]> CyberLeo.Net >> Repos - FreeBSD/releng/8.1.git/blob - sys/dev/usb/wlan/if_upgt.c
Copy stable/8 to releng/8.1 in preparation for 8.1-RC1.
[FreeBSD/releng/8.1.git] / sys / dev / usb / wlan / if_upgt.c
1 /*      $OpenBSD: if_upgt.c,v 1.35 2008/04/16 18:32:15 damien Exp $ */
2 /*      $FreeBSD$ */
3
4 /*
5  * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20 #include <sys/param.h>
21 #include <sys/systm.h>
22 #include <sys/kernel.h>
23 #include <sys/endian.h>
24 #include <sys/firmware.h>
25 #include <sys/linker.h>
26 #include <sys/mbuf.h>
27 #include <sys/malloc.h>
28 #include <sys/module.h>
29 #include <sys/socket.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32
33 #include <net/if.h>
34 #include <net/if_arp.h>
35 #include <net/ethernet.h>
36 #include <net/if_dl.h>
37 #include <net/if_media.h>
38 #include <net/if_types.h>
39
40 #include <sys/bus.h>
41 #include <machine/bus.h>
42
43 #include <net80211/ieee80211_var.h>
44 #include <net80211/ieee80211_phy.h>
45 #include <net80211/ieee80211_radiotap.h>
46 #include <net80211/ieee80211_regdomain.h>
47
48 #include <net/bpf.h>
49
50 #include <dev/usb/usb.h>
51 #include <dev/usb/usbdi.h>
52 #include "usbdevs.h"
53
54 #include <dev/usb/wlan/if_upgtvar.h>
55
56 /*
57  * Driver for the USB PrismGT devices.
58  *
59  * For now just USB 2.0 devices with the GW3887 chipset are supported.
60  * The driver has been written based on the firmware version 2.13.1.0_LM87.
61  *
62  * TODO's:
63  * - MONITOR mode test.
64  * - Add HOSTAP mode.
65  * - Add IBSS mode.
66  * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
67  *
68  * Parts of this driver has been influenced by reading the p54u driver
69  * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
70  * Sebastien Bourdeauducq <lekernel@prism54.org>.
71  */
72
73 SYSCTL_NODE(_hw, OID_AUTO, upgt, CTLFLAG_RD, 0,
74     "USB PrismGT GW3887 driver parameters");
75
76 #ifdef UPGT_DEBUG
77 int upgt_debug = 0;
78 SYSCTL_INT(_hw_upgt, OID_AUTO, debug, CTLFLAG_RW, &upgt_debug,
79             0, "control debugging printfs");
80 TUNABLE_INT("hw.upgt.debug", &upgt_debug);
81 enum {
82         UPGT_DEBUG_XMIT         = 0x00000001,   /* basic xmit operation */
83         UPGT_DEBUG_RECV         = 0x00000002,   /* basic recv operation */
84         UPGT_DEBUG_RESET        = 0x00000004,   /* reset processing */
85         UPGT_DEBUG_INTR         = 0x00000008,   /* INTR */
86         UPGT_DEBUG_TX_PROC      = 0x00000010,   /* tx ISR proc */
87         UPGT_DEBUG_RX_PROC      = 0x00000020,   /* rx ISR proc */
88         UPGT_DEBUG_STATE        = 0x00000040,   /* 802.11 state transitions */
89         UPGT_DEBUG_STAT         = 0x00000080,   /* statistic */
90         UPGT_DEBUG_FW           = 0x00000100,   /* firmware */
91         UPGT_DEBUG_ANY          = 0xffffffff
92 };
93 #define DPRINTF(sc, m, fmt, ...) do {                           \
94         if (sc->sc_debug & (m))                                 \
95                 printf(fmt, __VA_ARGS__);                       \
96 } while (0)
97 #else
98 #define DPRINTF(sc, m, fmt, ...) do {                           \
99         (void) sc;                                              \
100 } while (0)
101 #endif
102
103 /*
104  * Prototypes.
105  */
106 static device_probe_t upgt_match;
107 static device_attach_t upgt_attach;
108 static device_detach_t upgt_detach;
109 static int      upgt_alloc_tx(struct upgt_softc *);
110 static int      upgt_alloc_rx(struct upgt_softc *);
111 static int      upgt_device_reset(struct upgt_softc *);
112 static void     upgt_bulk_tx(struct upgt_softc *, struct upgt_data *);
113 static int      upgt_fw_verify(struct upgt_softc *);
114 static int      upgt_mem_init(struct upgt_softc *);
115 static int      upgt_fw_load(struct upgt_softc *);
116 static int      upgt_fw_copy(const uint8_t *, char *, int);
117 static uint32_t upgt_crc32_le(const void *, size_t);
118 static struct mbuf *
119                 upgt_rxeof(struct usb_xfer *, struct upgt_data *, int *);
120 static struct mbuf *
121                 upgt_rx(struct upgt_softc *, uint8_t *, int, int *);
122 static void     upgt_txeof(struct usb_xfer *, struct upgt_data *);
123 static int      upgt_eeprom_read(struct upgt_softc *);
124 static int      upgt_eeprom_parse(struct upgt_softc *);
125 static void     upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
126 static void     upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
127 static void     upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
128 static void     upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
129 static uint32_t upgt_chksum_le(const uint32_t *, size_t);
130 static void     upgt_tx_done(struct upgt_softc *, uint8_t *);
131 static void     upgt_init(void *);
132 static void     upgt_init_locked(struct upgt_softc *);
133 static int      upgt_ioctl(struct ifnet *, u_long, caddr_t);
134 static void     upgt_start(struct ifnet *);
135 static int      upgt_raw_xmit(struct ieee80211_node *, struct mbuf *,
136                     const struct ieee80211_bpf_params *);
137 static void     upgt_scan_start(struct ieee80211com *);
138 static void     upgt_scan_end(struct ieee80211com *);
139 static void     upgt_set_channel(struct ieee80211com *);
140 static struct ieee80211vap *upgt_vap_create(struct ieee80211com *,
141                     const char name[IFNAMSIZ], int unit, int opmode,
142                     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
143                     const uint8_t mac[IEEE80211_ADDR_LEN]);
144 static void     upgt_vap_delete(struct ieee80211vap *);
145 static void     upgt_update_mcast(struct ifnet *);
146 static uint8_t  upgt_rx_rate(struct upgt_softc *, const int);
147 static void     upgt_set_multi(void *);
148 static void     upgt_stop(struct upgt_softc *);
149 static void     upgt_setup_rates(struct ieee80211vap *, struct ieee80211com *);
150 static int      upgt_set_macfilter(struct upgt_softc *, uint8_t);
151 static int      upgt_newstate(struct ieee80211vap *, enum ieee80211_state, int);
152 static void     upgt_set_chan(struct upgt_softc *, struct ieee80211_channel *);
153 static void     upgt_set_led(struct upgt_softc *, int);
154 static void     upgt_set_led_blink(void *);
155 static void     upgt_get_stats(struct upgt_softc *);
156 static void     upgt_mem_free(struct upgt_softc *, uint32_t);
157 static uint32_t upgt_mem_alloc(struct upgt_softc *);
158 static void     upgt_free_tx(struct upgt_softc *);
159 static void     upgt_free_rx(struct upgt_softc *);
160 static void     upgt_watchdog(void *);
161 static void     upgt_abort_xfers(struct upgt_softc *);
162 static void     upgt_abort_xfers_locked(struct upgt_softc *);
163 static void     upgt_sysctl_node(struct upgt_softc *);
164 static struct upgt_data *
165                 upgt_getbuf(struct upgt_softc *);
166 static struct upgt_data *
167                 upgt_gettxbuf(struct upgt_softc *);
168 static int      upgt_tx_start(struct upgt_softc *, struct mbuf *,
169                     struct ieee80211_node *, struct upgt_data *);
170
171 static const char *upgt_fwname = "upgt-gw3887";
172
173 static const struct usb_device_id upgt_devs_2[] = {
174 #define UPGT_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
175         /* version 2 devices */
176         UPGT_DEV(ACCTON,        PRISM_GT),
177         UPGT_DEV(BELKIN,        F5D7050),
178         UPGT_DEV(CISCOLINKSYS,  WUSB54AG),
179         UPGT_DEV(CONCEPTRONIC,  PRISM_GT),
180         UPGT_DEV(DELL,          PRISM_GT_1),
181         UPGT_DEV(DELL,          PRISM_GT_2),
182         UPGT_DEV(FSC,           E5400),
183         UPGT_DEV(GLOBESPAN,     PRISM_GT_1),
184         UPGT_DEV(GLOBESPAN,     PRISM_GT_2),
185         UPGT_DEV(INTERSIL,      PRISM_GT),
186         UPGT_DEV(SMC,           2862WG),
187         UPGT_DEV(WISTRONNEWEB,  UR045G),
188         UPGT_DEV(XYRATEX,       PRISM_GT_1),
189         UPGT_DEV(XYRATEX,       PRISM_GT_2),
190         UPGT_DEV(ZCOM,          XG703A),
191         UPGT_DEV(ZCOM,          XM142)
192 };
193
194 static usb_callback_t upgt_bulk_rx_callback;
195 static usb_callback_t upgt_bulk_tx_callback;
196
197 static const struct usb_config upgt_config[UPGT_N_XFERS] = {
198         [UPGT_BULK_TX] = {
199                 .type = UE_BULK,
200                 .endpoint = UE_ADDR_ANY,
201                 .direction = UE_DIR_OUT,
202                 .bufsize = MCLBYTES,
203                 .flags = {
204                         .ext_buffer = 1,
205                         .force_short_xfer = 1,
206                         .pipe_bof = 1
207                 },
208                 .callback = upgt_bulk_tx_callback,
209                 .timeout = UPGT_USB_TIMEOUT,    /* ms */
210         },
211         [UPGT_BULK_RX] = {
212                 .type = UE_BULK,
213                 .endpoint = UE_ADDR_ANY,
214                 .direction = UE_DIR_IN,
215                 .bufsize = MCLBYTES,
216                 .flags = {
217                         .ext_buffer = 1,
218                         .pipe_bof = 1,
219                         .short_xfer_ok = 1
220                 },
221                 .callback = upgt_bulk_rx_callback,
222         },
223 };
224
225 static int
226 upgt_match(device_t dev)
227 {
228         struct usb_attach_arg *uaa = device_get_ivars(dev);
229
230         if (uaa->usb_mode != USB_MODE_HOST)
231                 return (ENXIO);
232         if (uaa->info.bConfigIndex != UPGT_CONFIG_INDEX)
233                 return (ENXIO);
234         if (uaa->info.bIfaceIndex != UPGT_IFACE_INDEX)
235                 return (ENXIO);
236
237         return (usbd_lookup_id_by_uaa(upgt_devs_2, sizeof(upgt_devs_2), uaa));
238 }
239
240 static int
241 upgt_attach(device_t dev)
242 {
243         int error;
244         struct ieee80211com *ic;
245         struct ifnet *ifp;
246         struct upgt_softc *sc = device_get_softc(dev);
247         struct usb_attach_arg *uaa = device_get_ivars(dev);
248         uint8_t bands, iface_index = UPGT_IFACE_INDEX;
249
250         sc->sc_dev = dev;
251         sc->sc_udev = uaa->device;
252 #ifdef UPGT_DEBUG
253         sc->sc_debug = upgt_debug;
254 #endif
255         device_set_usb_desc(dev);
256
257         mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK,
258             MTX_DEF);
259         callout_init(&sc->sc_led_ch, 0);
260         callout_init(&sc->sc_watchdog_ch, 0);
261
262         /* Allocate TX and RX xfers.  */
263         error = upgt_alloc_tx(sc);
264         if (error)
265                 goto fail1;
266         error = upgt_alloc_rx(sc);
267         if (error)
268                 goto fail2;
269
270         error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
271             upgt_config, UPGT_N_XFERS, sc, &sc->sc_mtx);
272         if (error) {
273                 device_printf(dev, "could not allocate USB transfers, "
274                     "err=%s\n", usbd_errstr(error));
275                 goto fail3;
276         }
277
278         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
279         if (ifp == NULL) {
280                 device_printf(dev, "can not if_alloc()\n");
281                 goto fail4;
282         }
283
284         /* Initialize the device.  */
285         error = upgt_device_reset(sc);
286         if (error)
287                 goto fail5;
288         /* Verify the firmware.  */
289         error = upgt_fw_verify(sc);
290         if (error)
291                 goto fail5;
292         /* Calculate device memory space.  */
293         if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
294                 device_printf(dev,
295                     "could not find memory space addresses on FW\n");
296                 error = EIO;
297                 goto fail5;
298         }
299         sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
300         sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
301
302         DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame start=0x%08x\n",
303             sc->sc_memaddr_frame_start);
304         DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame end=0x%08x\n",
305             sc->sc_memaddr_frame_end);
306         DPRINTF(sc, UPGT_DEBUG_FW, "memory address rx start=0x%08x\n",
307             sc->sc_memaddr_rx_start);
308
309         upgt_mem_init(sc);
310
311         /* Load the firmware.  */
312         error = upgt_fw_load(sc);
313         if (error)
314                 goto fail5;
315
316         /* Read the whole EEPROM content and parse it.  */
317         error = upgt_eeprom_read(sc);
318         if (error)
319                 goto fail5;
320         error = upgt_eeprom_parse(sc);
321         if (error)
322                 goto fail5;
323
324         /* all works related with the device have done here. */
325         upgt_abort_xfers(sc);
326
327         /* Setup the 802.11 device.  */
328         ifp->if_softc = sc;
329         if_initname(ifp, "upgt", device_get_unit(sc->sc_dev));
330         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
331         ifp->if_init = upgt_init;
332         ifp->if_ioctl = upgt_ioctl;
333         ifp->if_start = upgt_start;
334         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
335         IFQ_SET_READY(&ifp->if_snd);
336
337         ic = ifp->if_l2com;
338         ic->ic_ifp = ifp;
339         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
340         ic->ic_opmode = IEEE80211_M_STA;
341         /* set device capabilities */
342         ic->ic_caps =
343                   IEEE80211_C_STA               /* station mode */
344                 | IEEE80211_C_MONITOR           /* monitor mode */
345                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
346                 | IEEE80211_C_SHSLOT            /* short slot time supported */
347                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
348                 | IEEE80211_C_WPA               /* 802.11i */
349                 ;
350
351         bands = 0;
352         setbit(&bands, IEEE80211_MODE_11B);
353         setbit(&bands, IEEE80211_MODE_11G);
354         ieee80211_init_channels(ic, NULL, &bands);
355
356         ieee80211_ifattach(ic, sc->sc_myaddr);
357         ic->ic_raw_xmit = upgt_raw_xmit;
358         ic->ic_scan_start = upgt_scan_start;
359         ic->ic_scan_end = upgt_scan_end;
360         ic->ic_set_channel = upgt_set_channel;
361
362         ic->ic_vap_create = upgt_vap_create;
363         ic->ic_vap_delete = upgt_vap_delete;
364         ic->ic_update_mcast = upgt_update_mcast;
365
366         ieee80211_radiotap_attach(ic,
367             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
368                 UPGT_TX_RADIOTAP_PRESENT,
369             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
370                 UPGT_RX_RADIOTAP_PRESENT);
371
372         upgt_sysctl_node(sc);
373
374         if (bootverbose)
375                 ieee80211_announce(ic);
376
377         return (0);
378
379 fail5:  if_free(ifp);
380 fail4:  usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
381 fail3:  upgt_free_rx(sc);
382 fail2:  upgt_free_tx(sc);
383 fail1:  mtx_destroy(&sc->sc_mtx);
384
385         return (error);
386 }
387
388 static void
389 upgt_txeof(struct usb_xfer *xfer, struct upgt_data *data)
390 {
391         struct upgt_softc *sc = usbd_xfer_softc(xfer);
392         struct ifnet *ifp = sc->sc_ifp;
393         struct mbuf *m;
394
395         UPGT_ASSERT_LOCKED(sc);
396
397         /*
398          * Do any tx complete callback.  Note this must be done before releasing
399          * the node reference.
400          */
401         if (data->m) {
402                 m = data->m;
403                 if (m->m_flags & M_TXCB) {
404                         /* XXX status? */
405                         ieee80211_process_callback(data->ni, m, 0);
406                 }
407                 m_freem(m);
408                 data->m = NULL;
409         }
410         if (data->ni) {
411                 ieee80211_free_node(data->ni);
412                 data->ni = NULL;
413         }
414         ifp->if_opackets++;
415 }
416
417 static void
418 upgt_get_stats(struct upgt_softc *sc)
419 {
420         struct upgt_data *data_cmd;
421         struct upgt_lmac_mem *mem;
422         struct upgt_lmac_stats *stats;
423
424         data_cmd = upgt_getbuf(sc);
425         if (data_cmd == NULL) {
426                 device_printf(sc->sc_dev, "%s: out of buffer.\n", __func__);
427                 return;
428         }
429
430         /*
431          * Transmit the URB containing the CMD data.
432          */
433         bzero(data_cmd->buf, MCLBYTES);
434
435         mem = (struct upgt_lmac_mem *)data_cmd->buf;
436         mem->addr = htole32(sc->sc_memaddr_frame_start +
437             UPGT_MEMSIZE_FRAME_HEAD);
438
439         stats = (struct upgt_lmac_stats *)(mem + 1);
440
441         stats->header1.flags = 0;
442         stats->header1.type = UPGT_H1_TYPE_CTRL;
443         stats->header1.len = htole16(
444             sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header));
445
446         stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
447         stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
448         stats->header2.flags = 0;
449
450         data_cmd->buflen = sizeof(*mem) + sizeof(*stats);
451
452         mem->chksum = upgt_chksum_le((uint32_t *)stats,
453             data_cmd->buflen - sizeof(*mem));
454
455         upgt_bulk_tx(sc, data_cmd);
456 }
457
458 static int
459 upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
460 {
461         struct upgt_softc *sc = ifp->if_softc;
462         struct ieee80211com *ic = ifp->if_l2com;
463         struct ifreq *ifr = (struct ifreq *) data;
464         int error = 0, startall = 0;
465
466         switch (cmd) {
467         case SIOCSIFFLAGS:
468                 if (ifp->if_flags & IFF_UP) {
469                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
470                                 if ((ifp->if_flags ^ sc->sc_if_flags) &
471                                     (IFF_ALLMULTI | IFF_PROMISC))
472                                         upgt_set_multi(sc);
473                         } else {
474                                 upgt_init(sc);
475                                 startall = 1;
476                         }
477                 } else {
478                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
479                                 upgt_stop(sc);
480                 }
481                 sc->sc_if_flags = ifp->if_flags;
482                 if (startall)
483                         ieee80211_start_all(ic);
484                 break;
485         case SIOCGIFMEDIA:
486                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
487                 break;
488         case SIOCGIFADDR:
489                 error = ether_ioctl(ifp, cmd, data);
490                 break;
491         default:
492                 error = EINVAL;
493                 break;
494         }
495         return error;
496 }
497
498 static void
499 upgt_stop_locked(struct upgt_softc *sc)
500 {
501         struct ifnet *ifp = sc->sc_ifp;
502
503         UPGT_ASSERT_LOCKED(sc);
504
505         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
506                 upgt_set_macfilter(sc, IEEE80211_S_INIT);
507         upgt_abort_xfers_locked(sc);
508 }
509
510 static void
511 upgt_stop(struct upgt_softc *sc)
512 {
513         struct ifnet *ifp = sc->sc_ifp;
514
515         UPGT_LOCK(sc);
516         upgt_stop_locked(sc);
517         UPGT_UNLOCK(sc);
518
519         /* device down */
520         sc->sc_tx_timer = 0;
521         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
522         sc->sc_flags &= ~UPGT_FLAG_INITDONE;
523 }
524
525 static void
526 upgt_set_led(struct upgt_softc *sc, int action)
527 {
528         struct upgt_data *data_cmd;
529         struct upgt_lmac_mem *mem;
530         struct upgt_lmac_led *led;
531
532         data_cmd = upgt_getbuf(sc);
533         if (data_cmd == NULL) {
534                 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
535                 return;
536         }
537
538         /*
539          * Transmit the URB containing the CMD data.
540          */
541         bzero(data_cmd->buf, MCLBYTES);
542
543         mem = (struct upgt_lmac_mem *)data_cmd->buf;
544         mem->addr = htole32(sc->sc_memaddr_frame_start +
545             UPGT_MEMSIZE_FRAME_HEAD);
546
547         led = (struct upgt_lmac_led *)(mem + 1);
548
549         led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
550         led->header1.type = UPGT_H1_TYPE_CTRL;
551         led->header1.len = htole16(
552             sizeof(struct upgt_lmac_led) -
553             sizeof(struct upgt_lmac_header));
554
555         led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
556         led->header2.type = htole16(UPGT_H2_TYPE_LED);
557         led->header2.flags = 0;
558
559         switch (action) {
560         case UPGT_LED_OFF:
561                 led->mode = htole16(UPGT_LED_MODE_SET);
562                 led->action_fix = 0;
563                 led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
564                 led->action_tmp_dur = 0;
565                 break;
566         case UPGT_LED_ON:
567                 led->mode = htole16(UPGT_LED_MODE_SET);
568                 led->action_fix = 0;
569                 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
570                 led->action_tmp_dur = 0;
571                 break;
572         case UPGT_LED_BLINK:
573                 if (sc->sc_state != IEEE80211_S_RUN) {
574                         STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
575                         return;
576                 }
577                 if (sc->sc_led_blink) {
578                         /* previous blink was not finished */
579                         STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
580                         return;
581                 }
582                 led->mode = htole16(UPGT_LED_MODE_SET);
583                 led->action_fix = htole16(UPGT_LED_ACTION_OFF);
584                 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
585                 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
586                 /* lock blink */
587                 sc->sc_led_blink = 1;
588                 callout_reset(&sc->sc_led_ch, hz, upgt_set_led_blink, sc);
589                 break;
590         default:
591                 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
592                 return;
593         }
594
595         data_cmd->buflen = sizeof(*mem) + sizeof(*led);
596
597         mem->chksum = upgt_chksum_le((uint32_t *)led,
598             data_cmd->buflen - sizeof(*mem));
599
600         upgt_bulk_tx(sc, data_cmd);
601 }
602
603 static void
604 upgt_set_led_blink(void *arg)
605 {
606         struct upgt_softc *sc = arg;
607
608         /* blink finished, we are ready for a next one */
609         sc->sc_led_blink = 0;
610 }
611
612 static void
613 upgt_init(void *priv)
614 {
615         struct upgt_softc *sc = priv;
616         struct ifnet *ifp = sc->sc_ifp;
617         struct ieee80211com *ic = ifp->if_l2com;
618
619         UPGT_LOCK(sc);
620         upgt_init_locked(sc);
621         UPGT_UNLOCK(sc);
622
623         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
624                 ieee80211_start_all(ic);                /* start all vap's */
625 }
626
627 static void
628 upgt_init_locked(struct upgt_softc *sc)
629 {
630         struct ifnet *ifp = sc->sc_ifp;
631
632         UPGT_ASSERT_LOCKED(sc);
633
634         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
635                 upgt_stop_locked(sc);
636
637         usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
638
639         (void)upgt_set_macfilter(sc, IEEE80211_S_SCAN);
640
641         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
642         ifp->if_drv_flags |= IFF_DRV_RUNNING;
643         sc->sc_flags |= UPGT_FLAG_INITDONE;
644
645         callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
646 }
647
648 static int
649 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
650 {
651         struct ifnet *ifp = sc->sc_ifp;
652         struct ieee80211com *ic = ifp->if_l2com;
653         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
654         struct ieee80211_node *ni = vap->iv_bss;
655         struct upgt_data *data_cmd;
656         struct upgt_lmac_mem *mem;
657         struct upgt_lmac_filter *filter;
658         uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
659
660         UPGT_ASSERT_LOCKED(sc);
661
662         data_cmd = upgt_getbuf(sc);
663         if (data_cmd == NULL) {
664                 device_printf(sc->sc_dev, "out of TX buffers.\n");
665                 return (ENOBUFS);
666         }
667
668         /*
669          * Transmit the URB containing the CMD data.
670          */
671         bzero(data_cmd->buf, MCLBYTES);
672
673         mem = (struct upgt_lmac_mem *)data_cmd->buf;
674         mem->addr = htole32(sc->sc_memaddr_frame_start +
675             UPGT_MEMSIZE_FRAME_HEAD);
676
677         filter = (struct upgt_lmac_filter *)(mem + 1);
678
679         filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
680         filter->header1.type = UPGT_H1_TYPE_CTRL;
681         filter->header1.len = htole16(
682             sizeof(struct upgt_lmac_filter) -
683             sizeof(struct upgt_lmac_header));
684
685         filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
686         filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
687         filter->header2.flags = 0;
688
689         switch (state) {
690         case IEEE80211_S_INIT:
691                 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: set MAC filter to INIT\n",
692                     __func__);
693                 filter->type = htole16(UPGT_FILTER_TYPE_RESET);
694                 break;
695         case IEEE80211_S_SCAN:
696                 DPRINTF(sc, UPGT_DEBUG_STATE,
697                     "set MAC filter to SCAN (bssid %s)\n",
698                     ether_sprintf(broadcast));
699                 filter->type = htole16(UPGT_FILTER_TYPE_NONE);
700                 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
701                 IEEE80211_ADDR_COPY(filter->src, broadcast);
702                 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
703                 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
704                 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
705                 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
706                 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
707                 break;
708         case IEEE80211_S_RUN:
709                 /* XXX monitor mode isn't tested yet.  */
710                 if (vap->iv_opmode == IEEE80211_M_MONITOR) {
711                         filter->type = htole16(UPGT_FILTER_TYPE_MONITOR);
712                         IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
713                         IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
714                         filter->unknown1 = htole16(UPGT_FILTER_MONITOR_UNKNOWN1);
715                         filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
716                         filter->unknown2 = htole16(UPGT_FILTER_MONITOR_UNKNOWN2);
717                         filter->rxhw = htole32(sc->sc_eeprom_hwrx);
718                         filter->unknown3 = htole16(UPGT_FILTER_MONITOR_UNKNOWN3);
719                 } else {
720                         DPRINTF(sc, UPGT_DEBUG_STATE,
721                             "set MAC filter to RUN (bssid %s)\n",
722                             ether_sprintf(ni->ni_bssid));
723                         filter->type = htole16(UPGT_FILTER_TYPE_STA);
724                         IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
725                         IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
726                         filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
727                         filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
728                         filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
729                         filter->rxhw = htole32(sc->sc_eeprom_hwrx);
730                         filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
731                 }
732                 break;
733         default:
734                 device_printf(sc->sc_dev,
735                     "MAC filter does not know that state\n");
736                 break;
737         }
738
739         data_cmd->buflen = sizeof(*mem) + sizeof(*filter);
740
741         mem->chksum = upgt_chksum_le((uint32_t *)filter,
742             data_cmd->buflen - sizeof(*mem));
743
744         upgt_bulk_tx(sc, data_cmd);
745
746         return (0);
747 }
748
749 static void
750 upgt_setup_rates(struct ieee80211vap *vap, struct ieee80211com *ic)
751 {
752         struct ifnet *ifp = ic->ic_ifp;
753         struct upgt_softc *sc = ifp->if_softc;
754         const struct ieee80211_txparam *tp;
755
756         /*
757          * 0x01 = OFMD6   0x10 = DS1
758          * 0x04 = OFDM9   0x11 = DS2
759          * 0x06 = OFDM12  0x12 = DS5
760          * 0x07 = OFDM18  0x13 = DS11
761          * 0x08 = OFDM24
762          * 0x09 = OFDM36
763          * 0x0a = OFDM48
764          * 0x0b = OFDM54
765          */
766         const uint8_t rateset_auto_11b[] =
767             { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
768         const uint8_t rateset_auto_11g[] =
769             { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
770         const uint8_t rateset_fix_11bg[] =
771             { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
772               0x08, 0x09, 0x0a, 0x0b };
773
774         tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
775
776         /* XXX */
777         if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) {
778                 /*
779                  * Automatic rate control is done by the device.
780                  * We just pass the rateset from which the device
781                  * will pickup a rate.
782                  */
783                 if (ic->ic_curmode == IEEE80211_MODE_11B)
784                         bcopy(rateset_auto_11b, sc->sc_cur_rateset,
785                             sizeof(sc->sc_cur_rateset));
786                 if (ic->ic_curmode == IEEE80211_MODE_11G ||
787                     ic->ic_curmode == IEEE80211_MODE_AUTO)
788                         bcopy(rateset_auto_11g, sc->sc_cur_rateset,
789                             sizeof(sc->sc_cur_rateset));
790         } else {
791                 /* set a fixed rate */
792                 memset(sc->sc_cur_rateset, rateset_fix_11bg[tp->ucastrate],
793                     sizeof(sc->sc_cur_rateset));
794         }
795 }
796
797 static void
798 upgt_set_multi(void *arg)
799 {
800         struct upgt_softc *sc = arg;
801         struct ifnet *ifp = sc->sc_ifp;
802
803         if (!(ifp->if_flags & IFF_UP))
804                 return;
805
806         /*
807          * XXX don't know how to set a device.  Lack of docs.  Just try to set
808          * IFF_ALLMULTI flag here.
809          */
810         ifp->if_flags |= IFF_ALLMULTI;
811 }
812
813 static void
814 upgt_start(struct ifnet *ifp)
815 {
816         struct upgt_softc *sc = ifp->if_softc;
817         struct upgt_data *data_tx;
818         struct ieee80211_node *ni;
819         struct mbuf *m;
820
821         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
822                 return;
823
824         UPGT_LOCK(sc);
825         for (;;) {
826                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
827                 if (m == NULL)
828                         break;
829
830                 data_tx = upgt_gettxbuf(sc);
831                 if (data_tx == NULL) {
832                         IFQ_DRV_PREPEND(&ifp->if_snd, m);
833                         break;
834                 }
835
836                 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
837                 m->m_pkthdr.rcvif = NULL;
838
839                 if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
840                         STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
841                         UPGT_STAT_INC(sc, st_tx_inactive);
842                         ieee80211_free_node(ni);
843                         ifp->if_oerrors++;
844                         continue;
845                 }
846                 sc->sc_tx_timer = 5;
847         }
848         UPGT_UNLOCK(sc);
849 }
850
851 static int
852 upgt_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
853         const struct ieee80211_bpf_params *params)
854 {
855         struct ieee80211com *ic = ni->ni_ic;
856         struct ifnet *ifp = ic->ic_ifp;
857         struct upgt_softc *sc = ifp->if_softc;
858         struct upgt_data *data_tx = NULL;
859
860         /* prevent management frames from being sent if we're not ready */
861         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
862                 m_freem(m);
863                 ieee80211_free_node(ni);
864                 return ENETDOWN;
865         }
866
867         UPGT_LOCK(sc);
868         data_tx = upgt_gettxbuf(sc);
869         if (data_tx == NULL) {
870                 ieee80211_free_node(ni);
871                 m_freem(m);
872                 UPGT_UNLOCK(sc);
873                 return (ENOBUFS);
874         }
875
876         if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
877                 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
878                 UPGT_STAT_INC(sc, st_tx_inactive);
879                 ieee80211_free_node(ni);
880                 ifp->if_oerrors++;
881                 UPGT_UNLOCK(sc);
882                 return (EIO);
883         }
884         UPGT_UNLOCK(sc);
885
886         sc->sc_tx_timer = 5;
887         return (0);
888 }
889
890 static void
891 upgt_watchdog(void *arg)
892 {
893         struct upgt_softc *sc = arg;
894         struct ifnet *ifp = sc->sc_ifp;
895
896         if (sc->sc_tx_timer > 0) {
897                 if (--sc->sc_tx_timer == 0) {
898                         device_printf(sc->sc_dev, "watchdog timeout\n");
899                         /* upgt_init(ifp); XXX needs a process context ? */
900                         ifp->if_oerrors++;
901                         return;
902                 }
903                 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
904         }
905 }
906
907 static uint32_t
908 upgt_mem_alloc(struct upgt_softc *sc)
909 {
910         int i;
911
912         for (i = 0; i < sc->sc_memory.pages; i++) {
913                 if (sc->sc_memory.page[i].used == 0) {
914                         sc->sc_memory.page[i].used = 1;
915                         return (sc->sc_memory.page[i].addr);
916                 }
917         }
918
919         return (0);
920 }
921
922 static void
923 upgt_scan_start(struct ieee80211com *ic)
924 {
925         /* do nothing.  */
926 }
927
928 static void
929 upgt_scan_end(struct ieee80211com *ic)
930 {
931         /* do nothing.  */
932 }
933
934 static void
935 upgt_set_channel(struct ieee80211com *ic)
936 {
937         struct upgt_softc *sc = ic->ic_ifp->if_softc;
938
939         UPGT_LOCK(sc);
940         upgt_set_chan(sc, ic->ic_curchan);
941         UPGT_UNLOCK(sc);
942 }
943
944 static void
945 upgt_set_chan(struct upgt_softc *sc, struct ieee80211_channel *c)
946 {
947         struct ifnet *ifp = sc->sc_ifp;
948         struct ieee80211com *ic = ifp->if_l2com;
949         struct upgt_data *data_cmd;
950         struct upgt_lmac_mem *mem;
951         struct upgt_lmac_channel *chan;
952         int channel;
953
954         UPGT_ASSERT_LOCKED(sc);
955
956         channel = ieee80211_chan2ieee(ic, c);
957         if (channel == 0 || channel == IEEE80211_CHAN_ANY) {
958                 /* XXX should NEVER happen */
959                 device_printf(sc->sc_dev,
960                     "%s: invalid channel %x\n", __func__, channel);
961                 return;
962         }
963         
964         DPRINTF(sc, UPGT_DEBUG_STATE, "%s: channel %d\n", __func__, channel);
965
966         data_cmd = upgt_getbuf(sc);
967         if (data_cmd == NULL) {
968                 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
969                 return;
970         }
971         /*
972          * Transmit the URB containing the CMD data.
973          */
974         bzero(data_cmd->buf, MCLBYTES);
975
976         mem = (struct upgt_lmac_mem *)data_cmd->buf;
977         mem->addr = htole32(sc->sc_memaddr_frame_start +
978             UPGT_MEMSIZE_FRAME_HEAD);
979
980         chan = (struct upgt_lmac_channel *)(mem + 1);
981
982         chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
983         chan->header1.type = UPGT_H1_TYPE_CTRL;
984         chan->header1.len = htole16(
985             sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header));
986
987         chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
988         chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
989         chan->header2.flags = 0;
990
991         chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
992         chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
993         chan->freq6 = sc->sc_eeprom_freq6[channel];
994         chan->settings = sc->sc_eeprom_freq6_settings;
995         chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
996
997         bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_1,
998             sizeof(chan->freq3_1));
999         bcopy(&sc->sc_eeprom_freq4[channel], chan->freq4,
1000             sizeof(sc->sc_eeprom_freq4[channel]));
1001         bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_2,
1002             sizeof(chan->freq3_2));
1003
1004         data_cmd->buflen = sizeof(*mem) + sizeof(*chan);
1005
1006         mem->chksum = upgt_chksum_le((uint32_t *)chan,
1007             data_cmd->buflen - sizeof(*mem));
1008
1009         upgt_bulk_tx(sc, data_cmd);
1010 }
1011
1012 static struct ieee80211vap *
1013 upgt_vap_create(struct ieee80211com *ic,
1014         const char name[IFNAMSIZ], int unit, int opmode, int flags,
1015         const uint8_t bssid[IEEE80211_ADDR_LEN],
1016         const uint8_t mac[IEEE80211_ADDR_LEN])
1017 {
1018         struct upgt_vap *uvp;
1019         struct ieee80211vap *vap;
1020
1021         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
1022                 return NULL;
1023         uvp = (struct upgt_vap *) malloc(sizeof(struct upgt_vap),
1024             M_80211_VAP, M_NOWAIT | M_ZERO);
1025         if (uvp == NULL)
1026                 return NULL;
1027         vap = &uvp->vap;
1028         /* enable s/w bmiss handling for sta mode */
1029         ieee80211_vap_setup(ic, vap, name, unit, opmode,
1030             flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
1031
1032         /* override state transition machine */
1033         uvp->newstate = vap->iv_newstate;
1034         vap->iv_newstate = upgt_newstate;
1035
1036         /* setup device rates */
1037         upgt_setup_rates(vap, ic);
1038
1039         /* complete setup */
1040         ieee80211_vap_attach(vap, ieee80211_media_change,
1041             ieee80211_media_status);
1042         ic->ic_opmode = opmode;
1043         return vap;
1044 }
1045
1046 static int
1047 upgt_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1048 {
1049         struct upgt_vap *uvp = UPGT_VAP(vap);
1050         struct ieee80211com *ic = vap->iv_ic;
1051         struct upgt_softc *sc = ic->ic_ifp->if_softc;
1052
1053         /* do it in a process context */
1054         sc->sc_state = nstate;
1055
1056         IEEE80211_UNLOCK(ic);
1057         UPGT_LOCK(sc);
1058         callout_stop(&sc->sc_led_ch);
1059         callout_stop(&sc->sc_watchdog_ch);
1060
1061         switch (nstate) {
1062         case IEEE80211_S_INIT:
1063                 /* do not accept any frames if the device is down */
1064                 (void)upgt_set_macfilter(sc, sc->sc_state);
1065                 upgt_set_led(sc, UPGT_LED_OFF);
1066                 break;
1067         case IEEE80211_S_SCAN:
1068                 upgt_set_chan(sc, ic->ic_curchan);
1069                 break;
1070         case IEEE80211_S_AUTH:
1071                 upgt_set_chan(sc, ic->ic_curchan);
1072                 break;
1073         case IEEE80211_S_ASSOC:
1074                 break;
1075         case IEEE80211_S_RUN:
1076                 upgt_set_macfilter(sc, sc->sc_state);
1077                 upgt_set_led(sc, UPGT_LED_ON);
1078                 break;
1079         default:
1080                 break;
1081         }
1082         UPGT_UNLOCK(sc);
1083         IEEE80211_LOCK(ic);
1084         return (uvp->newstate(vap, nstate, arg));
1085 }
1086
1087 static void
1088 upgt_vap_delete(struct ieee80211vap *vap)
1089 {
1090         struct upgt_vap *uvp = UPGT_VAP(vap);
1091
1092         ieee80211_vap_detach(vap);
1093         free(uvp, M_80211_VAP);
1094 }
1095
1096 static void
1097 upgt_update_mcast(struct ifnet *ifp)
1098 {
1099         struct upgt_softc *sc = ifp->if_softc;
1100
1101         upgt_set_multi(sc);
1102 }
1103
1104 static int
1105 upgt_eeprom_parse(struct upgt_softc *sc)
1106 {
1107         struct upgt_eeprom_header *eeprom_header;
1108         struct upgt_eeprom_option *eeprom_option;
1109         uint16_t option_len;
1110         uint16_t option_type;
1111         uint16_t preamble_len;
1112         int option_end = 0;
1113
1114         /* calculate eeprom options start offset */
1115         eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1116         preamble_len = le16toh(eeprom_header->preamble_len);
1117         eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1118             (sizeof(struct upgt_eeprom_header) + preamble_len));
1119
1120         while (!option_end) {
1121                 /* the eeprom option length is stored in words */
1122                 option_len =
1123                     (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1124                 option_type =
1125                     le16toh(eeprom_option->type);
1126
1127                 switch (option_type) {
1128                 case UPGT_EEPROM_TYPE_NAME:
1129                         DPRINTF(sc, UPGT_DEBUG_FW,
1130                             "EEPROM name len=%d\n", option_len);
1131                         break;
1132                 case UPGT_EEPROM_TYPE_SERIAL:
1133                         DPRINTF(sc, UPGT_DEBUG_FW,
1134                             "EEPROM serial len=%d\n", option_len);
1135                         break;
1136                 case UPGT_EEPROM_TYPE_MAC:
1137                         DPRINTF(sc, UPGT_DEBUG_FW,
1138                             "EEPROM mac len=%d\n", option_len);
1139
1140                         IEEE80211_ADDR_COPY(sc->sc_myaddr, eeprom_option->data);
1141                         break;
1142                 case UPGT_EEPROM_TYPE_HWRX:
1143                         DPRINTF(sc, UPGT_DEBUG_FW,
1144                             "EEPROM hwrx len=%d\n", option_len);
1145
1146                         upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1147                         break;
1148                 case UPGT_EEPROM_TYPE_CHIP:
1149                         DPRINTF(sc, UPGT_DEBUG_FW,
1150                             "EEPROM chip len=%d\n", option_len);
1151                         break;
1152                 case UPGT_EEPROM_TYPE_FREQ3:
1153                         DPRINTF(sc, UPGT_DEBUG_FW,
1154                             "EEPROM freq3 len=%d\n", option_len);
1155
1156                         upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1157                             option_len);
1158                         break;
1159                 case UPGT_EEPROM_TYPE_FREQ4:
1160                         DPRINTF(sc, UPGT_DEBUG_FW,
1161                             "EEPROM freq4 len=%d\n", option_len);
1162
1163                         upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1164                             option_len);
1165                         break;
1166                 case UPGT_EEPROM_TYPE_FREQ5:
1167                         DPRINTF(sc, UPGT_DEBUG_FW,
1168                             "EEPROM freq5 len=%d\n", option_len);
1169                         break;
1170                 case UPGT_EEPROM_TYPE_FREQ6:
1171                         DPRINTF(sc, UPGT_DEBUG_FW,
1172                             "EEPROM freq6 len=%d\n", option_len);
1173
1174                         upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1175                             option_len);
1176                         break;
1177                 case UPGT_EEPROM_TYPE_END:
1178                         DPRINTF(sc, UPGT_DEBUG_FW,
1179                             "EEPROM end len=%d\n", option_len);
1180                         option_end = 1;
1181                         break;
1182                 case UPGT_EEPROM_TYPE_OFF:
1183                         DPRINTF(sc, UPGT_DEBUG_FW,
1184                             "%s: EEPROM off without end option\n", __func__);
1185                         return (EIO);
1186                 default:
1187                         DPRINTF(sc, UPGT_DEBUG_FW,
1188                             "EEPROM unknown type 0x%04x len=%d\n",
1189                             option_type, option_len);
1190                         break;
1191                 }
1192
1193                 /* jump to next EEPROM option */
1194                 eeprom_option = (struct upgt_eeprom_option *)
1195                     (eeprom_option->data + option_len);
1196         }
1197
1198         return (0);
1199 }
1200
1201 static void
1202 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1203 {
1204         struct upgt_eeprom_freq3_header *freq3_header;
1205         struct upgt_lmac_freq3 *freq3;
1206         int i, elements, flags;
1207         unsigned channel;
1208
1209         freq3_header = (struct upgt_eeprom_freq3_header *)data;
1210         freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1211
1212         flags = freq3_header->flags;
1213         elements = freq3_header->elements;
1214
1215         DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d\n",
1216             flags, elements);
1217
1218         for (i = 0; i < elements; i++) {
1219                 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1220                 if (!(channel >= 0 && channel < IEEE80211_CHAN_MAX))
1221                         continue;
1222
1223                 sc->sc_eeprom_freq3[channel] = freq3[i];
1224
1225                 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1226                     le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1227         }
1228 }
1229
1230 void
1231 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1232 {
1233         struct upgt_eeprom_freq4_header *freq4_header;
1234         struct upgt_eeprom_freq4_1 *freq4_1;
1235         struct upgt_eeprom_freq4_2 *freq4_2;
1236         int i, j, elements, settings, flags;
1237         unsigned channel;
1238
1239         freq4_header = (struct upgt_eeprom_freq4_header *)data;
1240         freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1241         flags = freq4_header->flags;
1242         elements = freq4_header->elements;
1243         settings = freq4_header->settings;
1244
1245         /* we need this value later */
1246         sc->sc_eeprom_freq6_settings = freq4_header->settings;
1247
1248         DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d settings=%d\n",
1249             flags, elements, settings);
1250
1251         for (i = 0; i < elements; i++) {
1252                 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1253                 if (!(channel >= 0 && channel < IEEE80211_CHAN_MAX))
1254                         continue;
1255
1256                 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1257                 for (j = 0; j < settings; j++) {
1258                         sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1259                         sc->sc_eeprom_freq4[channel][j].pad = 0;
1260                 }
1261
1262                 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1263                     le16toh(freq4_1[i].freq), channel);
1264         }
1265 }
1266
1267 void
1268 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1269 {
1270         struct upgt_lmac_freq6 *freq6;
1271         int i, elements;
1272         unsigned channel;
1273
1274         freq6 = (struct upgt_lmac_freq6 *)data;
1275         elements = len / sizeof(struct upgt_lmac_freq6);
1276
1277         DPRINTF(sc, UPGT_DEBUG_FW, "elements=%d\n", elements);
1278
1279         for (i = 0; i < elements; i++) {
1280                 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1281                 if (!(channel >= 0 && channel < IEEE80211_CHAN_MAX))
1282                         continue;
1283
1284                 sc->sc_eeprom_freq6[channel] = freq6[i];
1285
1286                 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1287                     le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1288         }
1289 }
1290
1291 static void
1292 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1293 {
1294         struct upgt_eeprom_option_hwrx *option_hwrx;
1295
1296         option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1297
1298         sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1299
1300         DPRINTF(sc, UPGT_DEBUG_FW, "hwrx option value=0x%04x\n",
1301             sc->sc_eeprom_hwrx);
1302 }
1303
1304 static int
1305 upgt_eeprom_read(struct upgt_softc *sc)
1306 {
1307         struct upgt_data *data_cmd;
1308         struct upgt_lmac_mem *mem;
1309         struct upgt_lmac_eeprom *eeprom;
1310         int block, error, offset;
1311
1312         UPGT_LOCK(sc);
1313         usb_pause_mtx(&sc->sc_mtx, 100);
1314
1315         offset = 0;
1316         block = UPGT_EEPROM_BLOCK_SIZE;
1317         while (offset < UPGT_EEPROM_SIZE) {
1318                 DPRINTF(sc, UPGT_DEBUG_FW,
1319                     "request EEPROM block (offset=%d, len=%d)\n", offset, block);
1320
1321                 data_cmd = upgt_getbuf(sc);
1322                 if (data_cmd == NULL) {
1323                         UPGT_UNLOCK(sc);
1324                         return (ENOBUFS);
1325                 }
1326
1327                 /*
1328                  * Transmit the URB containing the CMD data.
1329                  */
1330                 bzero(data_cmd->buf, MCLBYTES);
1331
1332                 mem = (struct upgt_lmac_mem *)data_cmd->buf;
1333                 mem->addr = htole32(sc->sc_memaddr_frame_start +
1334                     UPGT_MEMSIZE_FRAME_HEAD);
1335
1336                 eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
1337                 eeprom->header1.flags = 0;
1338                 eeprom->header1.type = UPGT_H1_TYPE_CTRL;
1339                 eeprom->header1.len = htole16((
1340                     sizeof(struct upgt_lmac_eeprom) -
1341                     sizeof(struct upgt_lmac_header)) + block);
1342
1343                 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1344                 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
1345                 eeprom->header2.flags = 0;
1346
1347                 eeprom->offset = htole16(offset);
1348                 eeprom->len = htole16(block);
1349
1350                 data_cmd->buflen = sizeof(*mem) + sizeof(*eeprom) + block;
1351
1352                 mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1353                     data_cmd->buflen - sizeof(*mem));
1354                 upgt_bulk_tx(sc, data_cmd);
1355
1356                 error = mtx_sleep(sc, &sc->sc_mtx, 0, "eeprom_request", hz);
1357                 if (error != 0) {
1358                         device_printf(sc->sc_dev,
1359                             "timeout while waiting for EEPROM data\n");
1360                         UPGT_UNLOCK(sc);
1361                         return (EIO);
1362                 }
1363
1364                 offset += block;
1365                 if (UPGT_EEPROM_SIZE - offset < block)
1366                         block = UPGT_EEPROM_SIZE - offset;
1367         }
1368
1369         UPGT_UNLOCK(sc);
1370         return (0);
1371 }
1372
1373 /*
1374  * When a rx data came in the function returns a mbuf and a rssi values.
1375  */
1376 static struct mbuf *
1377 upgt_rxeof(struct usb_xfer *xfer, struct upgt_data *data, int *rssi)
1378 {
1379         struct mbuf *m = NULL;
1380         struct upgt_softc *sc = usbd_xfer_softc(xfer);
1381         struct upgt_lmac_header *header;
1382         struct upgt_lmac_eeprom *eeprom;
1383         uint8_t h1_type;
1384         uint16_t h2_type;
1385         int actlen, sumlen;
1386
1387         usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
1388
1389         UPGT_ASSERT_LOCKED(sc);
1390
1391         if (actlen < 1)
1392                 return (NULL);
1393
1394         /* Check only at the very beginning.  */
1395         if (!(sc->sc_flags & UPGT_FLAG_FWLOADED) &&
1396             (memcmp(data->buf, "OK", 2) == 0)) {
1397                 sc->sc_flags |= UPGT_FLAG_FWLOADED;
1398                 wakeup_one(sc);
1399                 return (NULL);
1400         }
1401
1402         if (actlen < UPGT_RX_MINSZ)
1403                 return (NULL);
1404
1405         /*
1406          * Check what type of frame came in.
1407          */
1408         header = (struct upgt_lmac_header *)(data->buf + 4);
1409
1410         h1_type = header->header1.type;
1411         h2_type = le16toh(header->header2.type);
1412
1413         if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) {
1414                 eeprom = (struct upgt_lmac_eeprom *)(data->buf + 4);
1415                 uint16_t eeprom_offset = le16toh(eeprom->offset);
1416                 uint16_t eeprom_len = le16toh(eeprom->len);
1417
1418                 DPRINTF(sc, UPGT_DEBUG_FW,
1419                     "received EEPROM block (offset=%d, len=%d)\n",
1420                     eeprom_offset, eeprom_len);
1421
1422                 bcopy(data->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1423                         sc->sc_eeprom + eeprom_offset, eeprom_len);
1424
1425                 /* EEPROM data has arrived in time, wakeup.  */
1426                 wakeup(sc);
1427         } else if (h1_type == UPGT_H1_TYPE_CTRL &&
1428             h2_type == UPGT_H2_TYPE_TX_DONE) {
1429                 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: received 802.11 TX done\n",
1430                     __func__);
1431                 upgt_tx_done(sc, data->buf + 4);
1432         } else if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1433             h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1434                 DPRINTF(sc, UPGT_DEBUG_RECV, "%s: received 802.11 RX data\n",
1435                     __func__);
1436                 m = upgt_rx(sc, data->buf + 4, le16toh(header->header1.len),
1437                     rssi);
1438         } else if (h1_type == UPGT_H1_TYPE_CTRL &&
1439             h2_type == UPGT_H2_TYPE_STATS) {
1440                 DPRINTF(sc, UPGT_DEBUG_STAT, "%s: received statistic data\n",
1441                     __func__);
1442                 /* TODO: what could we do with the statistic data? */
1443         } else {
1444                 /* ignore unknown frame types */
1445                 DPRINTF(sc, UPGT_DEBUG_INTR,
1446                     "received unknown frame type 0x%02x\n",
1447                     header->header1.type);
1448         }
1449         return (m);
1450 }
1451
1452 /*
1453  * The firmware awaits a checksum for each frame we send to it.
1454  * The algorithm used therefor is uncommon but somehow similar to CRC32.
1455  */
1456 static uint32_t
1457 upgt_chksum_le(const uint32_t *buf, size_t size)
1458 {
1459         int i;
1460         uint32_t crc = 0;
1461
1462         for (i = 0; i < size; i += sizeof(uint32_t)) {
1463                 crc = htole32(crc ^ *buf++);
1464                 crc = htole32((crc >> 5) ^ (crc << 3));
1465         }
1466
1467         return (crc);
1468 }
1469
1470 static struct mbuf *
1471 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen, int *rssi)
1472 {
1473         struct ifnet *ifp = sc->sc_ifp;
1474         struct ieee80211com *ic = ifp->if_l2com;
1475         struct upgt_lmac_rx_desc *rxdesc;
1476         struct mbuf *m;
1477
1478         /*
1479          * don't pass packets to the ieee80211 framework if the driver isn't
1480          * RUNNING.
1481          */
1482         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1483                 return (NULL);
1484
1485         /* access RX packet descriptor */
1486         rxdesc = (struct upgt_lmac_rx_desc *)data;
1487
1488         /* create mbuf which is suitable for strict alignment archs */
1489         KASSERT((pkglen + ETHER_ALIGN) < MCLBYTES,
1490             ("A current mbuf storage is small (%d)", pkglen + ETHER_ALIGN));
1491         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1492         if (m == NULL) {
1493                 device_printf(sc->sc_dev, "could not create RX mbuf\n");
1494                 return (NULL);
1495         }
1496         m_adj(m, ETHER_ALIGN);
1497         bcopy(rxdesc->data, mtod(m, char *), pkglen);
1498         /* trim FCS */
1499         m->m_len = m->m_pkthdr.len = pkglen - IEEE80211_CRC_LEN;
1500         m->m_pkthdr.rcvif = ifp;
1501
1502         if (ieee80211_radiotap_active(ic)) {
1503                 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1504
1505                 tap->wr_flags = 0;
1506                 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1507                 tap->wr_antsignal = rxdesc->rssi;
1508         }
1509         ifp->if_ipackets++;
1510
1511         DPRINTF(sc, UPGT_DEBUG_RX_PROC, "%s: RX done\n", __func__);
1512         *rssi = rxdesc->rssi;
1513         return (m);
1514 }
1515
1516 static uint8_t
1517 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1518 {
1519         struct ifnet *ifp = sc->sc_ifp;
1520         struct ieee80211com *ic = ifp->if_l2com;
1521         static const uint8_t cck_upgt2rate[4] = { 2, 4, 11, 22 };
1522         static const uint8_t ofdm_upgt2rate[12] =
1523             { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 };
1524         
1525         if (ic->ic_curmode == IEEE80211_MODE_11B &&
1526             !(rate < 0 || rate > 3))
1527                 return cck_upgt2rate[rate & 0xf];
1528
1529         if (ic->ic_curmode == IEEE80211_MODE_11G &&
1530             !(rate < 0 || rate > 11))
1531                 return ofdm_upgt2rate[rate & 0xf];
1532
1533         return (0);
1534 }
1535
1536 static void
1537 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1538 {
1539         struct ifnet *ifp = sc->sc_ifp;
1540         struct upgt_lmac_tx_done_desc *desc;
1541         int i, freed = 0;
1542
1543         UPGT_ASSERT_LOCKED(sc);
1544
1545         desc = (struct upgt_lmac_tx_done_desc *)data;
1546
1547         for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1548                 struct upgt_data *data_tx = &sc->sc_tx_data[i];
1549
1550                 if (data_tx->addr == le32toh(desc->header2.reqid)) {
1551                         upgt_mem_free(sc, data_tx->addr);
1552                         data_tx->ni = NULL;
1553                         data_tx->addr = 0;
1554                         data_tx->m = NULL;
1555                         data_tx->use = 0;
1556
1557                         DPRINTF(sc, UPGT_DEBUG_TX_PROC,
1558                             "TX done: memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1559                             le32toh(desc->header2.reqid),
1560                             le16toh(desc->status), le16toh(desc->rssi));
1561                         DPRINTF(sc, UPGT_DEBUG_TX_PROC, "seq=%d\n",
1562                             le16toh(desc->seq));
1563
1564                         freed++;
1565                 }
1566         }
1567
1568         if (freed != 0) {
1569                 sc->sc_tx_timer = 0;
1570                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1571                 UPGT_UNLOCK(sc);
1572                 upgt_start(ifp);
1573                 UPGT_LOCK(sc);
1574         }
1575 }
1576
1577 static void
1578 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
1579 {
1580         int i;
1581
1582         for (i = 0; i < sc->sc_memory.pages; i++) {
1583                 if (sc->sc_memory.page[i].addr == addr) {
1584                         sc->sc_memory.page[i].used = 0;
1585                         return;
1586                 }
1587         }
1588
1589         device_printf(sc->sc_dev,
1590             "could not free memory address 0x%08x\n", addr);
1591 }
1592
1593 static int
1594 upgt_fw_load(struct upgt_softc *sc)
1595 {
1596         const struct firmware *fw;
1597         struct upgt_data *data_cmd;
1598         struct upgt_fw_x2_header *x2;
1599         char start_fwload_cmd[] = { 0x3c, 0x0d };
1600         int error = 0, offset, bsize, n;
1601         uint32_t crc32;
1602
1603         fw = firmware_get(upgt_fwname);
1604         if (fw == NULL) {
1605                 device_printf(sc->sc_dev, "could not read microcode %s\n",
1606                     upgt_fwname);
1607                 return (EIO);
1608         }
1609
1610         UPGT_LOCK(sc);
1611
1612         /* send firmware start load command */
1613         data_cmd = upgt_getbuf(sc);
1614         if (data_cmd == NULL) {
1615                 error = ENOBUFS;
1616                 goto fail;
1617         }
1618         data_cmd->buflen = sizeof(start_fwload_cmd);
1619         bcopy(start_fwload_cmd, data_cmd->buf, data_cmd->buflen);
1620         upgt_bulk_tx(sc, data_cmd);
1621
1622         /* send X2 header */
1623         data_cmd = upgt_getbuf(sc);
1624         if (data_cmd == NULL) {
1625                 error = ENOBUFS;
1626                 goto fail;
1627         }
1628         data_cmd->buflen = sizeof(struct upgt_fw_x2_header);
1629         x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
1630         bcopy(UPGT_X2_SIGNATURE, x2->signature, UPGT_X2_SIGNATURE_SIZE);
1631         x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
1632         x2->len = htole32(fw->datasize);
1633         x2->crc = upgt_crc32_le((uint8_t *)data_cmd->buf +
1634             UPGT_X2_SIGNATURE_SIZE,
1635             sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
1636             sizeof(uint32_t));
1637         upgt_bulk_tx(sc, data_cmd);
1638
1639         /* download firmware */
1640         for (offset = 0; offset < fw->datasize; offset += bsize) {
1641                 if (fw->datasize - offset > UPGT_FW_BLOCK_SIZE)
1642                         bsize = UPGT_FW_BLOCK_SIZE;
1643                 else
1644                         bsize = fw->datasize - offset;
1645
1646                 data_cmd = upgt_getbuf(sc);
1647                 if (data_cmd == NULL) {
1648                         error = ENOBUFS;
1649                         goto fail;
1650                 }
1651                 n = upgt_fw_copy((const uint8_t *)fw->data + offset,
1652                     data_cmd->buf, bsize);
1653                 data_cmd->buflen = bsize;
1654                 upgt_bulk_tx(sc, data_cmd);
1655
1656                 DPRINTF(sc, UPGT_DEBUG_FW, "FW offset=%d, read=%d, sent=%d\n",
1657                     offset, n, bsize);
1658                 bsize = n;
1659         }
1660         DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware downloaded\n", __func__);
1661
1662         /* load firmware */
1663         data_cmd = upgt_getbuf(sc);
1664         if (data_cmd == NULL) {
1665                 error = ENOBUFS;
1666                 goto fail;
1667         }
1668         crc32 = upgt_crc32_le(fw->data, fw->datasize);
1669         *((uint32_t *)(data_cmd->buf)    ) = crc32;
1670         *((uint8_t  *)(data_cmd->buf) + 4) = 'g';
1671         *((uint8_t  *)(data_cmd->buf) + 5) = '\r';
1672         data_cmd->buflen = 6;
1673         upgt_bulk_tx(sc, data_cmd);
1674
1675         /* waiting 'OK' response.  */
1676         usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
1677         error = mtx_sleep(sc, &sc->sc_mtx, 0, "upgtfw", 2 * hz);
1678         if (error != 0) {
1679                 device_printf(sc->sc_dev, "firmware load failed\n");
1680                 error = EIO;
1681         }
1682
1683         DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware loaded\n", __func__);
1684 fail:
1685         UPGT_UNLOCK(sc);
1686         firmware_put(fw, FIRMWARE_UNLOAD);
1687         return (error);
1688 }
1689
1690 static uint32_t
1691 upgt_crc32_le(const void *buf, size_t size)
1692 {
1693         uint32_t crc;
1694
1695         crc = ether_crc32_le(buf, size);
1696
1697         /* apply final XOR value as common for CRC-32 */
1698         crc = htole32(crc ^ 0xffffffffU);
1699
1700         return (crc);
1701 }
1702
1703 /*
1704  * While copying the version 2 firmware, we need to replace two characters:
1705  *
1706  * 0x7e -> 0x7d 0x5e
1707  * 0x7d -> 0x7d 0x5d
1708  */
1709 static int
1710 upgt_fw_copy(const uint8_t *src, char *dst, int size)
1711 {
1712         int i, j;
1713         
1714         for (i = 0, j = 0; i < size && j < size; i++) {
1715                 switch (src[i]) {
1716                 case 0x7e:
1717                         dst[j] = 0x7d;
1718                         j++;
1719                         dst[j] = 0x5e;
1720                         j++;
1721                         break;
1722                 case 0x7d:
1723                         dst[j] = 0x7d;
1724                         j++;
1725                         dst[j] = 0x5d;
1726                         j++;
1727                         break;
1728                 default:
1729                         dst[j] = src[i];
1730                         j++;
1731                         break;
1732                 }
1733         }
1734
1735         return (i);
1736 }
1737
1738 static int
1739 upgt_mem_init(struct upgt_softc *sc)
1740 {
1741         int i;
1742
1743         for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
1744                 sc->sc_memory.page[i].used = 0;
1745
1746                 if (i == 0) {
1747                         /*
1748                          * The first memory page is always reserved for
1749                          * command data.
1750                          */
1751                         sc->sc_memory.page[i].addr =
1752                             sc->sc_memaddr_frame_start + MCLBYTES;
1753                 } else {
1754                         sc->sc_memory.page[i].addr =
1755                             sc->sc_memory.page[i - 1].addr + MCLBYTES;
1756                 }
1757
1758                 if (sc->sc_memory.page[i].addr + MCLBYTES >=
1759                     sc->sc_memaddr_frame_end)
1760                         break;
1761
1762                 DPRINTF(sc, UPGT_DEBUG_FW, "memory address page %d=0x%08x\n",
1763                     i, sc->sc_memory.page[i].addr);
1764         }
1765
1766         sc->sc_memory.pages = i;
1767
1768         DPRINTF(sc, UPGT_DEBUG_FW, "memory pages=%d\n", sc->sc_memory.pages);
1769         return (0);
1770 }
1771
1772 static int
1773 upgt_fw_verify(struct upgt_softc *sc)
1774 {
1775         const struct firmware *fw;
1776         const struct upgt_fw_bra_option *bra_opt;
1777         const struct upgt_fw_bra_descr *descr;
1778         const uint8_t *p;
1779         const uint32_t *uc;
1780         uint32_t bra_option_type, bra_option_len;
1781         int offset, bra_end = 0, error = 0;
1782
1783         fw = firmware_get(upgt_fwname);
1784         if (fw == NULL) {
1785                 device_printf(sc->sc_dev, "could not read microcode %s\n",
1786                     upgt_fwname);
1787                 return EIO;
1788         }
1789
1790         /*
1791          * Seek to beginning of Boot Record Area (BRA).
1792          */
1793         for (offset = 0; offset < fw->datasize; offset += sizeof(*uc)) {
1794                 uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1795                 if (*uc == 0)
1796                         break;
1797         }
1798         for (; offset < fw->datasize; offset += sizeof(*uc)) {
1799                 uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1800                 if (*uc != 0)
1801                         break;
1802         }
1803         if (offset == fw->datasize) { 
1804                 device_printf(sc->sc_dev,
1805                     "firmware Boot Record Area not found\n");
1806                 error = EIO;
1807                 goto fail;
1808         }
1809
1810         DPRINTF(sc, UPGT_DEBUG_FW,
1811             "firmware Boot Record Area found at offset %d\n", offset);
1812
1813         /*
1814          * Parse Boot Record Area (BRA) options.
1815          */
1816         while (offset < fw->datasize && bra_end == 0) {
1817                 /* get current BRA option */
1818                 p = (const uint8_t *)fw->data + offset;
1819                 bra_opt = (const struct upgt_fw_bra_option *)p;
1820                 bra_option_type = le32toh(bra_opt->type);
1821                 bra_option_len = le32toh(bra_opt->len) * sizeof(*uc);
1822
1823                 switch (bra_option_type) {
1824                 case UPGT_BRA_TYPE_FW:
1825                         DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_FW len=%d\n",
1826                             bra_option_len);
1827
1828                         if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
1829                                 device_printf(sc->sc_dev,
1830                                     "wrong UPGT_BRA_TYPE_FW len\n");
1831                                 error = EIO;
1832                                 goto fail;
1833                         }
1834                         if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_opt->data,
1835                             bra_option_len) == 0) {
1836                                 sc->sc_fw_type = UPGT_FWTYPE_LM86;
1837                                 break;
1838                         }
1839                         if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_opt->data,
1840                             bra_option_len) == 0) {
1841                                 sc->sc_fw_type = UPGT_FWTYPE_LM87;
1842                                 break;
1843                         }
1844                         device_printf(sc->sc_dev,
1845                             "unsupported firmware type\n");
1846                         error = EIO;
1847                         goto fail;
1848                 case UPGT_BRA_TYPE_VERSION:
1849                         DPRINTF(sc, UPGT_DEBUG_FW,
1850                             "UPGT_BRA_TYPE_VERSION len=%d\n", bra_option_len);
1851                         break;
1852                 case UPGT_BRA_TYPE_DEPIF:
1853                         DPRINTF(sc, UPGT_DEBUG_FW,
1854                             "UPGT_BRA_TYPE_DEPIF len=%d\n", bra_option_len);
1855                         break;
1856                 case UPGT_BRA_TYPE_EXPIF:
1857                         DPRINTF(sc, UPGT_DEBUG_FW,
1858                             "UPGT_BRA_TYPE_EXPIF len=%d\n", bra_option_len);
1859                         break;
1860                 case UPGT_BRA_TYPE_DESCR:
1861                         DPRINTF(sc, UPGT_DEBUG_FW,
1862                             "UPGT_BRA_TYPE_DESCR len=%d\n", bra_option_len);
1863
1864                         descr = (const struct upgt_fw_bra_descr *)bra_opt->data;
1865
1866                         sc->sc_memaddr_frame_start =
1867                             le32toh(descr->memaddr_space_start);
1868                         sc->sc_memaddr_frame_end =
1869                             le32toh(descr->memaddr_space_end);
1870
1871                         DPRINTF(sc, UPGT_DEBUG_FW,
1872                             "memory address space start=0x%08x\n",
1873                             sc->sc_memaddr_frame_start);
1874                         DPRINTF(sc, UPGT_DEBUG_FW,
1875                             "memory address space end=0x%08x\n",
1876                             sc->sc_memaddr_frame_end);
1877                         break;
1878                 case UPGT_BRA_TYPE_END:
1879                         DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_END len=%d\n",
1880                             bra_option_len);
1881                         bra_end = 1;
1882                         break;
1883                 default:
1884                         DPRINTF(sc, UPGT_DEBUG_FW, "unknown BRA option len=%d\n",
1885                             bra_option_len);
1886                         error = EIO;
1887                         goto fail;
1888                 }
1889
1890                 /* jump to next BRA option */
1891                 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
1892         }
1893
1894         DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware verified", __func__);
1895 fail:
1896         firmware_put(fw, FIRMWARE_UNLOAD);
1897         return (error);
1898 }
1899
1900 static void
1901 upgt_bulk_tx(struct upgt_softc *sc, struct upgt_data *data)
1902 {
1903
1904         UPGT_ASSERT_LOCKED(sc);
1905
1906         STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next);
1907         UPGT_STAT_INC(sc, st_tx_pending);
1908         usbd_transfer_start(sc->sc_xfer[UPGT_BULK_TX]);
1909 }
1910
1911 static int
1912 upgt_device_reset(struct upgt_softc *sc)
1913 {
1914         struct upgt_data *data;
1915         char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
1916
1917         UPGT_LOCK(sc);
1918
1919         data = upgt_getbuf(sc);
1920         if (data == NULL) {
1921                 UPGT_UNLOCK(sc);
1922                 return (ENOBUFS);
1923         }
1924         bcopy(init_cmd, data->buf, sizeof(init_cmd));
1925         data->buflen = sizeof(init_cmd);
1926         upgt_bulk_tx(sc, data);
1927         usb_pause_mtx(&sc->sc_mtx, 100);
1928
1929         UPGT_UNLOCK(sc);
1930         DPRINTF(sc, UPGT_DEBUG_FW, "%s: device initialized\n", __func__);
1931         return (0);
1932 }
1933
1934 static int
1935 upgt_alloc_tx(struct upgt_softc *sc)
1936 {
1937         int i;
1938
1939         STAILQ_INIT(&sc->sc_tx_active);
1940         STAILQ_INIT(&sc->sc_tx_inactive);
1941         STAILQ_INIT(&sc->sc_tx_pending);
1942
1943         for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1944                 struct upgt_data *data = &sc->sc_tx_data[i];
1945
1946                 data->buf = malloc(MCLBYTES, M_USBDEV, M_NOWAIT | M_ZERO);
1947                 if (data->buf == NULL) {
1948                         device_printf(sc->sc_dev,
1949                             "could not allocate TX buffer\n");
1950                         return (ENOMEM);
1951                 }
1952                 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
1953                 UPGT_STAT_INC(sc, st_tx_inactive);
1954         }
1955
1956         return (0);
1957 }
1958
1959 static int
1960 upgt_alloc_rx(struct upgt_softc *sc)
1961 {
1962         int i;
1963
1964         STAILQ_INIT(&sc->sc_rx_active);
1965         STAILQ_INIT(&sc->sc_rx_inactive);
1966
1967         for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
1968                 struct upgt_data *data = &sc->sc_rx_data[i];
1969
1970                 data->buf = malloc(MCLBYTES, M_USBDEV, M_NOWAIT | M_ZERO);
1971                 if (data->buf == NULL) {
1972                         device_printf(sc->sc_dev,
1973                             "could not allocate RX buffer\n");
1974                         return (ENOMEM);
1975                 }
1976                 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
1977         }
1978
1979         return (0);
1980 }
1981
1982 static int
1983 upgt_detach(device_t dev)
1984 {
1985         struct upgt_softc *sc = device_get_softc(dev);
1986         struct ifnet *ifp = sc->sc_ifp;
1987         struct ieee80211com *ic = ifp->if_l2com;
1988
1989         if (!device_is_attached(dev))
1990                 return 0;
1991
1992         upgt_stop(sc);
1993
1994         callout_drain(&sc->sc_led_ch);
1995         callout_drain(&sc->sc_watchdog_ch);
1996
1997         usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
1998         ieee80211_ifdetach(ic);
1999         upgt_free_rx(sc);
2000         upgt_free_tx(sc);
2001
2002         if_free(ifp);
2003         mtx_destroy(&sc->sc_mtx);
2004
2005         return (0);
2006 }
2007
2008 static void
2009 upgt_free_rx(struct upgt_softc *sc)
2010 {
2011         int i;
2012
2013         for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
2014                 struct upgt_data *data = &sc->sc_rx_data[i];
2015
2016                 free(data->buf, M_USBDEV);
2017                 data->ni = NULL;
2018         }
2019 }
2020
2021 static void
2022 upgt_free_tx(struct upgt_softc *sc)
2023 {
2024         int i;
2025
2026         for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
2027                 struct upgt_data *data = &sc->sc_tx_data[i];
2028
2029                 free(data->buf, M_USBDEV);
2030                 data->ni = NULL;
2031         }
2032 }
2033
2034 static void
2035 upgt_abort_xfers_locked(struct upgt_softc *sc)
2036 {
2037         int i;
2038
2039         UPGT_ASSERT_LOCKED(sc);
2040         /* abort any pending transfers */
2041         for (i = 0; i < UPGT_N_XFERS; i++)
2042                 usbd_transfer_stop(sc->sc_xfer[i]);
2043 }
2044
2045 static void
2046 upgt_abort_xfers(struct upgt_softc *sc)
2047 {
2048
2049         UPGT_LOCK(sc);
2050         upgt_abort_xfers_locked(sc);
2051         UPGT_UNLOCK(sc);
2052 }
2053
2054 #define UPGT_SYSCTL_STAT_ADD32(c, h, n, p, d)   \
2055             SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2056
2057 static void
2058 upgt_sysctl_node(struct upgt_softc *sc)
2059 {
2060         struct sysctl_ctx_list *ctx;
2061         struct sysctl_oid_list *child;
2062         struct sysctl_oid *tree;
2063         struct upgt_stat *stats;
2064
2065         stats = &sc->sc_stat;
2066         ctx = device_get_sysctl_ctx(sc->sc_dev);
2067         child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev));
2068
2069         tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2070             NULL, "UPGT statistics");
2071         child = SYSCTL_CHILDREN(tree);
2072         UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_active",
2073             &stats->st_tx_active, "Active numbers in TX queue");
2074         UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive",
2075             &stats->st_tx_inactive, "Inactive numbers in TX queue");
2076         UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_pending",
2077             &stats->st_tx_pending, "Pending numbers in TX queue");
2078 }
2079
2080 #undef UPGT_SYSCTL_STAT_ADD32
2081
2082 static struct upgt_data *
2083 _upgt_getbuf(struct upgt_softc *sc)
2084 {
2085         struct upgt_data *bf;
2086
2087         bf = STAILQ_FIRST(&sc->sc_tx_inactive);
2088         if (bf != NULL) {
2089                 STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next);
2090                 UPGT_STAT_DEC(sc, st_tx_inactive);
2091         } else
2092                 bf = NULL;
2093         if (bf == NULL)
2094                 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: %s\n", __func__,
2095                     "out of xmit buffers");
2096         return (bf);
2097 }
2098
2099 static struct upgt_data *
2100 upgt_getbuf(struct upgt_softc *sc)
2101 {
2102         struct upgt_data *bf;
2103
2104         UPGT_ASSERT_LOCKED(sc);
2105
2106         bf = _upgt_getbuf(sc);
2107         if (bf == NULL) {
2108                 struct ifnet *ifp = sc->sc_ifp;
2109
2110                 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: stop queue\n", __func__);
2111                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2112         }
2113
2114         return (bf);
2115 }
2116
2117 static struct upgt_data *
2118 upgt_gettxbuf(struct upgt_softc *sc)
2119 {
2120         struct upgt_data *bf;
2121
2122         UPGT_ASSERT_LOCKED(sc);
2123
2124         bf = upgt_getbuf(sc);
2125         if (bf == NULL)
2126                 return (NULL);
2127
2128         bf->addr = upgt_mem_alloc(sc);
2129         if (bf->addr == 0) {
2130                 struct ifnet *ifp = sc->sc_ifp;
2131
2132                 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: no free prism memory!\n",
2133                     __func__);
2134                 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
2135                 UPGT_STAT_INC(sc, st_tx_inactive);
2136                 if (!(ifp->if_drv_flags & IFF_DRV_OACTIVE))
2137                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2138                 return (NULL);
2139         }
2140         return (bf);
2141 }
2142
2143 static int
2144 upgt_tx_start(struct upgt_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2145     struct upgt_data *data)
2146 {
2147         struct ieee80211vap *vap = ni->ni_vap;
2148         int error = 0, len;
2149         struct ieee80211_frame *wh;
2150         struct ieee80211_key *k;
2151         struct ifnet *ifp = sc->sc_ifp;
2152         struct upgt_lmac_mem *mem;
2153         struct upgt_lmac_tx_desc *txdesc;
2154
2155         UPGT_ASSERT_LOCKED(sc);
2156
2157         upgt_set_led(sc, UPGT_LED_BLINK);
2158
2159         /*
2160          * Software crypto.
2161          */
2162         wh = mtod(m, struct ieee80211_frame *);
2163         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2164                 k = ieee80211_crypto_encap(ni, m);
2165                 if (k == NULL) {
2166                         device_printf(sc->sc_dev,
2167                             "ieee80211_crypto_encap returns NULL.\n");
2168                         error = EIO;
2169                         goto done;
2170                 }
2171
2172                 /* in case packet header moved, reset pointer */
2173                 wh = mtod(m, struct ieee80211_frame *);
2174         }
2175
2176         /* Transmit the URB containing the TX data.  */
2177         bzero(data->buf, MCLBYTES);
2178         mem = (struct upgt_lmac_mem *)data->buf;
2179         mem->addr = htole32(data->addr);
2180         txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
2181
2182         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2183             IEEE80211_FC0_TYPE_MGT) {
2184                 /* mgmt frames  */
2185                 txdesc->header1.flags = UPGT_H1_FLAGS_TX_MGMT;
2186                 /* always send mgmt frames at lowest rate (DS1) */
2187                 memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
2188         } else {
2189                 /* data frames  */
2190                 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
2191                 bcopy(sc->sc_cur_rateset, txdesc->rates, sizeof(txdesc->rates));
2192         }
2193         txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
2194         txdesc->header1.len = htole16(m->m_pkthdr.len);
2195         txdesc->header2.reqid = htole32(data->addr);
2196         txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
2197         txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
2198         txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
2199         txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
2200
2201         if (ieee80211_radiotap_active_vap(vap)) {
2202                 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
2203
2204                 tap->wt_flags = 0;
2205                 tap->wt_rate = 0;       /* XXX where to get from? */
2206
2207                 ieee80211_radiotap_tx(vap, m);
2208         }
2209
2210         /* copy frame below our TX descriptor header */
2211         m_copydata(m, 0, m->m_pkthdr.len,
2212             data->buf + (sizeof(*mem) + sizeof(*txdesc)));
2213         /* calculate frame size */
2214         len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
2215         /* we need to align the frame to a 4 byte boundary */
2216         len = (len + 3) & ~3;
2217         /* calculate frame checksum */
2218         mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem));
2219         data->ni = ni;
2220         data->m = m;
2221         data->buflen = len;
2222
2223         DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: TX start data sending (%d bytes)\n",
2224             __func__, len);
2225         KASSERT(len <= MCLBYTES, ("mbuf is small for saving data"));
2226
2227         upgt_bulk_tx(sc, data);
2228 done:
2229         /*
2230          * If we don't regulary read the device statistics, the RX queue
2231          * will stall.  It's strange, but it works, so we keep reading
2232          * the statistics here.  *shrug*
2233          */
2234         if (!(ifp->if_opackets % UPGT_TX_STAT_INTERVAL))
2235                 upgt_get_stats(sc);
2236
2237         return (error);
2238 }
2239
2240 static void
2241 upgt_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
2242 {
2243         struct upgt_softc *sc = usbd_xfer_softc(xfer);
2244         struct ifnet *ifp = sc->sc_ifp;
2245         struct ieee80211com *ic = ifp->if_l2com;
2246         struct ieee80211_frame *wh;
2247         struct ieee80211_node *ni;
2248         struct mbuf *m = NULL;
2249         struct upgt_data *data;
2250         int8_t nf;
2251         int rssi = -1;
2252
2253         UPGT_ASSERT_LOCKED(sc);
2254
2255         switch (USB_GET_STATE(xfer)) {
2256         case USB_ST_TRANSFERRED:
2257                 data = STAILQ_FIRST(&sc->sc_rx_active);
2258                 if (data == NULL)
2259                         goto setup;
2260                 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2261                 m = upgt_rxeof(xfer, data, &rssi);
2262                 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2263                 /* FALLTHROUGH */
2264         case USB_ST_SETUP:
2265 setup:
2266                 data = STAILQ_FIRST(&sc->sc_rx_inactive);
2267                 if (data == NULL)
2268                         return;
2269                 STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next);
2270                 STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next);
2271                 usbd_xfer_set_frame_data(xfer, 0, data->buf,
2272                     usbd_xfer_max_len(xfer));
2273                 usbd_transfer_submit(xfer);
2274
2275                 /*
2276                  * To avoid LOR we should unlock our private mutex here to call
2277                  * ieee80211_input() because here is at the end of a USB
2278                  * callback and safe to unlock.
2279                  */
2280                 UPGT_UNLOCK(sc);
2281                 if (m != NULL) {
2282                         wh = mtod(m, struct ieee80211_frame *);
2283                         ni = ieee80211_find_rxnode(ic,
2284                             (struct ieee80211_frame_min *)wh);
2285                         nf = -95;       /* XXX */
2286                         if (ni != NULL) {
2287                                 (void) ieee80211_input(ni, m, rssi, nf);
2288                                 /* node is no longer needed */
2289                                 ieee80211_free_node(ni);
2290                         } else
2291                                 (void) ieee80211_input_all(ic, m, rssi, nf);
2292                         m = NULL;
2293                 }
2294                 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
2295                     !IFQ_IS_EMPTY(&ifp->if_snd))
2296                         upgt_start(ifp);
2297                 UPGT_LOCK(sc);
2298                 break;
2299         default:
2300                 /* needs it to the inactive queue due to a error.  */
2301                 data = STAILQ_FIRST(&sc->sc_rx_active);
2302                 if (data != NULL) {
2303                         STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2304                         STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2305                 }
2306                 if (error != USB_ERR_CANCELLED) {
2307                         usbd_xfer_set_stall(xfer);
2308                         ifp->if_ierrors++;
2309                         goto setup;
2310                 }
2311                 break;
2312         }
2313 }
2314
2315 static void
2316 upgt_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error)
2317 {
2318         struct upgt_softc *sc = usbd_xfer_softc(xfer);
2319         struct ifnet *ifp = sc->sc_ifp;
2320         struct upgt_data *data;
2321
2322         UPGT_ASSERT_LOCKED(sc);
2323         switch (USB_GET_STATE(xfer)) {
2324         case USB_ST_TRANSFERRED:
2325                 data = STAILQ_FIRST(&sc->sc_tx_active);
2326                 if (data == NULL)
2327                         goto setup;
2328                 STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next);
2329                 UPGT_STAT_DEC(sc, st_tx_active);
2330                 upgt_txeof(xfer, data);
2331                 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
2332                 UPGT_STAT_INC(sc, st_tx_inactive);
2333                 /* FALLTHROUGH */
2334         case USB_ST_SETUP:
2335 setup:
2336                 data = STAILQ_FIRST(&sc->sc_tx_pending);
2337                 if (data == NULL) {
2338                         DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: empty pending queue\n",
2339                             __func__);
2340                         return;
2341                 }
2342                 STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next);
2343                 UPGT_STAT_DEC(sc, st_tx_pending);
2344                 STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next);
2345                 UPGT_STAT_INC(sc, st_tx_active);
2346
2347                 usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen);
2348                 usbd_transfer_submit(xfer);
2349                 UPGT_UNLOCK(sc);
2350                 upgt_start(ifp);
2351                 UPGT_LOCK(sc);
2352                 break;
2353         default:
2354                 data = STAILQ_FIRST(&sc->sc_tx_active);
2355                 if (data == NULL)
2356                         goto setup;
2357                 if (data->ni != NULL) {
2358                         ieee80211_free_node(data->ni);
2359                         data->ni = NULL;
2360                         ifp->if_oerrors++;
2361                 }
2362                 if (error != USB_ERR_CANCELLED) {
2363                         usbd_xfer_set_stall(xfer);
2364                         goto setup;
2365                 }
2366                 break;
2367         }
2368 }
2369
2370 static device_method_t upgt_methods[] = {
2371         /* Device interface */
2372         DEVMETHOD(device_probe, upgt_match),
2373         DEVMETHOD(device_attach, upgt_attach),
2374         DEVMETHOD(device_detach, upgt_detach),
2375         
2376         { 0, 0 }
2377 };
2378
2379 static driver_t upgt_driver = {
2380         "upgt",
2381         upgt_methods,
2382         sizeof(struct upgt_softc)
2383 };
2384
2385 static devclass_t upgt_devclass;
2386
2387 DRIVER_MODULE(if_upgt, uhub, upgt_driver, upgt_devclass, NULL, 0);
2388 MODULE_VERSION(if_upgt, 1);
2389 MODULE_DEPEND(if_upgt, usb, 1, 1, 1);
2390 MODULE_DEPEND(if_upgt, wlan, 1, 1, 1);
2391 MODULE_DEPEND(if_upgt, upgtfw_fw, 1, 1, 1);