]> CyberLeo.Net >> Repos - FreeBSD/releng/8.1.git/blob - sys/dev/vge/if_vge.c
Copy stable/8 to releng/8.1 in preparation for 8.1-RC1.
[FreeBSD/releng/8.1.git] / sys / dev / vge / if_vge.c
1 /*-
2  * Copyright (c) 2004
3  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 /*
37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43
44 /*
45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46  * combines a tri-speed ethernet MAC and PHY, with the following
47  * features:
48  *
49  *      o Jumbo frame support up to 16K
50  *      o Transmit and receive flow control
51  *      o IPv4 checksum offload
52  *      o VLAN tag insertion and stripping
53  *      o TCP large send
54  *      o 64-bit multicast hash table filter
55  *      o 64 entry CAM filter
56  *      o 16K RX FIFO and 48K TX FIFO memory
57  *      o Interrupt moderation
58  *
59  * The VT6122 supports up to four transmit DMA queues. The descriptors
60  * in the transmit ring can address up to 7 data fragments; frames which
61  * span more than 7 data buffers must be coalesced, but in general the
62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63  * long. The receive descriptors address only a single buffer.
64  *
65  * There are two peculiar design issues with the VT6122. One is that
66  * receive data buffers must be aligned on a 32-bit boundary. This is
67  * not a problem where the VT6122 is used as a LOM device in x86-based
68  * systems, but on architectures that generate unaligned access traps, we
69  * have to do some copying.
70  *
71  * The other issue has to do with the way 64-bit addresses are handled.
72  * The DMA descriptors only allow you to specify 48 bits of addressing
73  * information. The remaining 16 bits are specified using one of the
74  * I/O registers. If you only have a 32-bit system, then this isn't
75  * an issue, but if you have a 64-bit system and more than 4GB of
76  * memory, you must have to make sure your network data buffers reside
77  * in the same 48-bit 'segment.'
78  *
79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
80  * and sample NICs for testing.
81  */
82
83 #ifdef HAVE_KERNEL_OPTION_HEADERS
84 #include "opt_device_polling.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/endian.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/module.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/ethernet.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_types.h>
104 #include <net/if_vlan_var.h>
105
106 #include <net/bpf.h>
107
108 #include <machine/bus.h>
109 #include <machine/resource.h>
110 #include <sys/bus.h>
111 #include <sys/rman.h>
112
113 #include <dev/mii/mii.h>
114 #include <dev/mii/miivar.h>
115
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118
119 MODULE_DEPEND(vge, pci, 1, 1, 1);
120 MODULE_DEPEND(vge, ether, 1, 1, 1);
121 MODULE_DEPEND(vge, miibus, 1, 1, 1);
122
123 /* "device miibus" required.  See GENERIC if you get errors here. */
124 #include "miibus_if.h"
125
126 #include <dev/vge/if_vgereg.h>
127 #include <dev/vge/if_vgevar.h>
128
129 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130
131 /* Tunables */
132 static int msi_disable = 0;
133 TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
134
135 /*
136  * The SQE error counter of MIB seems to report bogus value.
137  * Vendor's workaround does not seem to work on PCIe based
138  * controllers. Disable it until we find better workaround.
139  */
140 #undef VGE_ENABLE_SQEERR
141
142 /*
143  * Various supported device vendors/types and their names.
144  */
145 static struct vge_type vge_devs[] = {
146         { VIA_VENDORID, VIA_DEVICEID_61XX,
147                 "VIA Networking Velocity Gigabit Ethernet" },
148         { 0, 0, NULL }
149 };
150
151 static int      vge_attach(device_t);
152 static int      vge_detach(device_t);
153 static int      vge_probe(device_t);
154 static int      vge_resume(device_t);
155 static int      vge_shutdown(device_t);
156 static int      vge_suspend(device_t);
157
158 static void     vge_cam_clear(struct vge_softc *);
159 static int      vge_cam_set(struct vge_softc *, uint8_t *);
160 static void     vge_clrwol(struct vge_softc *);
161 static void     vge_discard_rxbuf(struct vge_softc *, int);
162 static int      vge_dma_alloc(struct vge_softc *);
163 static void     vge_dma_free(struct vge_softc *);
164 static void     vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
165 #ifdef VGE_EEPROM
166 static void     vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
167 #endif
168 static int      vge_encap(struct vge_softc *, struct mbuf **);
169 #ifndef __NO_STRICT_ALIGNMENT
170 static __inline void
171                 vge_fixup_rx(struct mbuf *);
172 #endif
173 static void     vge_freebufs(struct vge_softc *);
174 static void     vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
175 static int      vge_ifmedia_upd(struct ifnet *);
176 static void     vge_init(void *);
177 static void     vge_init_locked(struct vge_softc *);
178 static void     vge_intr(void *);
179 static void     vge_intr_holdoff(struct vge_softc *);
180 static int      vge_ioctl(struct ifnet *, u_long, caddr_t);
181 static void     vge_link_statchg(void *);
182 static int      vge_miibus_readreg(device_t, int, int);
183 static void     vge_miibus_statchg(device_t);
184 static int      vge_miibus_writereg(device_t, int, int, int);
185 static void     vge_miipoll_start(struct vge_softc *);
186 static void     vge_miipoll_stop(struct vge_softc *);
187 static int      vge_newbuf(struct vge_softc *, int);
188 static void     vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
189 static void     vge_reset(struct vge_softc *);
190 static int      vge_rx_list_init(struct vge_softc *);
191 static int      vge_rxeof(struct vge_softc *, int);
192 static void     vge_rxfilter(struct vge_softc *);
193 static void     vge_setvlan(struct vge_softc *);
194 static void     vge_setwol(struct vge_softc *);
195 static void     vge_start(struct ifnet *);
196 static void     vge_start_locked(struct ifnet *);
197 static void     vge_stats_clear(struct vge_softc *);
198 static void     vge_stats_update(struct vge_softc *);
199 static void     vge_stop(struct vge_softc *);
200 static void     vge_sysctl_node(struct vge_softc *);
201 static int      vge_tx_list_init(struct vge_softc *);
202 static void     vge_txeof(struct vge_softc *);
203 static void     vge_watchdog(void *);
204
205 static device_method_t vge_methods[] = {
206         /* Device interface */
207         DEVMETHOD(device_probe,         vge_probe),
208         DEVMETHOD(device_attach,        vge_attach),
209         DEVMETHOD(device_detach,        vge_detach),
210         DEVMETHOD(device_suspend,       vge_suspend),
211         DEVMETHOD(device_resume,        vge_resume),
212         DEVMETHOD(device_shutdown,      vge_shutdown),
213
214         /* bus interface */
215         DEVMETHOD(bus_print_child,      bus_generic_print_child),
216         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
217
218         /* MII interface */
219         DEVMETHOD(miibus_readreg,       vge_miibus_readreg),
220         DEVMETHOD(miibus_writereg,      vge_miibus_writereg),
221         DEVMETHOD(miibus_statchg,       vge_miibus_statchg),
222
223         { 0, 0 }
224 };
225
226 static driver_t vge_driver = {
227         "vge",
228         vge_methods,
229         sizeof(struct vge_softc)
230 };
231
232 static devclass_t vge_devclass;
233
234 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
235 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
236
237 #ifdef VGE_EEPROM
238 /*
239  * Read a word of data stored in the EEPROM at address 'addr.'
240  */
241 static void
242 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
243 {
244         int i;
245         uint16_t word = 0;
246
247         /*
248          * Enter EEPROM embedded programming mode. In order to
249          * access the EEPROM at all, we first have to set the
250          * EELOAD bit in the CHIPCFG2 register.
251          */
252         CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
253         CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
254
255         /* Select the address of the word we want to read */
256         CSR_WRITE_1(sc, VGE_EEADDR, addr);
257
258         /* Issue read command */
259         CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
260
261         /* Wait for the done bit to be set. */
262         for (i = 0; i < VGE_TIMEOUT; i++) {
263                 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
264                         break;
265         }
266
267         if (i == VGE_TIMEOUT) {
268                 device_printf(sc->vge_dev, "EEPROM read timed out\n");
269                 *dest = 0;
270                 return;
271         }
272
273         /* Read the result */
274         word = CSR_READ_2(sc, VGE_EERDDAT);
275
276         /* Turn off EEPROM access mode. */
277         CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
278         CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
279
280         *dest = word;
281 }
282 #endif
283
284 /*
285  * Read a sequence of words from the EEPROM.
286  */
287 static void
288 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
289 {
290         int i;
291 #ifdef VGE_EEPROM
292         uint16_t word = 0, *ptr;
293
294         for (i = 0; i < cnt; i++) {
295                 vge_eeprom_getword(sc, off + i, &word);
296                 ptr = (uint16_t *)(dest + (i * 2));
297                 if (swap)
298                         *ptr = ntohs(word);
299                 else
300                         *ptr = word;
301         }
302 #else
303         for (i = 0; i < ETHER_ADDR_LEN; i++)
304                 dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
305 #endif
306 }
307
308 static void
309 vge_miipoll_stop(struct vge_softc *sc)
310 {
311         int i;
312
313         CSR_WRITE_1(sc, VGE_MIICMD, 0);
314
315         for (i = 0; i < VGE_TIMEOUT; i++) {
316                 DELAY(1);
317                 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
318                         break;
319         }
320
321         if (i == VGE_TIMEOUT)
322                 device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
323 }
324
325 static void
326 vge_miipoll_start(struct vge_softc *sc)
327 {
328         int i;
329
330         /* First, make sure we're idle. */
331
332         CSR_WRITE_1(sc, VGE_MIICMD, 0);
333         CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
334
335         for (i = 0; i < VGE_TIMEOUT; i++) {
336                 DELAY(1);
337                 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
338                         break;
339         }
340
341         if (i == VGE_TIMEOUT) {
342                 device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
343                 return;
344         }
345
346         /* Now enable auto poll mode. */
347
348         CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
349
350         /* And make sure it started. */
351
352         for (i = 0; i < VGE_TIMEOUT; i++) {
353                 DELAY(1);
354                 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
355                         break;
356         }
357
358         if (i == VGE_TIMEOUT)
359                 device_printf(sc->vge_dev, "failed to start MII autopoll\n");
360 }
361
362 static int
363 vge_miibus_readreg(device_t dev, int phy, int reg)
364 {
365         struct vge_softc *sc;
366         int i;
367         uint16_t rval = 0;
368
369         sc = device_get_softc(dev);
370
371         if (phy != sc->vge_phyaddr)
372                 return (0);
373
374         vge_miipoll_stop(sc);
375
376         /* Specify the register we want to read. */
377         CSR_WRITE_1(sc, VGE_MIIADDR, reg);
378
379         /* Issue read command. */
380         CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
381
382         /* Wait for the read command bit to self-clear. */
383         for (i = 0; i < VGE_TIMEOUT; i++) {
384                 DELAY(1);
385                 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
386                         break;
387         }
388
389         if (i == VGE_TIMEOUT)
390                 device_printf(sc->vge_dev, "MII read timed out\n");
391         else
392                 rval = CSR_READ_2(sc, VGE_MIIDATA);
393
394         vge_miipoll_start(sc);
395
396         return (rval);
397 }
398
399 static int
400 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
401 {
402         struct vge_softc *sc;
403         int i, rval = 0;
404
405         sc = device_get_softc(dev);
406
407         if (phy != sc->vge_phyaddr)
408                 return (0);
409
410         vge_miipoll_stop(sc);
411
412         /* Specify the register we want to write. */
413         CSR_WRITE_1(sc, VGE_MIIADDR, reg);
414
415         /* Specify the data we want to write. */
416         CSR_WRITE_2(sc, VGE_MIIDATA, data);
417
418         /* Issue write command. */
419         CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
420
421         /* Wait for the write command bit to self-clear. */
422         for (i = 0; i < VGE_TIMEOUT; i++) {
423                 DELAY(1);
424                 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
425                         break;
426         }
427
428         if (i == VGE_TIMEOUT) {
429                 device_printf(sc->vge_dev, "MII write timed out\n");
430                 rval = EIO;
431         }
432
433         vge_miipoll_start(sc);
434
435         return (rval);
436 }
437
438 static void
439 vge_cam_clear(struct vge_softc *sc)
440 {
441         int i;
442
443         /*
444          * Turn off all the mask bits. This tells the chip
445          * that none of the entries in the CAM filter are valid.
446          * desired entries will be enabled as we fill the filter in.
447          */
448
449         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
450         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
451         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
452         for (i = 0; i < 8; i++)
453                 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
454
455         /* Clear the VLAN filter too. */
456
457         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
458         for (i = 0; i < 8; i++)
459                 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
460
461         CSR_WRITE_1(sc, VGE_CAMADDR, 0);
462         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
463         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
464
465         sc->vge_camidx = 0;
466 }
467
468 static int
469 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
470 {
471         int i, error = 0;
472
473         if (sc->vge_camidx == VGE_CAM_MAXADDRS)
474                 return (ENOSPC);
475
476         /* Select the CAM data page. */
477         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
478         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
479
480         /* Set the filter entry we want to update and enable writing. */
481         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
482
483         /* Write the address to the CAM registers */
484         for (i = 0; i < ETHER_ADDR_LEN; i++)
485                 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
486
487         /* Issue a write command. */
488         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
489
490         /* Wake for it to clear. */
491         for (i = 0; i < VGE_TIMEOUT; i++) {
492                 DELAY(1);
493                 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
494                         break;
495         }
496
497         if (i == VGE_TIMEOUT) {
498                 device_printf(sc->vge_dev, "setting CAM filter failed\n");
499                 error = EIO;
500                 goto fail;
501         }
502
503         /* Select the CAM mask page. */
504         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
505         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
506
507         /* Set the mask bit that enables this filter. */
508         CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
509             1<<(sc->vge_camidx & 7));
510
511         sc->vge_camidx++;
512
513 fail:
514         /* Turn off access to CAM. */
515         CSR_WRITE_1(sc, VGE_CAMADDR, 0);
516         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
517         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
518
519         return (error);
520 }
521
522 static void
523 vge_setvlan(struct vge_softc *sc)
524 {
525         struct ifnet *ifp;
526         uint8_t cfg;
527
528         VGE_LOCK_ASSERT(sc);
529
530         ifp = sc->vge_ifp;
531         cfg = CSR_READ_1(sc, VGE_RXCFG);
532         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
533                 cfg |= VGE_VTAG_OPT2;
534         else
535                 cfg &= ~VGE_VTAG_OPT2;
536         CSR_WRITE_1(sc, VGE_RXCFG, cfg);
537 }
538
539 /*
540  * Program the multicast filter. We use the 64-entry CAM filter
541  * for perfect filtering. If there's more than 64 multicast addresses,
542  * we use the hash filter instead.
543  */
544 static void
545 vge_rxfilter(struct vge_softc *sc)
546 {
547         struct ifnet *ifp;
548         struct ifmultiaddr *ifma;
549         uint32_t h, hashes[2];
550         uint8_t rxcfg;
551         int error = 0;
552
553         VGE_LOCK_ASSERT(sc);
554
555         /* First, zot all the multicast entries. */
556         hashes[0] = 0;
557         hashes[1] = 0;
558
559         rxcfg = CSR_READ_1(sc, VGE_RXCTL);
560         rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
561             VGE_RXCTL_RX_PROMISC);
562         /*
563          * Always allow VLAN oversized frames and frames for
564          * this host.
565          */
566         rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
567
568         ifp = sc->vge_ifp;
569         if ((ifp->if_flags & IFF_BROADCAST) != 0)
570                 rxcfg |= VGE_RXCTL_RX_BCAST;
571         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
572                 if ((ifp->if_flags & IFF_PROMISC) != 0)
573                         rxcfg |= VGE_RXCTL_RX_PROMISC;
574                 if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
575                         hashes[0] = 0xFFFFFFFF;
576                         hashes[1] = 0xFFFFFFFF;
577                 }
578                 goto done;
579         }
580
581         vge_cam_clear(sc);
582         /* Now program new ones */
583         if_maddr_rlock(ifp);
584         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
585                 if (ifma->ifma_addr->sa_family != AF_LINK)
586                         continue;
587                 error = vge_cam_set(sc,
588                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
589                 if (error)
590                         break;
591         }
592
593         /* If there were too many addresses, use the hash filter. */
594         if (error) {
595                 vge_cam_clear(sc);
596
597                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
598                         if (ifma->ifma_addr->sa_family != AF_LINK)
599                                 continue;
600                         h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
601                             ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
602                         if (h < 32)
603                                 hashes[0] |= (1 << h);
604                         else
605                                 hashes[1] |= (1 << (h - 32));
606                 }
607         }
608         if_maddr_runlock(ifp);
609
610 done:
611         if (hashes[0] != 0 || hashes[1] != 0)
612                 rxcfg |= VGE_RXCTL_RX_MCAST;
613         CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
614         CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
615         CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
616 }
617
618 static void
619 vge_reset(struct vge_softc *sc)
620 {
621         int i;
622
623         CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
624
625         for (i = 0; i < VGE_TIMEOUT; i++) {
626                 DELAY(5);
627                 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
628                         break;
629         }
630
631         if (i == VGE_TIMEOUT) {
632                 device_printf(sc->vge_dev, "soft reset timed out\n");
633                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
634                 DELAY(2000);
635         }
636
637         DELAY(5000);
638 }
639
640 /*
641  * Probe for a VIA gigabit chip. Check the PCI vendor and device
642  * IDs against our list and return a device name if we find a match.
643  */
644 static int
645 vge_probe(device_t dev)
646 {
647         struct vge_type *t;
648
649         t = vge_devs;
650
651         while (t->vge_name != NULL) {
652                 if ((pci_get_vendor(dev) == t->vge_vid) &&
653                     (pci_get_device(dev) == t->vge_did)) {
654                         device_set_desc(dev, t->vge_name);
655                         return (BUS_PROBE_DEFAULT);
656                 }
657                 t++;
658         }
659
660         return (ENXIO);
661 }
662
663 /*
664  * Map a single buffer address.
665  */
666
667 struct vge_dmamap_arg {
668         bus_addr_t      vge_busaddr;
669 };
670
671 static void
672 vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
673 {
674         struct vge_dmamap_arg *ctx;
675
676         if (error != 0)
677                 return;
678
679         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
680
681         ctx = (struct vge_dmamap_arg *)arg;
682         ctx->vge_busaddr = segs[0].ds_addr;
683 }
684
685 static int
686 vge_dma_alloc(struct vge_softc *sc)
687 {
688         struct vge_dmamap_arg ctx;
689         struct vge_txdesc *txd;
690         struct vge_rxdesc *rxd;
691         bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
692         int error, i;
693
694         lowaddr = BUS_SPACE_MAXADDR;
695
696 again:
697         /* Create parent ring tag. */
698         error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
699             1, 0,                       /* algnmnt, boundary */
700             lowaddr,                    /* lowaddr */
701             BUS_SPACE_MAXADDR,          /* highaddr */
702             NULL, NULL,                 /* filter, filterarg */
703             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
704             0,                          /* nsegments */
705             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
706             0,                          /* flags */
707             NULL, NULL,                 /* lockfunc, lockarg */
708             &sc->vge_cdata.vge_ring_tag);
709         if (error != 0) {
710                 device_printf(sc->vge_dev,
711                     "could not create parent DMA tag.\n");
712                 goto fail;
713         }
714
715         /* Create tag for Tx ring. */
716         error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
717             VGE_TX_RING_ALIGN, 0,       /* algnmnt, boundary */
718             BUS_SPACE_MAXADDR,          /* lowaddr */
719             BUS_SPACE_MAXADDR,          /* highaddr */
720             NULL, NULL,                 /* filter, filterarg */
721             VGE_TX_LIST_SZ,             /* maxsize */
722             1,                          /* nsegments */
723             VGE_TX_LIST_SZ,             /* maxsegsize */
724             0,                          /* flags */
725             NULL, NULL,                 /* lockfunc, lockarg */
726             &sc->vge_cdata.vge_tx_ring_tag);
727         if (error != 0) {
728                 device_printf(sc->vge_dev,
729                     "could not allocate Tx ring DMA tag.\n");
730                 goto fail;
731         }
732
733         /* Create tag for Rx ring. */
734         error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
735             VGE_RX_RING_ALIGN, 0,       /* algnmnt, boundary */
736             BUS_SPACE_MAXADDR,          /* lowaddr */
737             BUS_SPACE_MAXADDR,          /* highaddr */
738             NULL, NULL,                 /* filter, filterarg */
739             VGE_RX_LIST_SZ,             /* maxsize */
740             1,                          /* nsegments */
741             VGE_RX_LIST_SZ,             /* maxsegsize */
742             0,                          /* flags */
743             NULL, NULL,                 /* lockfunc, lockarg */
744             &sc->vge_cdata.vge_rx_ring_tag);
745         if (error != 0) {
746                 device_printf(sc->vge_dev,
747                     "could not allocate Rx ring DMA tag.\n");
748                 goto fail;
749         }
750
751         /* Allocate DMA'able memory and load the DMA map for Tx ring. */
752         error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
753             (void **)&sc->vge_rdata.vge_tx_ring,
754             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
755             &sc->vge_cdata.vge_tx_ring_map);
756         if (error != 0) {
757                 device_printf(sc->vge_dev,
758                     "could not allocate DMA'able memory for Tx ring.\n");
759                 goto fail;
760         }
761
762         ctx.vge_busaddr = 0;
763         error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
764             sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
765             VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
766         if (error != 0 || ctx.vge_busaddr == 0) {
767                 device_printf(sc->vge_dev,
768                     "could not load DMA'able memory for Tx ring.\n");
769                 goto fail;
770         }
771         sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
772
773         /* Allocate DMA'able memory and load the DMA map for Rx ring. */
774         error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
775             (void **)&sc->vge_rdata.vge_rx_ring,
776             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
777             &sc->vge_cdata.vge_rx_ring_map);
778         if (error != 0) {
779                 device_printf(sc->vge_dev,
780                     "could not allocate DMA'able memory for Rx ring.\n");
781                 goto fail;
782         }
783
784         ctx.vge_busaddr = 0;
785         error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
786             sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
787             VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
788         if (error != 0 || ctx.vge_busaddr == 0) {
789                 device_printf(sc->vge_dev,
790                     "could not load DMA'able memory for Rx ring.\n");
791                 goto fail;
792         }
793         sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
794
795         /* Tx/Rx descriptor queue should reside within 4GB boundary. */
796         tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
797         rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
798         if ((VGE_ADDR_HI(tx_ring_end) !=
799             VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
800             (VGE_ADDR_HI(rx_ring_end) !=
801             VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
802             VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
803                 device_printf(sc->vge_dev, "4GB boundary crossed, "
804                     "switching to 32bit DMA address mode.\n");
805                 vge_dma_free(sc);
806                 /* Limit DMA address space to 32bit and try again. */
807                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
808                 goto again;
809         }
810
811         /* Create parent buffer tag. */
812         error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
813             1, 0,                       /* algnmnt, boundary */
814             VGE_BUF_DMA_MAXADDR,        /* lowaddr */
815             BUS_SPACE_MAXADDR,          /* highaddr */
816             NULL, NULL,                 /* filter, filterarg */
817             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
818             0,                          /* nsegments */
819             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
820             0,                          /* flags */
821             NULL, NULL,                 /* lockfunc, lockarg */
822             &sc->vge_cdata.vge_buffer_tag);
823         if (error != 0) {
824                 device_printf(sc->vge_dev,
825                     "could not create parent buffer DMA tag.\n");
826                 goto fail;
827         }
828
829         /* Create tag for Tx buffers. */
830         error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
831             1, 0,                       /* algnmnt, boundary */
832             BUS_SPACE_MAXADDR,          /* lowaddr */
833             BUS_SPACE_MAXADDR,          /* highaddr */
834             NULL, NULL,                 /* filter, filterarg */
835             MCLBYTES * VGE_MAXTXSEGS,   /* maxsize */
836             VGE_MAXTXSEGS,              /* nsegments */
837             MCLBYTES,                   /* maxsegsize */
838             0,                          /* flags */
839             NULL, NULL,                 /* lockfunc, lockarg */
840             &sc->vge_cdata.vge_tx_tag);
841         if (error != 0) {
842                 device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
843                 goto fail;
844         }
845
846         /* Create tag for Rx buffers. */
847         error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
848             VGE_RX_BUF_ALIGN, 0,        /* algnmnt, boundary */
849             BUS_SPACE_MAXADDR,          /* lowaddr */
850             BUS_SPACE_MAXADDR,          /* highaddr */
851             NULL, NULL,                 /* filter, filterarg */
852             MCLBYTES,                   /* maxsize */
853             1,                          /* nsegments */
854             MCLBYTES,                   /* maxsegsize */
855             0,                          /* flags */
856             NULL, NULL,                 /* lockfunc, lockarg */
857             &sc->vge_cdata.vge_rx_tag);
858         if (error != 0) {
859                 device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
860                 goto fail;
861         }
862
863         /* Create DMA maps for Tx buffers. */
864         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
865                 txd = &sc->vge_cdata.vge_txdesc[i];
866                 txd->tx_m = NULL;
867                 txd->tx_dmamap = NULL;
868                 error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
869                     &txd->tx_dmamap);
870                 if (error != 0) {
871                         device_printf(sc->vge_dev,
872                             "could not create Tx dmamap.\n");
873                         goto fail;
874                 }
875         }
876         /* Create DMA maps for Rx buffers. */
877         if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
878             &sc->vge_cdata.vge_rx_sparemap)) != 0) {
879                 device_printf(sc->vge_dev,
880                     "could not create spare Rx dmamap.\n");
881                 goto fail;
882         }
883         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
884                 rxd = &sc->vge_cdata.vge_rxdesc[i];
885                 rxd->rx_m = NULL;
886                 rxd->rx_dmamap = NULL;
887                 error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
888                     &rxd->rx_dmamap);
889                 if (error != 0) {
890                         device_printf(sc->vge_dev,
891                             "could not create Rx dmamap.\n");
892                         goto fail;
893                 }
894         }
895
896 fail:
897         return (error);
898 }
899
900 static void
901 vge_dma_free(struct vge_softc *sc)
902 {
903         struct vge_txdesc *txd;
904         struct vge_rxdesc *rxd;
905         int i;
906
907         /* Tx ring. */
908         if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
909                 if (sc->vge_cdata.vge_tx_ring_map)
910                         bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
911                             sc->vge_cdata.vge_tx_ring_map);
912                 if (sc->vge_cdata.vge_tx_ring_map &&
913                     sc->vge_rdata.vge_tx_ring)
914                         bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
915                             sc->vge_rdata.vge_tx_ring,
916                             sc->vge_cdata.vge_tx_ring_map);
917                 sc->vge_rdata.vge_tx_ring = NULL;
918                 sc->vge_cdata.vge_tx_ring_map = NULL;
919                 bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
920                 sc->vge_cdata.vge_tx_ring_tag = NULL;
921         }
922         /* Rx ring. */
923         if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
924                 if (sc->vge_cdata.vge_rx_ring_map)
925                         bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
926                             sc->vge_cdata.vge_rx_ring_map);
927                 if (sc->vge_cdata.vge_rx_ring_map &&
928                     sc->vge_rdata.vge_rx_ring)
929                         bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
930                             sc->vge_rdata.vge_rx_ring,
931                             sc->vge_cdata.vge_rx_ring_map);
932                 sc->vge_rdata.vge_rx_ring = NULL;
933                 sc->vge_cdata.vge_rx_ring_map = NULL;
934                 bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
935                 sc->vge_cdata.vge_rx_ring_tag = NULL;
936         }
937         /* Tx buffers. */
938         if (sc->vge_cdata.vge_tx_tag != NULL) {
939                 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
940                         txd = &sc->vge_cdata.vge_txdesc[i];
941                         if (txd->tx_dmamap != NULL) {
942                                 bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
943                                     txd->tx_dmamap);
944                                 txd->tx_dmamap = NULL;
945                         }
946                 }
947                 bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
948                 sc->vge_cdata.vge_tx_tag = NULL;
949         }
950         /* Rx buffers. */
951         if (sc->vge_cdata.vge_rx_tag != NULL) {
952                 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
953                         rxd = &sc->vge_cdata.vge_rxdesc[i];
954                         if (rxd->rx_dmamap != NULL) {
955                                 bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
956                                     rxd->rx_dmamap);
957                                 rxd->rx_dmamap = NULL;
958                         }
959                 }
960                 if (sc->vge_cdata.vge_rx_sparemap != NULL) {
961                         bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
962                             sc->vge_cdata.vge_rx_sparemap);
963                         sc->vge_cdata.vge_rx_sparemap = NULL;
964                 }
965                 bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
966                 sc->vge_cdata.vge_rx_tag = NULL;
967         }
968
969         if (sc->vge_cdata.vge_buffer_tag != NULL) {
970                 bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
971                 sc->vge_cdata.vge_buffer_tag = NULL;
972         }
973         if (sc->vge_cdata.vge_ring_tag != NULL) {
974                 bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
975                 sc->vge_cdata.vge_ring_tag = NULL;
976         }
977 }
978
979 /*
980  * Attach the interface. Allocate softc structures, do ifmedia
981  * setup and ethernet/BPF attach.
982  */
983 static int
984 vge_attach(device_t dev)
985 {
986         u_char eaddr[ETHER_ADDR_LEN];
987         struct vge_softc *sc;
988         struct ifnet *ifp;
989         int error = 0, cap, i, msic, rid;
990
991         sc = device_get_softc(dev);
992         sc->vge_dev = dev;
993
994         mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
995             MTX_DEF);
996         callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
997
998         /*
999          * Map control/status registers.
1000          */
1001         pci_enable_busmaster(dev);
1002
1003         rid = PCIR_BAR(1);
1004         sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1005             RF_ACTIVE);
1006
1007         if (sc->vge_res == NULL) {
1008                 device_printf(dev, "couldn't map ports/memory\n");
1009                 error = ENXIO;
1010                 goto fail;
1011         }
1012
1013         if (pci_find_extcap(dev, PCIY_EXPRESS, &cap) == 0) {
1014                 sc->vge_flags |= VGE_FLAG_PCIE;
1015                 sc->vge_expcap = cap;
1016         } else
1017                 sc->vge_flags |= VGE_FLAG_JUMBO;
1018         if (pci_find_extcap(dev, PCIY_PMG, &cap) == 0) {
1019                 sc->vge_flags |= VGE_FLAG_PMCAP;
1020                 sc->vge_pmcap = cap;
1021         }
1022         rid = 0;
1023         msic = pci_msi_count(dev);
1024         if (msi_disable == 0 && msic > 0) {
1025                 msic = 1;
1026                 if (pci_alloc_msi(dev, &msic) == 0) {
1027                         if (msic == 1) {
1028                                 sc->vge_flags |= VGE_FLAG_MSI;
1029                                 device_printf(dev, "Using %d MSI message\n",
1030                                     msic);
1031                                 rid = 1;
1032                         } else
1033                                 pci_release_msi(dev);
1034                 }
1035         }
1036
1037         /* Allocate interrupt */
1038         sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1039             ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1040         if (sc->vge_irq == NULL) {
1041                 device_printf(dev, "couldn't map interrupt\n");
1042                 error = ENXIO;
1043                 goto fail;
1044         }
1045
1046         /* Reset the adapter. */
1047         vge_reset(sc);
1048         /* Reload EEPROM. */
1049         CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1050         for (i = 0; i < VGE_TIMEOUT; i++) {
1051                 DELAY(5);
1052                 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1053                         break;
1054         }
1055         if (i == VGE_TIMEOUT)
1056                 device_printf(dev, "EEPROM reload timed out\n");
1057         /*
1058          * Clear PACPI as EEPROM reload will set the bit. Otherwise
1059          * MAC will receive magic packet which in turn confuses
1060          * controller.
1061          */
1062         CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1063
1064         /*
1065          * Get station address from the EEPROM.
1066          */
1067         vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1068         /*
1069          * Save configured PHY address.
1070          * It seems the PHY address of PCIe controllers just
1071          * reflects media jump strapping status so we assume the
1072          * internal PHY address of PCIe controller is at 1.
1073          */
1074         if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1075                 sc->vge_phyaddr = 1;
1076         else
1077                 sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1078                     VGE_MIICFG_PHYADDR;
1079         /* Clear WOL and take hardware from powerdown. */
1080         vge_clrwol(sc);
1081         vge_sysctl_node(sc);
1082         error = vge_dma_alloc(sc);
1083         if (error)
1084                 goto fail;
1085
1086         ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1087         if (ifp == NULL) {
1088                 device_printf(dev, "can not if_alloc()\n");
1089                 error = ENOSPC;
1090                 goto fail;
1091         }
1092
1093         /* Do MII setup */
1094         if (mii_phy_probe(dev, &sc->vge_miibus,
1095             vge_ifmedia_upd, vge_ifmedia_sts)) {
1096                 device_printf(dev, "MII without any phy!\n");
1097                 error = ENXIO;
1098                 goto fail;
1099         }
1100
1101         ifp->if_softc = sc;
1102         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1103         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1104         ifp->if_ioctl = vge_ioctl;
1105         ifp->if_capabilities = IFCAP_VLAN_MTU;
1106         ifp->if_start = vge_start;
1107         ifp->if_hwassist = VGE_CSUM_FEATURES;
1108         ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1109             IFCAP_VLAN_HWTAGGING;
1110         if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1111                 ifp->if_capabilities |= IFCAP_WOL;
1112         ifp->if_capenable = ifp->if_capabilities;
1113 #ifdef DEVICE_POLLING
1114         ifp->if_capabilities |= IFCAP_POLLING;
1115 #endif
1116         ifp->if_init = vge_init;
1117         IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1118         ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1119         IFQ_SET_READY(&ifp->if_snd);
1120
1121         /*
1122          * Call MI attach routine.
1123          */
1124         ether_ifattach(ifp, eaddr);
1125
1126         /* Tell the upper layer(s) we support long frames. */
1127         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1128
1129         /* Hook interrupt last to avoid having to lock softc */
1130         error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1131             NULL, vge_intr, sc, &sc->vge_intrhand);
1132
1133         if (error) {
1134                 device_printf(dev, "couldn't set up irq\n");
1135                 ether_ifdetach(ifp);
1136                 goto fail;
1137         }
1138
1139 fail:
1140         if (error)
1141                 vge_detach(dev);
1142
1143         return (error);
1144 }
1145
1146 /*
1147  * Shutdown hardware and free up resources. This can be called any
1148  * time after the mutex has been initialized. It is called in both
1149  * the error case in attach and the normal detach case so it needs
1150  * to be careful about only freeing resources that have actually been
1151  * allocated.
1152  */
1153 static int
1154 vge_detach(device_t dev)
1155 {
1156         struct vge_softc *sc;
1157         struct ifnet *ifp;
1158
1159         sc = device_get_softc(dev);
1160         KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1161         ifp = sc->vge_ifp;
1162
1163 #ifdef DEVICE_POLLING
1164         if (ifp->if_capenable & IFCAP_POLLING)
1165                 ether_poll_deregister(ifp);
1166 #endif
1167
1168         /* These should only be active if attach succeeded */
1169         if (device_is_attached(dev)) {
1170                 ether_ifdetach(ifp);
1171                 VGE_LOCK(sc);
1172                 vge_stop(sc);
1173                 VGE_UNLOCK(sc);
1174                 callout_drain(&sc->vge_watchdog);
1175         }
1176         if (sc->vge_miibus)
1177                 device_delete_child(dev, sc->vge_miibus);
1178         bus_generic_detach(dev);
1179
1180         if (sc->vge_intrhand)
1181                 bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1182         if (sc->vge_irq)
1183                 bus_release_resource(dev, SYS_RES_IRQ,
1184                     sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1185         if (sc->vge_flags & VGE_FLAG_MSI)
1186                 pci_release_msi(dev);
1187         if (sc->vge_res)
1188                 bus_release_resource(dev, SYS_RES_MEMORY,
1189                     PCIR_BAR(1), sc->vge_res);
1190         if (ifp)
1191                 if_free(ifp);
1192
1193         vge_dma_free(sc);
1194         mtx_destroy(&sc->vge_mtx);
1195
1196         return (0);
1197 }
1198
1199 static void
1200 vge_discard_rxbuf(struct vge_softc *sc, int prod)
1201 {
1202         struct vge_rxdesc *rxd;
1203         int i;
1204
1205         rxd = &sc->vge_cdata.vge_rxdesc[prod];
1206         rxd->rx_desc->vge_sts = 0;
1207         rxd->rx_desc->vge_ctl = 0;
1208
1209         /*
1210          * Note: the manual fails to document the fact that for
1211          * proper opration, the driver needs to replentish the RX
1212          * DMA ring 4 descriptors at a time (rather than one at a
1213          * time, like most chips). We can allocate the new buffers
1214          * but we should not set the OWN bits until we're ready
1215          * to hand back 4 of them in one shot.
1216          */
1217         if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1218                 for (i = VGE_RXCHUNK; i > 0; i--) {
1219                         rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1220                         rxd = rxd->rxd_prev;
1221                 }
1222                 sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1223         }
1224 }
1225
1226 static int
1227 vge_newbuf(struct vge_softc *sc, int prod)
1228 {
1229         struct vge_rxdesc *rxd;
1230         struct mbuf *m;
1231         bus_dma_segment_t segs[1];
1232         bus_dmamap_t map;
1233         int i, nsegs;
1234
1235         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1236         if (m == NULL)
1237                 return (ENOBUFS);
1238         /*
1239          * This is part of an evil trick to deal with strict-alignment
1240          * architectures. The VIA chip requires RX buffers to be aligned
1241          * on 32-bit boundaries, but that will hose strict-alignment
1242          * architectures. To get around this, we leave some empty space
1243          * at the start of each buffer and for non-strict-alignment hosts,
1244          * we copy the buffer back two bytes to achieve word alignment.
1245          * This is slightly more efficient than allocating a new buffer,
1246          * copying the contents, and discarding the old buffer.
1247          */
1248         m->m_len = m->m_pkthdr.len = MCLBYTES;
1249         m_adj(m, VGE_RX_BUF_ALIGN);
1250
1251         if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1252             sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1253                 m_freem(m);
1254                 return (ENOBUFS);
1255         }
1256         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1257
1258         rxd = &sc->vge_cdata.vge_rxdesc[prod];
1259         if (rxd->rx_m != NULL) {
1260                 bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1261                     BUS_DMASYNC_POSTREAD);
1262                 bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1263         }
1264         map = rxd->rx_dmamap;
1265         rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1266         sc->vge_cdata.vge_rx_sparemap = map;
1267         bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1268             BUS_DMASYNC_PREREAD);
1269         rxd->rx_m = m;
1270
1271         rxd->rx_desc->vge_sts = 0;
1272         rxd->rx_desc->vge_ctl = 0;
1273         rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1274         rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1275             (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1276
1277         /*
1278          * Note: the manual fails to document the fact that for
1279          * proper operation, the driver needs to replenish the RX
1280          * DMA ring 4 descriptors at a time (rather than one at a
1281          * time, like most chips). We can allocate the new buffers
1282          * but we should not set the OWN bits until we're ready
1283          * to hand back 4 of them in one shot.
1284          */
1285         if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1286                 for (i = VGE_RXCHUNK; i > 0; i--) {
1287                         rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1288                         rxd = rxd->rxd_prev;
1289                 }
1290                 sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1291         }
1292
1293         return (0);
1294 }
1295
1296 static int
1297 vge_tx_list_init(struct vge_softc *sc)
1298 {
1299         struct vge_ring_data *rd;
1300         struct vge_txdesc *txd;
1301         int i;
1302
1303         VGE_LOCK_ASSERT(sc);
1304
1305         sc->vge_cdata.vge_tx_prodidx = 0;
1306         sc->vge_cdata.vge_tx_considx = 0;
1307         sc->vge_cdata.vge_tx_cnt = 0;
1308
1309         rd = &sc->vge_rdata;
1310         bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1311         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1312                 txd = &sc->vge_cdata.vge_txdesc[i];
1313                 txd->tx_m = NULL;
1314                 txd->tx_desc = &rd->vge_tx_ring[i];
1315         }
1316
1317         bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1318             sc->vge_cdata.vge_tx_ring_map,
1319             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1320
1321         return (0);
1322 }
1323
1324 static int
1325 vge_rx_list_init(struct vge_softc *sc)
1326 {
1327         struct vge_ring_data *rd;
1328         struct vge_rxdesc *rxd;
1329         int i;
1330
1331         VGE_LOCK_ASSERT(sc);
1332
1333         sc->vge_cdata.vge_rx_prodidx = 0;
1334         sc->vge_cdata.vge_head = NULL;
1335         sc->vge_cdata.vge_tail = NULL;
1336         sc->vge_cdata.vge_rx_commit = 0;
1337
1338         rd = &sc->vge_rdata;
1339         bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1340         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1341                 rxd = &sc->vge_cdata.vge_rxdesc[i];
1342                 rxd->rx_m = NULL;
1343                 rxd->rx_desc = &rd->vge_rx_ring[i];
1344                 if (i == 0)
1345                         rxd->rxd_prev =
1346                             &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1347                 else
1348                         rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1349                 if (vge_newbuf(sc, i) != 0)
1350                         return (ENOBUFS);
1351         }
1352
1353         bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1354             sc->vge_cdata.vge_rx_ring_map,
1355             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1356
1357         sc->vge_cdata.vge_rx_commit = 0;
1358
1359         return (0);
1360 }
1361
1362 static void
1363 vge_freebufs(struct vge_softc *sc)
1364 {
1365         struct vge_txdesc *txd;
1366         struct vge_rxdesc *rxd;
1367         struct ifnet *ifp;
1368         int i;
1369
1370         VGE_LOCK_ASSERT(sc);
1371
1372         ifp = sc->vge_ifp;
1373         /*
1374          * Free RX and TX mbufs still in the queues.
1375          */
1376         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1377                 rxd = &sc->vge_cdata.vge_rxdesc[i];
1378                 if (rxd->rx_m != NULL) {
1379                         bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1380                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1381                         bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1382                             rxd->rx_dmamap);
1383                         m_freem(rxd->rx_m);
1384                         rxd->rx_m = NULL;
1385                 }
1386         }
1387
1388         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1389                 txd = &sc->vge_cdata.vge_txdesc[i];
1390                 if (txd->tx_m != NULL) {
1391                         bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1392                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1393                         bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1394                             txd->tx_dmamap);
1395                         m_freem(txd->tx_m);
1396                         txd->tx_m = NULL;
1397                         ifp->if_oerrors++;
1398                 }
1399         }
1400 }
1401
1402 #ifndef __NO_STRICT_ALIGNMENT
1403 static __inline void
1404 vge_fixup_rx(struct mbuf *m)
1405 {
1406         int i;
1407         uint16_t *src, *dst;
1408
1409         src = mtod(m, uint16_t *);
1410         dst = src - 1;
1411
1412         for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1413                 *dst++ = *src++;
1414
1415         m->m_data -= ETHER_ALIGN;
1416 }
1417 #endif
1418
1419 /*
1420  * RX handler. We support the reception of jumbo frames that have
1421  * been fragmented across multiple 2K mbuf cluster buffers.
1422  */
1423 static int
1424 vge_rxeof(struct vge_softc *sc, int count)
1425 {
1426         struct mbuf *m;
1427         struct ifnet *ifp;
1428         int prod, prog, total_len;
1429         struct vge_rxdesc *rxd;
1430         struct vge_rx_desc *cur_rx;
1431         uint32_t rxstat, rxctl;
1432
1433         VGE_LOCK_ASSERT(sc);
1434
1435         ifp = sc->vge_ifp;
1436
1437         bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1438             sc->vge_cdata.vge_rx_ring_map,
1439             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1440
1441         prod = sc->vge_cdata.vge_rx_prodidx;
1442         for (prog = 0; count > 0 &&
1443             (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1444             VGE_RX_DESC_INC(prod)) {
1445                 cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1446                 rxstat = le32toh(cur_rx->vge_sts);
1447                 if ((rxstat & VGE_RDSTS_OWN) != 0)
1448                         break;
1449                 count--;
1450                 prog++;
1451                 rxctl = le32toh(cur_rx->vge_ctl);
1452                 total_len = VGE_RXBYTES(rxstat);
1453                 rxd = &sc->vge_cdata.vge_rxdesc[prod];
1454                 m = rxd->rx_m;
1455
1456                 /*
1457                  * If the 'start of frame' bit is set, this indicates
1458                  * either the first fragment in a multi-fragment receive,
1459                  * or an intermediate fragment. Either way, we want to
1460                  * accumulate the buffers.
1461                  */
1462                 if ((rxstat & VGE_RXPKT_SOF) != 0) {
1463                         if (vge_newbuf(sc, prod) != 0) {
1464                                 ifp->if_iqdrops++;
1465                                 VGE_CHAIN_RESET(sc);
1466                                 vge_discard_rxbuf(sc, prod);
1467                                 continue;
1468                         }
1469                         m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1470                         if (sc->vge_cdata.vge_head == NULL) {
1471                                 sc->vge_cdata.vge_head = m;
1472                                 sc->vge_cdata.vge_tail = m;
1473                         } else {
1474                                 m->m_flags &= ~M_PKTHDR;
1475                                 sc->vge_cdata.vge_tail->m_next = m;
1476                                 sc->vge_cdata.vge_tail = m;
1477                         }
1478                         continue;
1479                 }
1480
1481                 /*
1482                  * Bad/error frames will have the RXOK bit cleared.
1483                  * However, there's one error case we want to allow:
1484                  * if a VLAN tagged frame arrives and the chip can't
1485                  * match it against the CAM filter, it considers this
1486                  * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1487                  * We don't want to drop the frame though: our VLAN
1488                  * filtering is done in software.
1489                  * We also want to receive bad-checksummed frames and
1490                  * and frames with bad-length.
1491                  */
1492                 if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1493                     (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1494                     VGE_RDSTS_CSUMERR)) == 0) {
1495                         ifp->if_ierrors++;
1496                         /*
1497                          * If this is part of a multi-fragment packet,
1498                          * discard all the pieces.
1499                          */
1500                         VGE_CHAIN_RESET(sc);
1501                         vge_discard_rxbuf(sc, prod);
1502                         continue;
1503                 }
1504
1505                 if (vge_newbuf(sc, prod) != 0) {
1506                         ifp->if_iqdrops++;
1507                         VGE_CHAIN_RESET(sc);
1508                         vge_discard_rxbuf(sc, prod);
1509                         continue;
1510                 }
1511
1512                 /* Chain received mbufs. */
1513                 if (sc->vge_cdata.vge_head != NULL) {
1514                         m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1515                         /*
1516                          * Special case: if there's 4 bytes or less
1517                          * in this buffer, the mbuf can be discarded:
1518                          * the last 4 bytes is the CRC, which we don't
1519                          * care about anyway.
1520                          */
1521                         if (m->m_len <= ETHER_CRC_LEN) {
1522                                 sc->vge_cdata.vge_tail->m_len -=
1523                                     (ETHER_CRC_LEN - m->m_len);
1524                                 m_freem(m);
1525                         } else {
1526                                 m->m_len -= ETHER_CRC_LEN;
1527                                 m->m_flags &= ~M_PKTHDR;
1528                                 sc->vge_cdata.vge_tail->m_next = m;
1529                         }
1530                         m = sc->vge_cdata.vge_head;
1531                         m->m_flags |= M_PKTHDR;
1532                         m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1533                 } else {
1534                         m->m_flags |= M_PKTHDR;
1535                         m->m_pkthdr.len = m->m_len =
1536                             (total_len - ETHER_CRC_LEN);
1537                 }
1538
1539 #ifndef __NO_STRICT_ALIGNMENT
1540                 vge_fixup_rx(m);
1541 #endif
1542                 m->m_pkthdr.rcvif = ifp;
1543
1544                 /* Do RX checksumming if enabled */
1545                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1546                     (rxctl & VGE_RDCTL_FRAG) == 0) {
1547                         /* Check IP header checksum */
1548                         if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1549                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1550                         if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1551                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1552
1553                         /* Check TCP/UDP checksum */
1554                         if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1555                             rxctl & VGE_RDCTL_PROTOCSUMOK) {
1556                                 m->m_pkthdr.csum_flags |=
1557                                     CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1558                                 m->m_pkthdr.csum_data = 0xffff;
1559                         }
1560                 }
1561
1562                 if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1563                         /*
1564                          * The 32-bit rxctl register is stored in little-endian.
1565                          * However, the 16-bit vlan tag is stored in big-endian,
1566                          * so we have to byte swap it.
1567                          */
1568                         m->m_pkthdr.ether_vtag =
1569                             bswap16(rxctl & VGE_RDCTL_VLANID);
1570                         m->m_flags |= M_VLANTAG;
1571                 }
1572
1573                 VGE_UNLOCK(sc);
1574                 (*ifp->if_input)(ifp, m);
1575                 VGE_LOCK(sc);
1576                 sc->vge_cdata.vge_head = NULL;
1577                 sc->vge_cdata.vge_tail = NULL;
1578         }
1579
1580         if (prog > 0) {
1581                 sc->vge_cdata.vge_rx_prodidx = prod;
1582                 bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1583                     sc->vge_cdata.vge_rx_ring_map,
1584                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1585                 /* Update residue counter. */
1586                 if (sc->vge_cdata.vge_rx_commit != 0) {
1587                         CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1588                             sc->vge_cdata.vge_rx_commit);
1589                         sc->vge_cdata.vge_rx_commit = 0;
1590                 }
1591         }
1592         return (prog);
1593 }
1594
1595 static void
1596 vge_txeof(struct vge_softc *sc)
1597 {
1598         struct ifnet *ifp;
1599         struct vge_tx_desc *cur_tx;
1600         struct vge_txdesc *txd;
1601         uint32_t txstat;
1602         int cons, prod;
1603
1604         VGE_LOCK_ASSERT(sc);
1605
1606         ifp = sc->vge_ifp;
1607
1608         if (sc->vge_cdata.vge_tx_cnt == 0)
1609                 return;
1610
1611         bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1612             sc->vge_cdata.vge_tx_ring_map,
1613             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1614
1615         /*
1616          * Go through our tx list and free mbufs for those
1617          * frames that have been transmitted.
1618          */
1619         cons = sc->vge_cdata.vge_tx_considx;
1620         prod = sc->vge_cdata.vge_tx_prodidx;
1621         for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1622                 cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1623                 txstat = le32toh(cur_tx->vge_sts);
1624                 if ((txstat & VGE_TDSTS_OWN) != 0)
1625                         break;
1626                 sc->vge_cdata.vge_tx_cnt--;
1627                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1628
1629                 txd = &sc->vge_cdata.vge_txdesc[cons];
1630                 bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1631                     BUS_DMASYNC_POSTWRITE);
1632                 bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1633
1634                 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1635                     __func__));
1636                 m_freem(txd->tx_m);
1637                 txd->tx_m = NULL;
1638                 txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1639         }
1640         bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1641             sc->vge_cdata.vge_tx_ring_map,
1642             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1643         sc->vge_cdata.vge_tx_considx = cons;
1644         if (sc->vge_cdata.vge_tx_cnt == 0)
1645                 sc->vge_timer = 0;
1646 }
1647
1648 static void
1649 vge_link_statchg(void *xsc)
1650 {
1651         struct vge_softc *sc;
1652         struct ifnet *ifp;
1653         struct mii_data *mii;
1654
1655         sc = xsc;
1656         ifp = sc->vge_ifp;
1657         VGE_LOCK_ASSERT(sc);
1658         mii = device_get_softc(sc->vge_miibus);
1659
1660         mii_pollstat(mii);
1661         if ((sc->vge_flags & VGE_FLAG_LINK) != 0) {
1662                 if (!(mii->mii_media_status & IFM_ACTIVE)) {
1663                         sc->vge_flags &= ~VGE_FLAG_LINK;
1664                         if_link_state_change(sc->vge_ifp,
1665                             LINK_STATE_DOWN);
1666                 }
1667         } else {
1668                 if (mii->mii_media_status & IFM_ACTIVE &&
1669                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1670                         sc->vge_flags |= VGE_FLAG_LINK;
1671                         if_link_state_change(sc->vge_ifp,
1672                             LINK_STATE_UP);
1673                         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1674                                 vge_start_locked(ifp);
1675                 }
1676         }
1677 }
1678
1679 #ifdef DEVICE_POLLING
1680 static int
1681 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1682 {
1683         struct vge_softc *sc = ifp->if_softc;
1684         int rx_npkts = 0;
1685
1686         VGE_LOCK(sc);
1687         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1688                 goto done;
1689
1690         rx_npkts = vge_rxeof(sc, count);
1691         vge_txeof(sc);
1692
1693         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1694                 vge_start_locked(ifp);
1695
1696         if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1697                 uint32_t       status;
1698                 status = CSR_READ_4(sc, VGE_ISR);
1699                 if (status == 0xFFFFFFFF)
1700                         goto done;
1701                 if (status)
1702                         CSR_WRITE_4(sc, VGE_ISR, status);
1703
1704                 /*
1705                  * XXX check behaviour on receiver stalls.
1706                  */
1707
1708                 if (status & VGE_ISR_TXDMA_STALL ||
1709                     status & VGE_ISR_RXDMA_STALL) {
1710                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1711                         vge_init_locked(sc);
1712                 }
1713
1714                 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1715                         vge_rxeof(sc, count);
1716                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1717                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1718                 }
1719         }
1720 done:
1721         VGE_UNLOCK(sc);
1722         return (rx_npkts);
1723 }
1724 #endif /* DEVICE_POLLING */
1725
1726 static void
1727 vge_intr(void *arg)
1728 {
1729         struct vge_softc *sc;
1730         struct ifnet *ifp;
1731         uint32_t status;
1732
1733         sc = arg;
1734         VGE_LOCK(sc);
1735
1736         ifp = sc->vge_ifp;
1737         if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1738             (ifp->if_flags & IFF_UP) == 0) {
1739                 VGE_UNLOCK(sc);
1740                 return;
1741         }
1742
1743 #ifdef DEVICE_POLLING
1744         if  (ifp->if_capenable & IFCAP_POLLING) {
1745                 VGE_UNLOCK(sc);
1746                 return;
1747         }
1748 #endif
1749
1750         /* Disable interrupts */
1751         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1752         status = CSR_READ_4(sc, VGE_ISR);
1753         CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1754         /* If the card has gone away the read returns 0xffff. */
1755         if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1756                 goto done;
1757         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1758                 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1759                         vge_rxeof(sc, VGE_RX_DESC_CNT);
1760                 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1761                         vge_rxeof(sc, VGE_RX_DESC_CNT);
1762                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1763                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1764                 }
1765
1766                 if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1767                         vge_txeof(sc);
1768
1769                 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1770                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1771                         vge_init_locked(sc);
1772                 }
1773
1774                 if (status & VGE_ISR_LINKSTS)
1775                         vge_link_statchg(sc);
1776         }
1777 done:
1778         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1779                 /* Re-enable interrupts */
1780                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1781
1782                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1783                         vge_start_locked(ifp);
1784         }
1785         VGE_UNLOCK(sc);
1786 }
1787
1788 static int
1789 vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1790 {
1791         struct vge_txdesc *txd;
1792         struct vge_tx_frag *frag;
1793         struct mbuf *m;
1794         bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1795         int error, i, nsegs, padlen;
1796         uint32_t cflags;
1797
1798         VGE_LOCK_ASSERT(sc);
1799
1800         M_ASSERTPKTHDR((*m_head));
1801
1802         /* Argh. This chip does not autopad short frames. */
1803         if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1804                 m = *m_head;
1805                 padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1806                 if (M_WRITABLE(m) == 0) {
1807                         /* Get a writable copy. */
1808                         m = m_dup(*m_head, M_DONTWAIT);
1809                         m_freem(*m_head);
1810                         if (m == NULL) {
1811                                 *m_head = NULL;
1812                                 return (ENOBUFS);
1813                         }
1814                         *m_head = m;
1815                 }
1816                 if (M_TRAILINGSPACE(m) < padlen) {
1817                         m = m_defrag(m, M_DONTWAIT);
1818                         if (m == NULL) {
1819                                 m_freem(*m_head);
1820                                 *m_head = NULL;
1821                                 return (ENOBUFS);
1822                         }
1823                 }
1824                 /*
1825                  * Manually pad short frames, and zero the pad space
1826                  * to avoid leaking data.
1827                  */
1828                 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1829                 m->m_pkthdr.len += padlen;
1830                 m->m_len = m->m_pkthdr.len;
1831                 *m_head = m;
1832         }
1833
1834         txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1835
1836         error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1837             txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1838         if (error == EFBIG) {
1839                 m = m_collapse(*m_head, M_DONTWAIT, VGE_MAXTXSEGS);
1840                 if (m == NULL) {
1841                         m_freem(*m_head);
1842                         *m_head = NULL;
1843                         return (ENOMEM);
1844                 }
1845                 *m_head = m;
1846                 error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1847                     txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1848                 if (error != 0) {
1849                         m_freem(*m_head);
1850                         *m_head = NULL;
1851                         return (error);
1852                 }
1853         } else if (error != 0)
1854                 return (error);
1855         bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1856             BUS_DMASYNC_PREWRITE);
1857
1858         m = *m_head;
1859         cflags = 0;
1860
1861         /* Configure checksum offload. */
1862         if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1863                 cflags |= VGE_TDCTL_IPCSUM;
1864         if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1865                 cflags |= VGE_TDCTL_TCPCSUM;
1866         if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1867                 cflags |= VGE_TDCTL_UDPCSUM;
1868
1869         /* Configure VLAN. */
1870         if ((m->m_flags & M_VLANTAG) != 0)
1871                 cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1872         txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1873         /*
1874          * XXX
1875          * Velocity family seems to support TSO but no information
1876          * for MSS configuration is available. Also the number of
1877          * fragments supported by a descriptor is too small to hold
1878          * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1879          * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1880          * longer chain of buffers but no additional information is
1881          * available.
1882          *
1883          * When telling the chip how many segments there are, we
1884          * must use nsegs + 1 instead of just nsegs. Darned if I
1885          * know why. This also means we can't use the last fragment
1886          * field of Tx descriptor.
1887          */
1888         txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1889             VGE_TD_LS_NORM);
1890         for (i = 0; i < nsegs; i++) {
1891                 frag = &txd->tx_desc->vge_frag[i];
1892                 frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1893                 frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1894                     (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1895         }
1896
1897         sc->vge_cdata.vge_tx_cnt++;
1898         VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1899
1900         /*
1901          * Finally request interrupt and give the first descriptor
1902          * ownership to hardware.
1903          */
1904         txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1905         txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1906         txd->tx_m = m;
1907
1908         return (0);
1909 }
1910
1911 /*
1912  * Main transmit routine.
1913  */
1914
1915 static void
1916 vge_start(struct ifnet *ifp)
1917 {
1918         struct vge_softc *sc;
1919
1920         sc = ifp->if_softc;
1921         VGE_LOCK(sc);
1922         vge_start_locked(ifp);
1923         VGE_UNLOCK(sc);
1924 }
1925
1926
1927 static void
1928 vge_start_locked(struct ifnet *ifp)
1929 {
1930         struct vge_softc *sc;
1931         struct vge_txdesc *txd;
1932         struct mbuf *m_head;
1933         int enq, idx;
1934
1935         sc = ifp->if_softc;
1936
1937         VGE_LOCK_ASSERT(sc);
1938
1939         if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1940             (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1941             IFF_DRV_RUNNING)
1942                 return;
1943
1944         idx = sc->vge_cdata.vge_tx_prodidx;
1945         VGE_TX_DESC_DEC(idx);
1946         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1947             sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1948                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1949                 if (m_head == NULL)
1950                         break;
1951                 /*
1952                  * Pack the data into the transmit ring. If we
1953                  * don't have room, set the OACTIVE flag and wait
1954                  * for the NIC to drain the ring.
1955                  */
1956                 if (vge_encap(sc, &m_head)) {
1957                         if (m_head == NULL)
1958                                 break;
1959                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1960                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1961                         break;
1962                 }
1963
1964                 txd = &sc->vge_cdata.vge_txdesc[idx];
1965                 txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1966                 VGE_TX_DESC_INC(idx);
1967
1968                 enq++;
1969                 /*
1970                  * If there's a BPF listener, bounce a copy of this frame
1971                  * to him.
1972                  */
1973                 ETHER_BPF_MTAP(ifp, m_head);
1974         }
1975
1976         if (enq > 0) {
1977                 bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1978                     sc->vge_cdata.vge_tx_ring_map,
1979                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1980                 /* Issue a transmit command. */
1981                 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1982                 /*
1983                  * Set a timeout in case the chip goes out to lunch.
1984                  */
1985                 sc->vge_timer = 5;
1986         }
1987 }
1988
1989 static void
1990 vge_init(void *xsc)
1991 {
1992         struct vge_softc *sc = xsc;
1993
1994         VGE_LOCK(sc);
1995         vge_init_locked(sc);
1996         VGE_UNLOCK(sc);
1997 }
1998
1999 static void
2000 vge_init_locked(struct vge_softc *sc)
2001 {
2002         struct ifnet *ifp = sc->vge_ifp;
2003         struct mii_data *mii;
2004         int error, i;
2005
2006         VGE_LOCK_ASSERT(sc);
2007         mii = device_get_softc(sc->vge_miibus);
2008
2009         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2010                 return;
2011
2012         /*
2013          * Cancel pending I/O and free all RX/TX buffers.
2014          */
2015         vge_stop(sc);
2016         vge_reset(sc);
2017
2018         /*
2019          * Initialize the RX and TX descriptors and mbufs.
2020          */
2021
2022         error = vge_rx_list_init(sc);
2023         if (error != 0) {
2024                 device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2025                 return;
2026         }
2027         vge_tx_list_init(sc);
2028         /* Clear MAC statistics. */
2029         vge_stats_clear(sc);
2030         /* Set our station address */
2031         for (i = 0; i < ETHER_ADDR_LEN; i++)
2032                 CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2033
2034         /*
2035          * Set receive FIFO threshold. Also allow transmission and
2036          * reception of VLAN tagged frames.
2037          */
2038         CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2039         CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2040
2041         /* Set DMA burst length */
2042         CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2043         CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2044
2045         CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2046
2047         /* Set collision backoff algorithm */
2048         CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2049             VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2050         CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2051
2052         /* Disable LPSEL field in priority resolution */
2053         CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2054
2055         /*
2056          * Load the addresses of the DMA queues into the chip.
2057          * Note that we only use one transmit queue.
2058          */
2059
2060         CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2061             VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2062         CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2063             VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2064         CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2065
2066         CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2067             VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2068         CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2069         CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2070
2071         /* Configure interrupt moderation. */
2072         vge_intr_holdoff(sc);
2073
2074         /* Enable and wake up the RX descriptor queue */
2075         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2076         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2077
2078         /* Enable the TX descriptor queue */
2079         CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2080
2081         /* Init the cam filter. */
2082         vge_cam_clear(sc);
2083
2084         /* Set up receiver filter. */
2085         vge_rxfilter(sc);
2086         vge_setvlan(sc);
2087
2088         /* Enable flow control */
2089
2090         CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
2091
2092         /* Enable jumbo frame reception (if desired) */
2093
2094         /* Start the MAC. */
2095         CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2096         CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2097         CSR_WRITE_1(sc, VGE_CRS0,
2098             VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2099
2100 #ifdef DEVICE_POLLING
2101         /*
2102          * Disable interrupts if we are polling.
2103          */
2104         if (ifp->if_capenable & IFCAP_POLLING) {
2105                 CSR_WRITE_4(sc, VGE_IMR, 0);
2106                 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2107         } else  /* otherwise ... */
2108 #endif
2109         {
2110         /*
2111          * Enable interrupts.
2112          */
2113                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2114                 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2115                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2116         }
2117
2118         sc->vge_flags &= ~VGE_FLAG_LINK;
2119         mii_mediachg(mii);
2120
2121         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2122         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2123         callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2124 }
2125
2126 /*
2127  * Set media options.
2128  */
2129 static int
2130 vge_ifmedia_upd(struct ifnet *ifp)
2131 {
2132         struct vge_softc *sc;
2133         struct mii_data *mii;
2134         int error;
2135
2136         sc = ifp->if_softc;
2137         VGE_LOCK(sc);
2138         mii = device_get_softc(sc->vge_miibus);
2139         error = mii_mediachg(mii);
2140         VGE_UNLOCK(sc);
2141
2142         return (error);
2143 }
2144
2145 /*
2146  * Report current media status.
2147  */
2148 static void
2149 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2150 {
2151         struct vge_softc *sc;
2152         struct mii_data *mii;
2153
2154         sc = ifp->if_softc;
2155         mii = device_get_softc(sc->vge_miibus);
2156
2157         VGE_LOCK(sc);
2158         if ((ifp->if_flags & IFF_UP) == 0) {
2159                 VGE_UNLOCK(sc);
2160                 return;
2161         }
2162         mii_pollstat(mii);
2163         VGE_UNLOCK(sc);
2164         ifmr->ifm_active = mii->mii_media_active;
2165         ifmr->ifm_status = mii->mii_media_status;
2166 }
2167
2168 static void
2169 vge_miibus_statchg(device_t dev)
2170 {
2171         struct vge_softc *sc;
2172         struct mii_data *mii;
2173         struct ifmedia_entry *ife;
2174
2175         sc = device_get_softc(dev);
2176         mii = device_get_softc(sc->vge_miibus);
2177         ife = mii->mii_media.ifm_cur;
2178
2179         /*
2180          * If the user manually selects a media mode, we need to turn
2181          * on the forced MAC mode bit in the DIAGCTL register. If the
2182          * user happens to choose a full duplex mode, we also need to
2183          * set the 'force full duplex' bit. This applies only to
2184          * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2185          * mode is disabled, and in 1000baseT mode, full duplex is
2186          * always implied, so we turn on the forced mode bit but leave
2187          * the FDX bit cleared.
2188          */
2189
2190         switch (IFM_SUBTYPE(ife->ifm_media)) {
2191         case IFM_AUTO:
2192                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2193                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2194                 break;
2195         case IFM_1000_T:
2196                 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2197                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2198                 break;
2199         case IFM_100_TX:
2200         case IFM_10_T:
2201                 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2202                 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2203                         CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2204                 } else {
2205                         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2206                 }
2207                 break;
2208         default:
2209                 device_printf(dev, "unknown media type: %x\n",
2210                     IFM_SUBTYPE(ife->ifm_media));
2211                 break;
2212         }
2213 }
2214
2215 static int
2216 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2217 {
2218         struct vge_softc *sc = ifp->if_softc;
2219         struct ifreq *ifr = (struct ifreq *) data;
2220         struct mii_data *mii;
2221         int error = 0, mask;
2222
2223         switch (command) {
2224         case SIOCSIFMTU:
2225                 VGE_LOCK(sc);
2226                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2227                         error = EINVAL;
2228                 else if (ifp->if_mtu != ifr->ifr_mtu) {
2229                         if (ifr->ifr_mtu > ETHERMTU &&
2230                             (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2231                                 error = EINVAL;
2232                         else
2233                                 ifp->if_mtu = ifr->ifr_mtu;
2234                 }
2235                 VGE_UNLOCK(sc);
2236                 break;
2237         case SIOCSIFFLAGS:
2238                 VGE_LOCK(sc);
2239                 if ((ifp->if_flags & IFF_UP) != 0) {
2240                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2241                             ((ifp->if_flags ^ sc->vge_if_flags) &
2242                             (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2243                                 vge_rxfilter(sc);
2244                         else
2245                                 vge_init_locked(sc);
2246                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2247                         vge_stop(sc);
2248                 sc->vge_if_flags = ifp->if_flags;
2249                 VGE_UNLOCK(sc);
2250                 break;
2251         case SIOCADDMULTI:
2252         case SIOCDELMULTI:
2253                 VGE_LOCK(sc);
2254                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2255                         vge_rxfilter(sc);
2256                 VGE_UNLOCK(sc);
2257                 break;
2258         case SIOCGIFMEDIA:
2259         case SIOCSIFMEDIA:
2260                 mii = device_get_softc(sc->vge_miibus);
2261                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2262                 break;
2263         case SIOCSIFCAP:
2264                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2265 #ifdef DEVICE_POLLING
2266                 if (mask & IFCAP_POLLING) {
2267                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
2268                                 error = ether_poll_register(vge_poll, ifp);
2269                                 if (error)
2270                                         return (error);
2271                                 VGE_LOCK(sc);
2272                                         /* Disable interrupts */
2273                                 CSR_WRITE_4(sc, VGE_IMR, 0);
2274                                 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2275                                 ifp->if_capenable |= IFCAP_POLLING;
2276                                 VGE_UNLOCK(sc);
2277                         } else {
2278                                 error = ether_poll_deregister(ifp);
2279                                 /* Enable interrupts. */
2280                                 VGE_LOCK(sc);
2281                                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2282                                 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2283                                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2284                                 ifp->if_capenable &= ~IFCAP_POLLING;
2285                                 VGE_UNLOCK(sc);
2286                         }
2287                 }
2288 #endif /* DEVICE_POLLING */
2289                 VGE_LOCK(sc);
2290                 if ((mask & IFCAP_TXCSUM) != 0 &&
2291                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2292                         ifp->if_capenable ^= IFCAP_TXCSUM;
2293                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2294                                 ifp->if_hwassist |= VGE_CSUM_FEATURES;
2295                         else
2296                                 ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2297                 }
2298                 if ((mask & IFCAP_RXCSUM) != 0 &&
2299                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2300                         ifp->if_capenable ^= IFCAP_RXCSUM;
2301                 if ((mask & IFCAP_WOL_UCAST) != 0 &&
2302                     (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2303                         ifp->if_capenable ^= IFCAP_WOL_UCAST;
2304                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
2305                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2306                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
2307                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2308                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2309                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2310                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2311                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2312                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2313                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2314                     (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2315                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2316                         vge_setvlan(sc);
2317                 }
2318                 VGE_UNLOCK(sc);
2319                 VLAN_CAPABILITIES(ifp);
2320                 break;
2321         default:
2322                 error = ether_ioctl(ifp, command, data);
2323                 break;
2324         }
2325
2326         return (error);
2327 }
2328
2329 static void
2330 vge_watchdog(void *arg)
2331 {
2332         struct vge_softc *sc;
2333         struct ifnet *ifp;
2334
2335         sc = arg;
2336         VGE_LOCK_ASSERT(sc);
2337         vge_stats_update(sc);
2338         callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2339         if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2340                 return;
2341
2342         ifp = sc->vge_ifp;
2343         if_printf(ifp, "watchdog timeout\n");
2344         ifp->if_oerrors++;
2345
2346         vge_txeof(sc);
2347         vge_rxeof(sc, VGE_RX_DESC_CNT);
2348
2349         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2350         vge_init_locked(sc);
2351 }
2352
2353 /*
2354  * Stop the adapter and free any mbufs allocated to the
2355  * RX and TX lists.
2356  */
2357 static void
2358 vge_stop(struct vge_softc *sc)
2359 {
2360         struct ifnet *ifp;
2361
2362         VGE_LOCK_ASSERT(sc);
2363         ifp = sc->vge_ifp;
2364         sc->vge_timer = 0;
2365         callout_stop(&sc->vge_watchdog);
2366
2367         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2368
2369         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2370         CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2371         CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2372         CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2373         CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2374         CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2375
2376         vge_stats_update(sc);
2377         VGE_CHAIN_RESET(sc);
2378         vge_txeof(sc);
2379         vge_freebufs(sc);
2380 }
2381
2382 /*
2383  * Device suspend routine.  Stop the interface and save some PCI
2384  * settings in case the BIOS doesn't restore them properly on
2385  * resume.
2386  */
2387 static int
2388 vge_suspend(device_t dev)
2389 {
2390         struct vge_softc *sc;
2391
2392         sc = device_get_softc(dev);
2393
2394         VGE_LOCK(sc);
2395         vge_stop(sc);
2396         vge_setwol(sc);
2397         sc->vge_flags |= VGE_FLAG_SUSPENDED;
2398         VGE_UNLOCK(sc);
2399
2400         return (0);
2401 }
2402
2403 /*
2404  * Device resume routine.  Restore some PCI settings in case the BIOS
2405  * doesn't, re-enable busmastering, and restart the interface if
2406  * appropriate.
2407  */
2408 static int
2409 vge_resume(device_t dev)
2410 {
2411         struct vge_softc *sc;
2412         struct ifnet *ifp;
2413         uint16_t pmstat;
2414
2415         sc = device_get_softc(dev);
2416         VGE_LOCK(sc);
2417         if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2418                 /* Disable PME and clear PME status. */
2419                 pmstat = pci_read_config(sc->vge_dev,
2420                     sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2421                 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2422                         pmstat &= ~PCIM_PSTAT_PMEENABLE;
2423                         pci_write_config(sc->vge_dev,
2424                             sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2425                 }
2426         }
2427         vge_clrwol(sc);
2428         /* Restart MII auto-polling. */
2429         vge_miipoll_start(sc);
2430         ifp = sc->vge_ifp;
2431         /* Reinitialize interface if necessary. */
2432         if ((ifp->if_flags & IFF_UP) != 0) {
2433                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2434                 vge_init_locked(sc);
2435         }
2436         sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2437         VGE_UNLOCK(sc);
2438
2439         return (0);
2440 }
2441
2442 /*
2443  * Stop all chip I/O so that the kernel's probe routines don't
2444  * get confused by errant DMAs when rebooting.
2445  */
2446 static int
2447 vge_shutdown(device_t dev)
2448 {
2449
2450         return (vge_suspend(dev));
2451 }
2452
2453 #define VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)    \
2454             SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2455
2456 static void
2457 vge_sysctl_node(struct vge_softc *sc)
2458 {
2459         struct sysctl_ctx_list *ctx;
2460         struct sysctl_oid_list *child, *parent;
2461         struct sysctl_oid *tree;
2462         struct vge_hw_stats *stats;
2463
2464         stats = &sc->vge_stats;
2465         ctx = device_get_sysctl_ctx(sc->vge_dev);
2466         child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2467
2468         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2469             CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2470         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2471             CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2472         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2473             CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2474
2475         /* Pull in device tunables. */
2476         sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2477         resource_int_value(device_get_name(sc->vge_dev),
2478             device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2479         sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2480         resource_int_value(device_get_name(sc->vge_dev),
2481             device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2482         sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2483         resource_int_value(device_get_name(sc->vge_dev),
2484             device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2485
2486         tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2487             NULL, "VGE statistics");
2488         parent = SYSCTL_CHILDREN(tree);
2489
2490         /* Rx statistics. */
2491         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2492             NULL, "RX MAC statistics");
2493         child = SYSCTL_CHILDREN(tree);
2494         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2495             &stats->rx_frames, "frames");
2496         VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2497             &stats->rx_good_frames, "Good frames");
2498         VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2499             &stats->rx_fifo_oflows, "FIFO overflows");
2500         VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2501             &stats->rx_runts, "Too short frames");
2502         VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2503             &stats->rx_runts_errs, "Too short frames with errors");
2504         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2505             &stats->rx_pkts_64, "64 bytes frames");
2506         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2507             &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2508         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2509             &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2510         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2511             &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2512         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2513             &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2514         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2515             &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2516         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2517             &stats->rx_pkts_1519_max, "1519 to max frames");
2518         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2519             &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2520         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2521             &stats->rx_jumbos, "Jumbo frames");
2522         VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2523             &stats->rx_crcerrs, "CRC errors");
2524         VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2525             &stats->rx_pause_frames, "CRC errors");
2526         VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2527             &stats->rx_alignerrs, "Alignment errors");
2528         VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2529             &stats->rx_nobufs, "Frames with no buffer event");
2530         VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2531             &stats->rx_symerrs, "Frames with symbol errors");
2532         VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2533             &stats->rx_lenerrs, "Frames with length mismatched");
2534
2535         /* Tx statistics. */
2536         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2537             NULL, "TX MAC statistics");
2538         child = SYSCTL_CHILDREN(tree);
2539         VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2540             &stats->tx_good_frames, "Good frames");
2541         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2542             &stats->tx_pkts_64, "64 bytes frames");
2543         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2544             &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2545         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2546             &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2547         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2548             &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2549         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2550             &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2551         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2552             &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2553         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2554             &stats->tx_jumbos, "Jumbo frames");
2555         VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2556             &stats->tx_colls, "Collisions");
2557         VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2558             &stats->tx_latecolls, "Late collisions");
2559         VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2560             &stats->tx_pause, "Pause frames");
2561 #ifdef VGE_ENABLE_SQEERR
2562         VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2563             &stats->tx_sqeerrs, "SQE errors");
2564 #endif
2565         /* Clear MAC statistics. */
2566         vge_stats_clear(sc);
2567 }
2568
2569 #undef  VGE_SYSCTL_STAT_ADD32
2570
2571 static void
2572 vge_stats_clear(struct vge_softc *sc)
2573 {
2574         int i;
2575
2576         CSR_WRITE_1(sc, VGE_MIBCSR,
2577             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2578         CSR_WRITE_1(sc, VGE_MIBCSR,
2579             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2580         for (i = VGE_TIMEOUT; i > 0; i--) {
2581                 DELAY(1);
2582                 if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2583                         break;
2584         }
2585         if (i == 0)
2586                 device_printf(sc->vge_dev, "MIB clear timed out!\n");
2587         CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2588             ~VGE_MIBCSR_FREEZE);
2589 }
2590
2591 static void
2592 vge_stats_update(struct vge_softc *sc)
2593 {
2594         struct vge_hw_stats *stats;
2595         struct ifnet *ifp;
2596         uint32_t mib[VGE_MIB_CNT], val;
2597         int i;
2598
2599         VGE_LOCK_ASSERT(sc);
2600
2601         stats = &sc->vge_stats;
2602         ifp = sc->vge_ifp;
2603
2604         CSR_WRITE_1(sc, VGE_MIBCSR,
2605             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2606         for (i = VGE_TIMEOUT; i > 0; i--) {
2607                 DELAY(1);
2608                 if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2609                         break;
2610         }
2611         if (i == 0) {
2612                 device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2613                 vge_stats_clear(sc);
2614                 return;
2615         }
2616
2617         bzero(mib, sizeof(mib));
2618 reset_idx:
2619         /* Set MIB read index to 0. */
2620         CSR_WRITE_1(sc, VGE_MIBCSR,
2621             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2622         for (i = 0; i < VGE_MIB_CNT; i++) {
2623                 val = CSR_READ_4(sc, VGE_MIBDATA);
2624                 if (i != VGE_MIB_DATA_IDX(val)) {
2625                         /* Reading interrupted. */
2626                         goto reset_idx;
2627                 }
2628                 mib[i] = val & VGE_MIB_DATA_MASK;
2629         }
2630
2631         /* Rx stats. */
2632         stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2633         stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2634         stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2635         stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2636         stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2637         stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2638         stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2639         stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2640         stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2641         stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2642         stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2643         stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2644         stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2645         stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2646         stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2647         stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2648         stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2649         stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2650         stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2651         stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2652
2653         /* Tx stats. */
2654         stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2655         stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2656         stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2657         stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2658         stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2659         stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2660         stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2661         stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2662         stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2663         stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2664 #ifdef VGE_ENABLE_SQEERR
2665         stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2666 #endif
2667         stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2668
2669         /* Update counters in ifnet. */
2670         ifp->if_opackets += mib[VGE_MIB_TX_GOOD_FRAMES];
2671
2672         ifp->if_collisions += mib[VGE_MIB_TX_COLLS] +
2673             mib[VGE_MIB_TX_LATECOLLS];
2674
2675         ifp->if_oerrors += mib[VGE_MIB_TX_COLLS] +
2676             mib[VGE_MIB_TX_LATECOLLS];
2677
2678         ifp->if_ipackets += mib[VGE_MIB_RX_GOOD_FRAMES];
2679
2680         ifp->if_ierrors += mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2681             mib[VGE_MIB_RX_RUNTS] +
2682             mib[VGE_MIB_RX_RUNTS_ERRS] +
2683             mib[VGE_MIB_RX_CRCERRS] +
2684             mib[VGE_MIB_RX_ALIGNERRS] +
2685             mib[VGE_MIB_RX_NOBUFS] +
2686             mib[VGE_MIB_RX_SYMERRS] +
2687             mib[VGE_MIB_RX_LENERRS];
2688 }
2689
2690 static void
2691 vge_intr_holdoff(struct vge_softc *sc)
2692 {
2693         uint8_t intctl;
2694
2695         VGE_LOCK_ASSERT(sc);
2696
2697         /*
2698          * Set Tx interrupt supression threshold.
2699          * It's possible to use single-shot timer in VGE_CRS1 register
2700          * in Tx path such that driver can remove most of Tx completion
2701          * interrupts. However this requires additional access to
2702          * VGE_CRS1 register to reload the timer in addintion to
2703          * activating Tx kick command. Another downside is we don't know
2704          * what single-shot timer value should be used in advance so
2705          * reclaiming transmitted mbufs could be delayed a lot which in
2706          * turn slows down Tx operation.
2707          */
2708         CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2709         CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2710
2711         /* Set Rx interrupt suppresion threshold. */
2712         CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2713         CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2714
2715         intctl = CSR_READ_1(sc, VGE_INTCTL1);
2716         intctl &= ~VGE_INTCTL_SC_RELOAD;
2717         intctl |= VGE_INTCTL_HC_RELOAD;
2718         if (sc->vge_tx_coal_pkt <= 0)
2719                 intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2720         else
2721                 intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2722         if (sc->vge_rx_coal_pkt <= 0)
2723                 intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2724         else
2725                 intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2726         CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2727         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2728         if (sc->vge_int_holdoff > 0) {
2729                 /* Set interrupt holdoff timer. */
2730                 CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2731                 CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2732                     VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2733                 /* Enable holdoff timer. */
2734                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2735         }
2736 }
2737
2738 static void
2739 vge_setlinkspeed(struct vge_softc *sc)
2740 {
2741         struct mii_data *mii;
2742         int aneg, i;
2743
2744         VGE_LOCK_ASSERT(sc);
2745
2746         mii = device_get_softc(sc->vge_miibus);
2747         mii_pollstat(mii);
2748         aneg = 0;
2749         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2750             (IFM_ACTIVE | IFM_AVALID)) {
2751                 switch IFM_SUBTYPE(mii->mii_media_active) {
2752                 case IFM_10_T:
2753                 case IFM_100_TX:
2754                         return;
2755                 case IFM_1000_T:
2756                         aneg++;
2757                 default:
2758                         break;
2759                 }
2760         }
2761         vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2762         vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2763             ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2764         vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2765             BMCR_AUTOEN | BMCR_STARTNEG);
2766         DELAY(1000);
2767         if (aneg != 0) {
2768                 /* Poll link state until vge(4) get a 10/100 link. */
2769                 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2770                         mii_pollstat(mii);
2771                         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2772                             == (IFM_ACTIVE | IFM_AVALID)) {
2773                                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
2774                                 case IFM_10_T:
2775                                 case IFM_100_TX:
2776                                         return;
2777                                 default:
2778                                         break;
2779                                 }
2780                         }
2781                         VGE_UNLOCK(sc);
2782                         pause("vgelnk", hz);
2783                         VGE_LOCK(sc);
2784                 }
2785                 if (i == MII_ANEGTICKS_GIGE)
2786                         device_printf(sc->vge_dev, "establishing link failed, "
2787                             "WOL may not work!");
2788         }
2789         /*
2790          * No link, force MAC to have 100Mbps, full-duplex link.
2791          * This is the last resort and may/may not work.
2792          */
2793         mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2794         mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2795 }
2796
2797 static void
2798 vge_setwol(struct vge_softc *sc)
2799 {
2800         struct ifnet *ifp;
2801         uint16_t pmstat;
2802         uint8_t val;
2803
2804         VGE_LOCK_ASSERT(sc);
2805
2806         if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2807                 /* No PME capability, PHY power down. */
2808                 vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2809                     BMCR_PDOWN);
2810                 vge_miipoll_stop(sc);
2811                 return;
2812         }
2813
2814         ifp = sc->vge_ifp;
2815
2816         /* Clear WOL on pattern match. */
2817         CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2818         /* Disable WOL on magic/unicast packet. */
2819         CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2820         CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2821             VGE_WOLCFG_PMEOVR);
2822         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2823                 vge_setlinkspeed(sc);
2824                 val = 0;
2825                 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2826                         val |= VGE_WOLCR1_UCAST;
2827                 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2828                         val |= VGE_WOLCR1_MAGIC;
2829                 CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2830                 val = 0;
2831                 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2832                         val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2833                 CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2834                 /* Disable MII auto-polling. */
2835                 vge_miipoll_stop(sc);
2836         }
2837         CSR_SETBIT_1(sc, VGE_DIAGCTL,
2838             VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2839         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2840
2841         /* Clear WOL status on pattern match. */
2842         CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2843         CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2844
2845         val = CSR_READ_1(sc, VGE_PWRSTAT);
2846         val |= VGE_STICKHW_SWPTAG;
2847         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2848         /* Put hardware into sleep. */
2849         val = CSR_READ_1(sc, VGE_PWRSTAT);
2850         val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2851         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2852         /* Request PME if WOL is requested. */
2853         pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2854             PCIR_POWER_STATUS, 2);
2855         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2856         if ((ifp->if_capenable & IFCAP_WOL) != 0)
2857                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2858         pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2859             pmstat, 2);
2860 }
2861
2862 static void
2863 vge_clrwol(struct vge_softc *sc)
2864 {
2865         uint8_t val;
2866
2867         val = CSR_READ_1(sc, VGE_PWRSTAT);
2868         val &= ~VGE_STICKHW_SWPTAG;
2869         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2870         /* Disable WOL and clear power state indicator. */
2871         val = CSR_READ_1(sc, VGE_PWRSTAT);
2872         val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2873         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2874
2875         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2876         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2877
2878         /* Clear WOL on pattern match. */
2879         CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2880         /* Disable WOL on magic/unicast packet. */
2881         CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2882         CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2883             VGE_WOLCFG_PMEOVR);
2884         /* Clear WOL status on pattern match. */
2885         CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2886         CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2887 }