]> CyberLeo.Net >> Repos - FreeBSD/releng/8.1.git/blob - sys/dev/wpi/if_wpi.c
Copy stable/8 to releng/8.1 in preparation for 8.1-RC1.
[FreeBSD/releng/8.1.git] / sys / dev / wpi / if_wpi.c
1 /*-
2  * Copyright (c) 2006,2007
3  *      Damien Bergamini <damien.bergamini@free.fr>
4  *      Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18
19 #define VERSION "20071127"
20
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_radiotap.h>
95 #include <net80211/ieee80211_regdomain.h>
96 #include <net80211/ieee80211_ratectl.h>
97
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/if_ether.h>
103
104 #include <dev/wpi/if_wpireg.h>
105 #include <dev/wpi/if_wpivar.h>
106
107 #define WPI_DEBUG
108
109 #ifdef WPI_DEBUG
110 #define DPRINTF(x)      do { if (wpi_debug != 0) printf x; } while (0)
111 #define DPRINTFN(n, x)  do { if (wpi_debug & n) printf x; } while (0)
112 #define WPI_DEBUG_SET   (wpi_debug != 0)
113
114 enum {
115         WPI_DEBUG_UNUSED        = 0x00000001,   /* Unused */
116         WPI_DEBUG_HW            = 0x00000002,   /* Stage 1 (eeprom) debugging */
117         WPI_DEBUG_TX            = 0x00000004,   /* Stage 2 TX intrp debugging*/
118         WPI_DEBUG_RX            = 0x00000008,   /* Stage 2 RX intrp debugging */
119         WPI_DEBUG_CMD           = 0x00000010,   /* Stage 2 CMD intrp debugging*/
120         WPI_DEBUG_FIRMWARE      = 0x00000020,   /* firmware(9) loading debug  */
121         WPI_DEBUG_DMA           = 0x00000040,   /* DMA (de)allocations/syncs  */
122         WPI_DEBUG_SCANNING      = 0x00000080,   /* Stage 2 Scanning debugging */
123         WPI_DEBUG_NOTIFY        = 0x00000100,   /* State 2 Noftif intr debug */
124         WPI_DEBUG_TEMP          = 0x00000200,   /* TXPower/Temp Calibration */
125         WPI_DEBUG_OPS           = 0x00000400,   /* wpi_ops taskq debug */
126         WPI_DEBUG_WATCHDOG      = 0x00000800,   /* Watch dog debug */
127         WPI_DEBUG_ANY           = 0xffffffff
128 };
129
130 static int wpi_debug = 1;
131 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
132 TUNABLE_INT("debug.wpi", &wpi_debug);
133
134 #else
135 #define DPRINTF(x)
136 #define DPRINTFN(n, x)
137 #define WPI_DEBUG_SET   0
138 #endif
139
140 struct wpi_ident {
141         uint16_t        vendor;
142         uint16_t        device;
143         uint16_t        subdevice;
144         const char      *name;
145 };
146
147 static const struct wpi_ident wpi_ident_table[] = {
148         /* The below entries support ABG regardless of the subid */
149         { 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150         { 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
151         /* The below entries only support BG */
152         { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
153         { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
154         { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
155         { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
156         { 0, 0, 0, NULL }
157 };
158
159 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
160                     const char name[IFNAMSIZ], int unit, int opmode,
161                     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
162                     const uint8_t mac[IEEE80211_ADDR_LEN]);
163 static void     wpi_vap_delete(struct ieee80211vap *);
164 static int      wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
165                     void **, bus_size_t, bus_size_t, int);
166 static void     wpi_dma_contig_free(struct wpi_dma_info *);
167 static void     wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
168 static int      wpi_alloc_shared(struct wpi_softc *);
169 static void     wpi_free_shared(struct wpi_softc *);
170 static int      wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171 static void     wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172 static void     wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173 static int      wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
174                     int, int);
175 static void     wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176 static void     wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
177 static void     wpi_newassoc(struct ieee80211_node *, int);
178 static int      wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
179 static void     wpi_mem_lock(struct wpi_softc *);
180 static void     wpi_mem_unlock(struct wpi_softc *);
181 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
182 static void     wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
183 static void     wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
184                     const uint32_t *, int);
185 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
186 static int      wpi_alloc_fwmem(struct wpi_softc *);
187 static void     wpi_free_fwmem(struct wpi_softc *);
188 static int      wpi_load_firmware(struct wpi_softc *);
189 static void     wpi_unload_firmware(struct wpi_softc *);
190 static int      wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
191 static void     wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
192                     struct wpi_rx_data *);
193 static void     wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
194 static void     wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
195 static void     wpi_notif_intr(struct wpi_softc *);
196 static void     wpi_intr(void *);
197 static uint8_t  wpi_plcp_signal(int);
198 static void     wpi_watchdog(void *);
199 static int      wpi_tx_data(struct wpi_softc *, struct mbuf *,
200                     struct ieee80211_node *, int);
201 static void     wpi_start(struct ifnet *);
202 static void     wpi_start_locked(struct ifnet *);
203 static int      wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
204                     const struct ieee80211_bpf_params *);
205 static void     wpi_scan_start(struct ieee80211com *);
206 static void     wpi_scan_end(struct ieee80211com *);
207 static void     wpi_set_channel(struct ieee80211com *);
208 static void     wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
209 static void     wpi_scan_mindwell(struct ieee80211_scan_state *);
210 static int      wpi_ioctl(struct ifnet *, u_long, caddr_t);
211 static void     wpi_read_eeprom(struct wpi_softc *,
212                     uint8_t macaddr[IEEE80211_ADDR_LEN]);
213 static void     wpi_read_eeprom_channels(struct wpi_softc *, int);
214 static void     wpi_read_eeprom_group(struct wpi_softc *, int);
215 static int      wpi_cmd(struct wpi_softc *, int, const void *, int, int);
216 static int      wpi_wme_update(struct ieee80211com *);
217 static int      wpi_mrr_setup(struct wpi_softc *);
218 static void     wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
219 static void     wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
220 #if 0
221 static int      wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
222 #endif
223 static int      wpi_auth(struct wpi_softc *, struct ieee80211vap *);
224 static int      wpi_run(struct wpi_softc *, struct ieee80211vap *);
225 static int      wpi_scan(struct wpi_softc *);
226 static int      wpi_config(struct wpi_softc *);
227 static void     wpi_stop_master(struct wpi_softc *);
228 static int      wpi_power_up(struct wpi_softc *);
229 static int      wpi_reset(struct wpi_softc *);
230 static void     wpi_hwreset(void *, int);
231 static void     wpi_rfreset(void *, int);
232 static void     wpi_hw_config(struct wpi_softc *);
233 static void     wpi_init(void *);
234 static void     wpi_init_locked(struct wpi_softc *, int);
235 static void     wpi_stop(struct wpi_softc *);
236 static void     wpi_stop_locked(struct wpi_softc *);
237
238 static int      wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
239                     int);
240 static void     wpi_calib_timeout(void *);
241 static void     wpi_power_calibration(struct wpi_softc *, int);
242 static int      wpi_get_power_index(struct wpi_softc *,
243                     struct wpi_power_group *, struct ieee80211_channel *, int);
244 #ifdef WPI_DEBUG
245 static const char *wpi_cmd_str(int);
246 #endif
247 static int wpi_probe(device_t);
248 static int wpi_attach(device_t);
249 static int wpi_detach(device_t);
250 static int wpi_shutdown(device_t);
251 static int wpi_suspend(device_t);
252 static int wpi_resume(device_t);
253
254
255 static device_method_t wpi_methods[] = {
256         /* Device interface */
257         DEVMETHOD(device_probe,         wpi_probe),
258         DEVMETHOD(device_attach,        wpi_attach),
259         DEVMETHOD(device_detach,        wpi_detach),
260         DEVMETHOD(device_shutdown,      wpi_shutdown),
261         DEVMETHOD(device_suspend,       wpi_suspend),
262         DEVMETHOD(device_resume,        wpi_resume),
263
264         { 0, 0 }
265 };
266
267 static driver_t wpi_driver = {
268         "wpi",
269         wpi_methods,
270         sizeof (struct wpi_softc)
271 };
272
273 static devclass_t wpi_devclass;
274
275 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
276
277 static const uint8_t wpi_ridx_to_plcp[] = {
278         /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
279         /* R1-R4 (ral/ural is R4-R1) */
280         0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
281         /* CCK: device-dependent */
282         10, 20, 55, 110
283 };
284 static const uint8_t wpi_ridx_to_rate[] = {
285         12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
286         2, 4, 11, 22 /*CCK */
287 };
288
289
290 static int
291 wpi_probe(device_t dev)
292 {
293         const struct wpi_ident *ident;
294
295         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
296                 if (pci_get_vendor(dev) == ident->vendor &&
297                     pci_get_device(dev) == ident->device) {
298                         device_set_desc(dev, ident->name);
299                         return 0;
300                 }
301         }
302         return ENXIO;
303 }
304
305 /**
306  * Load the firmare image from disk to the allocated dma buffer.
307  * we also maintain the reference to the firmware pointer as there
308  * is times where we may need to reload the firmware but we are not
309  * in a context that can access the filesystem (ie taskq cause by restart)
310  *
311  * @return 0 on success, an errno on failure
312  */
313 static int
314 wpi_load_firmware(struct wpi_softc *sc)
315 {
316         const struct firmware *fp;
317         struct wpi_dma_info *dma = &sc->fw_dma;
318         const struct wpi_firmware_hdr *hdr;
319         const uint8_t *itext, *idata, *rtext, *rdata, *btext;
320         uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
321         int error;
322
323         DPRINTFN(WPI_DEBUG_FIRMWARE,
324             ("Attempting Loading Firmware from wpi_fw module\n"));
325
326         WPI_UNLOCK(sc);
327
328         if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
329                 device_printf(sc->sc_dev,
330                     "could not load firmware image 'wpifw'\n");
331                 error = ENOENT;
332                 WPI_LOCK(sc);
333                 goto fail;
334         }
335
336         fp = sc->fw_fp;
337
338         WPI_LOCK(sc);
339
340         /* Validate the firmware is minimum a particular version */
341         if (fp->version < WPI_FW_MINVERSION) {
342             device_printf(sc->sc_dev,
343                            "firmware version is too old. Need %d, got %d\n",
344                            WPI_FW_MINVERSION,
345                            fp->version);
346             error = ENXIO;
347             goto fail;
348         }
349
350         if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
351                 device_printf(sc->sc_dev,
352                     "firmware file too short: %zu bytes\n", fp->datasize);
353                 error = ENXIO;
354                 goto fail;
355         }
356
357         hdr = (const struct wpi_firmware_hdr *)fp->data;
358
359         /*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
360            |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
361
362         rtextsz = le32toh(hdr->rtextsz);
363         rdatasz = le32toh(hdr->rdatasz);
364         itextsz = le32toh(hdr->itextsz);
365         idatasz = le32toh(hdr->idatasz);
366         btextsz = le32toh(hdr->btextsz);
367
368         /* check that all firmware segments are present */
369         if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
370                 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
371                 device_printf(sc->sc_dev,
372                     "firmware file too short: %zu bytes\n", fp->datasize);
373                 error = ENXIO; /* XXX appropriate error code? */
374                 goto fail;
375         }
376
377         /* get pointers to firmware segments */
378         rtext = (const uint8_t *)(hdr + 1);
379         rdata = rtext + rtextsz;
380         itext = rdata + rdatasz;
381         idata = itext + itextsz;
382         btext = idata + idatasz;
383
384         DPRINTFN(WPI_DEBUG_FIRMWARE,
385             ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
386              "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
387              (le32toh(hdr->version) & 0xff000000) >> 24,
388              (le32toh(hdr->version) & 0x00ff0000) >> 16,
389              (le32toh(hdr->version) & 0x0000ffff),
390              rtextsz, rdatasz,
391              itextsz, idatasz, btextsz));
392
393         DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
394         DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
395         DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
396         DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
397         DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
398
399         /* sanity checks */
400         if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
401             rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
402             itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
403             idatasz > WPI_FW_INIT_DATA_MAXSZ ||
404             btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
405             (btextsz & 3) != 0) {
406                 device_printf(sc->sc_dev, "firmware invalid\n");
407                 error = EINVAL;
408                 goto fail;
409         }
410
411         /* copy initialization images into pre-allocated DMA-safe memory */
412         memcpy(dma->vaddr, idata, idatasz);
413         memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
414
415         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
416
417         /* tell adapter where to find initialization images */
418         wpi_mem_lock(sc);
419         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
420         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
421         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
422             dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
423         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
424         wpi_mem_unlock(sc);
425
426         /* load firmware boot code */
427         if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
428             device_printf(sc->sc_dev, "Failed to load microcode\n");
429             goto fail;
430         }
431
432         /* now press "execute" */
433         WPI_WRITE(sc, WPI_RESET, 0);
434
435         /* wait at most one second for the first alive notification */
436         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
437                 device_printf(sc->sc_dev,
438                     "timeout waiting for adapter to initialize\n");
439                 goto fail;
440         }
441
442         /* copy runtime images into pre-allocated DMA-sage memory */
443         memcpy(dma->vaddr, rdata, rdatasz);
444         memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
445         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
446
447         /* tell adapter where to find runtime images */
448         wpi_mem_lock(sc);
449         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
450         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
451         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
452             dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
453         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
454         wpi_mem_unlock(sc);
455
456         /* wait at most one second for the first alive notification */
457         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
458                 device_printf(sc->sc_dev,
459                     "timeout waiting for adapter to initialize2\n");
460                 goto fail;
461         }
462
463         DPRINTFN(WPI_DEBUG_FIRMWARE,
464             ("Firmware loaded to driver successfully\n"));
465         return error;
466 fail:
467         wpi_unload_firmware(sc);
468         return error;
469 }
470
471 /**
472  * Free the referenced firmware image
473  */
474 static void
475 wpi_unload_firmware(struct wpi_softc *sc)
476 {
477
478         if (sc->fw_fp) {
479                 WPI_UNLOCK(sc);
480                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
481                 WPI_LOCK(sc);
482                 sc->fw_fp = NULL;
483         }
484 }
485
486 static int
487 wpi_attach(device_t dev)
488 {
489         struct wpi_softc *sc = device_get_softc(dev);
490         struct ifnet *ifp;
491         struct ieee80211com *ic;
492         int ac, error, supportsa = 1;
493         uint32_t tmp;
494         const struct wpi_ident *ident;
495         uint8_t macaddr[IEEE80211_ADDR_LEN];
496
497         sc->sc_dev = dev;
498
499         if (bootverbose || WPI_DEBUG_SET)
500             device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
501
502         /*
503          * Some card's only support 802.11b/g not a, check to see if
504          * this is one such card. A 0x0 in the subdevice table indicates
505          * the entire subdevice range is to be ignored.
506          */
507         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
508                 if (ident->subdevice &&
509                     pci_get_subdevice(dev) == ident->subdevice) {
510                     supportsa = 0;
511                     break;
512                 }
513         }
514
515         /* Create the tasks that can be queued */
516         TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
517         TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
518
519         WPI_LOCK_INIT(sc);
520
521         callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
522         callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
523
524         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
525                 device_printf(dev, "chip is in D%d power mode "
526                     "-- setting to D0\n", pci_get_powerstate(dev));
527                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
528         }
529
530         /* disable the retry timeout register */
531         pci_write_config(dev, 0x41, 0, 1);
532
533         /* enable bus-mastering */
534         pci_enable_busmaster(dev);
535
536         sc->mem_rid = PCIR_BAR(0);
537         sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
538             RF_ACTIVE);
539         if (sc->mem == NULL) {
540                 device_printf(dev, "could not allocate memory resource\n");
541                 error = ENOMEM;
542                 goto fail;
543         }
544
545         sc->sc_st = rman_get_bustag(sc->mem);
546         sc->sc_sh = rman_get_bushandle(sc->mem);
547
548         sc->irq_rid = 0;
549         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
550             RF_ACTIVE | RF_SHAREABLE);
551         if (sc->irq == NULL) {
552                 device_printf(dev, "could not allocate interrupt resource\n");
553                 error = ENOMEM;
554                 goto fail;
555         }
556
557         /*
558          * Allocate DMA memory for firmware transfers.
559          */
560         if ((error = wpi_alloc_fwmem(sc)) != 0) {
561                 printf(": could not allocate firmware memory\n");
562                 error = ENOMEM;
563                 goto fail;
564         }
565
566         /*
567          * Put adapter into a known state.
568          */
569         if ((error = wpi_reset(sc)) != 0) {
570                 device_printf(dev, "could not reset adapter\n");
571                 goto fail;
572         }
573
574         wpi_mem_lock(sc);
575         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
576         if (bootverbose || WPI_DEBUG_SET)
577             device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
578
579         wpi_mem_unlock(sc);
580
581         /* Allocate shared page */
582         if ((error = wpi_alloc_shared(sc)) != 0) {
583                 device_printf(dev, "could not allocate shared page\n");
584                 goto fail;
585         }
586
587         /* tx data queues  - 4 for QoS purposes */
588         for (ac = 0; ac < WME_NUM_AC; ac++) {
589                 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
590                 if (error != 0) {
591                     device_printf(dev, "could not allocate Tx ring %d\n",ac);
592                     goto fail;
593                 }
594         }
595
596         /* command queue to talk to the card's firmware */
597         error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
598         if (error != 0) {
599                 device_printf(dev, "could not allocate command ring\n");
600                 goto fail;
601         }
602
603         /* receive data queue */
604         error = wpi_alloc_rx_ring(sc, &sc->rxq);
605         if (error != 0) {
606                 device_printf(dev, "could not allocate Rx ring\n");
607                 goto fail;
608         }
609
610         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
611         if (ifp == NULL) {
612                 device_printf(dev, "can not if_alloc()\n");
613                 error = ENOMEM;
614                 goto fail;
615         }
616         ic = ifp->if_l2com;
617
618         ic->ic_ifp = ifp;
619         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
620         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
621
622         /* set device capabilities */
623         ic->ic_caps =
624                   IEEE80211_C_STA               /* station mode supported */
625                 | IEEE80211_C_MONITOR           /* monitor mode supported */
626                 | IEEE80211_C_TXPMGT            /* tx power management */
627                 | IEEE80211_C_SHSLOT            /* short slot time supported */
628                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
629                 | IEEE80211_C_WPA               /* 802.11i */
630 /* XXX looks like WME is partly supported? */
631 #if 0
632                 | IEEE80211_C_IBSS              /* IBSS mode support */
633                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
634                 | IEEE80211_C_WME               /* 802.11e */
635                 | IEEE80211_C_HOSTAP            /* Host access point mode */
636 #endif
637                 ;
638
639         /*
640          * Read in the eeprom and also setup the channels for
641          * net80211. We don't set the rates as net80211 does this for us
642          */
643         wpi_read_eeprom(sc, macaddr);
644
645         if (bootverbose || WPI_DEBUG_SET) {
646             device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
647             device_printf(sc->sc_dev, "Hardware Type: %c\n",
648                           sc->type > 1 ? 'B': '?');
649             device_printf(sc->sc_dev, "Hardware Revision: %c\n",
650                           ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
651             device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
652                           supportsa ? "does" : "does not");
653
654             /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
655                what sc->rev really represents - benjsc 20070615 */
656         }
657
658         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
659         ifp->if_softc = sc;
660         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
661         ifp->if_init = wpi_init;
662         ifp->if_ioctl = wpi_ioctl;
663         ifp->if_start = wpi_start;
664         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
665         ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
666         IFQ_SET_READY(&ifp->if_snd);
667
668         ieee80211_ifattach(ic, macaddr);
669         /* override default methods */
670         ic->ic_raw_xmit = wpi_raw_xmit;
671         ic->ic_newassoc = wpi_newassoc;
672         ic->ic_wme.wme_update = wpi_wme_update;
673         ic->ic_scan_start = wpi_scan_start;
674         ic->ic_scan_end = wpi_scan_end;
675         ic->ic_set_channel = wpi_set_channel;
676         ic->ic_scan_curchan = wpi_scan_curchan;
677         ic->ic_scan_mindwell = wpi_scan_mindwell;
678
679         ic->ic_vap_create = wpi_vap_create;
680         ic->ic_vap_delete = wpi_vap_delete;
681
682         ieee80211_radiotap_attach(ic,
683             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
684                 WPI_TX_RADIOTAP_PRESENT,
685             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
686                 WPI_RX_RADIOTAP_PRESENT);
687
688         /*
689          * Hook our interrupt after all initialization is complete.
690          */
691         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
692             NULL, wpi_intr, sc, &sc->sc_ih);
693         if (error != 0) {
694                 device_printf(dev, "could not set up interrupt\n");
695                 goto fail;
696         }
697
698         if (bootverbose)
699                 ieee80211_announce(ic);
700 #ifdef XXX_DEBUG
701         ieee80211_announce_channels(ic);
702 #endif
703         return 0;
704
705 fail:   wpi_detach(dev);
706         return ENXIO;
707 }
708
709 static int
710 wpi_detach(device_t dev)
711 {
712         struct wpi_softc *sc = device_get_softc(dev);
713         struct ifnet *ifp = sc->sc_ifp;
714         struct ieee80211com *ic;
715         int ac;
716
717         if (ifp != NULL) {
718                 ic = ifp->if_l2com;
719
720                 ieee80211_draintask(ic, &sc->sc_restarttask);
721                 ieee80211_draintask(ic, &sc->sc_radiotask);
722                 wpi_stop(sc);
723                 callout_drain(&sc->watchdog_to);
724                 callout_drain(&sc->calib_to);
725                 ieee80211_ifdetach(ic);
726         }
727
728         WPI_LOCK(sc);
729         if (sc->txq[0].data_dmat) {
730                 for (ac = 0; ac < WME_NUM_AC; ac++)
731                         wpi_free_tx_ring(sc, &sc->txq[ac]);
732
733                 wpi_free_tx_ring(sc, &sc->cmdq);
734                 wpi_free_rx_ring(sc, &sc->rxq);
735                 wpi_free_shared(sc);
736         }
737
738         if (sc->fw_fp != NULL) {
739                 wpi_unload_firmware(sc);
740         }
741
742         if (sc->fw_dma.tag)
743                 wpi_free_fwmem(sc);
744         WPI_UNLOCK(sc);
745
746         if (sc->irq != NULL) {
747                 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
748                 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
749         }
750
751         if (sc->mem != NULL)
752                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
753
754         if (ifp != NULL)
755                 if_free(ifp);
756
757         WPI_LOCK_DESTROY(sc);
758
759         return 0;
760 }
761
762 static struct ieee80211vap *
763 wpi_vap_create(struct ieee80211com *ic,
764         const char name[IFNAMSIZ], int unit, int opmode, int flags,
765         const uint8_t bssid[IEEE80211_ADDR_LEN],
766         const uint8_t mac[IEEE80211_ADDR_LEN])
767 {
768         struct wpi_vap *wvp;
769         struct ieee80211vap *vap;
770
771         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
772                 return NULL;
773         wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
774             M_80211_VAP, M_NOWAIT | M_ZERO);
775         if (wvp == NULL)
776                 return NULL;
777         vap = &wvp->vap;
778         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
779         /* override with driver methods */
780         wvp->newstate = vap->iv_newstate;
781         vap->iv_newstate = wpi_newstate;
782
783         ieee80211_ratectl_init(vap);
784         /* complete setup */
785         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
786         ic->ic_opmode = opmode;
787         return vap;
788 }
789
790 static void
791 wpi_vap_delete(struct ieee80211vap *vap)
792 {
793         struct wpi_vap *wvp = WPI_VAP(vap);
794
795         ieee80211_ratectl_deinit(vap);
796         ieee80211_vap_detach(vap);
797         free(wvp, M_80211_VAP);
798 }
799
800 static void
801 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
802 {
803         if (error != 0)
804                 return;
805
806         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
807
808         *(bus_addr_t *)arg = segs[0].ds_addr;
809 }
810
811 /*
812  * Allocates a contiguous block of dma memory of the requested size and
813  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
814  * allocations greater than 4096 may fail. Hence if the requested alignment is
815  * greater we allocate 'alignment' size extra memory and shift the vaddr and
816  * paddr after the dma load. This bypasses the problem at the cost of a little
817  * more memory.
818  */
819 static int
820 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
821     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
822 {
823         int error;
824         bus_size_t align;
825         bus_size_t reqsize;
826
827         DPRINTFN(WPI_DEBUG_DMA,
828             ("Size: %zd - alignment %zd\n", size, alignment));
829
830         dma->size = size;
831         dma->tag = NULL;
832
833         if (alignment > 4096) {
834                 align = PAGE_SIZE;
835                 reqsize = size + alignment;
836         } else {
837                 align = alignment;
838                 reqsize = size;
839         }
840         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
841             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
842             NULL, NULL, reqsize,
843             1, reqsize, flags,
844             NULL, NULL, &dma->tag);
845         if (error != 0) {
846                 device_printf(sc->sc_dev,
847                     "could not create shared page DMA tag\n");
848                 goto fail;
849         }
850         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
851             flags | BUS_DMA_ZERO, &dma->map);
852         if (error != 0) {
853                 device_printf(sc->sc_dev,
854                     "could not allocate shared page DMA memory\n");
855                 goto fail;
856         }
857
858         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
859             reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
860
861         /* Save the original pointers so we can free all the memory */
862         dma->paddr = dma->paddr_start;
863         dma->vaddr = dma->vaddr_start;
864
865         /*
866          * Check the alignment and increment by 4096 until we get the
867          * requested alignment. Fail if can't obtain the alignment
868          * we requested.
869          */
870         if ((dma->paddr & (alignment -1 )) != 0) {
871                 int i;
872
873                 for (i = 0; i < alignment / 4096; i++) {
874                         if ((dma->paddr & (alignment - 1 )) == 0)
875                                 break;
876                         dma->paddr += 4096;
877                         dma->vaddr += 4096;
878                 }
879                 if (i == alignment / 4096) {
880                         device_printf(sc->sc_dev,
881                             "alignment requirement was not satisfied\n");
882                         goto fail;
883                 }
884         }
885
886         if (error != 0) {
887                 device_printf(sc->sc_dev,
888                     "could not load shared page DMA map\n");
889                 goto fail;
890         }
891
892         if (kvap != NULL)
893                 *kvap = dma->vaddr;
894
895         return 0;
896
897 fail:
898         wpi_dma_contig_free(dma);
899         return error;
900 }
901
902 static void
903 wpi_dma_contig_free(struct wpi_dma_info *dma)
904 {
905         if (dma->tag) {
906                 if (dma->map != NULL) {
907                         if (dma->paddr_start != 0) {
908                                 bus_dmamap_sync(dma->tag, dma->map,
909                                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
910                                 bus_dmamap_unload(dma->tag, dma->map);
911                         }
912                         bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
913                 }
914                 bus_dma_tag_destroy(dma->tag);
915         }
916 }
917
918 /*
919  * Allocate a shared page between host and NIC.
920  */
921 static int
922 wpi_alloc_shared(struct wpi_softc *sc)
923 {
924         int error;
925
926         error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
927             (void **)&sc->shared, sizeof (struct wpi_shared),
928             PAGE_SIZE,
929             BUS_DMA_NOWAIT);
930
931         if (error != 0) {
932                 device_printf(sc->sc_dev,
933                     "could not allocate shared area DMA memory\n");
934         }
935
936         return error;
937 }
938
939 static void
940 wpi_free_shared(struct wpi_softc *sc)
941 {
942         wpi_dma_contig_free(&sc->shared_dma);
943 }
944
945 static int
946 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
947 {
948
949         int i, error;
950
951         ring->cur = 0;
952
953         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
954             (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
955             WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
956
957         if (error != 0) {
958                 device_printf(sc->sc_dev,
959                     "%s: could not allocate rx ring DMA memory, error %d\n",
960                     __func__, error);
961                 goto fail;
962         }
963
964         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 
965             BUS_SPACE_MAXADDR_32BIT,
966             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
967             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
968         if (error != 0) {
969                 device_printf(sc->sc_dev,
970                     "%s: bus_dma_tag_create_failed, error %d\n",
971                     __func__, error);
972                 goto fail;
973         }
974
975         /*
976          * Setup Rx buffers.
977          */
978         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
979                 struct wpi_rx_data *data = &ring->data[i];
980                 struct mbuf *m;
981                 bus_addr_t paddr;
982
983                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
984                 if (error != 0) {
985                         device_printf(sc->sc_dev,
986                             "%s: bus_dmamap_create failed, error %d\n",
987                             __func__, error);
988                         goto fail;
989                 }
990                 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
991                 if (m == NULL) {
992                         device_printf(sc->sc_dev,
993                            "%s: could not allocate rx mbuf\n", __func__);
994                         error = ENOMEM;
995                         goto fail;
996                 }
997                 /* map page */
998                 error = bus_dmamap_load(ring->data_dmat, data->map,
999                     mtod(m, caddr_t), MJUMPAGESIZE,
1000                     wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1001                 if (error != 0 && error != EFBIG) {
1002                         device_printf(sc->sc_dev,
1003                             "%s: bus_dmamap_load failed, error %d\n",
1004                             __func__, error);
1005                         m_freem(m);
1006                         error = ENOMEM; /* XXX unique code */
1007                         goto fail;
1008                 }
1009                 bus_dmamap_sync(ring->data_dmat, data->map, 
1010                     BUS_DMASYNC_PREWRITE);
1011
1012                 data->m = m;
1013                 ring->desc[i] = htole32(paddr);
1014         }
1015         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1016             BUS_DMASYNC_PREWRITE);
1017         return 0;
1018 fail:
1019         wpi_free_rx_ring(sc, ring);
1020         return error;
1021 }
1022
1023 static void
1024 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1025 {
1026         int ntries;
1027
1028         wpi_mem_lock(sc);
1029
1030         WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1031
1032         for (ntries = 0; ntries < 100; ntries++) {
1033                 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1034                         break;
1035                 DELAY(10);
1036         }
1037
1038         wpi_mem_unlock(sc);
1039
1040 #ifdef WPI_DEBUG
1041         if (ntries == 100 && wpi_debug > 0)
1042                 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1043 #endif
1044
1045         ring->cur = 0;
1046 }
1047
1048 static void
1049 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1050 {
1051         int i;
1052
1053         wpi_dma_contig_free(&ring->desc_dma);
1054
1055         for (i = 0; i < WPI_RX_RING_COUNT; i++)
1056                 if (ring->data[i].m != NULL)
1057                         m_freem(ring->data[i].m);
1058 }
1059
1060 static int
1061 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1062         int qid)
1063 {
1064         struct wpi_tx_data *data;
1065         int i, error;
1066
1067         ring->qid = qid;
1068         ring->count = count;
1069         ring->queued = 0;
1070         ring->cur = 0;
1071         ring->data = NULL;
1072
1073         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1074                 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1075                 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1076
1077         if (error != 0) {
1078             device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1079             goto fail;
1080         }
1081
1082         /* update shared page with ring's base address */
1083         sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1084
1085         error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1086                 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1087                 BUS_DMA_NOWAIT);
1088
1089         if (error != 0) {
1090                 device_printf(sc->sc_dev,
1091                     "could not allocate tx command DMA memory\n");
1092                 goto fail;
1093         }
1094
1095         ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1096             M_NOWAIT | M_ZERO);
1097         if (ring->data == NULL) {
1098                 device_printf(sc->sc_dev,
1099                     "could not allocate tx data slots\n");
1100                 goto fail;
1101         }
1102
1103         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1104             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1105             WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1106             &ring->data_dmat);
1107         if (error != 0) {
1108                 device_printf(sc->sc_dev, "could not create data DMA tag\n");
1109                 goto fail;
1110         }
1111
1112         for (i = 0; i < count; i++) {
1113                 data = &ring->data[i];
1114
1115                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1116                 if (error != 0) {
1117                         device_printf(sc->sc_dev,
1118                             "could not create tx buf DMA map\n");
1119                         goto fail;
1120                 }
1121                 bus_dmamap_sync(ring->data_dmat, data->map,
1122                     BUS_DMASYNC_PREWRITE);
1123         }
1124
1125         return 0;
1126
1127 fail:
1128         wpi_free_tx_ring(sc, ring);
1129         return error;
1130 }
1131
1132 static void
1133 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1134 {
1135         struct wpi_tx_data *data;
1136         int i, ntries;
1137
1138         wpi_mem_lock(sc);
1139
1140         WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1141         for (ntries = 0; ntries < 100; ntries++) {
1142                 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1143                         break;
1144                 DELAY(10);
1145         }
1146 #ifdef WPI_DEBUG
1147         if (ntries == 100 && wpi_debug > 0)
1148                 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1149                     ring->qid);
1150 #endif
1151         wpi_mem_unlock(sc);
1152
1153         for (i = 0; i < ring->count; i++) {
1154                 data = &ring->data[i];
1155
1156                 if (data->m != NULL) {
1157                         bus_dmamap_unload(ring->data_dmat, data->map);
1158                         m_freem(data->m);
1159                         data->m = NULL;
1160                 }
1161         }
1162
1163         ring->queued = 0;
1164         ring->cur = 0;
1165 }
1166
1167 static void
1168 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1169 {
1170         struct wpi_tx_data *data;
1171         int i;
1172
1173         wpi_dma_contig_free(&ring->desc_dma);
1174         wpi_dma_contig_free(&ring->cmd_dma);
1175
1176         if (ring->data != NULL) {
1177                 for (i = 0; i < ring->count; i++) {
1178                         data = &ring->data[i];
1179
1180                         if (data->m != NULL) {
1181                                 bus_dmamap_sync(ring->data_dmat, data->map,
1182                                     BUS_DMASYNC_POSTWRITE);
1183                                 bus_dmamap_unload(ring->data_dmat, data->map);
1184                                 m_freem(data->m);
1185                                 data->m = NULL;
1186                         }
1187                 }
1188                 free(ring->data, M_DEVBUF);
1189         }
1190
1191         if (ring->data_dmat != NULL)
1192                 bus_dma_tag_destroy(ring->data_dmat);
1193 }
1194
1195 static int
1196 wpi_shutdown(device_t dev)
1197 {
1198         struct wpi_softc *sc = device_get_softc(dev);
1199
1200         WPI_LOCK(sc);
1201         wpi_stop_locked(sc);
1202         wpi_unload_firmware(sc);
1203         WPI_UNLOCK(sc);
1204
1205         return 0;
1206 }
1207
1208 static int
1209 wpi_suspend(device_t dev)
1210 {
1211         struct wpi_softc *sc = device_get_softc(dev);
1212
1213         wpi_stop(sc);
1214         return 0;
1215 }
1216
1217 static int
1218 wpi_resume(device_t dev)
1219 {
1220         struct wpi_softc *sc = device_get_softc(dev);
1221         struct ifnet *ifp = sc->sc_ifp;
1222
1223         pci_write_config(dev, 0x41, 0, 1);
1224
1225         if (ifp->if_flags & IFF_UP) {
1226                 wpi_init(ifp->if_softc);
1227                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1228                         wpi_start(ifp);
1229         }
1230         return 0;
1231 }
1232
1233 /**
1234  * Called by net80211 when ever there is a change to 80211 state machine
1235  */
1236 static int
1237 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1238 {
1239         struct wpi_vap *wvp = WPI_VAP(vap);
1240         struct ieee80211com *ic = vap->iv_ic;
1241         struct ifnet *ifp = ic->ic_ifp;
1242         struct wpi_softc *sc = ifp->if_softc;
1243         int error;
1244
1245         DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1246                 ieee80211_state_name[vap->iv_state],
1247                 ieee80211_state_name[nstate], sc->flags));
1248
1249         IEEE80211_UNLOCK(ic);
1250         WPI_LOCK(sc);
1251         if (nstate == IEEE80211_S_AUTH) {
1252                 /* The node must be registered in the firmware before auth */
1253                 error = wpi_auth(sc, vap);
1254                 if (error != 0) {
1255                         device_printf(sc->sc_dev,
1256                             "%s: could not move to auth state, error %d\n",
1257                             __func__, error);
1258                 }
1259         }
1260         if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1261                 error = wpi_run(sc, vap);
1262                 if (error != 0) {
1263                         device_printf(sc->sc_dev,
1264                             "%s: could not move to run state, error %d\n",
1265                             __func__, error);
1266                 }
1267         }
1268         if (nstate == IEEE80211_S_RUN) {
1269                 /* RUN -> RUN transition; just restart the timers */
1270                 wpi_calib_timeout(sc);
1271                 /* XXX split out rate control timer */
1272         }
1273         WPI_UNLOCK(sc);
1274         IEEE80211_LOCK(ic);
1275         return wvp->newstate(vap, nstate, arg);
1276 }
1277
1278 /*
1279  * Grab exclusive access to NIC memory.
1280  */
1281 static void
1282 wpi_mem_lock(struct wpi_softc *sc)
1283 {
1284         int ntries;
1285         uint32_t tmp;
1286
1287         tmp = WPI_READ(sc, WPI_GPIO_CTL);
1288         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1289
1290         /* spin until we actually get the lock */
1291         for (ntries = 0; ntries < 100; ntries++) {
1292                 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1293                         (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1294                         break;
1295                 DELAY(10);
1296         }
1297         if (ntries == 100)
1298                 device_printf(sc->sc_dev, "could not lock memory\n");
1299 }
1300
1301 /*
1302  * Release lock on NIC memory.
1303  */
1304 static void
1305 wpi_mem_unlock(struct wpi_softc *sc)
1306 {
1307         uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1308         WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1309 }
1310
1311 static uint32_t
1312 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1313 {
1314         WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1315         return WPI_READ(sc, WPI_READ_MEM_DATA);
1316 }
1317
1318 static void
1319 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1320 {
1321         WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1322         WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1323 }
1324
1325 static void
1326 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1327     const uint32_t *data, int wlen)
1328 {
1329         for (; wlen > 0; wlen--, data++, addr+=4)
1330                 wpi_mem_write(sc, addr, *data);
1331 }
1332
1333 /*
1334  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1335  * using the traditional bit-bang method. Data is read up until len bytes have
1336  * been obtained.
1337  */
1338 static uint16_t
1339 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1340 {
1341         int ntries;
1342         uint32_t val;
1343         uint8_t *out = data;
1344
1345         wpi_mem_lock(sc);
1346
1347         for (; len > 0; len -= 2, addr++) {
1348                 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1349
1350                 for (ntries = 0; ntries < 10; ntries++) {
1351                         if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1352                                 break;
1353                         DELAY(5);
1354                 }
1355
1356                 if (ntries == 10) {
1357                         device_printf(sc->sc_dev, "could not read EEPROM\n");
1358                         return ETIMEDOUT;
1359                 }
1360
1361                 *out++= val >> 16;
1362                 if (len > 1)
1363                         *out ++= val >> 24;
1364         }
1365
1366         wpi_mem_unlock(sc);
1367
1368         return 0;
1369 }
1370
1371 /*
1372  * The firmware text and data segments are transferred to the NIC using DMA.
1373  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1374  * where to find it.  Once the NIC has copied the firmware into its internal
1375  * memory, we can free our local copy in the driver.
1376  */
1377 static int
1378 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1379 {
1380         int error, ntries;
1381
1382         DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1383
1384         size /= sizeof(uint32_t);
1385
1386         wpi_mem_lock(sc);
1387
1388         wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1389             (const uint32_t *)fw, size);
1390
1391         wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1392         wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1393         wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1394
1395         /* run microcode */
1396         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1397
1398         /* wait while the adapter is busy copying the firmware */
1399         for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1400                 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1401                 DPRINTFN(WPI_DEBUG_HW,
1402                     ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1403                      WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1404                 if (status & WPI_TX_IDLE(6)) {
1405                         DPRINTFN(WPI_DEBUG_HW,
1406                             ("Status Match! - ntries = %d\n", ntries));
1407                         break;
1408                 }
1409                 DELAY(10);
1410         }
1411         if (ntries == 1000) {
1412                 device_printf(sc->sc_dev, "timeout transferring firmware\n");
1413                 error = ETIMEDOUT;
1414         }
1415
1416         /* start the microcode executing */
1417         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1418
1419         wpi_mem_unlock(sc);
1420
1421         return (error);
1422 }
1423
1424 static void
1425 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1426         struct wpi_rx_data *data)
1427 {
1428         struct ifnet *ifp = sc->sc_ifp;
1429         struct ieee80211com *ic = ifp->if_l2com;
1430         struct wpi_rx_ring *ring = &sc->rxq;
1431         struct wpi_rx_stat *stat;
1432         struct wpi_rx_head *head;
1433         struct wpi_rx_tail *tail;
1434         struct ieee80211_node *ni;
1435         struct mbuf *m, *mnew;
1436         bus_addr_t paddr;
1437         int error;
1438
1439         stat = (struct wpi_rx_stat *)(desc + 1);
1440
1441         if (stat->len > WPI_STAT_MAXLEN) {
1442                 device_printf(sc->sc_dev, "invalid rx statistic header\n");
1443                 ifp->if_ierrors++;
1444                 return;
1445         }
1446
1447         head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1448         tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1449
1450         DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1451             "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1452             le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1453             (uintmax_t)le64toh(tail->tstamp)));
1454
1455         /* discard Rx frames with bad CRC early */
1456         if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1457                 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1458                     le32toh(tail->flags)));
1459                 ifp->if_ierrors++;
1460                 return;
1461         }
1462         if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1463                 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1464                     le16toh(head->len)));
1465                 ifp->if_ierrors++;
1466                 return;
1467         }
1468
1469         /* XXX don't need mbuf, just dma buffer */
1470         mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1471         if (mnew == NULL) {
1472                 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1473                     __func__));
1474                 ifp->if_ierrors++;
1475                 return;
1476         }
1477         error = bus_dmamap_load(ring->data_dmat, data->map,
1478             mtod(mnew, caddr_t), MJUMPAGESIZE,
1479             wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1480         if (error != 0 && error != EFBIG) {
1481                 device_printf(sc->sc_dev,
1482                     "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1483                 m_freem(mnew);
1484                 ifp->if_ierrors++;
1485                 return;
1486         }
1487         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1488
1489         /* finalize mbuf and swap in new one */
1490         m = data->m;
1491         m->m_pkthdr.rcvif = ifp;
1492         m->m_data = (caddr_t)(head + 1);
1493         m->m_pkthdr.len = m->m_len = le16toh(head->len);
1494
1495         data->m = mnew;
1496         /* update Rx descriptor */
1497         ring->desc[ring->cur] = htole32(paddr);
1498
1499         if (ieee80211_radiotap_active(ic)) {
1500                 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1501
1502                 tap->wr_flags = 0;
1503                 tap->wr_chan_freq =
1504                         htole16(ic->ic_channels[head->chan].ic_freq);
1505                 tap->wr_chan_flags =
1506                         htole16(ic->ic_channels[head->chan].ic_flags);
1507                 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1508                 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1509                 tap->wr_tsft = tail->tstamp;
1510                 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1511                 switch (head->rate) {
1512                 /* CCK rates */
1513                 case  10: tap->wr_rate =   2; break;
1514                 case  20: tap->wr_rate =   4; break;
1515                 case  55: tap->wr_rate =  11; break;
1516                 case 110: tap->wr_rate =  22; break;
1517                 /* OFDM rates */
1518                 case 0xd: tap->wr_rate =  12; break;
1519                 case 0xf: tap->wr_rate =  18; break;
1520                 case 0x5: tap->wr_rate =  24; break;
1521                 case 0x7: tap->wr_rate =  36; break;
1522                 case 0x9: tap->wr_rate =  48; break;
1523                 case 0xb: tap->wr_rate =  72; break;
1524                 case 0x1: tap->wr_rate =  96; break;
1525                 case 0x3: tap->wr_rate = 108; break;
1526                 /* unknown rate: should not happen */
1527                 default:  tap->wr_rate =   0;
1528                 }
1529                 if (le16toh(head->flags) & 0x4)
1530                         tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1531         }
1532
1533         WPI_UNLOCK(sc);
1534
1535         ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1536         if (ni != NULL) {
1537                 (void) ieee80211_input(ni, m, stat->rssi, 0);
1538                 ieee80211_free_node(ni);
1539         } else
1540                 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
1541
1542         WPI_LOCK(sc);
1543 }
1544
1545 static void
1546 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1547 {
1548         struct ifnet *ifp = sc->sc_ifp;
1549         struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1550         struct wpi_tx_data *txdata = &ring->data[desc->idx];
1551         struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1552         struct ieee80211_node *ni = txdata->ni;
1553         struct ieee80211vap *vap = ni->ni_vap;
1554         int retrycnt = 0;
1555
1556         DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1557             "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1558             stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1559             le32toh(stat->status)));
1560
1561         /*
1562          * Update rate control statistics for the node.
1563          * XXX we should not count mgmt frames since they're always sent at
1564          * the lowest available bit-rate.
1565          * XXX frames w/o ACK shouldn't be used either
1566          */
1567         if (stat->ntries > 0) {
1568                 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1569                 retrycnt = 1;
1570         }
1571         ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1572             &retrycnt, NULL);
1573
1574         /* XXX oerrors should only count errors !maxtries */
1575         if ((le32toh(stat->status) & 0xff) != 1)
1576                 ifp->if_oerrors++;
1577         else
1578                 ifp->if_opackets++;
1579
1580         bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1581         bus_dmamap_unload(ring->data_dmat, txdata->map);
1582         /* XXX handle M_TXCB? */
1583         m_freem(txdata->m);
1584         txdata->m = NULL;
1585         ieee80211_free_node(txdata->ni);
1586         txdata->ni = NULL;
1587
1588         ring->queued--;
1589
1590         sc->sc_tx_timer = 0;
1591         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1592         wpi_start_locked(ifp);
1593 }
1594
1595 static void
1596 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1597 {
1598         struct wpi_tx_ring *ring = &sc->cmdq;
1599         struct wpi_tx_data *data;
1600
1601         DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1602                                  "type=%s len=%d\n", desc->qid, desc->idx,
1603                                  desc->flags, wpi_cmd_str(desc->type),
1604                                  le32toh(desc->len)));
1605
1606         if ((desc->qid & 7) != 4)
1607                 return; /* not a command ack */
1608
1609         data = &ring->data[desc->idx];
1610
1611         /* if the command was mapped in a mbuf, free it */
1612         if (data->m != NULL) {
1613                 bus_dmamap_unload(ring->data_dmat, data->map);
1614                 m_freem(data->m);
1615                 data->m = NULL;
1616         }
1617
1618         sc->flags &= ~WPI_FLAG_BUSY;
1619         wakeup(&ring->cmd[desc->idx]);
1620 }
1621
1622 static void
1623 wpi_notif_intr(struct wpi_softc *sc)
1624 {
1625         struct ifnet *ifp = sc->sc_ifp;
1626         struct ieee80211com *ic = ifp->if_l2com;
1627         struct wpi_rx_desc *desc;
1628         struct wpi_rx_data *data;
1629         uint32_t hw;
1630
1631         hw = le32toh(sc->shared->next);
1632         while (sc->rxq.cur != hw) {
1633                 data = &sc->rxq.data[sc->rxq.cur];
1634                 desc = (void *)data->m->m_ext.ext_buf;
1635
1636                 DPRINTFN(WPI_DEBUG_NOTIFY,
1637                          ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1638                           desc->qid,
1639                           desc->idx,
1640                           desc->flags,
1641                           desc->type,
1642                           le32toh(desc->len)));
1643
1644                 if (!(desc->qid & 0x80))        /* reply to a command */
1645                         wpi_cmd_intr(sc, desc);
1646
1647                 switch (desc->type) {
1648                 case WPI_RX_DONE:
1649                         /* a 802.11 frame was received */
1650                         wpi_rx_intr(sc, desc, data);
1651                         break;
1652
1653                 case WPI_TX_DONE:
1654                         /* a 802.11 frame has been transmitted */
1655                         wpi_tx_intr(sc, desc);
1656                         break;
1657
1658                 case WPI_UC_READY:
1659                 {
1660                         struct wpi_ucode_info *uc =
1661                                 (struct wpi_ucode_info *)(desc + 1);
1662
1663                         /* the microcontroller is ready */
1664                         DPRINTF(("microcode alive notification version %x "
1665                                 "alive %x\n", le32toh(uc->version),
1666                                 le32toh(uc->valid)));
1667
1668                         if (le32toh(uc->valid) != 1) {
1669                                 device_printf(sc->sc_dev,
1670                                     "microcontroller initialization failed\n");
1671                                 wpi_stop_locked(sc);
1672                         }
1673                         break;
1674                 }
1675                 case WPI_STATE_CHANGED:
1676                 {
1677                         uint32_t *status = (uint32_t *)(desc + 1);
1678
1679                         /* enabled/disabled notification */
1680                         DPRINTF(("state changed to %x\n", le32toh(*status)));
1681
1682                         if (le32toh(*status) & 1) {
1683                                 device_printf(sc->sc_dev,
1684                                     "Radio transmitter is switched off\n");
1685                                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1686                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1687                                 /* Disable firmware commands */
1688                                 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1689                         }
1690                         break;
1691                 }
1692                 case WPI_START_SCAN:
1693                 {
1694 #ifdef WPI_DEBUG
1695                         struct wpi_start_scan *scan =
1696                                 (struct wpi_start_scan *)(desc + 1);
1697 #endif
1698
1699                         DPRINTFN(WPI_DEBUG_SCANNING,
1700                                  ("scanning channel %d status %x\n",
1701                             scan->chan, le32toh(scan->status)));
1702                         break;
1703                 }
1704                 case WPI_STOP_SCAN:
1705                 {
1706 #ifdef WPI_DEBUG
1707                         struct wpi_stop_scan *scan =
1708                                 (struct wpi_stop_scan *)(desc + 1);
1709 #endif
1710                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1711
1712                         DPRINTFN(WPI_DEBUG_SCANNING,
1713                             ("scan finished nchan=%d status=%d chan=%d\n",
1714                              scan->nchan, scan->status, scan->chan));
1715
1716                         sc->sc_scan_timer = 0;
1717                         ieee80211_scan_next(vap);
1718                         break;
1719                 }
1720                 case WPI_MISSED_BEACON:
1721                 {
1722                         struct wpi_missed_beacon *beacon =
1723                                 (struct wpi_missed_beacon *)(desc + 1);
1724                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1725
1726                         if (le32toh(beacon->consecutive) >=
1727                             vap->iv_bmissthreshold) {
1728                                 DPRINTF(("Beacon miss: %u >= %u\n",
1729                                          le32toh(beacon->consecutive),
1730                                          vap->iv_bmissthreshold));
1731                                 ieee80211_beacon_miss(ic);
1732                         }
1733                         break;
1734                 }
1735                 }
1736
1737                 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1738         }
1739
1740         /* tell the firmware what we have processed */
1741         hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1742         WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1743 }
1744
1745 static void
1746 wpi_intr(void *arg)
1747 {
1748         struct wpi_softc *sc = arg;
1749         uint32_t r;
1750
1751         WPI_LOCK(sc);
1752
1753         r = WPI_READ(sc, WPI_INTR);
1754         if (r == 0 || r == 0xffffffff) {
1755                 WPI_UNLOCK(sc);
1756                 return;
1757         }
1758
1759         /* disable interrupts */
1760         WPI_WRITE(sc, WPI_MASK, 0);
1761         /* ack interrupts */
1762         WPI_WRITE(sc, WPI_INTR, r);
1763
1764         if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1765                 struct ifnet *ifp = sc->sc_ifp;
1766                 struct ieee80211com *ic = ifp->if_l2com;
1767                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1768
1769                 device_printf(sc->sc_dev, "fatal firmware error\n");
1770                 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1771                                 "(Hardware Error)"));
1772                 if (vap != NULL)
1773                         ieee80211_cancel_scan(vap);
1774                 ieee80211_runtask(ic, &sc->sc_restarttask);
1775                 sc->flags &= ~WPI_FLAG_BUSY;
1776                 WPI_UNLOCK(sc);
1777                 return;
1778         }
1779
1780         if (r & WPI_RX_INTR)
1781                 wpi_notif_intr(sc);
1782
1783         if (r & WPI_ALIVE_INTR) /* firmware initialized */
1784                 wakeup(sc);
1785
1786         /* re-enable interrupts */
1787         if (sc->sc_ifp->if_flags & IFF_UP)
1788                 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1789
1790         WPI_UNLOCK(sc);
1791 }
1792
1793 static uint8_t
1794 wpi_plcp_signal(int rate)
1795 {
1796         switch (rate) {
1797         /* CCK rates (returned values are device-dependent) */
1798         case 2:         return 10;
1799         case 4:         return 20;
1800         case 11:        return 55;
1801         case 22:        return 110;
1802
1803         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1804         /* R1-R4 (ral/ural is R4-R1) */
1805         case 12:        return 0xd;
1806         case 18:        return 0xf;
1807         case 24:        return 0x5;
1808         case 36:        return 0x7;
1809         case 48:        return 0x9;
1810         case 72:        return 0xb;
1811         case 96:        return 0x1;
1812         case 108:       return 0x3;
1813
1814         /* unsupported rates (should not get there) */
1815         default:        return 0;
1816         }
1817 }
1818
1819 /* quickly determine if a given rate is CCK or OFDM */
1820 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1821
1822 /*
1823  * Construct the data packet for a transmit buffer and acutally put
1824  * the buffer onto the transmit ring, kicking the card to process the
1825  * the buffer.
1826  */
1827 static int
1828 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1829         int ac)
1830 {
1831         struct ieee80211vap *vap = ni->ni_vap;
1832         struct ifnet *ifp = sc->sc_ifp;
1833         struct ieee80211com *ic = ifp->if_l2com;
1834         const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1835         struct wpi_tx_ring *ring = &sc->txq[ac];
1836         struct wpi_tx_desc *desc;
1837         struct wpi_tx_data *data;
1838         struct wpi_tx_cmd *cmd;
1839         struct wpi_cmd_data *tx;
1840         struct ieee80211_frame *wh;
1841         const struct ieee80211_txparam *tp;
1842         struct ieee80211_key *k;
1843         struct mbuf *mnew;
1844         int i, error, nsegs, rate, hdrlen, ismcast;
1845         bus_dma_segment_t segs[WPI_MAX_SCATTER];
1846
1847         desc = &ring->desc[ring->cur];
1848         data = &ring->data[ring->cur];
1849
1850         wh = mtod(m0, struct ieee80211_frame *);
1851
1852         hdrlen = ieee80211_hdrsize(wh);
1853         ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1854
1855         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1856                 k = ieee80211_crypto_encap(ni, m0);
1857                 if (k == NULL) {
1858                         m_freem(m0);
1859                         return ENOBUFS;
1860                 }
1861                 /* packet header may have moved, reset our local pointer */
1862                 wh = mtod(m0, struct ieee80211_frame *);
1863         }
1864
1865         cmd = &ring->cmd[ring->cur];
1866         cmd->code = WPI_CMD_TX_DATA;
1867         cmd->flags = 0;
1868         cmd->qid = ring->qid;
1869         cmd->idx = ring->cur;
1870
1871         tx = (struct wpi_cmd_data *)cmd->data;
1872         tx->flags = htole32(WPI_TX_AUTO_SEQ);
1873         tx->timeout = htole16(0);
1874         tx->ofdm_mask = 0xff;
1875         tx->cck_mask = 0x0f;
1876         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1877         tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1878         tx->len = htole16(m0->m_pkthdr.len);
1879
1880         if (!ismcast) {
1881                 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1882                     !cap->cap_wmeParams[ac].wmep_noackPolicy)
1883                         tx->flags |= htole32(WPI_TX_NEED_ACK);
1884                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1885                         tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1886                         tx->rts_ntries = 7;
1887                 }
1888         }
1889         /* pick a rate */
1890         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1891         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1892                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1893                 /* tell h/w to set timestamp in probe responses */
1894                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1895                         tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1896                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1897                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1898                         tx->timeout = htole16(3);
1899                 else
1900                         tx->timeout = htole16(2);
1901                 rate = tp->mgmtrate;
1902         } else if (ismcast) {
1903                 rate = tp->mcastrate;
1904         } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1905                 rate = tp->ucastrate;
1906         } else {
1907                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
1908                 rate = ni->ni_txrate;
1909         }
1910         tx->rate = wpi_plcp_signal(rate);
1911
1912         /* be very persistant at sending frames out */
1913 #if 0
1914         tx->data_ntries = tp->maxretry;
1915 #else
1916         tx->data_ntries = 15;           /* XXX way too high */
1917 #endif
1918
1919         if (ieee80211_radiotap_active_vap(vap)) {
1920                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1921                 tap->wt_flags = 0;
1922                 tap->wt_rate = rate;
1923                 tap->wt_hwqueue = ac;
1924                 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1925                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1926
1927                 ieee80211_radiotap_tx(vap, m0);
1928         }
1929
1930         /* save and trim IEEE802.11 header */
1931         m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1932         m_adj(m0, hdrlen);
1933
1934         error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1935             &nsegs, BUS_DMA_NOWAIT);
1936         if (error != 0 && error != EFBIG) {
1937                 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1938                     error);
1939                 m_freem(m0);
1940                 return error;
1941         }
1942         if (error != 0) {
1943                 /* XXX use m_collapse */
1944                 mnew = m_defrag(m0, M_DONTWAIT);
1945                 if (mnew == NULL) {
1946                         device_printf(sc->sc_dev,
1947                             "could not defragment mbuf\n");
1948                         m_freem(m0);
1949                         return ENOBUFS;
1950                 }
1951                 m0 = mnew;
1952
1953                 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1954                     m0, segs, &nsegs, BUS_DMA_NOWAIT);
1955                 if (error != 0) {
1956                         device_printf(sc->sc_dev,
1957                             "could not map mbuf (error %d)\n", error);
1958                         m_freem(m0);
1959                         return error;
1960                 }
1961         }
1962
1963         data->m = m0;
1964         data->ni = ni;
1965
1966         DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1967             ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1968
1969         /* first scatter/gather segment is used by the tx data command */
1970         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1971             (1 + nsegs) << 24);
1972         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1973             ring->cur * sizeof (struct wpi_tx_cmd));
1974         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1975         for (i = 1; i <= nsegs; i++) {
1976                 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1977                 desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1978         }
1979
1980         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1981         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1982             BUS_DMASYNC_PREWRITE);
1983
1984         ring->queued++;
1985
1986         /* kick ring */
1987         ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1988         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1989
1990         return 0;
1991 }
1992
1993 /**
1994  * Process data waiting to be sent on the IFNET output queue
1995  */
1996 static void
1997 wpi_start(struct ifnet *ifp)
1998 {
1999         struct wpi_softc *sc = ifp->if_softc;
2000
2001         WPI_LOCK(sc);
2002         wpi_start_locked(ifp);
2003         WPI_UNLOCK(sc);
2004 }
2005
2006 static void
2007 wpi_start_locked(struct ifnet *ifp)
2008 {
2009         struct wpi_softc *sc = ifp->if_softc;
2010         struct ieee80211_node *ni;
2011         struct mbuf *m;
2012         int ac;
2013
2014         WPI_LOCK_ASSERT(sc);
2015
2016         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2017                 return;
2018
2019         for (;;) {
2020                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2021                 if (m == NULL)
2022                         break;
2023                 ac = M_WME_GETAC(m);
2024                 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2025                         /* there is no place left in this ring */
2026                         IFQ_DRV_PREPEND(&ifp->if_snd, m);
2027                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2028                         break;
2029                 }
2030                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2031                 if (wpi_tx_data(sc, m, ni, ac) != 0) {
2032                         ieee80211_free_node(ni);
2033                         ifp->if_oerrors++;
2034                         break;
2035                 }
2036                 sc->sc_tx_timer = 5;
2037         }
2038 }
2039
2040 static int
2041 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2042         const struct ieee80211_bpf_params *params)
2043 {
2044         struct ieee80211com *ic = ni->ni_ic;
2045         struct ifnet *ifp = ic->ic_ifp;
2046         struct wpi_softc *sc = ifp->if_softc;
2047
2048         /* prevent management frames from being sent if we're not ready */
2049         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2050                 m_freem(m);
2051                 ieee80211_free_node(ni);
2052                 return ENETDOWN;
2053         }
2054         WPI_LOCK(sc);
2055
2056         /* management frames go into ring 0 */
2057         if (sc->txq[0].queued > sc->txq[0].count - 8) {
2058                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2059                 m_freem(m);
2060                 WPI_UNLOCK(sc);
2061                 ieee80211_free_node(ni);
2062                 return ENOBUFS;         /* XXX */
2063         }
2064
2065         ifp->if_opackets++;
2066         if (wpi_tx_data(sc, m, ni, 0) != 0)
2067                 goto bad;
2068         sc->sc_tx_timer = 5;
2069         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2070
2071         WPI_UNLOCK(sc);
2072         return 0;
2073 bad:
2074         ifp->if_oerrors++;
2075         WPI_UNLOCK(sc);
2076         ieee80211_free_node(ni);
2077         return EIO;             /* XXX */
2078 }
2079
2080 static int
2081 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2082 {
2083         struct wpi_softc *sc = ifp->if_softc;
2084         struct ieee80211com *ic = ifp->if_l2com;
2085         struct ifreq *ifr = (struct ifreq *) data;
2086         int error = 0, startall = 0;
2087
2088         switch (cmd) {
2089         case SIOCSIFFLAGS:
2090                 WPI_LOCK(sc);
2091                 if ((ifp->if_flags & IFF_UP)) {
2092                         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2093                                 wpi_init_locked(sc, 0);
2094                                 startall = 1;
2095                         }
2096                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2097                            (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2098                         wpi_stop_locked(sc);
2099                 WPI_UNLOCK(sc);
2100                 if (startall)
2101                         ieee80211_start_all(ic);
2102                 break;
2103         case SIOCGIFMEDIA:
2104                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2105                 break;
2106         case SIOCGIFADDR:
2107                 error = ether_ioctl(ifp, cmd, data);
2108                 break;
2109         default:
2110                 error = EINVAL;
2111                 break;
2112         }
2113         return error;
2114 }
2115
2116 /*
2117  * Extract various information from EEPROM.
2118  */
2119 static void
2120 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2121 {
2122         int i;
2123
2124         /* read the hardware capabilities, revision and SKU type */
2125         wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2126         wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2127         wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2128
2129         /* read the regulatory domain */
2130         wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2131
2132         /* read in the hw MAC address */
2133         wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2134
2135         /* read the list of authorized channels */
2136         for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2137                 wpi_read_eeprom_channels(sc,i);
2138
2139         /* read the power level calibration info for each group */
2140         for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2141                 wpi_read_eeprom_group(sc,i);
2142 }
2143
2144 /*
2145  * Send a command to the firmware.
2146  */
2147 static int
2148 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2149 {
2150         struct wpi_tx_ring *ring = &sc->cmdq;
2151         struct wpi_tx_desc *desc;
2152         struct wpi_tx_cmd *cmd;
2153
2154 #ifdef WPI_DEBUG
2155         if (!async) {
2156                 WPI_LOCK_ASSERT(sc);
2157         }
2158 #endif
2159
2160         DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2161                     async));
2162
2163         if (sc->flags & WPI_FLAG_BUSY) {
2164                 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2165                     __func__, code);
2166                 return EAGAIN;
2167         }
2168         sc->flags|= WPI_FLAG_BUSY;
2169
2170         KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2171             code, size));
2172
2173         desc = &ring->desc[ring->cur];
2174         cmd = &ring->cmd[ring->cur];
2175
2176         cmd->code = code;
2177         cmd->flags = 0;
2178         cmd->qid = ring->qid;
2179         cmd->idx = ring->cur;
2180         memcpy(cmd->data, buf, size);
2181
2182         desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2183         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2184                 ring->cur * sizeof (struct wpi_tx_cmd));
2185         desc->segs[0].len  = htole32(4 + size);
2186
2187         /* kick cmd ring */
2188         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2189         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2190
2191         if (async) {
2192                 sc->flags &= ~ WPI_FLAG_BUSY;
2193                 return 0;
2194         }
2195
2196         return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2197 }
2198
2199 static int
2200 wpi_wme_update(struct ieee80211com *ic)
2201 {
2202 #define WPI_EXP2(v)     htole16((1 << (v)) - 1)
2203 #define WPI_USEC(v)     htole16(IEEE80211_TXOP_TO_US(v))
2204         struct wpi_softc *sc = ic->ic_ifp->if_softc;
2205         const struct wmeParams *wmep;
2206         struct wpi_wme_setup wme;
2207         int ac;
2208
2209         /* don't override default WME values if WME is not actually enabled */
2210         if (!(ic->ic_flags & IEEE80211_F_WME))
2211                 return 0;
2212
2213         wme.flags = 0;
2214         for (ac = 0; ac < WME_NUM_AC; ac++) {
2215                 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2216                 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2217                 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2218                 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2219                 wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2220
2221                 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2222                     "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2223                     wme.ac[ac].cwmax, wme.ac[ac].txop));
2224         }
2225         return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2226 #undef WPI_USEC
2227 #undef WPI_EXP2
2228 }
2229
2230 /*
2231  * Configure h/w multi-rate retries.
2232  */
2233 static int
2234 wpi_mrr_setup(struct wpi_softc *sc)
2235 {
2236         struct ifnet *ifp = sc->sc_ifp;
2237         struct ieee80211com *ic = ifp->if_l2com;
2238         struct wpi_mrr_setup mrr;
2239         int i, error;
2240
2241         memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2242
2243         /* CCK rates (not used with 802.11a) */
2244         for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2245                 mrr.rates[i].flags = 0;
2246                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2247                 /* fallback to the immediate lower CCK rate (if any) */
2248                 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2249                 /* try one time at this rate before falling back to "next" */
2250                 mrr.rates[i].ntries = 1;
2251         }
2252
2253         /* OFDM rates (not used with 802.11b) */
2254         for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2255                 mrr.rates[i].flags = 0;
2256                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2257                 /* fallback to the immediate lower OFDM rate (if any) */
2258                 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2259                 mrr.rates[i].next = (i == WPI_OFDM6) ?
2260                     ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2261                         WPI_OFDM6 : WPI_CCK2) :
2262                     i - 1;
2263                 /* try one time at this rate before falling back to "next" */
2264                 mrr.rates[i].ntries = 1;
2265         }
2266
2267         /* setup MRR for control frames */
2268         mrr.which = htole32(WPI_MRR_CTL);
2269         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2270         if (error != 0) {
2271                 device_printf(sc->sc_dev,
2272                     "could not setup MRR for control frames\n");
2273                 return error;
2274         }
2275
2276         /* setup MRR for data frames */
2277         mrr.which = htole32(WPI_MRR_DATA);
2278         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2279         if (error != 0) {
2280                 device_printf(sc->sc_dev,
2281                     "could not setup MRR for data frames\n");
2282                 return error;
2283         }
2284
2285         return 0;
2286 }
2287
2288 static void
2289 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2290 {
2291         struct wpi_cmd_led led;
2292
2293         led.which = which;
2294         led.unit = htole32(100000);     /* on/off in unit of 100ms */
2295         led.off = off;
2296         led.on = on;
2297
2298         (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2299 }
2300
2301 static void
2302 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2303 {
2304         struct wpi_cmd_tsf tsf;
2305         uint64_t val, mod;
2306
2307         memset(&tsf, 0, sizeof tsf);
2308         memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2309         tsf.bintval = htole16(ni->ni_intval);
2310         tsf.lintval = htole16(10);
2311
2312         /* compute remaining time until next beacon */
2313         val = (uint64_t)ni->ni_intval  * 1024;  /* msec -> usec */
2314         mod = le64toh(tsf.tstamp) % val;
2315         tsf.binitval = htole32((uint32_t)(val - mod));
2316
2317         if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2318                 device_printf(sc->sc_dev, "could not enable TSF\n");
2319 }
2320
2321 #if 0
2322 /*
2323  * Build a beacon frame that the firmware will broadcast periodically in
2324  * IBSS or HostAP modes.
2325  */
2326 static int
2327 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2328 {
2329         struct ifnet *ifp = sc->sc_ifp;
2330         struct ieee80211com *ic = ifp->if_l2com;
2331         struct wpi_tx_ring *ring = &sc->cmdq;
2332         struct wpi_tx_desc *desc;
2333         struct wpi_tx_data *data;
2334         struct wpi_tx_cmd *cmd;
2335         struct wpi_cmd_beacon *bcn;
2336         struct ieee80211_beacon_offsets bo;
2337         struct mbuf *m0;
2338         bus_addr_t physaddr;
2339         int error;
2340
2341         desc = &ring->desc[ring->cur];
2342         data = &ring->data[ring->cur];
2343
2344         m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2345         if (m0 == NULL) {
2346                 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2347                 return ENOMEM;
2348         }
2349
2350         cmd = &ring->cmd[ring->cur];
2351         cmd->code = WPI_CMD_SET_BEACON;
2352         cmd->flags = 0;
2353         cmd->qid = ring->qid;
2354         cmd->idx = ring->cur;
2355
2356         bcn = (struct wpi_cmd_beacon *)cmd->data;
2357         memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2358         bcn->id = WPI_ID_BROADCAST;
2359         bcn->ofdm_mask = 0xff;
2360         bcn->cck_mask = 0x0f;
2361         bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2362         bcn->len = htole16(m0->m_pkthdr.len);
2363         bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2364                 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2365         bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2366
2367         /* save and trim IEEE802.11 header */
2368         m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2369         m_adj(m0, sizeof (struct ieee80211_frame));
2370
2371         /* assume beacon frame is contiguous */
2372         error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2373             m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2374         if (error != 0) {
2375                 device_printf(sc->sc_dev, "could not map beacon\n");
2376                 m_freem(m0);
2377                 return error;
2378         }
2379
2380         data->m = m0;
2381
2382         /* first scatter/gather segment is used by the beacon command */
2383         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2384         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2385                 ring->cur * sizeof (struct wpi_tx_cmd));
2386         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2387         desc->segs[1].addr = htole32(physaddr);
2388         desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2389
2390         /* kick cmd ring */
2391         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2392         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2393
2394         return 0;
2395 }
2396 #endif
2397
2398 static int
2399 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2400 {
2401         struct ieee80211com *ic = vap->iv_ic;
2402         struct ieee80211_node *ni = vap->iv_bss;
2403         struct wpi_node_info node;
2404         int error;
2405
2406
2407         /* update adapter's configuration */
2408         sc->config.associd = 0;
2409         sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2410         IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2411         sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2412         if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2413                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2414                     WPI_CONFIG_24GHZ);
2415         }
2416         if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2417                 sc->config.cck_mask  = 0;
2418                 sc->config.ofdm_mask = 0x15;
2419         } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2420                 sc->config.cck_mask  = 0x03;
2421                 sc->config.ofdm_mask = 0;
2422         } else {
2423                 /* XXX assume 802.11b/g */
2424                 sc->config.cck_mask  = 0x0f;
2425                 sc->config.ofdm_mask = 0x15;
2426         }
2427
2428         DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2429                 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2430         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2431                 sizeof (struct wpi_config), 1);
2432         if (error != 0) {
2433                 device_printf(sc->sc_dev, "could not configure\n");
2434                 return error;
2435         }
2436
2437         /* configuration has changed, set Tx power accordingly */
2438         if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2439                 device_printf(sc->sc_dev, "could not set Tx power\n");
2440                 return error;
2441         }
2442
2443         /* add default node */
2444         memset(&node, 0, sizeof node);
2445         IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2446         node.id = WPI_ID_BSS;
2447         node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2448             wpi_plcp_signal(12) : wpi_plcp_signal(2);
2449         node.action = htole32(WPI_ACTION_SET_RATE);
2450         node.antenna = WPI_ANTENNA_BOTH;
2451         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2452         if (error != 0)
2453                 device_printf(sc->sc_dev, "could not add BSS node\n");
2454
2455         return (error);
2456 }
2457
2458 static int
2459 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2460 {
2461         struct ieee80211com *ic = vap->iv_ic;
2462         struct ieee80211_node *ni = vap->iv_bss;
2463         int error;
2464
2465         if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2466                 /* link LED blinks while monitoring */
2467                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2468                 return 0;
2469         }
2470
2471         wpi_enable_tsf(sc, ni);
2472
2473         /* update adapter's configuration */
2474         sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2475         /* short preamble/slot time are negotiated when associating */
2476         sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2477             WPI_CONFIG_SHSLOT);
2478         if (ic->ic_flags & IEEE80211_F_SHSLOT)
2479                 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2480         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2481                 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2482         sc->config.filter |= htole32(WPI_FILTER_BSS);
2483
2484         /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2485
2486         DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2487                     sc->config.flags));
2488         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2489                     wpi_config), 1);
2490         if (error != 0) {
2491                 device_printf(sc->sc_dev, "could not update configuration\n");
2492                 return error;
2493         }
2494
2495         error = wpi_set_txpower(sc, ni->ni_chan, 1);
2496         if (error != 0) {
2497                 device_printf(sc->sc_dev, "could set txpower\n");
2498                 return error;
2499         }
2500
2501         /* link LED always on while associated */
2502         wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2503
2504         /* start automatic rate control timer */
2505         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2506
2507         return (error);
2508 }
2509
2510 /*
2511  * Send a scan request to the firmware.  Since this command is huge, we map it
2512  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2513  * much of this code is similar to that in wpi_cmd but because we must manually
2514  * construct the probe & channels, we duplicate what's needed here. XXX In the
2515  * future, this function should be modified to use wpi_cmd to help cleanup the
2516  * code base.
2517  */
2518 static int
2519 wpi_scan(struct wpi_softc *sc)
2520 {
2521         struct ifnet *ifp = sc->sc_ifp;
2522         struct ieee80211com *ic = ifp->if_l2com;
2523         struct ieee80211_scan_state *ss = ic->ic_scan;
2524         struct wpi_tx_ring *ring = &sc->cmdq;
2525         struct wpi_tx_desc *desc;
2526         struct wpi_tx_data *data;
2527         struct wpi_tx_cmd *cmd;
2528         struct wpi_scan_hdr *hdr;
2529         struct wpi_scan_chan *chan;
2530         struct ieee80211_frame *wh;
2531         struct ieee80211_rateset *rs;
2532         struct ieee80211_channel *c;
2533         enum ieee80211_phymode mode;
2534         uint8_t *frm;
2535         int nrates, pktlen, error, i, nssid;
2536         bus_addr_t physaddr;
2537
2538         desc = &ring->desc[ring->cur];
2539         data = &ring->data[ring->cur];
2540
2541         data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2542         if (data->m == NULL) {
2543                 device_printf(sc->sc_dev,
2544                     "could not allocate mbuf for scan command\n");
2545                 return ENOMEM;
2546         }
2547
2548         cmd = mtod(data->m, struct wpi_tx_cmd *);
2549         cmd->code = WPI_CMD_SCAN;
2550         cmd->flags = 0;
2551         cmd->qid = ring->qid;
2552         cmd->idx = ring->cur;
2553
2554         hdr = (struct wpi_scan_hdr *)cmd->data;
2555         memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2556
2557         /*
2558          * Move to the next channel if no packets are received within 5 msecs
2559          * after sending the probe request (this helps to reduce the duration
2560          * of active scans).
2561          */
2562         hdr->quiet = htole16(5);
2563         hdr->threshold = htole16(1);
2564
2565         if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2566                 /* send probe requests at 6Mbps */
2567                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2568
2569                 /* Enable crc checking */
2570                 hdr->promotion = htole16(1);
2571         } else {
2572                 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2573                 /* send probe requests at 1Mbps */
2574                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2575         }
2576         hdr->tx.id = WPI_ID_BROADCAST;
2577         hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2578         hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2579
2580         memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2581         nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2582         for (i = 0; i < nssid; i++) {
2583                 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2584                 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2585                 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2586                     hdr->scan_essids[i].esslen);
2587 #ifdef WPI_DEBUG
2588                 if (wpi_debug & WPI_DEBUG_SCANNING) {
2589                         printf("Scanning Essid: ");
2590                         ieee80211_print_essid(hdr->scan_essids[i].essid,
2591                             hdr->scan_essids[i].esslen);
2592                         printf("\n");
2593                 }
2594 #endif
2595         }
2596
2597         /*
2598          * Build a probe request frame.  Most of the following code is a
2599          * copy & paste of what is done in net80211.
2600          */
2601         wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2602         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2603                 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2604         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2605         IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2606         IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2607         IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2608         *(u_int16_t *)&wh->i_dur[0] = 0;        /* filled by h/w */
2609         *(u_int16_t *)&wh->i_seq[0] = 0;        /* filled by h/w */
2610
2611         frm = (uint8_t *)(wh + 1);
2612
2613         /* add essid IE, the hardware will fill this in for us */
2614         *frm++ = IEEE80211_ELEMID_SSID;
2615         *frm++ = 0;
2616
2617         mode = ieee80211_chan2mode(ic->ic_curchan);
2618         rs = &ic->ic_sup_rates[mode];
2619
2620         /* add supported rates IE */
2621         *frm++ = IEEE80211_ELEMID_RATES;
2622         nrates = rs->rs_nrates;
2623         if (nrates > IEEE80211_RATE_SIZE)
2624                 nrates = IEEE80211_RATE_SIZE;
2625         *frm++ = nrates;
2626         memcpy(frm, rs->rs_rates, nrates);
2627         frm += nrates;
2628
2629         /* add supported xrates IE */
2630         if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2631                 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2632                 *frm++ = IEEE80211_ELEMID_XRATES;
2633                 *frm++ = nrates;
2634                 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2635                 frm += nrates;
2636         }
2637
2638         /* setup length of probe request */
2639         hdr->tx.len = htole16(frm - (uint8_t *)wh);
2640
2641         /*
2642          * Construct information about the channel that we
2643          * want to scan. The firmware expects this to be directly
2644          * after the scan probe request
2645          */
2646         c = ic->ic_curchan;
2647         chan = (struct wpi_scan_chan *)frm;
2648         chan->chan = ieee80211_chan2ieee(ic, c);
2649         chan->flags = 0;
2650         if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2651                 chan->flags |= WPI_CHAN_ACTIVE;
2652                 if (nssid != 0)
2653                         chan->flags |= WPI_CHAN_DIRECT;
2654         }
2655         chan->gain_dsp = 0x6e; /* Default level */
2656         if (IEEE80211_IS_CHAN_5GHZ(c)) {
2657                 chan->active = htole16(10);
2658                 chan->passive = htole16(ss->ss_maxdwell);
2659                 chan->gain_radio = 0x3b;
2660         } else {
2661                 chan->active = htole16(20);
2662                 chan->passive = htole16(ss->ss_maxdwell);
2663                 chan->gain_radio = 0x28;
2664         }
2665
2666         DPRINTFN(WPI_DEBUG_SCANNING,
2667             ("Scanning %u Passive: %d\n",
2668              chan->chan,
2669              c->ic_flags & IEEE80211_CHAN_PASSIVE));
2670
2671         hdr->nchan++;
2672         chan++;
2673
2674         frm += sizeof (struct wpi_scan_chan);
2675 #if 0
2676         // XXX All Channels....
2677         for (c  = &ic->ic_channels[1];
2678              c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2679                 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2680                         continue;
2681
2682                 chan->chan = ieee80211_chan2ieee(ic, c);
2683                 chan->flags = 0;
2684                 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2685                     chan->flags |= WPI_CHAN_ACTIVE;
2686                     if (ic->ic_des_ssid[0].len != 0)
2687                         chan->flags |= WPI_CHAN_DIRECT;
2688                 }
2689                 chan->gain_dsp = 0x6e; /* Default level */
2690                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2691                         chan->active = htole16(10);
2692                         chan->passive = htole16(110);
2693                         chan->gain_radio = 0x3b;
2694                 } else {
2695                         chan->active = htole16(20);
2696                         chan->passive = htole16(120);
2697                         chan->gain_radio = 0x28;
2698                 }
2699
2700                 DPRINTFN(WPI_DEBUG_SCANNING,
2701                          ("Scanning %u Passive: %d\n",
2702                           chan->chan,
2703                           c->ic_flags & IEEE80211_CHAN_PASSIVE));
2704
2705                 hdr->nchan++;
2706                 chan++;
2707
2708                 frm += sizeof (struct wpi_scan_chan);
2709         }
2710 #endif
2711
2712         hdr->len = htole16(frm - (uint8_t *)hdr);
2713         pktlen = frm - (uint8_t *)cmd;
2714
2715         error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2716             wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2717         if (error != 0) {
2718                 device_printf(sc->sc_dev, "could not map scan command\n");
2719                 m_freem(data->m);
2720                 data->m = NULL;
2721                 return error;
2722         }
2723
2724         desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2725         desc->segs[0].addr = htole32(physaddr);
2726         desc->segs[0].len  = htole32(pktlen);
2727
2728         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2729             BUS_DMASYNC_PREWRITE);
2730         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2731
2732         /* kick cmd ring */
2733         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2734         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2735
2736         sc->sc_scan_timer = 5;
2737         return 0;       /* will be notified async. of failure/success */
2738 }
2739
2740 /**
2741  * Configure the card to listen to a particular channel, this transisions the
2742  * card in to being able to receive frames from remote devices.
2743  */
2744 static int
2745 wpi_config(struct wpi_softc *sc)
2746 {
2747         struct ifnet *ifp = sc->sc_ifp;
2748         struct ieee80211com *ic = ifp->if_l2com;
2749         struct wpi_power power;
2750         struct wpi_bluetooth bluetooth;
2751         struct wpi_node_info node;
2752         int error;
2753
2754         /* set power mode */
2755         memset(&power, 0, sizeof power);
2756         power.flags = htole32(WPI_POWER_CAM|0x8);
2757         error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2758         if (error != 0) {
2759                 device_printf(sc->sc_dev, "could not set power mode\n");
2760                 return error;
2761         }
2762
2763         /* configure bluetooth coexistence */
2764         memset(&bluetooth, 0, sizeof bluetooth);
2765         bluetooth.flags = 3;
2766         bluetooth.lead = 0xaa;
2767         bluetooth.kill = 1;
2768         error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2769             0);
2770         if (error != 0) {
2771                 device_printf(sc->sc_dev,
2772                     "could not configure bluetooth coexistence\n");
2773                 return error;
2774         }
2775
2776         /* configure adapter */
2777         memset(&sc->config, 0, sizeof (struct wpi_config));
2778         IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2779         /*set default channel*/
2780         sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2781         sc->config.flags = htole32(WPI_CONFIG_TSF);
2782         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2783                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2784                     WPI_CONFIG_24GHZ);
2785         }
2786         sc->config.filter = 0;
2787         switch (ic->ic_opmode) {
2788         case IEEE80211_M_STA:
2789         case IEEE80211_M_WDS:   /* No know setup, use STA for now */
2790                 sc->config.mode = WPI_MODE_STA;
2791                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2792                 break;
2793         case IEEE80211_M_IBSS:
2794         case IEEE80211_M_AHDEMO:
2795                 sc->config.mode = WPI_MODE_IBSS;
2796                 sc->config.filter |= htole32(WPI_FILTER_BEACON |
2797                                              WPI_FILTER_MULTICAST);
2798                 break;
2799         case IEEE80211_M_HOSTAP:
2800                 sc->config.mode = WPI_MODE_HOSTAP;
2801                 break;
2802         case IEEE80211_M_MONITOR:
2803                 sc->config.mode = WPI_MODE_MONITOR;
2804                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2805                         WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2806                 break;
2807         default:
2808                 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2809                 return EINVAL;
2810         }
2811         sc->config.cck_mask  = 0x0f;    /* not yet negotiated */
2812         sc->config.ofdm_mask = 0xff;    /* not yet negotiated */
2813         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2814                 sizeof (struct wpi_config), 0);
2815         if (error != 0) {
2816                 device_printf(sc->sc_dev, "configure command failed\n");
2817                 return error;
2818         }
2819
2820         /* configuration has changed, set Tx power accordingly */
2821         if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2822             device_printf(sc->sc_dev, "could not set Tx power\n");
2823             return error;
2824         }
2825
2826         /* add broadcast node */
2827         memset(&node, 0, sizeof node);
2828         IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2829         node.id = WPI_ID_BROADCAST;
2830         node.rate = wpi_plcp_signal(2);
2831         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2832         if (error != 0) {
2833                 device_printf(sc->sc_dev, "could not add broadcast node\n");
2834                 return error;
2835         }
2836
2837         /* Setup rate scalling */
2838         error = wpi_mrr_setup(sc);
2839         if (error != 0) {
2840                 device_printf(sc->sc_dev, "could not setup MRR\n");
2841                 return error;
2842         }
2843
2844         return 0;
2845 }
2846
2847 static void
2848 wpi_stop_master(struct wpi_softc *sc)
2849 {
2850         uint32_t tmp;
2851         int ntries;
2852
2853         DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2854
2855         tmp = WPI_READ(sc, WPI_RESET);
2856         WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2857
2858         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2859         if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2860                 return; /* already asleep */
2861
2862         for (ntries = 0; ntries < 100; ntries++) {
2863                 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2864                         break;
2865                 DELAY(10);
2866         }
2867         if (ntries == 100) {
2868                 device_printf(sc->sc_dev, "timeout waiting for master\n");
2869         }
2870 }
2871
2872 static int
2873 wpi_power_up(struct wpi_softc *sc)
2874 {
2875         uint32_t tmp;
2876         int ntries;
2877
2878         wpi_mem_lock(sc);
2879         tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2880         wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2881         wpi_mem_unlock(sc);
2882
2883         for (ntries = 0; ntries < 5000; ntries++) {
2884                 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2885                         break;
2886                 DELAY(10);
2887         }
2888         if (ntries == 5000) {
2889                 device_printf(sc->sc_dev,
2890                     "timeout waiting for NIC to power up\n");
2891                 return ETIMEDOUT;
2892         }
2893         return 0;
2894 }
2895
2896 static int
2897 wpi_reset(struct wpi_softc *sc)
2898 {
2899         uint32_t tmp;
2900         int ntries;
2901
2902         DPRINTFN(WPI_DEBUG_HW,
2903             ("Resetting the card - clearing any uploaded firmware\n"));
2904
2905         /* clear any pending interrupts */
2906         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2907
2908         tmp = WPI_READ(sc, WPI_PLL_CTL);
2909         WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2910
2911         tmp = WPI_READ(sc, WPI_CHICKEN);
2912         WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2913
2914         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2915         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2916
2917         /* wait for clock stabilization */
2918         for (ntries = 0; ntries < 25000; ntries++) {
2919                 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2920                         break;
2921                 DELAY(10);
2922         }
2923         if (ntries == 25000) {
2924                 device_printf(sc->sc_dev,
2925                     "timeout waiting for clock stabilization\n");
2926                 return ETIMEDOUT;
2927         }
2928
2929         /* initialize EEPROM */
2930         tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2931
2932         if ((tmp & WPI_EEPROM_VERSION) == 0) {
2933                 device_printf(sc->sc_dev, "EEPROM not found\n");
2934                 return EIO;
2935         }
2936         WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2937
2938         return 0;
2939 }
2940
2941 static void
2942 wpi_hw_config(struct wpi_softc *sc)
2943 {
2944         uint32_t rev, hw;
2945
2946         /* voodoo from the Linux "driver".. */
2947         hw = WPI_READ(sc, WPI_HWCONFIG);
2948
2949         rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2950         if ((rev & 0xc0) == 0x40)
2951                 hw |= WPI_HW_ALM_MB;
2952         else if (!(rev & 0x80))
2953                 hw |= WPI_HW_ALM_MM;
2954
2955         if (sc->cap == 0x80)
2956                 hw |= WPI_HW_SKU_MRC;
2957
2958         hw &= ~WPI_HW_REV_D;
2959         if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2960                 hw |= WPI_HW_REV_D;
2961
2962         if (sc->type > 1)
2963                 hw |= WPI_HW_TYPE_B;
2964
2965         WPI_WRITE(sc, WPI_HWCONFIG, hw);
2966 }
2967
2968 static void
2969 wpi_rfkill_resume(struct wpi_softc *sc)
2970 {
2971         struct ifnet *ifp = sc->sc_ifp;
2972         struct ieee80211com *ic = ifp->if_l2com;
2973         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2974         int ntries;
2975
2976         /* enable firmware again */
2977         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2978         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2979
2980         /* wait for thermal sensors to calibrate */
2981         for (ntries = 0; ntries < 1000; ntries++) {
2982                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
2983                         break;
2984                 DELAY(10);
2985         }
2986
2987         if (ntries == 1000) {
2988                 device_printf(sc->sc_dev,
2989                     "timeout waiting for thermal calibration\n");
2990                 WPI_UNLOCK(sc);
2991                 return;
2992         }
2993         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
2994
2995         if (wpi_config(sc) != 0) {
2996                 device_printf(sc->sc_dev, "device config failed\n");
2997                 WPI_UNLOCK(sc);
2998                 return;
2999         }
3000
3001         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3002         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3003         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3004
3005         if (vap != NULL) {
3006                 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3007                         if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3008                                 ieee80211_beacon_miss(ic);
3009                                 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3010                         } else
3011                                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3012                 } else {
3013                         ieee80211_scan_next(vap);
3014                         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3015                 }
3016         }
3017
3018         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3019 }
3020
3021 static void
3022 wpi_init_locked(struct wpi_softc *sc, int force)
3023 {
3024         struct ifnet *ifp = sc->sc_ifp;
3025         uint32_t tmp;
3026         int ntries, qid;
3027
3028         wpi_stop_locked(sc);
3029         (void)wpi_reset(sc);
3030
3031         wpi_mem_lock(sc);
3032         wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3033         DELAY(20);
3034         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3035         wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3036         wpi_mem_unlock(sc);
3037
3038         (void)wpi_power_up(sc);
3039         wpi_hw_config(sc);
3040
3041         /* init Rx ring */
3042         wpi_mem_lock(sc);
3043         WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3044         WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3045             offsetof(struct wpi_shared, next));
3046         WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3047         WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3048         wpi_mem_unlock(sc);
3049
3050         /* init Tx rings */
3051         wpi_mem_lock(sc);
3052         wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3053         wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3054         wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3055         wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3056         wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3057         wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3058         wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3059
3060         WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3061         WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3062
3063         for (qid = 0; qid < 6; qid++) {
3064                 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3065                 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3066                 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3067         }
3068         wpi_mem_unlock(sc);
3069
3070         /* clear "radio off" and "disable command" bits (reversed logic) */
3071         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3072         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3073         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3074
3075         /* clear any pending interrupts */
3076         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3077
3078         /* enable interrupts */
3079         WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3080
3081         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3082         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3083
3084         if ((wpi_load_firmware(sc)) != 0) {
3085             device_printf(sc->sc_dev,
3086                 "A problem occurred loading the firmware to the driver\n");
3087             return;
3088         }
3089
3090         /* At this point the firmware is up and running. If the hardware
3091          * RF switch is turned off thermal calibration will fail, though
3092          * the card is still happy to continue to accept commands, catch
3093          * this case and schedule a task to watch for it to be turned on.
3094          */
3095         wpi_mem_lock(sc);
3096         tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3097         wpi_mem_unlock(sc);
3098
3099         if (!(tmp & 0x1)) {
3100                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3101                 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3102                 goto out;
3103         }
3104
3105         /* wait for thermal sensors to calibrate */
3106         for (ntries = 0; ntries < 1000; ntries++) {
3107                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3108                         break;
3109                 DELAY(10);
3110         }
3111
3112         if (ntries == 1000) {
3113                 device_printf(sc->sc_dev,
3114                     "timeout waiting for thermal sensors calibration\n");
3115                 return;
3116         }
3117         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3118
3119         if (wpi_config(sc) != 0) {
3120                 device_printf(sc->sc_dev, "device config failed\n");
3121                 return;
3122         }
3123
3124         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3125         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3126 out:
3127         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3128 }
3129
3130 static void
3131 wpi_init(void *arg)
3132 {
3133         struct wpi_softc *sc = arg;
3134         struct ifnet *ifp = sc->sc_ifp;
3135         struct ieee80211com *ic = ifp->if_l2com;
3136
3137         WPI_LOCK(sc);
3138         wpi_init_locked(sc, 0);
3139         WPI_UNLOCK(sc);
3140
3141         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3142                 ieee80211_start_all(ic);                /* start all vaps */
3143 }
3144
3145 static void
3146 wpi_stop_locked(struct wpi_softc *sc)
3147 {
3148         struct ifnet *ifp = sc->sc_ifp;
3149         uint32_t tmp;
3150         int ac;
3151
3152         sc->sc_tx_timer = 0;
3153         sc->sc_scan_timer = 0;
3154         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3155         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3156         callout_stop(&sc->watchdog_to);
3157         callout_stop(&sc->calib_to);
3158
3159
3160         /* disable interrupts */
3161         WPI_WRITE(sc, WPI_MASK, 0);
3162         WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3163         WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3164         WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3165
3166         wpi_mem_lock(sc);
3167         wpi_mem_write(sc, WPI_MEM_MODE, 0);
3168         wpi_mem_unlock(sc);
3169
3170         /* reset all Tx rings */
3171         for (ac = 0; ac < 4; ac++)
3172                 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3173         wpi_reset_tx_ring(sc, &sc->cmdq);
3174
3175         /* reset Rx ring */
3176         wpi_reset_rx_ring(sc, &sc->rxq);
3177
3178         wpi_mem_lock(sc);
3179         wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3180         wpi_mem_unlock(sc);
3181
3182         DELAY(5);
3183
3184         wpi_stop_master(sc);
3185
3186         tmp = WPI_READ(sc, WPI_RESET);
3187         WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3188         sc->flags &= ~WPI_FLAG_BUSY;
3189 }
3190
3191 static void
3192 wpi_stop(struct wpi_softc *sc)
3193 {
3194         WPI_LOCK(sc);
3195         wpi_stop_locked(sc);
3196         WPI_UNLOCK(sc);
3197 }
3198
3199 static void
3200 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3201 {
3202
3203         /* XXX move */
3204         ieee80211_ratectl_node_init(ni);
3205 }
3206
3207 static void
3208 wpi_calib_timeout(void *arg)
3209 {
3210         struct wpi_softc *sc = arg;
3211         struct ifnet *ifp = sc->sc_ifp;
3212         struct ieee80211com *ic = ifp->if_l2com;
3213         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3214         int temp;
3215
3216         if (vap->iv_state != IEEE80211_S_RUN)
3217                 return;
3218
3219         /* update sensor data */
3220         temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3221         DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3222
3223         wpi_power_calibration(sc, temp);
3224
3225         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3226 }
3227
3228 /*
3229  * This function is called periodically (every 60 seconds) to adjust output
3230  * power to temperature changes.
3231  */
3232 static void
3233 wpi_power_calibration(struct wpi_softc *sc, int temp)
3234 {
3235         struct ifnet *ifp = sc->sc_ifp;
3236         struct ieee80211com *ic = ifp->if_l2com;
3237         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3238
3239         /* sanity-check read value */
3240         if (temp < -260 || temp > 25) {
3241                 /* this can't be correct, ignore */
3242                 DPRINTFN(WPI_DEBUG_TEMP,
3243                     ("out-of-range temperature reported: %d\n", temp));
3244                 return;
3245         }
3246
3247         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3248
3249         /* adjust Tx power if need be */
3250         if (abs(temp - sc->temp) <= 6)
3251                 return;
3252
3253         sc->temp = temp;
3254
3255         if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3256                 /* just warn, too bad for the automatic calibration... */
3257                 device_printf(sc->sc_dev,"could not adjust Tx power\n");
3258         }
3259 }
3260
3261 /**
3262  * Read the eeprom to find out what channels are valid for the given
3263  * band and update net80211 with what we find.
3264  */
3265 static void
3266 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3267 {
3268         struct ifnet *ifp = sc->sc_ifp;
3269         struct ieee80211com *ic = ifp->if_l2com;
3270         const struct wpi_chan_band *band = &wpi_bands[n];
3271         struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3272         struct ieee80211_channel *c;
3273         int chan, i, passive;
3274
3275         wpi_read_prom_data(sc, band->addr, channels,
3276             band->nchan * sizeof (struct wpi_eeprom_chan));
3277
3278         for (i = 0; i < band->nchan; i++) {
3279                 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3280                         DPRINTFN(WPI_DEBUG_HW,
3281                             ("Channel Not Valid: %d, band %d\n",
3282                              band->chan[i],n));
3283                         continue;
3284                 }
3285
3286                 passive = 0;
3287                 chan = band->chan[i];
3288                 c = &ic->ic_channels[ic->ic_nchans++];
3289
3290                 /* is active scan allowed on this channel? */
3291                 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3292                         passive = IEEE80211_CHAN_PASSIVE;
3293                 }
3294
3295                 if (n == 0) {   /* 2GHz band */
3296                         c->ic_ieee = chan;
3297                         c->ic_freq = ieee80211_ieee2mhz(chan,
3298                             IEEE80211_CHAN_2GHZ);
3299                         c->ic_flags = IEEE80211_CHAN_B | passive;
3300
3301                         c = &ic->ic_channels[ic->ic_nchans++];
3302                         c->ic_ieee = chan;
3303                         c->ic_freq = ieee80211_ieee2mhz(chan,
3304                             IEEE80211_CHAN_2GHZ);
3305                         c->ic_flags = IEEE80211_CHAN_G | passive;
3306
3307                 } else {        /* 5GHz band */
3308                         /*
3309                          * Some 3945ABG adapters support channels 7, 8, 11
3310                          * and 12 in the 2GHz *and* 5GHz bands.
3311                          * Because of limitations in our net80211(9) stack,
3312                          * we can't support these channels in 5GHz band.
3313                          * XXX not true; just need to map to proper frequency
3314                          */
3315                         if (chan <= 14)
3316                                 continue;
3317
3318                         c->ic_ieee = chan;
3319                         c->ic_freq = ieee80211_ieee2mhz(chan,
3320                             IEEE80211_CHAN_5GHZ);
3321                         c->ic_flags = IEEE80211_CHAN_A | passive;
3322                 }
3323
3324                 /* save maximum allowed power for this channel */
3325                 sc->maxpwr[chan] = channels[i].maxpwr;
3326
3327 #if 0
3328                 // XXX We can probably use this an get rid of maxpwr - ben 20070617
3329                 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3330                 //ic->ic_channels[chan].ic_minpower...
3331                 //ic->ic_channels[chan].ic_maxregtxpower...
3332 #endif
3333
3334                 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3335                     " passive=%d, offset %d\n", chan, c->ic_freq,
3336                     channels[i].flags, sc->maxpwr[chan],
3337                     (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3338                     ic->ic_nchans));
3339         }
3340 }
3341
3342 static void
3343 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3344 {
3345         struct wpi_power_group *group = &sc->groups[n];
3346         struct wpi_eeprom_group rgroup;
3347         int i;
3348
3349         wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3350             sizeof rgroup);
3351
3352         /* save power group information */
3353         group->chan   = rgroup.chan;
3354         group->maxpwr = rgroup.maxpwr;
3355         /* temperature at which the samples were taken */
3356         group->temp   = (int16_t)le16toh(rgroup.temp);
3357
3358         DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3359                     group->chan, group->maxpwr, group->temp));
3360
3361         for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3362                 group->samples[i].index = rgroup.samples[i].index;
3363                 group->samples[i].power = rgroup.samples[i].power;
3364
3365                 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3366                             group->samples[i].index, group->samples[i].power));
3367         }
3368 }
3369
3370 /*
3371  * Update Tx power to match what is defined for channel `c'.
3372  */
3373 static int
3374 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3375 {
3376         struct ifnet *ifp = sc->sc_ifp;
3377         struct ieee80211com *ic = ifp->if_l2com;
3378         struct wpi_power_group *group;
3379         struct wpi_cmd_txpower txpower;
3380         u_int chan;
3381         int i;
3382
3383         /* get channel number */
3384         chan = ieee80211_chan2ieee(ic, c);
3385
3386         /* find the power group to which this channel belongs */
3387         if (IEEE80211_IS_CHAN_5GHZ(c)) {
3388                 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3389                         if (chan <= group->chan)
3390                                 break;
3391         } else
3392                 group = &sc->groups[0];
3393
3394         memset(&txpower, 0, sizeof txpower);
3395         txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3396         txpower.channel = htole16(chan);
3397
3398         /* set Tx power for all OFDM and CCK rates */
3399         for (i = 0; i <= 11 ; i++) {
3400                 /* retrieve Tx power for this channel/rate combination */
3401                 int idx = wpi_get_power_index(sc, group, c,
3402                     wpi_ridx_to_rate[i]);
3403
3404                 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3405
3406                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3407                         txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3408                         txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3409                 } else {
3410                         txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3411                         txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3412                 }
3413                 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3414                             chan, wpi_ridx_to_rate[i], idx));
3415         }
3416
3417         return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3418 }
3419
3420 /*
3421  * Determine Tx power index for a given channel/rate combination.
3422  * This takes into account the regulatory information from EEPROM and the
3423  * current temperature.
3424  */
3425 static int
3426 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3427     struct ieee80211_channel *c, int rate)
3428 {
3429 /* fixed-point arithmetic division using a n-bit fractional part */
3430 #define fdivround(a, b, n)      \
3431         ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3432
3433 /* linear interpolation */
3434 #define interpolate(x, x1, y1, x2, y2, n)       \
3435         ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3436
3437         struct ifnet *ifp = sc->sc_ifp;
3438         struct ieee80211com *ic = ifp->if_l2com;
3439         struct wpi_power_sample *sample;
3440         int pwr, idx;
3441         u_int chan;
3442
3443         /* get channel number */
3444         chan = ieee80211_chan2ieee(ic, c);
3445
3446         /* default power is group's maximum power - 3dB */
3447         pwr = group->maxpwr / 2;
3448
3449         /* decrease power for highest OFDM rates to reduce distortion */
3450         switch (rate) {
3451                 case 72:        /* 36Mb/s */
3452                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3453                         break;
3454                 case 96:        /* 48Mb/s */
3455                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3456                         break;
3457                 case 108:       /* 54Mb/s */
3458                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3459                         break;
3460         }
3461
3462         /* never exceed channel's maximum allowed Tx power */
3463         pwr = min(pwr, sc->maxpwr[chan]);
3464
3465         /* retrieve power index into gain tables from samples */
3466         for (sample = group->samples; sample < &group->samples[3]; sample++)
3467                 if (pwr > sample[1].power)
3468                         break;
3469         /* fixed-point linear interpolation using a 19-bit fractional part */
3470         idx = interpolate(pwr, sample[0].power, sample[0].index,
3471             sample[1].power, sample[1].index, 19);
3472
3473         /*
3474          *  Adjust power index based on current temperature
3475          *      - if colder than factory-calibrated: decreate output power
3476          *      - if warmer than factory-calibrated: increase output power
3477          */
3478         idx -= (sc->temp - group->temp) * 11 / 100;
3479
3480         /* decrease power for CCK rates (-5dB) */
3481         if (!WPI_RATE_IS_OFDM(rate))
3482                 idx += 10;
3483
3484         /* keep power index in a valid range */
3485         if (idx < 0)
3486                 return 0;
3487         if (idx > WPI_MAX_PWR_INDEX)
3488                 return WPI_MAX_PWR_INDEX;
3489         return idx;
3490
3491 #undef interpolate
3492 #undef fdivround
3493 }
3494
3495 /**
3496  * Called by net80211 framework to indicate that a scan
3497  * is starting. This function doesn't actually do the scan,
3498  * wpi_scan_curchan starts things off. This function is more
3499  * of an early warning from the framework we should get ready
3500  * for the scan.
3501  */
3502 static void
3503 wpi_scan_start(struct ieee80211com *ic)
3504 {
3505         struct ifnet *ifp = ic->ic_ifp;
3506         struct wpi_softc *sc = ifp->if_softc;
3507
3508         WPI_LOCK(sc);
3509         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3510         WPI_UNLOCK(sc);
3511 }
3512
3513 /**
3514  * Called by the net80211 framework, indicates that the
3515  * scan has ended. If there is a scan in progress on the card
3516  * then it should be aborted.
3517  */
3518 static void
3519 wpi_scan_end(struct ieee80211com *ic)
3520 {
3521         /* XXX ignore */
3522 }
3523
3524 /**
3525  * Called by the net80211 framework to indicate to the driver
3526  * that the channel should be changed
3527  */
3528 static void
3529 wpi_set_channel(struct ieee80211com *ic)
3530 {
3531         struct ifnet *ifp = ic->ic_ifp;
3532         struct wpi_softc *sc = ifp->if_softc;
3533         int error;
3534
3535         /*
3536          * Only need to set the channel in Monitor mode. AP scanning and auth
3537          * are already taken care of by their respective firmware commands.
3538          */
3539         if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3540                 error = wpi_config(sc);
3541                 if (error != 0)
3542                         device_printf(sc->sc_dev,
3543                             "error %d settting channel\n", error);
3544         }
3545 }
3546
3547 /**
3548  * Called by net80211 to indicate that we need to scan the current
3549  * channel. The channel is previously be set via the wpi_set_channel
3550  * callback.
3551  */
3552 static void
3553 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3554 {
3555         struct ieee80211vap *vap = ss->ss_vap;
3556         struct ifnet *ifp = vap->iv_ic->ic_ifp;
3557         struct wpi_softc *sc = ifp->if_softc;
3558
3559         WPI_LOCK(sc);
3560         if (wpi_scan(sc))
3561                 ieee80211_cancel_scan(vap);
3562         WPI_UNLOCK(sc);
3563 }
3564
3565 /**
3566  * Called by the net80211 framework to indicate
3567  * the minimum dwell time has been met, terminate the scan.
3568  * We don't actually terminate the scan as the firmware will notify
3569  * us when it's finished and we have no way to interrupt it.
3570  */
3571 static void
3572 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3573 {
3574         /* NB: don't try to abort scan; wait for firmware to finish */
3575 }
3576
3577 static void
3578 wpi_hwreset(void *arg, int pending)
3579 {
3580         struct wpi_softc *sc = arg;
3581
3582         WPI_LOCK(sc);
3583         wpi_init_locked(sc, 0);
3584         WPI_UNLOCK(sc);
3585 }
3586
3587 static void
3588 wpi_rfreset(void *arg, int pending)
3589 {
3590         struct wpi_softc *sc = arg;
3591
3592         WPI_LOCK(sc);
3593         wpi_rfkill_resume(sc);
3594         WPI_UNLOCK(sc);
3595 }
3596
3597 /*
3598  * Allocate DMA-safe memory for firmware transfer.
3599  */
3600 static int
3601 wpi_alloc_fwmem(struct wpi_softc *sc)
3602 {
3603         /* allocate enough contiguous space to store text and data */
3604         return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3605             WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3606             BUS_DMA_NOWAIT);
3607 }
3608
3609 static void
3610 wpi_free_fwmem(struct wpi_softc *sc)
3611 {
3612         wpi_dma_contig_free(&sc->fw_dma);
3613 }
3614
3615 /**
3616  * Called every second, wpi_watchdog used by the watch dog timer
3617  * to check that the card is still alive
3618  */
3619 static void
3620 wpi_watchdog(void *arg)
3621 {
3622         struct wpi_softc *sc = arg;
3623         struct ifnet *ifp = sc->sc_ifp;
3624         struct ieee80211com *ic = ifp->if_l2com;
3625         uint32_t tmp;
3626
3627         DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3628
3629         if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3630                 /* No need to lock firmware memory */
3631                 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3632
3633                 if ((tmp & 0x1) == 0) {
3634                         /* Radio kill switch is still off */
3635                         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3636                         return;
3637                 }
3638
3639                 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3640                 ieee80211_runtask(ic, &sc->sc_radiotask);
3641                 return;
3642         }
3643
3644         if (sc->sc_tx_timer > 0) {
3645                 if (--sc->sc_tx_timer == 0) {
3646                         device_printf(sc->sc_dev,"device timeout\n");
3647                         ifp->if_oerrors++;
3648                         ieee80211_runtask(ic, &sc->sc_restarttask);
3649                 }
3650         }
3651         if (sc->sc_scan_timer > 0) {
3652                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3653                 if (--sc->sc_scan_timer == 0 && vap != NULL) {
3654                         device_printf(sc->sc_dev,"scan timeout\n");
3655                         ieee80211_cancel_scan(vap);
3656                         ieee80211_runtask(ic, &sc->sc_restarttask);
3657                 }
3658         }
3659
3660         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3661                 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3662 }
3663
3664 #ifdef WPI_DEBUG
3665 static const char *wpi_cmd_str(int cmd)
3666 {
3667         switch (cmd) {
3668         case WPI_DISABLE_CMD:   return "WPI_DISABLE_CMD";
3669         case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
3670         case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
3671         case WPI_CMD_SET_WME:   return "WPI_CMD_SET_WME";
3672         case WPI_CMD_TSF:       return "WPI_CMD_TSF";
3673         case WPI_CMD_ADD_NODE:  return "WPI_CMD_ADD_NODE";
3674         case WPI_CMD_TX_DATA:   return "WPI_CMD_TX_DATA";
3675         case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
3676         case WPI_CMD_SET_LED:   return "WPI_CMD_SET_LED";
3677         case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3678         case WPI_CMD_SCAN:      return "WPI_CMD_SCAN";
3679         case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3680         case WPI_CMD_TXPOWER:   return "WPI_CMD_TXPOWER";
3681         case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
3682
3683         default:
3684                 KASSERT(1, ("Unknown Command: %d\n", cmd));
3685                 return "UNKNOWN CMD";   /* Make the compiler happy */
3686         }
3687 }
3688 #endif
3689
3690 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3691 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3692 MODULE_DEPEND(wpi, firmware, 1, 1, 1);