = ti_jalloc(sc);
1368                 if (buf == NULL) {
1369                         m_freem(m_new);
1370                         device_printf(sc->ti_dev, "jumbo allocation failed "
1371                             "-- packet dropped!\n");
1372                         return (ENOBUFS);
1373                 }
1374
1375                 /* Attach the buffer to the mbuf. */
1376                 m_new->m_data = (void *) buf;
1377                 m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1378                 MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1379                     (struct ti_softc *)sc, 0, EXT_NET_DRV);
1380         } else {
1381                 m_new = m;
1382                 m_new->m_data = m_new->m_ext.ext_buf;
1383                 m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1384         }
1385
1386         m_adj(m_new, ETHER_ALIGN);
1387         /* Set up the descriptor. */
1388         r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1389         sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1390         map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1391         if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, &segs,
1392                                     &nsegs, 0))
1393                 return (ENOBUFS);
1394         if (nsegs != 1)
1395                 return (ENOBUFS);
1396         ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1397         r->ti_len = segs.ds_len;
1398         r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1399         r->ti_flags = TI_BDFLAG_JUMBO_RING;
1400         if (sc->ti_ifp->if_hwassist)
1401                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1402         r->ti_idx = i;
1403
1404         bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1405         return (0);
1406 }
1407
1408 #else
1409
1410 #if (PAGE_SIZE == 4096)
1411 #define NPAYLOAD 2
1412 #else
1413 #define NPAYLOAD 1
1414 #endif
1415
1416 #define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1417 #define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1418 #define NFS_HDR_LEN (UDP_HDR_LEN)
1419 static int HDR_LEN =  TCP_HDR_LEN;
1420
1421
1422 /*
1423  * Initialize a jumbo receive ring descriptor. This allocates
1424  * a jumbo buffer from the pool managed internally by the driver.
1425  */
1426 static int
1427 ti_newbuf_jumbo(sc, idx, m_old)
1428         struct ti_softc         *sc;
1429         int                     idx;
1430         struct mbuf             *m_old;
1431 {
1432         bus_dmamap_t            map;
1433         struct mbuf             *cur, *m_new = NULL;
1434         struct mbuf             *m[3] = {NULL, NULL, NULL};
1435         struct ti_rx_desc_ext   *r;
1436         vm_page_t               frame;
1437         static int              color;
1438                                 /* 1 extra buf to make nobufs easy*/
1439         struct sf_buf           *sf[3] = {NULL, NULL, NULL};
1440         int                     i;
1441         bus_dma_segment_t       segs[4];
1442         int                     nsegs;
1443
1444         if (m_old != NULL) {
1445                 m_new = m_old;
1446                 cur = m_old->m_next;
1447                 for (i = 0; i <= NPAYLOAD; i++){
1448                         m[i] = cur;
1449                         cur = cur->m_next;
1450                 }
1451         } else {
1452                 /* Allocate the mbufs. */
1453                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1454                 if (m_new == NULL) {
1455                         device_printf(sc->ti_dev, "mbuf allocation failed "
1456                             "-- packet dropped!\n");
1457                         goto nobufs;
1458                 }
1459                 MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1460                 if (m[NPAYLOAD] == NULL) {
1461                         device_printf(sc->ti_dev, "cluster mbuf allocation "
1462                             "failed -- packet dropped!\n");
1463                         goto nobufs;
1464                 }
1465                 MCLGET(m[NPAYLOAD], M_DONTWAIT);
1466                 if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1467                         device_printf(sc->ti_dev, "mbuf allocation failed "
1468                             "-- packet dropped!\n");
1469                         goto nobufs;
1470                 }
1471                 m[NPAYLOAD]->m_len = MCLBYTES;
1472
1473                 for (i = 0; i < NPAYLOAD; i++){
1474                         MGET(m[i], M_DONTWAIT, MT_DATA);
1475                         if (m[i] == NULL) {
1476                                 device_printf(sc->ti_dev, "mbuf allocation "
1477                                     "failed -- packet dropped!\n");
1478                                 goto nobufs;
1479                         }
1480                         frame = vm_page_alloc(NULL, color++,
1481                             VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1482                             VM_ALLOC_WIRED);
1483                         if (frame == NULL) {
1484                                 device_printf(sc->ti_dev, "buffer allocation "
1485                                     "failed -- packet dropped!\n");
1486                                 printf("      index %d page %d\n", idx, i);
1487                                 goto nobufs;
1488                         }
1489                         sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1490                         if (sf[i] == NULL) {
1491                                 vm_page_lock_queues();
1492                                 vm_page_unwire(frame, 0);
1493                                 vm_page_free(frame);
1494                                 vm_page_unlock_queues();
1495                                 device_printf(sc->ti_dev, "buffer allocation "
1496                                     "failed -- packet dropped!\n");
1497                                 printf("      index %d page %d\n", idx, i);
1498                                 goto nobufs;
1499                         }
1500                 }
1501                 for (i = 0; i < NPAYLOAD; i++){
1502                 /* Attach the buffer to the mbuf. */
1503                         m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1504                         m[i]->m_len = PAGE_SIZE;
1505                         MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1506                             sf_buf_mext, (void*)sf_buf_kva(sf[i]), sf[i],
1507                             0, EXT_DISPOSABLE);
1508                         m[i]->m_next = m[i+1];
1509                 }
1510                 /* link the buffers to the header */
1511                 m_new->m_next = m[0];
1512                 m_new->m_data += ETHER_ALIGN;
1513                 if (sc->ti_hdrsplit)
1514                         m_new->m_len = MHLEN - ETHER_ALIGN;
1515                 else
1516                         m_new->m_len = HDR_LEN;
1517                 m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1518         }
1519
1520         /* Set up the descriptor. */
1521         r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1522         sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1523         map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1524         if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, segs,
1525                                     &nsegs, 0))
1526                 return (ENOBUFS);
1527         if ((nsegs < 1) || (nsegs > 4))
1528                 return (ENOBUFS);
1529         ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1530         r->ti_len0 = m_new->m_len;
1531
1532         ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1533         r->ti_len1 = PAGE_SIZE;
1534
1535         ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1536         r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1537
1538         if (PAGE_SIZE == 4096) {
1539                 ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1540                 r->ti_len3 = MCLBYTES;
1541         } else {
1542                 r->ti_len3 = 0;
1543         }
1544         r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1545
1546         r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1547
1548         if (sc->ti_ifp->if_hwassist)
1549                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1550
1551         r->ti_idx = idx;
1552
1553         bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1554         return (0);
1555
1556 nobufs:
1557
1558         /*
1559          * Warning! :
1560          * This can only be called before the mbufs are strung together.
1561          * If the mbufs are strung together, m_freem() will free the chain,
1562          * so that the later mbufs will be freed multiple times.
1563          */
1564         if (m_new)
1565                 m_freem(m_new);
1566
1567         for (i = 0; i < 3; i++) {
1568                 if (m[i])
1569                         m_freem(m[i]);
1570                 if (sf[i])
1571                         sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1572         }
1573         return (ENOBUFS);
1574 }
1575 #endif
1576
1577
1578
1579 /*
1580  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1581  * that's 1MB or memory, which is a lot. For now, we fill only the first
1582  * 256 ring entries and hope that our CPU is fast enough to keep up with
1583  * the NIC.
1584  */
1585 static int
1586 ti_init_rx_ring_std(sc)
1587         struct ti_softc         *sc;
1588 {
1589         int                     i;
1590         struct ti_cmd_desc      cmd;
1591
1592         for (i = 0; i < TI_SSLOTS; i++) {
1593                 if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1594                         return (ENOBUFS);
1595         };
1596
1597         TI_UPDATE_STDPROD(sc, i - 1);
1598         sc->ti_std = i - 1;
1599
1600         return (0);
1601 }
1602
1603 static void
1604 ti_free_rx_ring_std(sc)
1605         struct ti_softc         *sc;
1606 {
1607         bus_dmamap_t            map;
1608         int                     i;
1609
1610         for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1611                 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1612                         map = sc->ti_cdata.ti_rx_std_maps[i];
1613                         bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1614                             BUS_DMASYNC_POSTREAD);
1615                         bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1616                         m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1617                         sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1618                 }
1619                 bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1620                     sizeof(struct ti_rx_desc));
1621         }
1622 }
1623
1624 static int
1625 ti_init_rx_ring_jumbo(sc)
1626         struct ti_softc         *sc;
1627 {
1628         int                     i;
1629         struct ti_cmd_desc      cmd;
1630
1631         for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1632                 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1633                         return (ENOBUFS);
1634         };
1635
1636         TI_UPDATE_JUMBOPROD(sc, i - 1);
1637         sc->ti_jumbo = i - 1;
1638
1639         return (0);
1640 }
1641
1642 static void
1643 ti_free_rx_ring_jumbo(sc)
1644         struct ti_softc         *sc;
1645 {
1646         bus_dmamap_t            map;
1647         int                     i;
1648
1649         for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1650                 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1651                         map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1652                         bus_dmamap_sync(sc->ti_jumbo_dmat, map,
1653                             BUS_DMASYNC_POSTREAD);
1654                         bus_dmamap_unload(sc->ti_jumbo_dmat, map);
1655                         m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1656                         sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1657                 }
1658                 bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1659                     sizeof(struct ti_rx_desc));
1660         }
1661 }
1662
1663 static int
1664 ti_init_rx_ring_mini(sc)
1665         struct ti_softc         *sc;
1666 {
1667         int                     i;
1668
1669         for (i = 0; i < TI_MSLOTS; i++) {
1670                 if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1671                         return (ENOBUFS);
1672         };
1673
1674         TI_UPDATE_MINIPROD(sc, i - 1);
1675         sc->ti_mini = i - 1;
1676
1677         return (0);
1678 }
1679
1680 static void
1681 ti_free_rx_ring_mini(sc)
1682         struct ti_softc         *sc;
1683 {
1684         bus_dmamap_t            map;
1685         int                     i;
1686
1687         for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1688                 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1689                         map = sc->ti_cdata.ti_rx_mini_maps[i];
1690                         bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1691                             BUS_DMASYNC_POSTREAD);
1692                         bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1693                         m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1694                         sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1695                 }
1696                 bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1697                     sizeof(struct ti_rx_desc));
1698         }
1699 }
1700
1701 static void
1702 ti_free_tx_ring(sc)
1703         struct ti_softc         *sc;
1704 {
1705         struct ti_txdesc        *txd;
1706         int                     i;
1707
1708         if (sc->ti_rdata->ti_tx_ring == NULL)
1709                 return;
1710
1711         for (i = 0; i < TI_TX_RING_CNT; i++) {
1712                 txd = &sc->ti_cdata.ti_txdesc[i];
1713                 if (txd->tx_m != NULL) {
1714                         bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
1715                             BUS_DMASYNC_POSTWRITE);
1716                         bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
1717                         m_freem(txd->tx_m);
1718                         txd->tx_m = NULL;
1719                 }
1720                 bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1721                     sizeof(struct ti_tx_desc));
1722         }
1723 }
1724
1725 static int
1726 ti_init_tx_ring(sc)
1727         struct ti_softc         *sc;
1728 {
1729         struct ti_txdesc        *txd;
1730         int                     i;
1731
1732         STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1733         STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1734         for (i = 0; i < TI_TX_RING_CNT; i++) {
1735                 txd = &sc->ti_cdata.ti_txdesc[i];
1736                 STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1737         }
1738         sc->ti_txcnt = 0;
1739         sc->ti_tx_saved_considx = 0;
1740         sc->ti_tx_saved_prodidx = 0;
1741         CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1742         return (0);
1743 }
1744
1745 /*
1746  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1747  * but we have to support the old way too so that Tigon 1 cards will
1748  * work.
1749  */
1750 static void
1751 ti_add_mcast(sc, addr)
1752         struct ti_softc         *sc;
1753         struct ether_addr       *addr;
1754 {
1755         struct ti_cmd_desc      cmd;
1756         u_int16_t               *m;
1757         u_int32_t               ext[2] = {0, 0};
1758
1759         m = (u_int16_t *)&addr->octet[0];
1760
1761         switch (sc->ti_hwrev) {
1762         case TI_HWREV_TIGON:
1763                 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1764                 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1765                 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1766                 break;
1767         case TI_HWREV_TIGON_II:
1768                 ext[0] = htons(m[0]);
1769                 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1770                 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1771                 break;
1772         default:
1773                 device_printf(sc->ti_dev, "unknown hwrev\n");
1774                 break;
1775         }
1776 }
1777
1778 static void
1779 ti_del_mcast(sc, addr)
1780         struct ti_softc         *sc;
1781         struct ether_addr       *addr;
1782 {
1783         struct ti_cmd_desc      cmd;
1784         u_int16_t               *m;
1785         u_int32_t               ext[2] = {0, 0};
1786
1787         m = (u_int16_t *)&addr->octet[0];
1788
1789         switch (sc->ti_hwrev) {
1790         case TI_HWREV_TIGON:
1791                 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1792                 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1793                 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1794                 break;
1795         case TI_HWREV_TIGON_II:
1796                 ext[0] = htons(m[0]);
1797                 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1798                 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1799                 break;
1800         default:
1801                 device_printf(sc->ti_dev, "unknown hwrev\n");
1802                 break;
1803         }
1804 }
1805
1806 /*
1807  * Configure the Tigon's multicast address filter.
1808  *
1809  * The actual multicast table management is a bit of a pain, thanks to
1810  * slight brain damage on the part of both Alteon and us. With our
1811  * multicast code, we are only alerted when the multicast address table
1812  * changes and at that point we only have the current list of addresses:
1813  * we only know the current state, not the previous state, so we don't
1814  * actually know what addresses were removed or added. The firmware has
1815  * state, but we can't get our grubby mits on it, and there is no 'delete
1816  * all multicast addresses' command. Hence, we have to maintain our own
1817  * state so we know what addresses have been programmed into the NIC at
1818  * any given time.
1819  */
1820 static void
1821 ti_setmulti(sc)
1822         struct ti_softc         *sc;
1823 {
1824         struct ifnet            *ifp;
1825         struct ifmultiaddr      *ifma;
1826         struct ti_cmd_desc      cmd;
1827         struct ti_mc_entry      *mc;
1828         u_int32_t               intrs;
1829
1830         TI_LOCK_ASSERT(sc);
1831
1832         ifp = sc->ti_ifp;
1833
1834         if (ifp->if_flags & IFF_ALLMULTI) {
1835                 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1836                 return;
1837         } else {
1838                 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1839         }
1840
1841         /* Disable interrupts. */
1842         intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1843         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1844
1845         /* First, zot all the existing filters. */
1846         while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1847                 mc = SLIST_FIRST(&sc->ti_mc_listhead);
1848                 ti_del_mcast(sc, &mc->mc_addr);
1849                 SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1850                 free(mc, M_DEVBUF);
1851         }
1852
1853         /* Now program new ones. */
1854         if_maddr_rlock(ifp);
1855         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1856                 if (ifma->ifma_addr->sa_family != AF_LINK)
1857                         continue;
1858                 mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1859                 if (mc == NULL) {
1860                         device_printf(sc->ti_dev,
1861                             "no memory for mcast filter entry\n");
1862                         continue;
1863                 }
1864                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1865                     (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1866                 SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1867                 ti_add_mcast(sc, &mc->mc_addr);
1868         }
1869         if_maddr_runlock(ifp);
1870
1871         /* Re-enable interrupts. */
1872         CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1873 }
1874
1875 /*
1876  * Check to see if the BIOS has configured us for a 64 bit slot when
1877  * we aren't actually in one. If we detect this condition, we can work
1878  * around it on the Tigon 2 by setting a bit in the PCI state register,
1879  * but for the Tigon 1 we must give up and abort the interface attach.
1880  */
1881 static int ti_64bitslot_war(sc)
1882         struct ti_softc         *sc;
1883 {
1884         if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1885                 CSR_WRITE_4(sc, 0x600, 0);
1886                 CSR_WRITE_4(sc, 0x604, 0);
1887                 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1888                 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1889                         if (sc->ti_hwrev == TI_HWREV_TIGON)
1890                                 return (EINVAL);
1891                         else {
1892                                 TI_SETBIT(sc, TI_PCI_STATE,
1893                                     TI_PCISTATE_32BIT_BUS);
1894                                 return (0);
1895                         }
1896                 }
1897         }
1898
1899         return (0);
1900 }
1901
1902 /*
1903  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1904  * self-test results.
1905  */
1906 static int
1907 ti_chipinit(sc)
1908         struct ti_softc         *sc;
1909 {
1910         u_int32_t               cacheline;
1911         u_int32_t               pci_writemax = 0;
1912         u_int32_t               hdrsplit;
1913
1914         /* Initialize link to down state. */
1915         sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1916
1917         if (sc->ti_ifp->if_capenable & IFCAP_HWCSUM)
1918                 sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
1919         else
1920                 sc->ti_ifp->if_hwassist = 0;
1921
1922         /* Set endianness before we access any non-PCI registers. */
1923 #if 0 && BYTE_ORDER == BIG_ENDIAN
1924         CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1925             TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1926 #else
1927         CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1928             TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1929 #endif
1930
1931         /* Check the ROM failed bit to see if self-tests passed. */
1932         if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1933                 device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
1934                 return (ENODEV);
1935         }
1936
1937         /* Halt the CPU. */
1938         TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1939
1940         /* Figure out the hardware revision. */
1941         switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1942         case TI_REV_TIGON_I:
1943                 sc->ti_hwrev = TI_HWREV_TIGON;
1944                 break;
1945         case TI_REV_TIGON_II:
1946                 sc->ti_hwrev = TI_HWREV_TIGON_II;
1947                 break;
1948         default:
1949                 device_printf(sc->ti_dev, "unsupported chip revision\n");
1950                 return (ENODEV);
1951         }
1952
1953         /* Do special setup for Tigon 2. */
1954         if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1955                 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1956                 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1957                 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1958         }
1959
1960         /*
1961          * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1962          * can't do header splitting.
1963          */
1964 #ifdef TI_JUMBO_HDRSPLIT
1965         if (sc->ti_hwrev != TI_HWREV_TIGON)
1966                 sc->ti_hdrsplit = 1;
1967         else
1968                 device_printf(sc->ti_dev,
1969                     "can't do header splitting on a Tigon I board\n");
1970 #endif /* TI_JUMBO_HDRSPLIT */
1971
1972         /* Set up the PCI state register. */
1973         CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1974         if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1975                 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1976         }
1977
1978         /* Clear the read/write max DMA parameters. */
1979         TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1980             TI_PCISTATE_READ_MAXDMA));
1981
1982         /* Get cache line size. */
1983         cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1984
1985         /*
1986          * If the system has set enabled the PCI memory write
1987          * and invalidate command in the command register, set
1988          * the write max parameter accordingly. This is necessary
1989          * to use MWI with the Tigon 2.
1990          */
1991         if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1992                 switch (cacheline) {
1993                 case 1:
1994                 case 4:
1995                 case 8:
1996                 case 16:
1997                 case 32:
1998                 case 64:
1999                         break;
2000                 default:
2001                 /* Disable PCI memory write and invalidate. */
2002                         if (bootverbose)
2003                                 device_printf(sc->ti_dev, "cache line size %d"
2004                                     " not supported; disabling PCI MWI\n",
2005                                     cacheline);
2006                         CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
2007                             TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
2008                         break;
2009                 }
2010         }
2011
2012         TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
2013
2014         /* This sets the min dma param all the way up (0xff). */
2015         TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
2016
2017         if (sc->ti_hdrsplit)
2018                 hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
2019         else
2020                 hdrsplit = 0;
2021
2022         /* Configure DMA variables. */
2023 #if BYTE_ORDER == BIG_ENDIAN
2024         CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
2025             TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
2026             TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
2027             TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
2028 #else /* BYTE_ORDER */
2029         CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
2030             TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
2031             TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
2032 #endif /* BYTE_ORDER */
2033
2034         /*
2035          * Only allow 1 DMA channel to be active at a time.
2036          * I don't think this is a good idea, but without it
2037          * the firmware racks up lots of nicDmaReadRingFull
2038          * errors.  This is not compatible with hardware checksums.
2039          */
2040         if (sc->ti_ifp->if_hwassist == 0)
2041                 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
2042
2043         /* Recommended settings from Tigon manual. */
2044         CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
2045         CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
2046
2047         if (ti_64bitslot_war(sc)) {
2048                 device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
2049                     "but we aren't");
2050                 return (EINVAL);
2051         }
2052
2053         return (0);
2054 }
2055
2056 /*
2057  * Initialize the general information block and firmware, and
2058  * start the CPU(s) running.
2059  */
2060 static int
2061 ti_gibinit(sc)
2062         struct ti_softc         *sc;
2063 {
2064         struct ti_rcb           *rcb;
2065         int                     i;
2066         struct ifnet            *ifp;
2067         uint32_t                rdphys;
2068
2069         TI_LOCK_ASSERT(sc);
2070
2071         ifp = sc->ti_ifp;
2072         rdphys = sc->ti_rdata_phys;
2073
2074         /* Disable interrupts for now. */
2075         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2076
2077         /*
2078          * Tell the chip where to find the general information block.
2079          * While this struct could go into >4GB memory, we allocate it in a
2080          * single slab with the other descriptors, and those don't seem to
2081          * support being located in a 64-bit region.
2082          */
2083         CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
2084         CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, rdphys + TI_RD_OFF(ti_info));
2085
2086         /* Load the firmware into SRAM. */
2087         ti_loadfw(sc);
2088
2089         /* Set up the contents of the general info and ring control blocks. */
2090
2091         /* Set up the event ring and producer pointer. */
2092         rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
2093
2094         TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_event_ring);
2095         rcb->ti_flags = 0;
2096         TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
2097             rdphys + TI_RD_OFF(ti_ev_prodidx_r);
2098         sc->ti_ev_prodidx.ti_idx = 0;
2099         CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2100         sc->ti_ev_saved_considx = 0;
2101
2102         /* Set up the command ring and producer mailbox. */
2103         rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
2104
2105         TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
2106         rcb->ti_flags = 0;
2107         rcb->ti_max_len = 0;
2108         for (i = 0; i < TI_CMD_RING_CNT; i++) {
2109                 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2110         }
2111         CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2112         CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2113         sc->ti_cmd_saved_prodidx = 0;
2114
2115         /*
2116          * Assign the address of the stats refresh buffer.
2117          * We re-use the current stats buffer for this to
2118          * conserve memory.
2119          */
2120         TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
2121             rdphys + TI_RD_OFF(ti_info.ti_stats);
2122
2123         /* Set up the standard receive ring. */
2124         rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
2125         TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_std_ring);
2126         rcb->ti_max_len = TI_FRAMELEN;
2127         rcb->ti_flags = 0;
2128         if (sc->ti_ifp->if_hwassist)
2129                 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2130                      TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2131         rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2132
2133         /* Set up the jumbo receive ring. */
2134         rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
2135         TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_jumbo_ring);
2136
2137 #ifdef TI_PRIVATE_JUMBOS
2138         rcb->ti_max_len = TI_JUMBO_FRAMELEN;
2139         rcb->ti_flags = 0;
2140 #else
2141         rcb->ti_max_len = PAGE_SIZE;
2142         rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2143 #endif
2144         if (sc->ti_ifp->if_hwassist)
2145                 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2146                      TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2147         rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2148
2149         /*
2150          * Set up the mini ring. Only activated on the
2151          * Tigon 2 but the slot in the config block is
2152          * still there on the Tigon 1.
2153          */
2154         rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
2155         TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_mini_ring);
2156         rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2157         if (sc->ti_hwrev == TI_HWREV_TIGON)
2158                 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2159         else
2160                 rcb->ti_flags = 0;
2161         if (sc->ti_ifp->if_hwassist)
2162                 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2163                      TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2164         rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2165
2166         /*
2167          * Set up the receive return ring.
2168          */
2169         rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
2170         TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_return_ring);
2171         rcb->ti_flags = 0;
2172         rcb->ti_max_len = TI_RETURN_RING_CNT;
2173         TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
2174             rdphys + TI_RD_OFF(ti_return_prodidx_r);
2175
2176         /*
2177          * Set up the tx ring. Note: for the Tigon 2, we have the option
2178          * of putting the transmit ring in the host's address space and
2179          * letting the chip DMA it instead of leaving the ring in the NIC's
2180          * memory and accessing it through the shared memory region. We
2181          * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2182          * so we have to revert to the shared memory scheme if we detect
2183          * a Tigon 1 chip.
2184          */
2185         CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2186         bzero((char *)sc->ti_rdata->ti_tx_ring,
2187             TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
2188         rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
2189         if (sc->ti_hwrev == TI_HWREV_TIGON)
2190                 rcb->ti_flags = 0;
2191         else
2192                 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2193         rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2194         if (sc->ti_ifp->if_hwassist)
2195                 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2196                      TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2197         rcb->ti_max_len = TI_TX_RING_CNT;
2198         if (sc->ti_hwrev == TI_HWREV_TIGON)
2199                 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
2200         else
2201                 TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_tx_ring);
2202         TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
2203             rdphys + TI_RD_OFF(ti_tx_considx_r);
2204
2205         bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2206             BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2207
2208         /* Set up tuneables */
2209 #if 0
2210         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2211                 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2212                     (sc->ti_rx_coal_ticks / 10));
2213         else
2214 #endif
2215                 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2216         CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2217         CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2218         CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2219         CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2220         CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2221
2222         /* Turn interrupts on. */
2223         CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2224         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2225
2226         /* Start CPU. */
2227         TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2228
2229         return (0);
2230 }
2231
2232 static void
2233 ti_rdata_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2234 {
2235         struct ti_softc *sc;
2236
2237         sc = arg;
2238         if (error || nseg != 1)
2239                 return;
2240
2241         /*
2242          * All of the Tigon data structures need to live at <4GB.  This
2243          * cast is fine since busdma was told about this constraint.
2244          */
2245         sc->ti_rdata_phys = segs[0].ds_addr;
2246         return;
2247 }
2248         
2249 /*
2250  * Probe for a Tigon chip. Check the PCI vendor and device IDs
2251  * against our list and return its name if we find a match.
2252  */
2253 static int
2254 ti_probe(dev)
2255         device_t                dev;
2256 {
2257         struct ti_type          *t;
2258
2259         t = ti_devs;
2260
2261         while (t->ti_name != NULL) {
2262                 if ((pci_get_vendor(dev) == t->ti_vid) &&
2263                     (pci_get_device(dev) == t->ti_did)) {
2264                         device_set_desc(dev, t->ti_name);
2265                         return (BUS_PROBE_DEFAULT);
2266                 }
2267                 t++;
2268         }
2269
2270         return (ENXIO);
2271 }
2272
2273 static int
2274 ti_attach(dev)
2275         device_t                dev;
2276 {
2277         struct ifnet            *ifp;
2278         struct ti_softc         *sc;
2279         int                     error = 0, rid;
2280         u_char                  eaddr[6];
2281
2282         sc = device_get_softc(dev);
2283         sc->ti_unit = device_get_unit(dev);
2284         sc->ti_dev = dev;
2285
2286         mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2287             MTX_DEF);
2288         ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2289         ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2290         if (ifp == NULL) {
2291                 device_printf(dev, "can not if_alloc()\n");
2292                 error = ENOSPC;
2293                 goto fail;
2294         }
2295         sc->ti_ifp->if_capabilities = IFCAP_HWCSUM |
2296             IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2297         sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2298
2299         /*
2300          * Map control/status registers.
2301          */
2302         pci_enable_busmaster(dev);
2303
2304         rid = TI_PCI_LOMEM;
2305         sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2306             RF_ACTIVE);
2307
2308         if (sc->ti_res == NULL) {
2309                 device_printf(dev, "couldn't map memory\n");
2310                 error = ENXIO;
2311                 goto fail;
2312         }
2313
2314         sc->ti_btag = rman_get_bustag(sc->ti_res);
2315         sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2316
2317         /* Allocate interrupt */
2318         rid = 0;
2319
2320         sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2321             RF_SHAREABLE | RF_ACTIVE);
2322
2323         if (sc->ti_irq == NULL) {
2324                 device_printf(dev, "couldn't map interrupt\n");
2325                 error = ENXIO;
2326                 goto fail;
2327         }
2328
2329         if (ti_chipinit(sc)) {
2330                 device_printf(dev, "chip initialization failed\n");
2331                 error = ENXIO;
2332                 goto fail;
2333         }
2334
2335         /* Zero out the NIC's on-board SRAM. */
2336         ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2337
2338         /* Init again -- zeroing memory may have clobbered some registers. */
2339         if (ti_chipinit(sc)) {
2340                 device_printf(dev, "chip initialization failed\n");
2341                 error = ENXIO;
2342                 goto fail;
2343         }
2344
2345         /*
2346          * Get station address from the EEPROM. Note: the manual states
2347          * that the MAC address is at offset 0x8c, however the data is
2348          * stored as two longwords (since that's how it's loaded into
2349          * the NIC). This means the MAC address is actually preceded
2350          * by two zero bytes. We need to skip over those.
2351          */
2352         if (ti_read_eeprom(sc, eaddr,
2353                                 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2354                 device_printf(dev, "failed to read station address\n");
2355                 error = ENXIO;
2356                 goto fail;
2357         }
2358
2359         /* Allocate the general information block and ring buffers. */
2360         if (bus_dma_tag_create(bus_get_dma_tag(dev),    /* parent */
2361                                 1, 0,                   /* algnmnt, boundary */
2362                                 BUS_SPACE_MAXADDR,      /* lowaddr */
2363                                 BUS_SPACE_MAXADDR,      /* highaddr */
2364                                 NULL, NULL,             /* filter, filterarg */
2365                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2366                                 0,                      /* nsegments */
2367                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2368                                 0,                      /* flags */
2369                                 NULL, NULL,             /* lockfunc, lockarg */
2370                                 &sc->ti_parent_dmat) != 0) {
2371                 device_printf(dev, "Failed to allocate parent dmat\n");
2372                 error = ENOMEM;
2373                 goto fail;
2374         }
2375
2376         if (bus_dma_tag_create(sc->ti_parent_dmat,      /* parent */
2377                                 PAGE_SIZE, 0,           /* algnmnt, boundary */
2378                                 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2379                                 BUS_SPACE_MAXADDR,      /* highaddr */
2380                                 NULL, NULL,             /* filter, filterarg */
2381                                 sizeof(struct ti_ring_data),    /* maxsize */
2382                                 1,                      /* nsegments */
2383                                 sizeof(struct ti_ring_data),    /* maxsegsize */
2384                                 0,                      /* flags */
2385                                 NULL, NULL,             /* lockfunc, lockarg */
2386                                 &sc->ti_rdata_dmat) != 0) {
2387                 device_printf(dev, "Failed to allocate rdata dmat\n");
2388                 error = ENOMEM;
2389                 goto fail;
2390         }
2391
2392         if (bus_dmamem_alloc(sc->ti_rdata_dmat, (void**)&sc->ti_rdata,
2393                              BUS_DMA_NOWAIT, &sc->ti_rdata_dmamap) != 0) {
2394                 device_printf(dev, "Failed to allocate rdata memory\n");
2395                 error = ENOMEM;
2396                 goto fail;
2397         }
2398
2399         if (bus_dmamap_load(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2400                             sc->ti_rdata, sizeof(struct ti_ring_data),
2401                             ti_rdata_cb, sc, BUS_DMA_NOWAIT) != 0) {
2402                 device_printf(dev, "Failed to load rdata segments\n");
2403                 error = ENOMEM;
2404                 goto fail;
2405         }
2406
2407         bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2408
2409         /* Try to allocate memory for jumbo buffers. */
2410         if (ti_alloc_jumbo_mem(sc)) {
2411                 device_printf(dev, "jumbo buffer allocation failed\n");
2412                 error = ENXIO;
2413                 goto fail;
2414         }
2415
2416         if (bus_dma_tag_create(sc->ti_parent_dmat,      /* parent */
2417                                 1, 0,                   /* algnmnt, boundary */
2418                                 BUS_SPACE_MAXADDR,      /* lowaddr */
2419                                 BUS_SPACE_MAXADDR,      /* highaddr */
2420                                 NULL, NULL,             /* filter, filterarg */
2421                                 MCLBYTES * TI_MAXTXSEGS,/* maxsize */
2422                                 TI_MAXTXSEGS,           /* nsegments */
2423                                 MCLBYTES,               /* maxsegsize */
2424                                 0,                      /* flags */
2425                                 NULL, NULL,             /* lockfunc, lockarg */
2426                                 &sc->ti_mbuftx_dmat) != 0) {
2427                 device_printf(dev, "Failed to allocate rdata dmat\n");
2428                 error = ENOMEM;
2429                 goto fail;
2430         }
2431
2432         if (bus_dma_tag_create(sc->ti_parent_dmat,      /* parent */
2433                                 1, 0,                   /* algnmnt, boundary */
2434                                 BUS_SPACE_MAXADDR,      /* lowaddr */
2435                                 BUS_SPACE_MAXADDR,      /* highaddr */
2436                                 NULL, NULL,             /* filter, filterarg */
2437                                 MCLBYTES,               /* maxsize */
2438                                 1,                      /* nsegments */
2439                                 MCLBYTES,               /* maxsegsize */
2440                                 0,                      /* flags */
2441                                 NULL, NULL,             /* lockfunc, lockarg */
2442                                 &sc->ti_mbufrx_dmat) != 0) {
2443                 device_printf(dev, "Failed to allocate rdata dmat\n");
2444                 error = ENOMEM;
2445                 goto fail;
2446         }
2447
2448         if (ti_alloc_dmamaps(sc)) {
2449                 device_printf(dev, "dma map creation failed\n");
2450                 error = ENXIO;
2451                 goto fail;
2452         }
2453
2454         /*
2455          * We really need a better way to tell a 1000baseTX card
2456          * from a 1000baseSX one, since in theory there could be
2457          * OEMed 1000baseTX cards from lame vendors who aren't
2458          * clever enough to change the PCI ID. For the moment
2459          * though, the AceNIC is the only copper card available.
2460          */
2461         if (pci_get_vendor(dev) == ALT_VENDORID &&
2462             pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2463                 sc->ti_copper = 1;
2464         /* Ok, it's not the only copper card available. */
2465         if (pci_get_vendor(dev) == NG_VENDORID &&
2466             pci_get_device(dev) == NG_DEVICEID_GA620T)
2467                 sc->ti_copper = 1;
2468
2469         /* Set default tuneable values. */
2470         sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2471 #if 0
2472         sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2473 #endif
2474         sc->ti_rx_coal_ticks = 170;
2475         sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2476         sc->ti_rx_max_coal_bds = 64;
2477 #if 0
2478         sc->ti_tx_max_coal_bds = 128;
2479 #endif
2480         sc->ti_tx_max_coal_bds = 32;
2481         sc->ti_tx_buf_ratio = 21;
2482
2483         /* Set up ifnet structure */
2484         ifp->if_softc = sc;
2485         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2486         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2487         ifp->if_ioctl = ti_ioctl;
2488         ifp->if_start = ti_start;
2489         ifp->if_watchdog = ti_watchdog;
2490         ifp->if_init = ti_init;
2491         ifp->if_baudrate = 1000000000;
2492         ifp->if_mtu = ETHERMTU;
2493         ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2494
2495         /* Set up ifmedia support. */
2496         if (sc->ti_copper) {
2497                 /*
2498                  * Copper cards allow manual 10/100 mode selection,
2499                  * but not manual 1000baseTX mode selection. Why?
2500                  * Becuase currently there's no way to specify the
2501                  * master/slave setting through the firmware interface,
2502                  * so Alteon decided to just bag it and handle it
2503                  * via autonegotiation.
2504                  */
2505                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2506                 ifmedia_add(&sc->ifmedia,
2507                     IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2508                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2509                 ifmedia_add(&sc->ifmedia,
2510                     IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2511                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2512                 ifmedia_add(&sc->ifmedia,
2513                     IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2514         } else {
2515                 /* Fiber cards don't support 10/100 modes. */
2516                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2517                 ifmedia_add(&sc->ifmedia,
2518                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2519         }
2520         ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2521         ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2522
2523         /*
2524          * We're assuming here that card initialization is a sequential
2525          * thing.  If it isn't, multiple cards probing at the same time
2526          * could stomp on the list of softcs here.
2527          */
2528
2529         /* Register the device */
2530         sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2531                            0600, "ti%d", sc->ti_unit);
2532         sc->dev->si_drv1 = sc;
2533
2534         /*
2535          * Call MI attach routine.
2536          */
2537         ether_ifattach(ifp, eaddr);
2538
2539         /* Hook interrupt last to avoid having to lock softc */
2540         error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2541            NULL, ti_intr, sc, &sc->ti_intrhand);
2542
2543         if (error) {
2544                 device_printf(dev, "couldn't set up irq\n");
2545                 goto fail;
2546         }
2547
2548 fail:
2549         if (error)
2550                 ti_detach(dev);
2551
2552         return (error);
2553 }
2554
2555 /*
2556  * Shutdown hardware and free up resources. This can be called any
2557  * time after the mutex has been initialized. It is called in both
2558  * the error case in attach and the normal detach case so it needs
2559  * to be careful about only freeing resources that have actually been
2560  * allocated.
2561  */
2562 static int
2563 ti_detach(dev)
2564         device_t                dev;
2565 {
2566         struct ti_softc         *sc;
2567         struct ifnet            *ifp;
2568         int                     attached;
2569
2570         sc = device_get_softc(dev);
2571         if (sc->dev)
2572                 destroy_dev(sc->dev);
2573         KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2574         attached = device_is_attached(dev);
2575         TI_LOCK(sc);
2576         ifp = sc->ti_ifp;
2577         if (attached)
2578                 ti_stop(sc);
2579         TI_UNLOCK(sc);
2580         if (attached)
2581                 ether_ifdetach(ifp);
2582
2583         /* These should only be active if attach succeeded */
2584         if (attached)
2585                 bus_generic_detach(dev);
2586         ti_free_dmamaps(sc);
2587         ifmedia_removeall(&sc->ifmedia);
2588
2589 #ifdef TI_PRIVATE_JUMBOS
2590         if (sc->ti_cdata.ti_jumbo_buf)
2591                 bus_dmamem_free(sc->ti_jumbo_dmat, sc->ti_cdata.ti_jumbo_buf,
2592                     sc->ti_jumbo_dmamap);
2593 #endif
2594         if (sc->ti_jumbo_dmat)
2595                 bus_dma_tag_destroy(sc->ti_jumbo_dmat);
2596         if (sc->ti_mbuftx_dmat)
2597                 bus_dma_tag_destroy(sc->ti_mbuftx_dmat);
2598         if (sc->ti_mbufrx_dmat)
2599                 bus_dma_tag_destroy(sc->ti_mbufrx_dmat);
2600         if (sc->ti_rdata)
2601                 bus_dmamem_free(sc->ti_rdata_dmat, sc->ti_rdata,
2602                                 sc->ti_rdata_dmamap);
2603         if (sc->ti_rdata_dmat)
2604                 bus_dma_tag_destroy(sc->ti_rdata_dmat);
2605         if (sc->ti_parent_dmat)
2606                 bus_dma_tag_destroy(sc->ti_parent_dmat);
2607         if (sc->ti_intrhand)
2608                 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2609         if (sc->ti_irq)
2610                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2611         if (sc->ti_res) {
2612                 bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2613                     sc->ti_res);
2614         }
2615         if (ifp)
2616                 if_free(ifp);
2617
2618         mtx_destroy(&sc->ti_mtx);
2619
2620         return (0);
2621 }
2622
2623 #ifdef TI_JUMBO_HDRSPLIT
2624 /*
2625  * If hdr_len is 0, that means that header splitting wasn't done on
2626  * this packet for some reason.  The two most likely reasons are that
2627  * the protocol isn't a supported protocol for splitting, or this
2628  * packet had a fragment offset that wasn't 0.
2629  *
2630  * The header length, if it is non-zero, will always be the length of
2631  * the headers on the packet, but that length could be longer than the
2632  * first mbuf.  So we take the minimum of the two as the actual
2633  * length.
2634  */
2635 static __inline void
2636 ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2637 {
2638         int i = 0;
2639         int lengths[4] = {0, 0, 0, 0};
2640         struct mbuf *m, *mp;
2641
2642         if (hdr_len != 0)
2643                 top->m_len = min(hdr_len, top->m_len);
2644         pkt_len -= top->m_len;
2645         lengths[i++] = top->m_len;
2646
2647         mp = top;
2648         for (m = top->m_next; m && pkt_len; m = m->m_next) {
2649                 m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2650                 pkt_len -= m->m_len;
2651                 lengths[i++] = m->m_len;
2652                 mp = m;
2653         }
2654
2655 #if 0
2656         if (hdr_len != 0)
2657                 printf("got split packet: ");
2658         else
2659                 printf("got non-split packet: ");
2660
2661         printf("%d,%d,%d,%d = %d\n", lengths[0],
2662             lengths[1], lengths[2], lengths[3],
2663             lengths[0] + lengths[1] + lengths[2] +
2664             lengths[3]);
2665 #endif
2666
2667         if (pkt_len)
2668                 panic("header splitting didn't");
2669
2670         if (m) {
2671                 m_freem(m);
2672                 mp->m_next = NULL;
2673
2674         }
2675         if (mp->m_next != NULL)
2676                 panic("ti_hdr_split: last mbuf in chain should be null");
2677 }
2678 #endif /* TI_JUMBO_HDRSPLIT */
2679
2680 /*
2681  * Frame reception handling. This is called if there's a frame
2682  * on the receive return list.
2683  *
2684  * Note: we have to be able to handle three possibilities here:
2685  * 1) the frame is from the mini receive ring (can only happen)
2686  *    on Tigon 2 boards)
2687  * 2) the frame is from the jumbo recieve ring
2688  * 3) the frame is from the standard receive ring
2689  */
2690
2691 static void
2692 ti_rxeof(sc)
2693         struct ti_softc         *sc;
2694 {
2695         bus_dmamap_t            map;
2696         struct ifnet            *ifp;
2697         struct ti_cmd_desc      cmd;
2698
2699         TI_LOCK_ASSERT(sc);
2700
2701         ifp = sc->ti_ifp;
2702
2703         while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2704                 struct ti_rx_desc       *cur_rx;
2705                 u_int32_t               rxidx;
2706                 struct mbuf             *m = NULL;
2707                 u_int16_t               vlan_tag = 0;
2708                 int                     have_tag = 0;
2709
2710                 cur_rx =
2711                     &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2712                 rxidx = cur_rx->ti_idx;
2713                 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2714
2715                 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2716                         have_tag = 1;
2717                         vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2718                 }
2719
2720                 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2721
2722                         TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2723                         m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2724                         sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2725                         map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2726                         bus_dmamap_sync(sc->ti_jumbo_dmat, map,
2727                             BUS_DMASYNC_POSTREAD);
2728                         bus_dmamap_unload(sc->ti_jumbo_dmat, map);
2729                         if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2730                                 ifp->if_ierrors++;
2731                                 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2732                                 continue;
2733                         }
2734                         if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2735                                 ifp->if_ierrors++;
2736                                 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2737                                 continue;
2738                         }
2739 #ifdef TI_PRIVATE_JUMBOS
2740                         m->m_len = cur_rx->ti_len;
2741 #else /* TI_PRIVATE_JUMBOS */
2742 #ifdef TI_JUMBO_HDRSPLIT
2743                         if (sc->ti_hdrsplit)
2744                                 ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2745                                              cur_rx->ti_len, rxidx);
2746                         else
2747 #endif /* TI_JUMBO_HDRSPLIT */
2748                         m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2749 #endif /* TI_PRIVATE_JUMBOS */
2750                 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2751                         TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2752                         m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2753                         sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2754                         map = sc->ti_cdata.ti_rx_mini_maps[rxidx];
2755                         bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2756                             BUS_DMASYNC_POSTREAD);
2757                         bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2758                         if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2759                                 ifp->if_ierrors++;
2760                                 ti_newbuf_mini(sc, sc->ti_mini, m);
2761                                 continue;
2762                         }
2763                         if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2764                                 ifp->if_ierrors++;
2765                                 ti_newbuf_mini(sc, sc->ti_mini, m);
2766                                 continue;
2767                         }
2768                         m->m_len = cur_rx->ti_len;
2769                 } else {
2770                         TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2771                         m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2772                         sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2773                         map = sc->ti_cdata.ti_rx_std_maps[rxidx];
2774                         bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2775                             BUS_DMASYNC_POSTREAD);
2776                         bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2777                         if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2778                                 ifp->if_ierrors++;
2779                                 ti_newbuf_std(sc, sc->ti_std, m);
2780                                 continue;
2781                         }
2782                         if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2783                                 ifp->if_ierrors++;
2784                                 ti_newbuf_std(sc, sc->ti_std, m);
2785                                 continue;
2786                         }
2787                         m->m_len = cur_rx->ti_len;
2788                 }
2789
2790                 m->m_pkthdr.len = cur_rx->ti_len;
2791                 ifp->if_ipackets++;
2792                 m->m_pkthdr.rcvif = ifp;
2793
2794                 if (ifp->if_hwassist) {
2795                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2796                             CSUM_DATA_VALID;
2797                         if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2798                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2799                         m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2800                 }
2801
2802                 /*
2803                  * If we received a packet with a vlan tag,
2804                  * tag it before passing the packet upward.
2805                  */
2806                 if (have_tag) {
2807                         m->m_pkthdr.ether_vtag = vlan_tag;
2808                         m->m_flags |= M_VLANTAG;
2809                 }
2810                 TI_UNLOCK(sc);
2811                 (*ifp->if_input)(ifp, m);
2812                 TI_LOCK(sc);
2813         }
2814
2815         /* Only necessary on the Tigon 1. */
2816         if (sc->ti_hwrev == TI_HWREV_TIGON)
2817                 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2818                     sc->ti_rx_saved_considx);
2819
2820         TI_UPDATE_STDPROD(sc, sc->ti_std);
2821         TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2822         TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2823 }
2824
2825 static void
2826 ti_txeof(sc)
2827         struct ti_softc         *sc;
2828 {
2829         struct ti_txdesc        *txd;
2830         struct ti_tx_desc       txdesc;
2831         struct ti_tx_desc       *cur_tx = NULL;
2832         struct ifnet            *ifp;
2833         int                     idx;
2834
2835         ifp = sc->ti_ifp;
2836
2837         txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2838         if (txd == NULL)
2839                 return;
2840         /*
2841          * Go through our tx ring and free mbufs for those
2842          * frames that have been sent.
2843          */
2844         for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2845             TI_INC(idx, TI_TX_RING_CNT)) {
2846                 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2847                         ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2848                             sizeof(txdesc), &txdesc);
2849                         cur_tx = &txdesc;
2850                 } else
2851                         cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2852                 sc->ti_txcnt--;
2853                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2854                 if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2855                         continue;
2856                 bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2857                     BUS_DMASYNC_POSTWRITE);
2858                 bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2859
2860                 ifp->if_opackets++;
2861                 m_freem(txd->tx_m);
2862                 txd->tx_m = NULL;
2863                 STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2864                 STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2865                 txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2866         }
2867         sc->ti_tx_saved_considx = idx;
2868
2869         ifp->if_timer = sc->ti_txcnt > 0 ? 5 : 0;
2870 }
2871
2872 static void
2873 ti_intr(xsc)
2874         void                    *xsc;
2875 {
2876         struct ti_softc         *sc;
2877         struct ifnet            *ifp;
2878
2879         sc = xsc;
2880         TI_LOCK(sc);
2881         ifp = sc->ti_ifp;
2882
2883 /*#ifdef notdef*/
2884         /* Avoid this for now -- checking this register is expensive. */
2885         /* Make sure this is really our interrupt. */
2886         if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2887                 TI_UNLOCK(sc);
2888                 return;
2889         }
2890 /*#endif*/
2891
2892         /* Ack interrupt and stop others from occuring. */
2893         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2894
2895         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2896                 /* Check RX return ring producer/consumer */
2897                 ti_rxeof(sc);
2898
2899                 /* Check TX ring producer/consumer */
2900                 ti_txeof(sc);
2901         }
2902
2903         ti_handle_events(sc);
2904
2905         /* Re-enable interrupts. */
2906         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2907
2908         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2909             ifp->if_snd.ifq_head != NULL)
2910                 ti_start_locked(ifp);
2911
2912         TI_UNLOCK(sc);
2913 }
2914
2915 static void
2916 ti_stats_update(sc)
2917         struct ti_softc         *sc;
2918 {
2919         struct ifnet            *ifp;
2920
2921         ifp = sc->ti_ifp;
2922
2923         bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2924             BUS_DMASYNC_POSTREAD);
2925
2926         ifp->if_collisions +=
2927            (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2928            sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2929            sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2930            sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2931            ifp->if_collisions;
2932
2933         bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2934             BUS_DMASYNC_PREREAD);
2935 }
2936
2937 /*
2938  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2939  * pointers to descriptors.
2940  */
2941 static int
2942 ti_encap(sc, m_head)
2943         struct ti_softc         *sc;
2944         struct mbuf             **m_head;
2945 {
2946         struct ti_txdesc        *txd;
2947         struct ti_tx_desc       *f;
2948         struct ti_tx_desc       txdesc;
2949         struct mbuf             *m;
2950         bus_dma_segment_t       txsegs[TI_MAXTXSEGS];
2951         u_int16_t               csum_flags;
2952         int                     error, frag, i, nseg;
2953
2954         if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
2955                 return (ENOBUFS);
2956
2957         error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2958             *m_head, txsegs, &nseg, 0);
2959         if (error == EFBIG) {
2960                 m = m_defrag(*m_head, M_DONTWAIT);
2961                 if (m == NULL) {
2962                         m_freem(*m_head);
2963                         *m_head = NULL;
2964                         return (ENOMEM);
2965                 }
2966                 *m_head = m;
2967                 error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat,
2968                     txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2969                 if (error) {
2970                         m_freem(*m_head);
2971                         *m_head = NULL;
2972                         return (error);
2973                 }
2974         } else if (error != 0)
2975                 return (error);
2976         if (nseg == 0) {
2977                 m_freem(*m_head);
2978                 *m_head = NULL;
2979                 return (EIO);
2980         }
2981
2982         if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
2983                 bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2984                 return (ENOBUFS);
2985         }
2986
2987         m = *m_head;
2988         csum_flags = 0;
2989         if (m->m_pkthdr.csum_flags) {
2990                 if (m->m_pkthdr.csum_flags & CSUM_IP)
2991                         csum_flags |= TI_BDFLAG_IP_CKSUM;
2992                 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2993                         csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2994                 if (m->m_flags & M_LASTFRAG)
2995                         csum_flags |= TI_BDFLAG_IP_FRAG_END;
2996                 else if (m->m_flags & M_FRAG)
2997                         csum_flags |= TI_BDFLAG_IP_FRAG;
2998         }
2999
3000         bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
3001             BUS_DMASYNC_PREWRITE);
3002         bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
3003             BUS_DMASYNC_PREWRITE);
3004
3005         frag = sc->ti_tx_saved_prodidx;
3006         for (i = 0; i < nseg; i++) {
3007                 if (sc->ti_hwrev == TI_HWREV_TIGON) {
3008                         bzero(&txdesc, sizeof(txdesc));
3009                         f = &txdesc;
3010                 } else
3011                         f = &sc->ti_rdata->ti_tx_ring[frag];
3012                 ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
3013                 f->ti_len = txsegs[i].ds_len;
3014                 f->ti_flags = csum_flags;
3015                 if (m->m_flags & M_VLANTAG) {
3016                         f->ti_flags |= TI_BDFLAG_VLAN_TAG;
3017                         f->ti_vlan_tag = m->m_pkthdr.ether_vtag & 0xfff;
3018                 } else {
3019                         f->ti_vlan_tag = 0;
3020                 }
3021
3022                 if (sc->ti_hwrev == TI_HWREV_TIGON)
3023                         ti_mem_write(sc, TI_TX_RING_BASE + frag *
3024                             sizeof(txdesc), sizeof(txdesc), &txdesc);
3025                 TI_INC(frag, TI_TX_RING_CNT);
3026         }
3027
3028         sc->ti_tx_saved_prodidx = frag;
3029         /* set TI_BDFLAG_END on the last descriptor */
3030         frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
3031         if (sc->ti_hwrev == TI_HWREV_TIGON) {
3032                 txdesc.ti_flags |= TI_BDFLAG_END;
3033                 ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
3034                     sizeof(txdesc), &txdesc);
3035         } else
3036                 sc->ti_rdata->ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
3037
3038         STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
3039         STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
3040         txd->tx_m = m;
3041         sc->ti_txcnt += nseg;
3042
3043         return (0);
3044 }
3045
3046 static void
3047 ti_start(ifp)
3048         struct ifnet            *ifp;
3049 {
3050         struct ti_softc         *sc;
3051
3052         sc = ifp->if_softc;
3053         TI_LOCK(sc);
3054         ti_start_locked(ifp);
3055         TI_UNLOCK(sc);
3056 }
3057
3058 /*
3059  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3060  * to the mbuf data regions directly in the transmit descriptors.
3061  */
3062 static void
3063 ti_start_locked(ifp)
3064         struct ifnet            *ifp;
3065 {
3066         struct ti_softc         *sc;
3067         struct mbuf             *m_head = NULL;
3068         int                     enq = 0;
3069
3070         sc = ifp->if_softc;
3071
3072         for (; ifp->if_snd.ifq_head != NULL &&
3073             sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3074                 IF_DEQUEUE(&ifp->if_snd, m_head);
3075                 if (m_head == NULL)
3076                         break;
3077
3078                 /*
3079                  * XXX
3080                  * safety overkill.  If this is a fragmented packet chain
3081                  * with delayed TCP/UDP checksums, then only encapsulate
3082                  * it if we have enough descriptors to handle the entire
3083                  * chain at once.
3084                  * (paranoia -- may not actually be needed)
3085                  */
3086                 if (m_head->m_flags & M_FIRSTFRAG &&
3087                     m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3088                         if ((TI_TX_RING_CNT - sc->ti_txcnt) <
3089                             m_head->m_pkthdr.csum_data + 16) {
3090                                 IF_PREPEND(&ifp->if_snd, m_head);
3091                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3092                                 break;
3093                         }
3094                 }
3095
3096                 /*
3097                  * Pack the data into the transmit ring. If we
3098                  * don't have room, set the OACTIVE flag and wait
3099                  * for the NIC to drain the ring.
3100                  */
3101                 if (ti_encap(sc, &m_head)) {
3102                         if (m_head == NULL)
3103                                 break;
3104                         IF_PREPEND(&ifp->if_snd, m_head);
3105                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3106                         break;
3107                 }
3108
3109                 enq++;
3110                 /*
3111                  * If there's a BPF listener, bounce a copy of this frame
3112                  * to him.
3113                  */
3114                 ETHER_BPF_MTAP(ifp, m_head);
3115         }
3116
3117         if (enq > 0) {
3118                 /* Transmit */
3119                 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3120
3121                 /*
3122                  * Set a timeout in case the chip goes out to lunch.
3123                  */
3124                 ifp->if_timer = 5;
3125         }
3126 }
3127
3128 static void
3129 ti_init(xsc)
3130         void                    *xsc;
3131 {
3132         struct ti_softc         *sc;
3133
3134         sc = xsc;
3135         TI_LOCK(sc);
3136         ti_init_locked(sc);
3137         TI_UNLOCK(sc);
3138 }
3139
3140 static void
3141 ti_init_locked(xsc)
3142         void                    *xsc;
3143 {
3144         struct ti_softc         *sc = xsc;
3145
3146         /* Cancel pending I/O and flush buffers. */
3147         ti_stop(sc);
3148
3149         /* Init the gen info block, ring control blocks and firmware. */
3150         if (ti_gibinit(sc)) {
3151                 device_printf(sc->ti_dev, "initialization failure\n");
3152                 return;
3153         }
3154 }
3155
3156 static void ti_init2(sc)
3157         struct ti_softc         *sc;
3158 {
3159         struct ti_cmd_desc      cmd;
3160         struct ifnet            *ifp;
3161         u_int8_t                *ea;
3162         struct ifmedia          *ifm;
3163         int                     tmp;
3164
3165         TI_LOCK_ASSERT(sc);
3166
3167         ifp = sc->ti_ifp;
3168
3169         /* Specify MTU and interface index. */
3170         CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
3171         CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3172             ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3173         TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3174
3175         /* Load our MAC address. */
3176         ea = IF_LLADDR(sc->ti_ifp);
3177         CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3178         CSR_WRITE_4(sc, TI_GCR_PAR1,
3179             (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3180         TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3181
3182         /* Enable or disable promiscuous mode as needed. */
3183         if (ifp->if_flags & IFF_PROMISC) {
3184                 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3185         } else {
3186                 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3187         }
3188
3189         /* Program multicast filter. */
3190         ti_setmulti(sc);
3191
3192         /*
3193          * If this is a Tigon 1, we should tell the
3194          * firmware to use software packet filtering.
3195          */
3196         if (sc->ti_hwrev == TI_HWREV_TIGON) {
3197                 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3198         }
3199
3200         /* Init RX ring. */
3201         ti_init_rx_ring_std(sc);
3202
3203         /* Init jumbo RX ring. */
3204         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3205                 ti_init_rx_ring_jumbo(sc);
3206
3207         /*
3208          * If this is a Tigon 2, we can also configure the
3209          * mini ring.
3210          */
3211         if (sc->ti_hwrev == TI_HWREV_TIGON_II)
3212                 ti_init_rx_ring_mini(sc);
3213
3214         CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3215         sc->ti_rx_saved_considx = 0;
3216
3217         /* Init TX ring. */
3218         ti_init_tx_ring(sc);
3219
3220         /* Tell firmware we're alive. */
3221         TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3222
3223         /* Enable host interrupts. */
3224         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3225
3226         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3227         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3228
3229         /*
3230          * Make sure to set media properly. We have to do this
3231          * here since we have to issue commands in order to set
3232          * the link negotiation and we can't issue commands until
3233          * the firmware is running.
3234          */
3235         ifm = &sc->ifmedia;
3236         tmp = ifm->ifm_media;
3237         ifm->ifm_media = ifm->ifm_cur->ifm_media;
3238         ti_ifmedia_upd(ifp);
3239         ifm->ifm_media = tmp;
3240 }
3241
3242 /*
3243  * Set media options.
3244  */
3245 static int
3246 ti_ifmedia_upd(ifp)
3247         struct ifnet            *ifp;
3248 {
3249         struct ti_softc         *sc;
3250         struct ifmedia          *ifm;
3251         struct ti_cmd_desc      cmd;
3252         u_int32_t               flowctl;
3253
3254         sc = ifp->if_softc;
3255         ifm = &sc->ifmedia;
3256
3257         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3258                 return (EINVAL);
3259
3260         flowctl = 0;
3261
3262         switch (IFM_SUBTYPE(ifm->ifm_media)) {
3263         case IFM_AUTO:
3264                 /*
3265                  * Transmit flow control doesn't work on the Tigon 1.
3266                  */
3267                 flowctl = TI_GLNK_RX_FLOWCTL_Y;
3268
3269                 /*
3270                  * Transmit flow control can also cause problems on the
3271                  * Tigon 2, apparantly with both the copper and fiber
3272                  * boards.  The symptom is that the interface will just
3273                  * hang.  This was reproduced with Alteon 180 switches.
3274                  */
3275 #if 0
3276                 if (sc->ti_hwrev != TI_HWREV_TIGON)
3277                         flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3278 #endif
3279
3280                 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3281                     TI_GLNK_FULL_DUPLEX| flowctl |
3282                     TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3283
3284                 flowctl = TI_LNK_RX_FLOWCTL_Y;
3285 #if 0
3286                 if (sc->ti_hwrev != TI_HWREV_TIGON)
3287                         flowctl |= TI_LNK_TX_FLOWCTL_Y;
3288 #endif
3289
3290                 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3291                     TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3292                     TI_LNK_AUTONEGENB|TI_LNK_ENB);
3293                 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3294                     TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3295                 break;
3296         case IFM_1000_SX:
3297         case IFM_1000_T:
3298                 flowctl = TI_GLNK_RX_FLOWCTL_Y;
3299 #if 0
3300                 if (sc->ti_hwrev != TI_HWREV_TIGON)
3301                         flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3302 #endif
3303
3304                 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3305                     flowctl |TI_GLNK_ENB);
3306                 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3307                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3308                         TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3309                 }
3310                 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3311                     TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3312                 break;
3313         case IFM_100_FX:
3314         case IFM_10_FL:
3315         case IFM_100_TX:
3316         case IFM_10_T:
3317                 flowctl = TI_LNK_RX_FLOWCTL_Y;
3318 #if 0
3319                 if (sc->ti_hwrev != TI_HWREV_TIGON)
3320                         flowctl |= TI_LNK_TX_FLOWCTL_Y;
3321 #endif
3322
3323                 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3324                 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3325                 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3326                     IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3327                         TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3328                 } else {
3329                         TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3330                 }
3331                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3332                         TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3333                 } else {
3334                         TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3335                 }
3336                 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3337                     TI_CMD_CODE_NEGOTIATE_10_100, 0);
3338                 break;
3339         }
3340
3341         return (0);
3342 }
3343
3344 /*
3345  * Report current media status.
3346  */
3347 static void
3348 ti_ifmedia_sts(ifp, ifmr)
3349         struct ifnet            *ifp;
3350         struct ifmediareq       *ifmr;
3351 {
3352         struct ti_softc         *sc;
3353         u_int32_t               media = 0;
3354
3355         sc = ifp->if_softc;
3356
3357         ifmr->ifm_status = IFM_AVALID;
3358         ifmr->ifm_active = IFM_ETHER;
3359
3360         if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3361                 return;
3362
3363         ifmr->ifm_status |= IFM_ACTIVE;
3364
3365         if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3366                 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3367                 if (sc->ti_copper)
3368                         ifmr->ifm_active |= IFM_1000_T;
3369                 else
3370                         ifmr->ifm_active |= IFM_1000_SX;
3371                 if (media & TI_GLNK_FULL_DUPLEX)
3372                         ifmr->ifm_active |= IFM_FDX;
3373                 else
3374                         ifmr->ifm_active |= IFM_HDX;
3375         } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3376                 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3377                 if (sc->ti_copper) {
3378                         if (media & TI_LNK_100MB)
3379                                 ifmr->ifm_active |= IFM_100_TX;
3380                         if (media & TI_LNK_10MB)
3381                                 ifmr->ifm_active |= IFM_10_T;
3382                 } else {
3383                         if (media & TI_LNK_100MB)
3384                                 ifmr->ifm_active |= IFM_100_FX;
3385                         if (media & TI_LNK_10MB)
3386                                 ifmr->ifm_active |= IFM_10_FL;
3387                 }
3388                 if (media & TI_LNK_FULL_DUPLEX)
3389                         ifmr->ifm_active |= IFM_FDX;
3390                 if (media & TI_LNK_HALF_DUPLEX)
3391                         ifmr->ifm_active |= IFM_HDX;
3392         }
3393 }
3394
3395 static int
3396 ti_ioctl(ifp, command, data)
3397         struct ifnet            *ifp;
3398         u_long                  command;
3399         caddr_t                 data;
3400 {
3401         struct ti_softc         *sc = ifp->if_softc;
3402         struct ifreq            *ifr = (struct ifreq *) data;
3403         int                     mask, error = 0;
3404         struct ti_cmd_desc      cmd;
3405
3406         switch (command) {
3407         case SIOCSIFMTU:
3408                 TI_LOCK(sc);
3409                 if (ifr->ifr_mtu > TI_JUMBO_MTU)
3410                         error = EINVAL;
3411                 else {
3412                         ifp->if_mtu = ifr->ifr_mtu;
3413                         ti_init_locked(sc);
3414                 }
3415                 TI_UNLOCK(sc);
3416                 break;
3417         case SIOCSIFFLAGS:
3418                 TI_LOCK(sc);
3419                 if (ifp->if_flags & IFF_UP) {
3420                         /*
3421                          * If only the state of the PROMISC flag changed,
3422                          * then just use the 'set promisc mode' command
3423                          * instead of reinitializing the entire NIC. Doing
3424                          * a full re-init means reloading the firmware and
3425                          * waiting for it to start up, which may take a
3426                          * second or two.
3427                          */
3428                         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3429                             ifp->if_flags & IFF_PROMISC &&
3430                             !(sc->ti_if_flags & IFF_PROMISC)) {
3431                                 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3432                                     TI_CMD_CODE_PROMISC_ENB, 0);
3433                         } else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3434                             !(ifp->if_flags & IFF_PROMISC) &&
3435                             sc->ti_if_flags & IFF_PROMISC) {
3436                                 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3437                                     TI_CMD_CODE_PROMISC_DIS, 0);
3438                         } else
3439                                 ti_init_locked(sc);
3440                 } else {
3441                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3442                                 ti_stop(sc);
3443                         }
3444                 }
3445                 sc->ti_if_flags = ifp->if_flags;
3446                 TI_UNLOCK(sc);
3447                 break;
3448         case SIOCADDMULTI:
3449         case SIOCDELMULTI:
3450                 TI_LOCK(sc);
3451                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3452                         ti_setmulti(sc);
3453                 TI_UNLOCK(sc);
3454                 break;
3455         case SIOCSIFMEDIA:
3456         case SIOCGIFMEDIA:
3457                 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3458                 break;
3459         case SIOCSIFCAP:
3460                 TI_LOCK(sc);
3461                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3462                 if (mask & IFCAP_HWCSUM) {
3463                         if (IFCAP_HWCSUM & ifp->if_capenable)
3464                                 ifp->if_capenable &= ~IFCAP_HWCSUM;
3465                         else
3466                                 ifp->if_capenable |= IFCAP_HWCSUM;
3467                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3468                                 ti_init_locked(sc);
3469                 }
3470                 TI_UNLOCK(sc);
3471                 break;
3472         default:
3473                 error = ether_ioctl(ifp, command, data);
3474                 break;
3475         }
3476
3477         return (error);
3478 }
3479
3480 static int
3481 ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3482 {
3483         struct ti_softc *sc;
3484
3485         sc = dev->si_drv1;
3486         if (sc == NULL)
3487                 return (ENODEV);
3488
3489         TI_LOCK(sc);
3490         sc->ti_flags |= TI_FLAG_DEBUGING;
3491         TI_UNLOCK(sc);
3492
3493         return (0);
3494 }
3495
3496 static int
3497 ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3498 {
3499         struct ti_softc *sc;
3500
3501         sc = dev->si_drv1;
3502         if (sc == NULL)
3503                 return (ENODEV);
3504
3505         TI_LOCK(sc);
3506         sc->ti_flags &= ~TI_FLAG_DEBUGING;
3507         TI_UNLOCK(sc);
3508
3509         return (0);
3510 }
3511
3512 /*
3513  * This ioctl routine goes along with the Tigon character device.
3514  */
3515 static int
3516 ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3517     struct thread *td)
3518 {
3519         int error;
3520         struct ti_softc *sc;
3521
3522         sc = dev->si_drv1;
3523         if (sc == NULL)
3524                 return (ENODEV);
3525
3526         error = 0;
3527
3528         switch (cmd) {
3529         case TIIOCGETSTATS:
3530         {
3531                 struct ti_stats *outstats;
3532
3533                 outstats = (struct ti_stats *)addr;
3534
3535                 TI_LOCK(sc);
3536                 bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3537                       sizeof(struct ti_stats));
3538                 TI_UNLOCK(sc);
3539                 break;
3540         }
3541         case TIIOCGETPARAMS:
3542         {
3543                 struct ti_params        *params;
3544
3545                 params = (struct ti_params *)addr;
3546
3547                 TI_LOCK(sc);
3548                 params->ti_stat_ticks = sc->ti_stat_ticks;
3549                 params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3550                 params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3551                 params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3552                 params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3553                 params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3554                 params->param_mask = TI_PARAM_ALL;
3555                 TI_UNLOCK(sc);
3556
3557                 error = 0;
3558
3559                 break;
3560         }
3561         case TIIOCSETPARAMS:
3562         {
3563                 struct ti_params *params;
3564
3565                 params = (struct ti_params *)addr;
3566
3567                 TI_LOCK(sc);
3568                 if (params->param_mask & TI_PARAM_STAT_TICKS) {
3569                         sc->ti_stat_ticks = params->ti_stat_ticks;
3570                         CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3571                 }
3572
3573                 if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3574                         sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3575                         CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3576                                     sc->ti_rx_coal_ticks);
3577                 }
3578
3579                 if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3580                         sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3581                         CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3582                                     sc->ti_tx_coal_ticks);
3583                 }
3584
3585                 if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3586                         sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3587                         CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3588                                     sc->ti_rx_max_coal_bds);
3589                 }
3590
3591                 if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3592                         sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3593                         CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3594                                     sc->ti_tx_max_coal_bds);
3595                 }
3596
3597                 if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3598                         sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3599                         CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3600                                     sc->ti_tx_buf_ratio);
3601                 }
3602                 TI_UNLOCK(sc);
3603
3604                 error = 0;
3605
3606                 break;
3607         }
3608         case TIIOCSETTRACE: {
3609                 ti_trace_type   trace_type;
3610
3611                 trace_type = *(ti_trace_type *)addr;
3612
3613                 /*
3614                  * Set tracing to whatever the user asked for.  Setting
3615                  * this register to 0 should have the effect of disabling
3616                  * tracing.
3617                  */
3618                 CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3619
3620                 error = 0;
3621
3622                 break;
3623         }
3624         case TIIOCGETTRACE: {
3625                 struct ti_trace_buf     *trace_buf;
3626                 u_int32_t               trace_start, cur_trace_ptr, trace_len;
3627
3628                 trace_buf = (struct ti_trace_buf *)addr;
3629
3630                 TI_LOCK(sc);
3631                 trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3632                 cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3633                 trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3634
3635 #if 0
3636                 if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3637                        "trace_len = %d\n", trace_start,
3638                        cur_trace_ptr, trace_len);
3639                 if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3640                        trace_buf->buf_len);
3641 #endif
3642
3643                 error = ti_copy_mem(sc, trace_start, min(trace_len,
3644                                     trace_buf->buf_len),
3645                                     (caddr_t)trace_buf->buf, 1, 1);
3646
3647                 if (error == 0) {
3648                         trace_buf->fill_len = min(trace_len,
3649                                                   trace_buf->buf_len);
3650                         if (cur_trace_ptr < trace_start)
3651                                 trace_buf->cur_trace_ptr =
3652                                         trace_start - cur_trace_ptr;
3653                         else
3654                                 trace_buf->cur_trace_ptr =
3655                                         cur_trace_ptr - trace_start;
3656                 } else
3657                         trace_buf->fill_len = 0;
3658                 TI_UNLOCK(sc);
3659
3660                 break;
3661         }
3662
3663         /*
3664          * For debugging, five ioctls are needed:
3665          * ALT_ATTACH
3666          * ALT_READ_TG_REG
3667          * ALT_WRITE_TG_REG
3668          * ALT_READ_TG_MEM
3669          * ALT_WRITE_TG_MEM
3670          */
3671         case ALT_ATTACH:
3672                 /*
3673                  * From what I can tell, Alteon's Solaris Tigon driver
3674                  * only has one character device, so you have to attach
3675                  * to the Tigon board you're interested in.  This seems
3676                  * like a not-so-good way to do things, since unless you
3677                  * subsequently specify the unit number of the device
3678                  * you're interested in every ioctl, you'll only be
3679                  * able to debug one board at a time.
3680                  */
3681                 error = 0;
3682                 break;
3683         case ALT_READ_TG_MEM:
3684         case ALT_WRITE_TG_MEM:
3685         {
3686                 struct tg_mem *mem_param;
3687                 u_int32_t sram_end, scratch_end;
3688
3689                 mem_param = (struct tg_mem *)addr;
3690
3691                 if (sc->ti_hwrev == TI_HWREV_TIGON) {
3692                         sram_end = TI_END_SRAM_I;
3693                         scratch_end = TI_END_SCRATCH_I;
3694                 } else {
3695                         sram_end = TI_END_SRAM_II;
3696                         scratch_end = TI_END_SCRATCH_II;
3697                 }
3698
3699                 /*
3700                  * For now, we'll only handle accessing regular SRAM,
3701                  * nothing else.
3702                  */
3703                 TI_LOCK(sc);
3704                 if ((mem_param->tgAddr >= TI_BEG_SRAM)
3705                  && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3706                         /*
3707                          * In this instance, we always copy to/from user
3708                          * space, so the user space argument is set to 1.
3709                          */
3710                         error = ti_copy_mem(sc, mem_param->tgAddr,
3711                                             mem_param->len,
3712                                             mem_param->userAddr, 1,
3713                                             (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3714                 } else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3715                         && (mem_param->tgAddr <= scratch_end)) {
3716                         error = ti_copy_scratch(sc, mem_param->tgAddr,
3717                                                 mem_param->len,
3718                                                 mem_param->userAddr, 1,
3719                                                 (cmd == ALT_READ_TG_MEM) ?
3720                                                 1 : 0, TI_PROCESSOR_A);
3721                 } else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3722                         && (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3723                         if (sc->ti_hwrev == TI_HWREV_TIGON) {
3724                                 if_printf(sc->ti_ifp,
3725                                     "invalid memory range for Tigon I\n");
3726                                 error = EINVAL;
3727                                 break;
3728                         }
3729                         error = ti_copy_scratch(sc, mem_param->tgAddr -
3730                                                 TI_SCRATCH_DEBUG_OFF,
3731                                                 mem_param->len,
3732                                                 mem_param->userAddr, 1,
3733                                                 (cmd == ALT_READ_TG_MEM) ?
3734                                                 1 : 0, TI_PROCESSOR_B);
3735                 } else {
3736                         if_printf(sc->ti_ifp, "memory address %#x len %d is "
3737                                 "out of supported range\n",
3738                                 mem_param->tgAddr, mem_param->len);
3739                         error = EINVAL;
3740                 }
3741                 TI_UNLOCK(sc);
3742
3743                 break;
3744         }
3745         case ALT_READ_TG_REG:
3746         case ALT_WRITE_TG_REG:
3747         {
3748                 struct tg_reg   *regs;
3749                 u_int32_t       tmpval;
3750
3751                 regs = (struct tg_reg *)addr;
3752
3753                 /*
3754                  * Make sure the address in question isn't out of range.
3755                  */
3756                 if (regs->addr > TI_REG_MAX) {
3757                         error = EINVAL;
3758                         break;
3759                 }
3760                 TI_LOCK(sc);
3761                 if (cmd == ALT_READ_TG_REG) {
3762                         bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3763                                                 regs->addr, &tmpval, 1);
3764                         regs->data = ntohl(tmpval);
3765 #if 0
3766                         if ((regs->addr == TI_CPU_STATE)
3767                          || (regs->addr == TI_CPU_CTL_B)) {
3768                                 if_printf(sc->ti_ifp, "register %#x = %#x\n",
3769                                        regs->addr, tmpval);
3770                         }
3771 #endif
3772                 } else {
3773                         tmpval = htonl(regs->data);
3774                         bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3775                                                  regs->addr, &tmpval, 1);
3776                 }
3777                 TI_UNLOCK(sc);
3778
3779                 break;
3780         }
3781         default:
3782                 error = ENOTTY;
3783                 break;
3784         }
3785         return (error);
3786 }
3787
3788 static void
3789 ti_watchdog(ifp)
3790         struct ifnet            *ifp;
3791 {
3792         struct ti_softc         *sc;
3793
3794         sc = ifp->if_softc;
3795         TI_LOCK(sc);
3796
3797         /*
3798          * When we're debugging, the chip is often stopped for long periods
3799          * of time, and that would normally cause the watchdog timer to fire.
3800          * Since that impedes debugging, we don't want to do that.
3801          */
3802         if (sc->ti_flags & TI_FLAG_DEBUGING) {
3803                 TI_UNLOCK(sc);
3804                 return;
3805         }
3806
3807         if_printf(ifp, "watchdog timeout -- resetting\n");
3808         ti_stop(sc);
3809         ti_init_locked(sc);
3810
3811         ifp->if_oerrors++;
3812         TI_UNLOCK(sc);
3813 }
3814
3815 /*
3816  * Stop the adapter and free any mbufs allocated to the
3817  * RX and TX lists.
3818  */
3819 static void
3820 ti_stop(sc)
3821         struct ti_softc         *sc;
3822 {
3823         struct ifnet            *ifp;
3824         struct ti_cmd_desc      cmd;
3825
3826         TI_LOCK_ASSERT(sc);
3827
3828         ifp = sc->ti_ifp;
3829
3830         /* Disable host interrupts. */
3831         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3832         /*
3833          * Tell firmware we're shutting down.
3834          */
3835         TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3836
3837         /* Halt and reinitialize. */
3838         if (ti_chipinit(sc) != 0)
3839                 return;
3840         ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3841         if (ti_chipinit(sc) != 0)
3842                 return;
3843
3844         /* Free the RX lists. */
3845         ti_free_rx_ring_std(sc);
3846
3847         /* Free jumbo RX list. */
3848         ti_free_rx_ring_jumbo(sc);
3849
3850         /* Free mini RX list. */
3851         ti_free_rx_ring_mini(sc);
3852
3853         /* Free TX buffers. */
3854         ti_free_tx_ring(sc);
3855
3856         sc->ti_ev_prodidx.ti_idx = 0;
3857         sc->ti_return_prodidx.ti_idx = 0;
3858         sc->ti_tx_considx.ti_idx = 0;
3859         sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3860
3861         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3862 }
3863
3864 /*
3865  * Stop all chip I/O so that the kernel's probe routines don't
3866  * get confused by errant DMAs when rebooting.
3867  */
3868 static int
3869 ti_shutdown(dev)
3870         device_t                dev;
3871 {
3872         struct ti_softc         *sc;
3873
3874         sc = device_get_softc(dev);
3875         TI_LOCK(sc);
3876         ti_chipinit(sc);
3877         TI_UNLOCK(sc);
3878
3879         return (0);
3880 }