]> CyberLeo.Net >> Repos - FreeBSD/releng/8.1.git/blob - sys/geom/raid3/g_raid3.c
Copy stable/8 to releng/8.1 in preparation for 8.1-RC1.
[FreeBSD/releng/8.1.git] / sys / geom / raid3 / g_raid3.c
1 /*-
2  * Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/limits.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/bio.h>
38 #include <sys/sysctl.h>
39 #include <sys/malloc.h>
40 #include <sys/eventhandler.h>
41 #include <vm/uma.h>
42 #include <geom/geom.h>
43 #include <sys/proc.h>
44 #include <sys/kthread.h>
45 #include <sys/sched.h>
46 #include <geom/raid3/g_raid3.h>
47
48
49 static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data");
50
51 SYSCTL_DECL(_kern_geom);
52 SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW, 0, "GEOM_RAID3 stuff");
53 u_int g_raid3_debug = 0;
54 TUNABLE_INT("kern.geom.raid3.debug", &g_raid3_debug);
55 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RW, &g_raid3_debug, 0,
56     "Debug level");
57 static u_int g_raid3_timeout = 4;
58 TUNABLE_INT("kern.geom.raid3.timeout", &g_raid3_timeout);
59 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RW, &g_raid3_timeout,
60     0, "Time to wait on all raid3 components");
61 static u_int g_raid3_idletime = 5;
62 TUNABLE_INT("kern.geom.raid3.idletime", &g_raid3_idletime);
63 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RW,
64     &g_raid3_idletime, 0, "Mark components as clean when idling");
65 static u_int g_raid3_disconnect_on_failure = 1;
66 TUNABLE_INT("kern.geom.raid3.disconnect_on_failure",
67     &g_raid3_disconnect_on_failure);
68 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RW,
69     &g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
70 static u_int g_raid3_syncreqs = 2;
71 TUNABLE_INT("kern.geom.raid3.sync_requests", &g_raid3_syncreqs);
72 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN,
73     &g_raid3_syncreqs, 0, "Parallel synchronization I/O requests.");
74 static u_int g_raid3_use_malloc = 0;
75 TUNABLE_INT("kern.geom.raid3.use_malloc", &g_raid3_use_malloc);
76 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN,
77     &g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9).");
78
79 static u_int g_raid3_n64k = 50;
80 TUNABLE_INT("kern.geom.raid3.n64k", &g_raid3_n64k);
81 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RD, &g_raid3_n64k, 0,
82     "Maximum number of 64kB allocations");
83 static u_int g_raid3_n16k = 200;
84 TUNABLE_INT("kern.geom.raid3.n16k", &g_raid3_n16k);
85 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RD, &g_raid3_n16k, 0,
86     "Maximum number of 16kB allocations");
87 static u_int g_raid3_n4k = 1200;
88 TUNABLE_INT("kern.geom.raid3.n4k", &g_raid3_n4k);
89 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RD, &g_raid3_n4k, 0,
90     "Maximum number of 4kB allocations");
91
92 SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, CTLFLAG_RW, 0,
93     "GEOM_RAID3 statistics");
94 static u_int g_raid3_parity_mismatch = 0;
95 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD,
96     &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode");
97
98 #define MSLEEP(ident, mtx, priority, wmesg, timeout)    do {            \
99         G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));        \
100         msleep((ident), (mtx), (priority), (wmesg), (timeout));         \
101         G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident));        \
102 } while (0)
103
104 static eventhandler_tag g_raid3_pre_sync = NULL;
105
106 static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp,
107     struct g_geom *gp);
108 static g_taste_t g_raid3_taste;
109 static void g_raid3_init(struct g_class *mp);
110 static void g_raid3_fini(struct g_class *mp);
111
112 struct g_class g_raid3_class = {
113         .name = G_RAID3_CLASS_NAME,
114         .version = G_VERSION,
115         .ctlreq = g_raid3_config,
116         .taste = g_raid3_taste,
117         .destroy_geom = g_raid3_destroy_geom,
118         .init = g_raid3_init,
119         .fini = g_raid3_fini
120 };
121
122
123 static void g_raid3_destroy_provider(struct g_raid3_softc *sc);
124 static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state);
125 static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force);
126 static void g_raid3_dumpconf(struct sbuf *sb, const char *indent,
127     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
128 static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type);
129 static int g_raid3_register_request(struct bio *pbp);
130 static void g_raid3_sync_release(struct g_raid3_softc *sc);
131
132
133 static const char *
134 g_raid3_disk_state2str(int state)
135 {
136
137         switch (state) {
138         case G_RAID3_DISK_STATE_NODISK:
139                 return ("NODISK");
140         case G_RAID3_DISK_STATE_NONE:
141                 return ("NONE");
142         case G_RAID3_DISK_STATE_NEW:
143                 return ("NEW");
144         case G_RAID3_DISK_STATE_ACTIVE:
145                 return ("ACTIVE");
146         case G_RAID3_DISK_STATE_STALE:
147                 return ("STALE");
148         case G_RAID3_DISK_STATE_SYNCHRONIZING:
149                 return ("SYNCHRONIZING");
150         case G_RAID3_DISK_STATE_DISCONNECTED:
151                 return ("DISCONNECTED");
152         default:
153                 return ("INVALID");
154         }
155 }
156
157 static const char *
158 g_raid3_device_state2str(int state)
159 {
160
161         switch (state) {
162         case G_RAID3_DEVICE_STATE_STARTING:
163                 return ("STARTING");
164         case G_RAID3_DEVICE_STATE_DEGRADED:
165                 return ("DEGRADED");
166         case G_RAID3_DEVICE_STATE_COMPLETE:
167                 return ("COMPLETE");
168         default:
169                 return ("INVALID");
170         }
171 }
172
173 const char *
174 g_raid3_get_diskname(struct g_raid3_disk *disk)
175 {
176
177         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
178                 return ("[unknown]");
179         return (disk->d_name);
180 }
181
182 static void *
183 g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags)
184 {
185         void *ptr;
186         enum g_raid3_zones zone;
187
188         if (g_raid3_use_malloc ||
189             (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
190                 ptr = malloc(size, M_RAID3, flags);
191         else {
192                 ptr = uma_zalloc_arg(sc->sc_zones[zone].sz_zone,
193                    &sc->sc_zones[zone], flags);
194                 sc->sc_zones[zone].sz_requested++;
195                 if (ptr == NULL)
196                         sc->sc_zones[zone].sz_failed++;
197         }
198         return (ptr);
199 }
200
201 static void
202 g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size)
203 {
204         enum g_raid3_zones zone;
205
206         if (g_raid3_use_malloc ||
207             (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
208                 free(ptr, M_RAID3);
209         else {
210                 uma_zfree_arg(sc->sc_zones[zone].sz_zone,
211                     ptr, &sc->sc_zones[zone]);
212         }
213 }
214
215 static int
216 g_raid3_uma_ctor(void *mem, int size, void *arg, int flags)
217 {
218         struct g_raid3_zone *sz = arg;
219
220         if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max)
221                 return (ENOMEM);
222         sz->sz_inuse++;
223         return (0);
224 }
225
226 static void
227 g_raid3_uma_dtor(void *mem, int size, void *arg)
228 {
229         struct g_raid3_zone *sz = arg;
230
231         sz->sz_inuse--;
232 }
233
234 #define g_raid3_xor(src, dst, size)                                     \
235         _g_raid3_xor((uint64_t *)(src),                                 \
236             (uint64_t *)(dst), (size_t)size)
237 static void
238 _g_raid3_xor(uint64_t *src, uint64_t *dst, size_t size)
239 {
240
241         KASSERT((size % 128) == 0, ("Invalid size: %zu.", size));
242         for (; size > 0; size -= 128) {
243                 *dst++ ^= (*src++);
244                 *dst++ ^= (*src++);
245                 *dst++ ^= (*src++);
246                 *dst++ ^= (*src++);
247                 *dst++ ^= (*src++);
248                 *dst++ ^= (*src++);
249                 *dst++ ^= (*src++);
250                 *dst++ ^= (*src++);
251                 *dst++ ^= (*src++);
252                 *dst++ ^= (*src++);
253                 *dst++ ^= (*src++);
254                 *dst++ ^= (*src++);
255                 *dst++ ^= (*src++);
256                 *dst++ ^= (*src++);
257                 *dst++ ^= (*src++);
258                 *dst++ ^= (*src++);
259         }
260 }
261
262 static int
263 g_raid3_is_zero(struct bio *bp)
264 {
265         static const uint64_t zeros[] = {
266             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
267         };
268         u_char *addr;
269         ssize_t size;
270
271         size = bp->bio_length;
272         addr = (u_char *)bp->bio_data;
273         for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) {
274                 if (bcmp(addr, zeros, sizeof(zeros)) != 0)
275                         return (0);
276         }
277         return (1);
278 }
279
280 /*
281  * --- Events handling functions ---
282  * Events in geom_raid3 are used to maintain disks and device status
283  * from one thread to simplify locking.
284  */
285 static void
286 g_raid3_event_free(struct g_raid3_event *ep)
287 {
288
289         free(ep, M_RAID3);
290 }
291
292 int
293 g_raid3_event_send(void *arg, int state, int flags)
294 {
295         struct g_raid3_softc *sc;
296         struct g_raid3_disk *disk;
297         struct g_raid3_event *ep;
298         int error;
299
300         ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK);
301         G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep);
302         if ((flags & G_RAID3_EVENT_DEVICE) != 0) {
303                 disk = NULL;
304                 sc = arg;
305         } else {
306                 disk = arg;
307                 sc = disk->d_softc;
308         }
309         ep->e_disk = disk;
310         ep->e_state = state;
311         ep->e_flags = flags;
312         ep->e_error = 0;
313         mtx_lock(&sc->sc_events_mtx);
314         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
315         mtx_unlock(&sc->sc_events_mtx);
316         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
317         mtx_lock(&sc->sc_queue_mtx);
318         wakeup(sc);
319         wakeup(&sc->sc_queue);
320         mtx_unlock(&sc->sc_queue_mtx);
321         if ((flags & G_RAID3_EVENT_DONTWAIT) != 0)
322                 return (0);
323         sx_assert(&sc->sc_lock, SX_XLOCKED);
324         G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep);
325         sx_xunlock(&sc->sc_lock);
326         while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) {
327                 mtx_lock(&sc->sc_events_mtx);
328                 MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event",
329                     hz * 5);
330         }
331         error = ep->e_error;
332         g_raid3_event_free(ep);
333         sx_xlock(&sc->sc_lock);
334         return (error);
335 }
336
337 static struct g_raid3_event *
338 g_raid3_event_get(struct g_raid3_softc *sc)
339 {
340         struct g_raid3_event *ep;
341
342         mtx_lock(&sc->sc_events_mtx);
343         ep = TAILQ_FIRST(&sc->sc_events);
344         mtx_unlock(&sc->sc_events_mtx);
345         return (ep);
346 }
347
348 static void
349 g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep)
350 {
351
352         mtx_lock(&sc->sc_events_mtx);
353         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
354         mtx_unlock(&sc->sc_events_mtx);
355 }
356
357 static void
358 g_raid3_event_cancel(struct g_raid3_disk *disk)
359 {
360         struct g_raid3_softc *sc;
361         struct g_raid3_event *ep, *tmpep;
362
363         sc = disk->d_softc;
364         sx_assert(&sc->sc_lock, SX_XLOCKED);
365
366         mtx_lock(&sc->sc_events_mtx);
367         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
368                 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0)
369                         continue;
370                 if (ep->e_disk != disk)
371                         continue;
372                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
373                 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
374                         g_raid3_event_free(ep);
375                 else {
376                         ep->e_error = ECANCELED;
377                         wakeup(ep);
378                 }
379         }
380         mtx_unlock(&sc->sc_events_mtx);
381 }
382
383 /*
384  * Return the number of disks in the given state.
385  * If state is equal to -1, count all connected disks.
386  */
387 u_int
388 g_raid3_ndisks(struct g_raid3_softc *sc, int state)
389 {
390         struct g_raid3_disk *disk;
391         u_int n, ndisks;
392
393         sx_assert(&sc->sc_lock, SX_LOCKED);
394
395         for (n = ndisks = 0; n < sc->sc_ndisks; n++) {
396                 disk = &sc->sc_disks[n];
397                 if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
398                         continue;
399                 if (state == -1 || disk->d_state == state)
400                         ndisks++;
401         }
402         return (ndisks);
403 }
404
405 static u_int
406 g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp)
407 {
408         struct bio *bp;
409         u_int nreqs = 0;
410
411         mtx_lock(&sc->sc_queue_mtx);
412         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
413                 if (bp->bio_from == cp)
414                         nreqs++;
415         }
416         mtx_unlock(&sc->sc_queue_mtx);
417         return (nreqs);
418 }
419
420 static int
421 g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp)
422 {
423
424         if (cp->index > 0) {
425                 G_RAID3_DEBUG(2,
426                     "I/O requests for %s exist, can't destroy it now.",
427                     cp->provider->name);
428                 return (1);
429         }
430         if (g_raid3_nrequests(sc, cp) > 0) {
431                 G_RAID3_DEBUG(2,
432                     "I/O requests for %s in queue, can't destroy it now.",
433                     cp->provider->name);
434                 return (1);
435         }
436         return (0);
437 }
438
439 static void
440 g_raid3_destroy_consumer(void *arg, int flags __unused)
441 {
442         struct g_consumer *cp;
443
444         g_topology_assert();
445
446         cp = arg;
447         G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
448         g_detach(cp);
449         g_destroy_consumer(cp);
450 }
451
452 static void
453 g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
454 {
455         struct g_provider *pp;
456         int retaste_wait;
457
458         g_topology_assert();
459
460         cp->private = NULL;
461         if (g_raid3_is_busy(sc, cp))
462                 return;
463         G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name);
464         pp = cp->provider;
465         retaste_wait = 0;
466         if (cp->acw == 1) {
467                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
468                         retaste_wait = 1;
469         }
470         G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr,
471             -cp->acw, -cp->ace, 0);
472         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
473                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
474         if (retaste_wait) {
475                 /*
476                  * After retaste event was send (inside g_access()), we can send
477                  * event to detach and destroy consumer.
478                  * A class, which has consumer to the given provider connected
479                  * will not receive retaste event for the provider.
480                  * This is the way how I ignore retaste events when I close
481                  * consumers opened for write: I detach and destroy consumer
482                  * after retaste event is sent.
483                  */
484                 g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL);
485                 return;
486         }
487         G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name);
488         g_detach(cp);
489         g_destroy_consumer(cp);
490 }
491
492 static int
493 g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp)
494 {
495         struct g_consumer *cp;
496         int error;
497
498         g_topology_assert_not();
499         KASSERT(disk->d_consumer == NULL,
500             ("Disk already connected (device %s).", disk->d_softc->sc_name));
501
502         g_topology_lock();
503         cp = g_new_consumer(disk->d_softc->sc_geom);
504         error = g_attach(cp, pp);
505         if (error != 0) {
506                 g_destroy_consumer(cp);
507                 g_topology_unlock();
508                 return (error);
509         }
510         error = g_access(cp, 1, 1, 1);
511                 g_topology_unlock();
512         if (error != 0) {
513                 g_detach(cp);
514                 g_destroy_consumer(cp);
515                 G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).",
516                     pp->name, error);
517                 return (error);
518         }
519         disk->d_consumer = cp;
520         disk->d_consumer->private = disk;
521         disk->d_consumer->index = 0;
522         G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk));
523         return (0);
524 }
525
526 static void
527 g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
528 {
529
530         g_topology_assert();
531
532         if (cp == NULL)
533                 return;
534         if (cp->provider != NULL)
535                 g_raid3_kill_consumer(sc, cp);
536         else
537                 g_destroy_consumer(cp);
538 }
539
540 /*
541  * Initialize disk. This means allocate memory, create consumer, attach it
542  * to the provider and open access (r1w1e1) to it.
543  */
544 static struct g_raid3_disk *
545 g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp,
546     struct g_raid3_metadata *md, int *errorp)
547 {
548         struct g_raid3_disk *disk;
549         int error;
550
551         disk = &sc->sc_disks[md->md_no];
552         error = g_raid3_connect_disk(disk, pp);
553         if (error != 0) {
554                 if (errorp != NULL)
555                         *errorp = error;
556                 return (NULL);
557         }
558         disk->d_state = G_RAID3_DISK_STATE_NONE;
559         disk->d_flags = md->md_dflags;
560         if (md->md_provider[0] != '\0')
561                 disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED;
562         disk->d_sync.ds_consumer = NULL;
563         disk->d_sync.ds_offset = md->md_sync_offset;
564         disk->d_sync.ds_offset_done = md->md_sync_offset;
565         disk->d_genid = md->md_genid;
566         disk->d_sync.ds_syncid = md->md_syncid;
567         if (errorp != NULL)
568                 *errorp = 0;
569         return (disk);
570 }
571
572 static void
573 g_raid3_destroy_disk(struct g_raid3_disk *disk)
574 {
575         struct g_raid3_softc *sc;
576
577         g_topology_assert_not();
578         sc = disk->d_softc;
579         sx_assert(&sc->sc_lock, SX_XLOCKED);
580
581         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
582                 return;
583         g_raid3_event_cancel(disk);
584         switch (disk->d_state) {
585         case G_RAID3_DISK_STATE_SYNCHRONIZING:
586                 if (sc->sc_syncdisk != NULL)
587                         g_raid3_sync_stop(sc, 1);
588                 /* FALLTHROUGH */
589         case G_RAID3_DISK_STATE_NEW:
590         case G_RAID3_DISK_STATE_STALE:
591         case G_RAID3_DISK_STATE_ACTIVE:
592                 g_topology_lock();
593                 g_raid3_disconnect_consumer(sc, disk->d_consumer);
594                 g_topology_unlock();
595                 disk->d_consumer = NULL;
596                 break;
597         default:
598                 KASSERT(0 == 1, ("Wrong disk state (%s, %s).",
599                     g_raid3_get_diskname(disk),
600                     g_raid3_disk_state2str(disk->d_state)));
601         }
602         disk->d_state = G_RAID3_DISK_STATE_NODISK;
603 }
604
605 static void
606 g_raid3_destroy_device(struct g_raid3_softc *sc)
607 {
608         struct g_raid3_event *ep;
609         struct g_raid3_disk *disk;
610         struct g_geom *gp;
611         struct g_consumer *cp;
612         u_int n;
613
614         g_topology_assert_not();
615         sx_assert(&sc->sc_lock, SX_XLOCKED);
616
617         gp = sc->sc_geom;
618         if (sc->sc_provider != NULL)
619                 g_raid3_destroy_provider(sc);
620         for (n = 0; n < sc->sc_ndisks; n++) {
621                 disk = &sc->sc_disks[n];
622                 if (disk->d_state != G_RAID3_DISK_STATE_NODISK) {
623                         disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
624                         g_raid3_update_metadata(disk);
625                         g_raid3_destroy_disk(disk);
626                 }
627         }
628         while ((ep = g_raid3_event_get(sc)) != NULL) {
629                 g_raid3_event_remove(sc, ep);
630                 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
631                         g_raid3_event_free(ep);
632                 else {
633                         ep->e_error = ECANCELED;
634                         ep->e_flags |= G_RAID3_EVENT_DONE;
635                         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep);
636                         mtx_lock(&sc->sc_events_mtx);
637                         wakeup(ep);
638                         mtx_unlock(&sc->sc_events_mtx);
639                 }
640         }
641         callout_drain(&sc->sc_callout);
642         cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer);
643         g_topology_lock();
644         if (cp != NULL)
645                 g_raid3_disconnect_consumer(sc, cp);
646         g_wither_geom(sc->sc_sync.ds_geom, ENXIO);
647         G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name);
648         g_wither_geom(gp, ENXIO);
649         g_topology_unlock();
650         if (!g_raid3_use_malloc) {
651                 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
652                 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
653                 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
654         }
655         mtx_destroy(&sc->sc_queue_mtx);
656         mtx_destroy(&sc->sc_events_mtx);
657         sx_xunlock(&sc->sc_lock);
658         sx_destroy(&sc->sc_lock);
659 }
660
661 static void
662 g_raid3_orphan(struct g_consumer *cp)
663 {
664         struct g_raid3_disk *disk;
665
666         g_topology_assert();
667
668         disk = cp->private;
669         if (disk == NULL)
670                 return;
671         disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID;
672         g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED,
673             G_RAID3_EVENT_DONTWAIT);
674 }
675
676 static int
677 g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
678 {
679         struct g_raid3_softc *sc;
680         struct g_consumer *cp;
681         off_t offset, length;
682         u_char *sector;
683         int error = 0;
684
685         g_topology_assert_not();
686         sc = disk->d_softc;
687         sx_assert(&sc->sc_lock, SX_LOCKED);
688
689         cp = disk->d_consumer;
690         KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name));
691         KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name));
692         KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
693             ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr,
694             cp->acw, cp->ace));
695         length = cp->provider->sectorsize;
696         offset = cp->provider->mediasize - length;
697         sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO);
698         if (md != NULL)
699                 raid3_metadata_encode(md, sector);
700         error = g_write_data(cp, offset, sector, length);
701         free(sector, M_RAID3);
702         if (error != 0) {
703                 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
704                         G_RAID3_DEBUG(0, "Cannot write metadata on %s "
705                             "(device=%s, error=%d).",
706                             g_raid3_get_diskname(disk), sc->sc_name, error);
707                         disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
708                 } else {
709                         G_RAID3_DEBUG(1, "Cannot write metadata on %s "
710                             "(device=%s, error=%d).",
711                             g_raid3_get_diskname(disk), sc->sc_name, error);
712                 }
713                 if (g_raid3_disconnect_on_failure &&
714                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
715                         sc->sc_bump_id |= G_RAID3_BUMP_GENID;
716                         g_raid3_event_send(disk,
717                             G_RAID3_DISK_STATE_DISCONNECTED,
718                             G_RAID3_EVENT_DONTWAIT);
719                 }
720         }
721         return (error);
722 }
723
724 int
725 g_raid3_clear_metadata(struct g_raid3_disk *disk)
726 {
727         int error;
728
729         g_topology_assert_not();
730         sx_assert(&disk->d_softc->sc_lock, SX_LOCKED);
731
732         error = g_raid3_write_metadata(disk, NULL);
733         if (error == 0) {
734                 G_RAID3_DEBUG(2, "Metadata on %s cleared.",
735                     g_raid3_get_diskname(disk));
736         } else {
737                 G_RAID3_DEBUG(0,
738                     "Cannot clear metadata on disk %s (error=%d).",
739                     g_raid3_get_diskname(disk), error);
740         }
741         return (error);
742 }
743
744 void
745 g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
746 {
747         struct g_raid3_softc *sc;
748         struct g_provider *pp;
749
750         sc = disk->d_softc;
751         strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic));
752         md->md_version = G_RAID3_VERSION;
753         strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name));
754         md->md_id = sc->sc_id;
755         md->md_all = sc->sc_ndisks;
756         md->md_genid = sc->sc_genid;
757         md->md_mediasize = sc->sc_mediasize;
758         md->md_sectorsize = sc->sc_sectorsize;
759         md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK);
760         md->md_no = disk->d_no;
761         md->md_syncid = disk->d_sync.ds_syncid;
762         md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK);
763         if (disk->d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
764                 md->md_sync_offset = 0;
765         else {
766                 md->md_sync_offset =
767                     disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1);
768         }
769         if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL)
770                 pp = disk->d_consumer->provider;
771         else
772                 pp = NULL;
773         if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL)
774                 strlcpy(md->md_provider, pp->name, sizeof(md->md_provider));
775         else
776                 bzero(md->md_provider, sizeof(md->md_provider));
777         if (pp != NULL)
778                 md->md_provsize = pp->mediasize;
779         else
780                 md->md_provsize = 0;
781 }
782
783 void
784 g_raid3_update_metadata(struct g_raid3_disk *disk)
785 {
786         struct g_raid3_softc *sc;
787         struct g_raid3_metadata md;
788         int error;
789
790         g_topology_assert_not();
791         sc = disk->d_softc;
792         sx_assert(&sc->sc_lock, SX_LOCKED);
793
794         g_raid3_fill_metadata(disk, &md);
795         error = g_raid3_write_metadata(disk, &md);
796         if (error == 0) {
797                 G_RAID3_DEBUG(2, "Metadata on %s updated.",
798                     g_raid3_get_diskname(disk));
799         } else {
800                 G_RAID3_DEBUG(0,
801                     "Cannot update metadata on disk %s (error=%d).",
802                     g_raid3_get_diskname(disk), error);
803         }
804 }
805
806 static void
807 g_raid3_bump_syncid(struct g_raid3_softc *sc)
808 {
809         struct g_raid3_disk *disk;
810         u_int n;
811
812         g_topology_assert_not();
813         sx_assert(&sc->sc_lock, SX_XLOCKED);
814         KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
815             ("%s called with no active disks (device=%s).", __func__,
816             sc->sc_name));
817
818         sc->sc_syncid++;
819         G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name,
820             sc->sc_syncid);
821         for (n = 0; n < sc->sc_ndisks; n++) {
822                 disk = &sc->sc_disks[n];
823                 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
824                     disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
825                         disk->d_sync.ds_syncid = sc->sc_syncid;
826                         g_raid3_update_metadata(disk);
827                 }
828         }
829 }
830
831 static void
832 g_raid3_bump_genid(struct g_raid3_softc *sc)
833 {
834         struct g_raid3_disk *disk;
835         u_int n;
836
837         g_topology_assert_not();
838         sx_assert(&sc->sc_lock, SX_XLOCKED);
839         KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
840             ("%s called with no active disks (device=%s).", __func__,
841             sc->sc_name));
842
843         sc->sc_genid++;
844         G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name,
845             sc->sc_genid);
846         for (n = 0; n < sc->sc_ndisks; n++) {
847                 disk = &sc->sc_disks[n];
848                 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
849                     disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
850                         disk->d_genid = sc->sc_genid;
851                         g_raid3_update_metadata(disk);
852                 }
853         }
854 }
855
856 static int
857 g_raid3_idle(struct g_raid3_softc *sc, int acw)
858 {
859         struct g_raid3_disk *disk;
860         u_int i;
861         int timeout;
862
863         g_topology_assert_not();
864         sx_assert(&sc->sc_lock, SX_XLOCKED);
865
866         if (sc->sc_provider == NULL)
867                 return (0);
868         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
869                 return (0);
870         if (sc->sc_idle)
871                 return (0);
872         if (sc->sc_writes > 0)
873                 return (0);
874         if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) {
875                 timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write);
876                 if (timeout > 0)
877                         return (timeout);
878         }
879         sc->sc_idle = 1;
880         for (i = 0; i < sc->sc_ndisks; i++) {
881                 disk = &sc->sc_disks[i];
882                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
883                         continue;
884                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
885                     g_raid3_get_diskname(disk), sc->sc_name);
886                 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
887                 g_raid3_update_metadata(disk);
888         }
889         return (0);
890 }
891
892 static void
893 g_raid3_unidle(struct g_raid3_softc *sc)
894 {
895         struct g_raid3_disk *disk;
896         u_int i;
897
898         g_topology_assert_not();
899         sx_assert(&sc->sc_lock, SX_XLOCKED);
900
901         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
902                 return;
903         sc->sc_idle = 0;
904         sc->sc_last_write = time_uptime;
905         for (i = 0; i < sc->sc_ndisks; i++) {
906                 disk = &sc->sc_disks[i];
907                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
908                         continue;
909                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
910                     g_raid3_get_diskname(disk), sc->sc_name);
911                 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
912                 g_raid3_update_metadata(disk);
913         }
914 }
915
916 /*
917  * Treat bio_driver1 field in parent bio as list head and field bio_caller1
918  * in child bio as pointer to the next element on the list.
919  */
920 #define G_RAID3_HEAD_BIO(pbp)   (pbp)->bio_driver1
921
922 #define G_RAID3_NEXT_BIO(cbp)   (cbp)->bio_caller1
923
924 #define G_RAID3_FOREACH_BIO(pbp, bp)                                    \
925         for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL;                \
926             (bp) = G_RAID3_NEXT_BIO(bp))
927
928 #define G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp)                        \
929         for ((bp) = G_RAID3_HEAD_BIO(pbp);                              \
930             (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1);        \
931             (bp) = (tmpbp))
932
933 static void
934 g_raid3_init_bio(struct bio *pbp)
935 {
936
937         G_RAID3_HEAD_BIO(pbp) = NULL;
938 }
939
940 static void
941 g_raid3_remove_bio(struct bio *cbp)
942 {
943         struct bio *pbp, *bp;
944
945         pbp = cbp->bio_parent;
946         if (G_RAID3_HEAD_BIO(pbp) == cbp)
947                 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
948         else {
949                 G_RAID3_FOREACH_BIO(pbp, bp) {
950                         if (G_RAID3_NEXT_BIO(bp) == cbp) {
951                                 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
952                                 break;
953                         }
954                 }
955         }
956         G_RAID3_NEXT_BIO(cbp) = NULL;
957 }
958
959 static void
960 g_raid3_replace_bio(struct bio *sbp, struct bio *dbp)
961 {
962         struct bio *pbp, *bp;
963
964         g_raid3_remove_bio(sbp);
965         pbp = dbp->bio_parent;
966         G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp);
967         if (G_RAID3_HEAD_BIO(pbp) == dbp)
968                 G_RAID3_HEAD_BIO(pbp) = sbp;
969         else {
970                 G_RAID3_FOREACH_BIO(pbp, bp) {
971                         if (G_RAID3_NEXT_BIO(bp) == dbp) {
972                                 G_RAID3_NEXT_BIO(bp) = sbp;
973                                 break;
974                         }
975                 }
976         }
977         G_RAID3_NEXT_BIO(dbp) = NULL;
978 }
979
980 static void
981 g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp)
982 {
983         struct bio *bp, *pbp;
984         size_t size;
985
986         pbp = cbp->bio_parent;
987         pbp->bio_children--;
988         KASSERT(cbp->bio_data != NULL, ("NULL bio_data"));
989         size = pbp->bio_length / (sc->sc_ndisks - 1);
990         g_raid3_free(sc, cbp->bio_data, size);
991         if (G_RAID3_HEAD_BIO(pbp) == cbp) {
992                 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
993                 G_RAID3_NEXT_BIO(cbp) = NULL;
994                 g_destroy_bio(cbp);
995         } else {
996                 G_RAID3_FOREACH_BIO(pbp, bp) {
997                         if (G_RAID3_NEXT_BIO(bp) == cbp)
998                                 break;
999                 }
1000                 if (bp != NULL) {
1001                         KASSERT(G_RAID3_NEXT_BIO(bp) != NULL,
1002                             ("NULL bp->bio_driver1"));
1003                         G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
1004                         G_RAID3_NEXT_BIO(cbp) = NULL;
1005                 }
1006                 g_destroy_bio(cbp);
1007         }
1008 }
1009
1010 static struct bio *
1011 g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp)
1012 {
1013         struct bio *bp, *cbp;
1014         size_t size;
1015         int memflag;
1016
1017         cbp = g_clone_bio(pbp);
1018         if (cbp == NULL)
1019                 return (NULL);
1020         size = pbp->bio_length / (sc->sc_ndisks - 1);
1021         if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
1022                 memflag = M_WAITOK;
1023         else
1024                 memflag = M_NOWAIT;
1025         cbp->bio_data = g_raid3_alloc(sc, size, memflag);
1026         if (cbp->bio_data == NULL) {
1027                 pbp->bio_children--;
1028                 g_destroy_bio(cbp);
1029                 return (NULL);
1030         }
1031         G_RAID3_NEXT_BIO(cbp) = NULL;
1032         if (G_RAID3_HEAD_BIO(pbp) == NULL)
1033                 G_RAID3_HEAD_BIO(pbp) = cbp;
1034         else {
1035                 G_RAID3_FOREACH_BIO(pbp, bp) {
1036                         if (G_RAID3_NEXT_BIO(bp) == NULL) {
1037                                 G_RAID3_NEXT_BIO(bp) = cbp;
1038                                 break;
1039                         }
1040                 }
1041         }
1042         return (cbp);
1043 }
1044
1045 static void
1046 g_raid3_scatter(struct bio *pbp)
1047 {
1048         struct g_raid3_softc *sc;
1049         struct g_raid3_disk *disk;
1050         struct bio *bp, *cbp, *tmpbp;
1051         off_t atom, cadd, padd, left;
1052         int first;
1053
1054         sc = pbp->bio_to->geom->softc;
1055         bp = NULL;
1056         if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
1057                 /*
1058                  * Find bio for which we should calculate data.
1059                  */
1060                 G_RAID3_FOREACH_BIO(pbp, cbp) {
1061                         if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
1062                                 bp = cbp;
1063                                 break;
1064                         }
1065                 }
1066                 KASSERT(bp != NULL, ("NULL parity bio."));
1067         }
1068         atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1069         cadd = padd = 0;
1070         for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
1071                 G_RAID3_FOREACH_BIO(pbp, cbp) {
1072                         if (cbp == bp)
1073                                 continue;
1074                         bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom);
1075                         padd += atom;
1076                 }
1077                 cadd += atom;
1078         }
1079         if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
1080                 /*
1081                  * Calculate parity.
1082                  */
1083                 first = 1;
1084                 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1085                         if (cbp == bp)
1086                                 continue;
1087                         if (first) {
1088                                 bcopy(cbp->bio_data, bp->bio_data,
1089                                     bp->bio_length);
1090                                 first = 0;
1091                         } else {
1092                                 g_raid3_xor(cbp->bio_data, bp->bio_data,
1093                                     bp->bio_length);
1094                         }
1095                         if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0)
1096                                 g_raid3_destroy_bio(sc, cbp);
1097                 }
1098         }
1099         G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1100                 struct g_consumer *cp;
1101
1102                 disk = cbp->bio_caller2;
1103                 cp = disk->d_consumer;
1104                 cbp->bio_to = cp->provider;
1105                 G_RAID3_LOGREQ(3, cbp, "Sending request.");
1106                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1107                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1108                     cp->acr, cp->acw, cp->ace));
1109                 cp->index++;
1110                 sc->sc_writes++;
1111                 g_io_request(cbp, cp);
1112         }
1113 }
1114
1115 static void
1116 g_raid3_gather(struct bio *pbp)
1117 {
1118         struct g_raid3_softc *sc;
1119         struct g_raid3_disk *disk;
1120         struct bio *xbp, *fbp, *cbp;
1121         off_t atom, cadd, padd, left;
1122
1123         sc = pbp->bio_to->geom->softc;
1124         /*
1125          * Find bio for which we have to calculate data.
1126          * While going through this path, check if all requests
1127          * succeeded, if not, deny whole request.
1128          * If we're in COMPLETE mode, we allow one request to fail,
1129          * so if we find one, we're sending it to the parity consumer.
1130          * If there are more failed requests, we deny whole request.
1131          */
1132         xbp = fbp = NULL;
1133         G_RAID3_FOREACH_BIO(pbp, cbp) {
1134                 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
1135                         KASSERT(xbp == NULL, ("More than one parity bio."));
1136                         xbp = cbp;
1137                 }
1138                 if (cbp->bio_error == 0)
1139                         continue;
1140                 /*
1141                  * Found failed request.
1142                  */
1143                 if (fbp == NULL) {
1144                         if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) {
1145                                 /*
1146                                  * We are already in degraded mode, so we can't
1147                                  * accept any failures.
1148                                  */
1149                                 if (pbp->bio_error == 0)
1150                                         pbp->bio_error = cbp->bio_error;
1151                         } else {
1152                                 fbp = cbp;
1153                         }
1154                 } else {
1155                         /*
1156                          * Next failed request, that's too many.
1157                          */
1158                         if (pbp->bio_error == 0)
1159                                 pbp->bio_error = fbp->bio_error;
1160                 }
1161                 disk = cbp->bio_caller2;
1162                 if (disk == NULL)
1163                         continue;
1164                 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
1165                         disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
1166                         G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).",
1167                             cbp->bio_error);
1168                 } else {
1169                         G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).",
1170                             cbp->bio_error);
1171                 }
1172                 if (g_raid3_disconnect_on_failure &&
1173                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1174                         sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1175                         g_raid3_event_send(disk,
1176                             G_RAID3_DISK_STATE_DISCONNECTED,
1177                             G_RAID3_EVENT_DONTWAIT);
1178                 }
1179         }
1180         if (pbp->bio_error != 0)
1181                 goto finish;
1182         if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
1183                 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY;
1184                 if (xbp != fbp)
1185                         g_raid3_replace_bio(xbp, fbp);
1186                 g_raid3_destroy_bio(sc, fbp);
1187         } else if (fbp != NULL) {
1188                 struct g_consumer *cp;
1189
1190                 /*
1191                  * One request failed, so send the same request to
1192                  * the parity consumer.
1193                  */
1194                 disk = pbp->bio_driver2;
1195                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
1196                         pbp->bio_error = fbp->bio_error;
1197                         goto finish;
1198                 }
1199                 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1200                 pbp->bio_inbed--;
1201                 fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR);
1202                 if (disk->d_no == sc->sc_ndisks - 1)
1203                         fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1204                 fbp->bio_error = 0;
1205                 fbp->bio_completed = 0;
1206                 fbp->bio_children = 0;
1207                 fbp->bio_inbed = 0;
1208                 cp = disk->d_consumer;
1209                 fbp->bio_caller2 = disk;
1210                 fbp->bio_to = cp->provider;
1211                 G_RAID3_LOGREQ(3, fbp, "Sending request (recover).");
1212                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1213                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1214                     cp->acr, cp->acw, cp->ace));
1215                 cp->index++;
1216                 g_io_request(fbp, cp);
1217                 return;
1218         }
1219         if (xbp != NULL) {
1220                 /*
1221                  * Calculate parity.
1222                  */
1223                 G_RAID3_FOREACH_BIO(pbp, cbp) {
1224                         if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0)
1225                                 continue;
1226                         g_raid3_xor(cbp->bio_data, xbp->bio_data,
1227                             xbp->bio_length);
1228                 }
1229                 xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY;
1230                 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
1231                         if (!g_raid3_is_zero(xbp)) {
1232                                 g_raid3_parity_mismatch++;
1233                                 pbp->bio_error = EIO;
1234                                 goto finish;
1235                         }
1236                         g_raid3_destroy_bio(sc, xbp);
1237                 }
1238         }
1239         atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1240         cadd = padd = 0;
1241         for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
1242                 G_RAID3_FOREACH_BIO(pbp, cbp) {
1243                         bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom);
1244                         pbp->bio_completed += atom;
1245                         padd += atom;
1246                 }
1247                 cadd += atom;
1248         }
1249 finish:
1250         if (pbp->bio_error == 0)
1251                 G_RAID3_LOGREQ(3, pbp, "Request finished.");
1252         else {
1253                 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0)
1254                         G_RAID3_LOGREQ(1, pbp, "Verification error.");
1255                 else
1256                         G_RAID3_LOGREQ(0, pbp, "Request failed.");
1257         }
1258         pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK;
1259         while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
1260                 g_raid3_destroy_bio(sc, cbp);
1261         g_io_deliver(pbp, pbp->bio_error);
1262 }
1263
1264 static void
1265 g_raid3_done(struct bio *bp)
1266 {
1267         struct g_raid3_softc *sc;
1268
1269         sc = bp->bio_from->geom->softc;
1270         bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR;
1271         G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error);
1272         mtx_lock(&sc->sc_queue_mtx);
1273         bioq_insert_head(&sc->sc_queue, bp);
1274         mtx_unlock(&sc->sc_queue_mtx);
1275         wakeup(sc);
1276         wakeup(&sc->sc_queue);
1277 }
1278
1279 static void
1280 g_raid3_regular_request(struct bio *cbp)
1281 {
1282         struct g_raid3_softc *sc;
1283         struct g_raid3_disk *disk;
1284         struct bio *pbp;
1285
1286         g_topology_assert_not();
1287
1288         pbp = cbp->bio_parent;
1289         sc = pbp->bio_to->geom->softc;
1290         cbp->bio_from->index--;
1291         if (cbp->bio_cmd == BIO_WRITE)
1292                 sc->sc_writes--;
1293         disk = cbp->bio_from->private;
1294         if (disk == NULL) {
1295                 g_topology_lock();
1296                 g_raid3_kill_consumer(sc, cbp->bio_from);
1297                 g_topology_unlock();
1298         }
1299
1300         G_RAID3_LOGREQ(3, cbp, "Request finished.");
1301         pbp->bio_inbed++;
1302         KASSERT(pbp->bio_inbed <= pbp->bio_children,
1303             ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed,
1304             pbp->bio_children));
1305         if (pbp->bio_inbed != pbp->bio_children)
1306                 return;
1307         switch (pbp->bio_cmd) {
1308         case BIO_READ:
1309                 g_raid3_gather(pbp);
1310                 break;
1311         case BIO_WRITE:
1312         case BIO_DELETE:
1313             {
1314                 int error = 0;
1315
1316                 pbp->bio_completed = pbp->bio_length;
1317                 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) {
1318                         if (cbp->bio_error == 0) {
1319                                 g_raid3_destroy_bio(sc, cbp);
1320                                 continue;
1321                         }
1322
1323                         if (error == 0)
1324                                 error = cbp->bio_error;
1325                         else if (pbp->bio_error == 0) {
1326                                 /*
1327                                  * Next failed request, that's too many.
1328                                  */
1329                                 pbp->bio_error = error;
1330                         }
1331
1332                         disk = cbp->bio_caller2;
1333                         if (disk == NULL) {
1334                                 g_raid3_destroy_bio(sc, cbp);
1335                                 continue;
1336                         }
1337
1338                         if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
1339                                 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
1340                                 G_RAID3_LOGREQ(0, cbp,
1341                                     "Request failed (error=%d).",
1342                                     cbp->bio_error);
1343                         } else {
1344                                 G_RAID3_LOGREQ(1, cbp,
1345                                     "Request failed (error=%d).",
1346                                     cbp->bio_error);
1347                         }
1348                         if (g_raid3_disconnect_on_failure &&
1349                             sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1350                                 sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1351                                 g_raid3_event_send(disk,
1352                                     G_RAID3_DISK_STATE_DISCONNECTED,
1353                                     G_RAID3_EVENT_DONTWAIT);
1354                         }
1355                         g_raid3_destroy_bio(sc, cbp);
1356                 }
1357                 if (pbp->bio_error == 0)
1358                         G_RAID3_LOGREQ(3, pbp, "Request finished.");
1359                 else
1360                         G_RAID3_LOGREQ(0, pbp, "Request failed.");
1361                 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED;
1362                 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY;
1363                 bioq_remove(&sc->sc_inflight, pbp);
1364                 /* Release delayed sync requests if possible. */
1365                 g_raid3_sync_release(sc);
1366                 g_io_deliver(pbp, pbp->bio_error);
1367                 break;
1368             }
1369         }
1370 }
1371
1372 static void
1373 g_raid3_sync_done(struct bio *bp)
1374 {
1375         struct g_raid3_softc *sc;
1376
1377         G_RAID3_LOGREQ(3, bp, "Synchronization request delivered.");
1378         sc = bp->bio_from->geom->softc;
1379         bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC;
1380         mtx_lock(&sc->sc_queue_mtx);
1381         bioq_insert_head(&sc->sc_queue, bp);
1382         mtx_unlock(&sc->sc_queue_mtx);
1383         wakeup(sc);
1384         wakeup(&sc->sc_queue);
1385 }
1386
1387 static void
1388 g_raid3_flush(struct g_raid3_softc *sc, struct bio *bp)
1389 {
1390         struct bio_queue_head queue;
1391         struct g_raid3_disk *disk;
1392         struct g_consumer *cp;
1393         struct bio *cbp;
1394         u_int i;
1395
1396         bioq_init(&queue);
1397         for (i = 0; i < sc->sc_ndisks; i++) {
1398                 disk = &sc->sc_disks[i];
1399                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
1400                         continue;
1401                 cbp = g_clone_bio(bp);
1402                 if (cbp == NULL) {
1403                         for (cbp = bioq_first(&queue); cbp != NULL;
1404                             cbp = bioq_first(&queue)) {
1405                                 bioq_remove(&queue, cbp);
1406                                 g_destroy_bio(cbp);
1407                         }
1408                         if (bp->bio_error == 0)
1409                                 bp->bio_error = ENOMEM;
1410                         g_io_deliver(bp, bp->bio_error);
1411                         return;
1412                 }
1413                 bioq_insert_tail(&queue, cbp);
1414                 cbp->bio_done = g_std_done;
1415                 cbp->bio_caller1 = disk;
1416                 cbp->bio_to = disk->d_consumer->provider;
1417         }
1418         for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) {
1419                 bioq_remove(&queue, cbp);
1420                 G_RAID3_LOGREQ(3, cbp, "Sending request.");
1421                 disk = cbp->bio_caller1;
1422                 cbp->bio_caller1 = NULL;
1423                 cp = disk->d_consumer;
1424                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1425                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1426                     cp->acr, cp->acw, cp->ace));
1427                 g_io_request(cbp, disk->d_consumer);
1428         }
1429 }
1430
1431 static void
1432 g_raid3_start(struct bio *bp)
1433 {
1434         struct g_raid3_softc *sc;
1435
1436         sc = bp->bio_to->geom->softc;
1437         /*
1438          * If sc == NULL or there are no valid disks, provider's error
1439          * should be set and g_raid3_start() should not be called at all.
1440          */
1441         KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
1442             sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE),
1443             ("Provider's error should be set (error=%d)(device=%s).",
1444             bp->bio_to->error, bp->bio_to->name));
1445         G_RAID3_LOGREQ(3, bp, "Request received.");
1446
1447         switch (bp->bio_cmd) {
1448         case BIO_READ:
1449         case BIO_WRITE:
1450         case BIO_DELETE:
1451                 break;
1452         case BIO_FLUSH:
1453                 g_raid3_flush(sc, bp);
1454                 return;
1455         case BIO_GETATTR:
1456         default:
1457                 g_io_deliver(bp, EOPNOTSUPP);
1458                 return;
1459         }
1460         mtx_lock(&sc->sc_queue_mtx);
1461         bioq_insert_tail(&sc->sc_queue, bp);
1462         mtx_unlock(&sc->sc_queue_mtx);
1463         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
1464         wakeup(sc);
1465 }
1466
1467 /*
1468  * Return TRUE if the given request is colliding with a in-progress
1469  * synchronization request.
1470  */
1471 static int
1472 g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp)
1473 {
1474         struct g_raid3_disk *disk;
1475         struct bio *sbp;
1476         off_t rstart, rend, sstart, send;
1477         int i;
1478
1479         disk = sc->sc_syncdisk;
1480         if (disk == NULL)
1481                 return (0);
1482         rstart = bp->bio_offset;
1483         rend = bp->bio_offset + bp->bio_length;
1484         for (i = 0; i < g_raid3_syncreqs; i++) {
1485                 sbp = disk->d_sync.ds_bios[i];
1486                 if (sbp == NULL)
1487                         continue;
1488                 sstart = sbp->bio_offset;
1489                 send = sbp->bio_length;
1490                 if (sbp->bio_cmd == BIO_WRITE) {
1491                         sstart *= sc->sc_ndisks - 1;
1492                         send *= sc->sc_ndisks - 1;
1493                 }
1494                 send += sstart;
1495                 if (rend > sstart && rstart < send)
1496                         return (1);
1497         }
1498         return (0);
1499 }
1500
1501 /*
1502  * Return TRUE if the given sync request is colliding with a in-progress regular
1503  * request.
1504  */
1505 static int
1506 g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp)
1507 {
1508         off_t rstart, rend, sstart, send;
1509         struct bio *bp;
1510
1511         if (sc->sc_syncdisk == NULL)
1512                 return (0);
1513         sstart = sbp->bio_offset;
1514         send = sstart + sbp->bio_length;
1515         TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) {
1516                 rstart = bp->bio_offset;
1517                 rend = bp->bio_offset + bp->bio_length;
1518                 if (rend > sstart && rstart < send)
1519                         return (1);
1520         }
1521         return (0);
1522 }
1523
1524 /*
1525  * Puts request onto delayed queue.
1526  */
1527 static void
1528 g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp)
1529 {
1530
1531         G_RAID3_LOGREQ(2, bp, "Delaying request.");
1532         bioq_insert_head(&sc->sc_regular_delayed, bp);
1533 }
1534
1535 /*
1536  * Puts synchronization request onto delayed queue.
1537  */
1538 static void
1539 g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp)
1540 {
1541
1542         G_RAID3_LOGREQ(2, bp, "Delaying synchronization request.");
1543         bioq_insert_tail(&sc->sc_sync_delayed, bp);
1544 }
1545
1546 /*
1547  * Releases delayed regular requests which don't collide anymore with sync
1548  * requests.
1549  */
1550 static void
1551 g_raid3_regular_release(struct g_raid3_softc *sc)
1552 {
1553         struct bio *bp, *bp2;
1554
1555         TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) {
1556                 if (g_raid3_sync_collision(sc, bp))
1557                         continue;
1558                 bioq_remove(&sc->sc_regular_delayed, bp);
1559                 G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp);
1560                 mtx_lock(&sc->sc_queue_mtx);
1561                 bioq_insert_head(&sc->sc_queue, bp);
1562 #if 0
1563                 /*
1564                  * wakeup() is not needed, because this function is called from
1565                  * the worker thread.
1566                  */
1567                 wakeup(&sc->sc_queue);
1568 #endif
1569                 mtx_unlock(&sc->sc_queue_mtx);
1570         }
1571 }
1572
1573 /*
1574  * Releases delayed sync requests which don't collide anymore with regular
1575  * requests.
1576  */
1577 static void
1578 g_raid3_sync_release(struct g_raid3_softc *sc)
1579 {
1580         struct bio *bp, *bp2;
1581
1582         TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) {
1583                 if (g_raid3_regular_collision(sc, bp))
1584                         continue;
1585                 bioq_remove(&sc->sc_sync_delayed, bp);
1586                 G_RAID3_LOGREQ(2, bp,
1587                     "Releasing delayed synchronization request.");
1588                 g_io_request(bp, bp->bio_from);
1589         }
1590 }
1591
1592 /*
1593  * Handle synchronization requests.
1594  * Every synchronization request is two-steps process: first, READ request is
1595  * send to active provider and then WRITE request (with read data) to the provider
1596  * beeing synchronized. When WRITE is finished, new synchronization request is
1597  * send.
1598  */
1599 static void
1600 g_raid3_sync_request(struct bio *bp)
1601 {
1602         struct g_raid3_softc *sc;
1603         struct g_raid3_disk *disk;
1604
1605         bp->bio_from->index--;
1606         sc = bp->bio_from->geom->softc;
1607         disk = bp->bio_from->private;
1608         if (disk == NULL) {
1609                 sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
1610                 g_topology_lock();
1611                 g_raid3_kill_consumer(sc, bp->bio_from);
1612                 g_topology_unlock();
1613                 free(bp->bio_data, M_RAID3);
1614                 g_destroy_bio(bp);
1615                 sx_xlock(&sc->sc_lock);
1616                 return;
1617         }
1618
1619         /*
1620          * Synchronization request.
1621          */
1622         switch (bp->bio_cmd) {
1623         case BIO_READ:
1624             {
1625                 struct g_consumer *cp;
1626                 u_char *dst, *src;
1627                 off_t left;
1628                 u_int atom;
1629
1630                 if (bp->bio_error != 0) {
1631                         G_RAID3_LOGREQ(0, bp,
1632                             "Synchronization request failed (error=%d).",
1633                             bp->bio_error);
1634                         g_destroy_bio(bp);
1635                         return;
1636                 }
1637                 G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
1638                 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1639                 dst = src = bp->bio_data;
1640                 if (disk->d_no == sc->sc_ndisks - 1) {
1641                         u_int n;
1642
1643                         /* Parity component. */
1644                         for (left = bp->bio_length; left > 0;
1645                             left -= sc->sc_sectorsize) {
1646                                 bcopy(src, dst, atom);
1647                                 src += atom;
1648                                 for (n = 1; n < sc->sc_ndisks - 1; n++) {
1649                                         g_raid3_xor(src, dst, atom);
1650                                         src += atom;
1651                                 }
1652                                 dst += atom;
1653                         }
1654                 } else {
1655                         /* Regular component. */
1656                         src += atom * disk->d_no;
1657                         for (left = bp->bio_length; left > 0;
1658                             left -= sc->sc_sectorsize) {
1659                                 bcopy(src, dst, atom);
1660                                 src += sc->sc_sectorsize;
1661                                 dst += atom;
1662                         }
1663                 }
1664                 bp->bio_driver1 = bp->bio_driver2 = NULL;
1665                 bp->bio_pflags = 0;
1666                 bp->bio_offset /= sc->sc_ndisks - 1;
1667                 bp->bio_length /= sc->sc_ndisks - 1;
1668                 bp->bio_cmd = BIO_WRITE;
1669                 bp->bio_cflags = 0;
1670                 bp->bio_children = bp->bio_inbed = 0;
1671                 cp = disk->d_consumer;
1672                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1673                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1674                     cp->acr, cp->acw, cp->ace));
1675                 cp->index++;
1676                 g_io_request(bp, cp);
1677                 return;
1678             }
1679         case BIO_WRITE:
1680             {
1681                 struct g_raid3_disk_sync *sync;
1682                 off_t boffset, moffset;
1683                 void *data;
1684                 int i;
1685
1686                 if (bp->bio_error != 0) {
1687                         G_RAID3_LOGREQ(0, bp,
1688                             "Synchronization request failed (error=%d).",
1689                             bp->bio_error);
1690                         g_destroy_bio(bp);
1691                         sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1692                         g_raid3_event_send(disk,
1693                             G_RAID3_DISK_STATE_DISCONNECTED,
1694                             G_RAID3_EVENT_DONTWAIT);
1695                         return;
1696                 }
1697                 G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
1698                 sync = &disk->d_sync;
1699                 if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) ||
1700                     sync->ds_consumer == NULL ||
1701                     (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
1702                         /* Don't send more synchronization requests. */
1703                         sync->ds_inflight--;
1704                         if (sync->ds_bios != NULL) {
1705                                 i = (int)(uintptr_t)bp->bio_caller1;
1706                                 sync->ds_bios[i] = NULL;
1707                         }
1708                         free(bp->bio_data, M_RAID3);
1709                         g_destroy_bio(bp);
1710                         if (sync->ds_inflight > 0)
1711                                 return;
1712                         if (sync->ds_consumer == NULL ||
1713                             (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
1714                                 return;
1715                         }
1716                         /*
1717                          * Disk up-to-date, activate it.
1718                          */
1719                         g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE,
1720                             G_RAID3_EVENT_DONTWAIT);
1721                         return;
1722                 }
1723
1724                 /* Send next synchronization request. */
1725                 data = bp->bio_data;
1726                 bzero(bp, sizeof(*bp));
1727                 bp->bio_cmd = BIO_READ;
1728                 bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1);
1729                 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
1730                 sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
1731                 bp->bio_done = g_raid3_sync_done;
1732                 bp->bio_data = data;
1733                 bp->bio_from = sync->ds_consumer;
1734                 bp->bio_to = sc->sc_provider;
1735                 G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
1736                 sync->ds_consumer->index++;
1737                 /*
1738                  * Delay the request if it is colliding with a regular request.
1739                  */
1740                 if (g_raid3_regular_collision(sc, bp))
1741                         g_raid3_sync_delay(sc, bp);
1742                 else
1743                         g_io_request(bp, sync->ds_consumer);
1744
1745                 /* Release delayed requests if possible. */
1746                 g_raid3_regular_release(sc);
1747
1748                 /* Find the smallest offset. */
1749                 moffset = sc->sc_mediasize;
1750                 for (i = 0; i < g_raid3_syncreqs; i++) {
1751                         bp = sync->ds_bios[i];
1752                         boffset = bp->bio_offset;
1753                         if (bp->bio_cmd == BIO_WRITE)
1754                                 boffset *= sc->sc_ndisks - 1;
1755                         if (boffset < moffset)
1756                                 moffset = boffset;
1757                 }
1758                 if (sync->ds_offset_done + (MAXPHYS * 100) < moffset) {
1759                         /* Update offset_done on every 100 blocks. */
1760                         sync->ds_offset_done = moffset;
1761                         g_raid3_update_metadata(disk);
1762                 }
1763                 return;
1764             }
1765         default:
1766                 KASSERT(1 == 0, ("Invalid command here: %u (device=%s)",
1767                     bp->bio_cmd, sc->sc_name));
1768                 break;
1769         }
1770 }
1771
1772 static int
1773 g_raid3_register_request(struct bio *pbp)
1774 {
1775         struct g_raid3_softc *sc;
1776         struct g_raid3_disk *disk;
1777         struct g_consumer *cp;
1778         struct bio *cbp, *tmpbp;
1779         off_t offset, length;
1780         u_int n, ndisks;
1781         int round_robin, verify;
1782
1783         ndisks = 0;
1784         sc = pbp->bio_to->geom->softc;
1785         if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 &&
1786             sc->sc_syncdisk == NULL) {
1787                 g_io_deliver(pbp, EIO);
1788                 return (0);
1789         }
1790         g_raid3_init_bio(pbp);
1791         length = pbp->bio_length / (sc->sc_ndisks - 1);
1792         offset = pbp->bio_offset / (sc->sc_ndisks - 1);
1793         round_robin = verify = 0;
1794         switch (pbp->bio_cmd) {
1795         case BIO_READ:
1796                 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
1797                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1798                         pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY;
1799                         verify = 1;
1800                         ndisks = sc->sc_ndisks;
1801                 } else {
1802                         verify = 0;
1803                         ndisks = sc->sc_ndisks - 1;
1804                 }
1805                 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 &&
1806                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1807                         round_robin = 1;
1808                 } else {
1809                         round_robin = 0;
1810                 }
1811                 KASSERT(!round_robin || !verify,
1812                     ("ROUND-ROBIN and VERIFY are mutually exclusive."));
1813                 pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1];
1814                 break;
1815         case BIO_WRITE:
1816         case BIO_DELETE:
1817                 /*
1818                  * Delay the request if it is colliding with a synchronization
1819                  * request.
1820                  */
1821                 if (g_raid3_sync_collision(sc, pbp)) {
1822                         g_raid3_regular_delay(sc, pbp);
1823                         return (0);
1824                 }
1825
1826                 if (sc->sc_idle)
1827                         g_raid3_unidle(sc);
1828                 else
1829                         sc->sc_last_write = time_uptime;
1830
1831                 ndisks = sc->sc_ndisks;
1832                 break;
1833         }
1834         for (n = 0; n < ndisks; n++) {
1835                 disk = &sc->sc_disks[n];
1836                 cbp = g_raid3_clone_bio(sc, pbp);
1837                 if (cbp == NULL) {
1838                         while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
1839                                 g_raid3_destroy_bio(sc, cbp);
1840                         /*
1841                          * To prevent deadlock, we must run back up
1842                          * with the ENOMEM for failed requests of any
1843                          * of our consumers.  Our own sync requests
1844                          * can stick around, as they are finite.
1845                          */
1846                         if ((pbp->bio_cflags &
1847                             G_RAID3_BIO_CFLAG_REGULAR) != 0) {
1848                                 g_io_deliver(pbp, ENOMEM);
1849                                 return (0);
1850                         }
1851                         return (ENOMEM);
1852                 }
1853                 cbp->bio_offset = offset;
1854                 cbp->bio_length = length;
1855                 cbp->bio_done = g_raid3_done;
1856                 switch (pbp->bio_cmd) {
1857                 case BIO_READ:
1858                         if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
1859                                 /*
1860                                  * Replace invalid component with the parity
1861                                  * component.
1862                                  */
1863                                 disk = &sc->sc_disks[sc->sc_ndisks - 1];
1864                                 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1865                                 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1866                         } else if (round_robin &&
1867                             disk->d_no == sc->sc_round_robin) {
1868                                 /*
1869                                  * In round-robin mode skip one data component
1870                                  * and use parity component when reading.
1871                                  */
1872                                 pbp->bio_driver2 = disk;
1873                                 disk = &sc->sc_disks[sc->sc_ndisks - 1];
1874                                 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1875                                 sc->sc_round_robin++;
1876                                 round_robin = 0;
1877                         } else if (verify && disk->d_no == sc->sc_ndisks - 1) {
1878                                 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1879                         }
1880                         break;
1881                 case BIO_WRITE:
1882                 case BIO_DELETE:
1883                         if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
1884                             disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
1885                                 if (n == ndisks - 1) {
1886                                         /*
1887                                          * Active parity component, mark it as such.
1888                                          */
1889                                         cbp->bio_cflags |=
1890                                             G_RAID3_BIO_CFLAG_PARITY;
1891                                 }
1892                         } else {
1893                                 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1894                                 if (n == ndisks - 1) {
1895                                         /*
1896                                          * Parity component is not connected,
1897                                          * so destroy its request.
1898                                          */
1899                                         pbp->bio_pflags |=
1900                                             G_RAID3_BIO_PFLAG_NOPARITY;
1901                                         g_raid3_destroy_bio(sc, cbp);
1902                                         cbp = NULL;
1903                                 } else {
1904                                         cbp->bio_cflags |=
1905                                             G_RAID3_BIO_CFLAG_NODISK;
1906                                         disk = NULL;
1907                                 }
1908                         }
1909                         break;
1910                 }
1911                 if (cbp != NULL)
1912                         cbp->bio_caller2 = disk;
1913         }
1914         switch (pbp->bio_cmd) {
1915         case BIO_READ:
1916                 if (round_robin) {
1917                         /*
1918                          * If we are in round-robin mode and 'round_robin' is
1919                          * still 1, it means, that we skipped parity component
1920                          * for this read and must reset sc_round_robin field.
1921                          */
1922                         sc->sc_round_robin = 0;
1923                 }
1924                 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1925                         disk = cbp->bio_caller2;
1926                         cp = disk->d_consumer;
1927                         cbp->bio_to = cp->provider;
1928                         G_RAID3_LOGREQ(3, cbp, "Sending request.");
1929                         KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1930                             ("Consumer %s not opened (r%dw%de%d).",
1931                             cp->provider->name, cp->acr, cp->acw, cp->ace));
1932                         cp->index++;
1933                         g_io_request(cbp, cp);
1934                 }
1935                 break;
1936         case BIO_WRITE:
1937         case BIO_DELETE:
1938                 /*
1939                  * Put request onto inflight queue, so we can check if new
1940                  * synchronization requests don't collide with it.
1941                  */
1942                 bioq_insert_tail(&sc->sc_inflight, pbp);
1943
1944                 /*
1945                  * Bump syncid on first write.
1946                  */
1947                 if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) {
1948                         sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
1949                         g_raid3_bump_syncid(sc);
1950                 }
1951                 g_raid3_scatter(pbp);
1952                 break;
1953         }
1954         return (0);
1955 }
1956
1957 static int
1958 g_raid3_can_destroy(struct g_raid3_softc *sc)
1959 {
1960         struct g_geom *gp;
1961         struct g_consumer *cp;
1962
1963         g_topology_assert();
1964         gp = sc->sc_geom;
1965         if (gp->softc == NULL)
1966                 return (1);
1967         LIST_FOREACH(cp, &gp->consumer, consumer) {
1968                 if (g_raid3_is_busy(sc, cp))
1969                         return (0);
1970         }
1971         gp = sc->sc_sync.ds_geom;
1972         LIST_FOREACH(cp, &gp->consumer, consumer) {
1973                 if (g_raid3_is_busy(sc, cp))
1974                         return (0);
1975         }
1976         G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.",
1977             sc->sc_name);
1978         return (1);
1979 }
1980
1981 static int
1982 g_raid3_try_destroy(struct g_raid3_softc *sc)
1983 {
1984
1985         g_topology_assert_not();
1986         sx_assert(&sc->sc_lock, SX_XLOCKED);
1987
1988         if (sc->sc_rootmount != NULL) {
1989                 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
1990                     sc->sc_rootmount);
1991                 root_mount_rel(sc->sc_rootmount);
1992                 sc->sc_rootmount = NULL;
1993         }
1994
1995         g_topology_lock();
1996         if (!g_raid3_can_destroy(sc)) {
1997                 g_topology_unlock();
1998                 return (0);
1999         }
2000         sc->sc_geom->softc = NULL;
2001         sc->sc_sync.ds_geom->softc = NULL;
2002         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) {
2003                 g_topology_unlock();
2004                 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
2005                     &sc->sc_worker);
2006                 /* Unlock sc_lock here, as it can be destroyed after wakeup. */
2007                 sx_xunlock(&sc->sc_lock);
2008                 wakeup(&sc->sc_worker);
2009                 sc->sc_worker = NULL;
2010         } else {
2011                 g_topology_unlock();
2012                 g_raid3_destroy_device(sc);
2013                 free(sc->sc_disks, M_RAID3);
2014                 free(sc, M_RAID3);
2015         }
2016         return (1);
2017 }
2018
2019 /*
2020  * Worker thread.
2021  */
2022 static void
2023 g_raid3_worker(void *arg)
2024 {
2025         struct g_raid3_softc *sc;
2026         struct g_raid3_event *ep;
2027         struct bio *bp;
2028         int timeout;
2029
2030         sc = arg;
2031         thread_lock(curthread);
2032         sched_prio(curthread, PRIBIO);
2033         thread_unlock(curthread);
2034
2035         sx_xlock(&sc->sc_lock);
2036         for (;;) {
2037                 G_RAID3_DEBUG(5, "%s: Let's see...", __func__);
2038                 /*
2039                  * First take a look at events.
2040                  * This is important to handle events before any I/O requests.
2041                  */
2042                 ep = g_raid3_event_get(sc);
2043                 if (ep != NULL) {
2044                         g_raid3_event_remove(sc, ep);
2045                         if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) {
2046                                 /* Update only device status. */
2047                                 G_RAID3_DEBUG(3,
2048                                     "Running event for device %s.",
2049                                     sc->sc_name);
2050                                 ep->e_error = 0;
2051                                 g_raid3_update_device(sc, 1);
2052                         } else {
2053                                 /* Update disk status. */
2054                                 G_RAID3_DEBUG(3, "Running event for disk %s.",
2055                                      g_raid3_get_diskname(ep->e_disk));
2056                                 ep->e_error = g_raid3_update_disk(ep->e_disk,
2057                                     ep->e_state);
2058                                 if (ep->e_error == 0)
2059                                         g_raid3_update_device(sc, 0);
2060                         }
2061                         if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) {
2062                                 KASSERT(ep->e_error == 0,
2063                                     ("Error cannot be handled."));
2064                                 g_raid3_event_free(ep);
2065                         } else {
2066                                 ep->e_flags |= G_RAID3_EVENT_DONE;
2067                                 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
2068                                     ep);
2069                                 mtx_lock(&sc->sc_events_mtx);
2070                                 wakeup(ep);
2071                                 mtx_unlock(&sc->sc_events_mtx);
2072                         }
2073                         if ((sc->sc_flags &
2074                             G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
2075                                 if (g_raid3_try_destroy(sc)) {
2076                                         curthread->td_pflags &= ~TDP_GEOM;
2077                                         G_RAID3_DEBUG(1, "Thread exiting.");
2078                                         kproc_exit(0);
2079                                 }
2080                         }
2081                         G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__);
2082                         continue;
2083                 }
2084                 /*
2085                  * Check if we can mark array as CLEAN and if we can't take
2086                  * how much seconds should we wait.
2087                  */
2088                 timeout = g_raid3_idle(sc, -1);
2089                 /*
2090                  * Now I/O requests.
2091                  */
2092                 /* Get first request from the queue. */
2093                 mtx_lock(&sc->sc_queue_mtx);
2094                 bp = bioq_first(&sc->sc_queue);
2095                 if (bp == NULL) {
2096                         if ((sc->sc_flags &
2097                             G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
2098                                 mtx_unlock(&sc->sc_queue_mtx);
2099                                 if (g_raid3_try_destroy(sc)) {
2100                                         curthread->td_pflags &= ~TDP_GEOM;
2101                                         G_RAID3_DEBUG(1, "Thread exiting.");
2102                                         kproc_exit(0);
2103                                 }
2104                                 mtx_lock(&sc->sc_queue_mtx);
2105                         }
2106                         sx_xunlock(&sc->sc_lock);
2107                         /*
2108                          * XXX: We can miss an event here, because an event
2109                          *      can be added without sx-device-lock and without
2110                          *      mtx-queue-lock. Maybe I should just stop using
2111                          *      dedicated mutex for events synchronization and
2112                          *      stick with the queue lock?
2113                          *      The event will hang here until next I/O request
2114                          *      or next event is received.
2115                          */
2116                         MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1",
2117                             timeout * hz);
2118                         sx_xlock(&sc->sc_lock);
2119                         G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__);
2120                         continue;
2121                 }
2122 process:
2123                 bioq_remove(&sc->sc_queue, bp);
2124                 mtx_unlock(&sc->sc_queue_mtx);
2125
2126                 if (bp->bio_from->geom == sc->sc_sync.ds_geom &&
2127                     (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) {
2128                         g_raid3_sync_request(bp);       /* READ */
2129                 } else if (bp->bio_to != sc->sc_provider) {
2130                         if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
2131                                 g_raid3_regular_request(bp);
2132                         else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0)
2133                                 g_raid3_sync_request(bp);       /* WRITE */
2134                         else {
2135                                 KASSERT(0,
2136                                     ("Invalid request cflags=0x%hhx to=%s.",
2137                                     bp->bio_cflags, bp->bio_to->name));
2138                         }
2139                 } else if (g_raid3_register_request(bp) != 0) {
2140                         mtx_lock(&sc->sc_queue_mtx);
2141                         bioq_insert_head(&sc->sc_queue, bp);
2142                         /*
2143                          * We are short in memory, let see if there are finished
2144                          * request we can free.
2145                          */
2146                         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
2147                                 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR)
2148                                         goto process;
2149                         }
2150                         /*
2151                          * No finished regular request, so at least keep
2152                          * synchronization running.
2153                          */
2154                         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
2155                                 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC)
2156                                         goto process;
2157                         }
2158                         sx_xunlock(&sc->sc_lock);
2159                         MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP,
2160                             "r3:lowmem", hz / 10);
2161                         sx_xlock(&sc->sc_lock);
2162                 }
2163                 G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__);
2164         }
2165 }
2166
2167 static void
2168 g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk)
2169 {
2170
2171         sx_assert(&sc->sc_lock, SX_LOCKED);
2172         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
2173                 return;
2174         if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) {
2175                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
2176                     g_raid3_get_diskname(disk), sc->sc_name);
2177                 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
2178         } else if (sc->sc_idle &&
2179             (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) {
2180                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
2181                     g_raid3_get_diskname(disk), sc->sc_name);
2182                 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2183         }
2184 }
2185
2186 static void
2187 g_raid3_sync_start(struct g_raid3_softc *sc)
2188 {
2189         struct g_raid3_disk *disk;
2190         struct g_consumer *cp;
2191         struct bio *bp;
2192         int error;
2193         u_int n;
2194
2195         g_topology_assert_not();
2196         sx_assert(&sc->sc_lock, SX_XLOCKED);
2197
2198         KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
2199             ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
2200             sc->sc_state));
2201         KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).",
2202             sc->sc_name, sc->sc_state));
2203         disk = NULL;
2204         for (n = 0; n < sc->sc_ndisks; n++) {
2205                 if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
2206                         continue;
2207                 disk = &sc->sc_disks[n];
2208                 break;
2209         }
2210         if (disk == NULL)
2211                 return;
2212
2213         sx_xunlock(&sc->sc_lock);
2214         g_topology_lock();
2215         cp = g_new_consumer(sc->sc_sync.ds_geom);
2216         error = g_attach(cp, sc->sc_provider);
2217         KASSERT(error == 0,
2218             ("Cannot attach to %s (error=%d).", sc->sc_name, error));
2219         error = g_access(cp, 1, 0, 0);
2220         KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error));
2221         g_topology_unlock();
2222         sx_xlock(&sc->sc_lock);
2223
2224         G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name,
2225             g_raid3_get_diskname(disk));
2226         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) == 0)
2227                 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
2228         KASSERT(disk->d_sync.ds_consumer == NULL,
2229             ("Sync consumer already exists (device=%s, disk=%s).",
2230             sc->sc_name, g_raid3_get_diskname(disk)));
2231
2232         disk->d_sync.ds_consumer = cp;
2233         disk->d_sync.ds_consumer->private = disk;
2234         disk->d_sync.ds_consumer->index = 0;
2235         sc->sc_syncdisk = disk;
2236
2237         /*
2238          * Allocate memory for synchronization bios and initialize them.
2239          */
2240         disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs,
2241             M_RAID3, M_WAITOK);
2242         for (n = 0; n < g_raid3_syncreqs; n++) {
2243                 bp = g_alloc_bio();
2244                 disk->d_sync.ds_bios[n] = bp;
2245                 bp->bio_parent = NULL;
2246                 bp->bio_cmd = BIO_READ;
2247                 bp->bio_data = malloc(MAXPHYS, M_RAID3, M_WAITOK);
2248                 bp->bio_cflags = 0;
2249                 bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1);
2250                 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
2251                 disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
2252                 bp->bio_done = g_raid3_sync_done;
2253                 bp->bio_from = disk->d_sync.ds_consumer;
2254                 bp->bio_to = sc->sc_provider;
2255                 bp->bio_caller1 = (void *)(uintptr_t)n;
2256         }
2257
2258         /* Set the number of in-flight synchronization requests. */
2259         disk->d_sync.ds_inflight = g_raid3_syncreqs;
2260
2261         /*
2262          * Fire off first synchronization requests.
2263          */
2264         for (n = 0; n < g_raid3_syncreqs; n++) {
2265                 bp = disk->d_sync.ds_bios[n];
2266                 G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
2267                 disk->d_sync.ds_consumer->index++;
2268                 /*
2269                  * Delay the request if it is colliding with a regular request.
2270                  */
2271                 if (g_raid3_regular_collision(sc, bp))
2272                         g_raid3_sync_delay(sc, bp);
2273                 else
2274                         g_io_request(bp, disk->d_sync.ds_consumer);
2275         }
2276 }
2277
2278 /*
2279  * Stop synchronization process.
2280  * type: 0 - synchronization finished
2281  *       1 - synchronization stopped
2282  */
2283 static void
2284 g_raid3_sync_stop(struct g_raid3_softc *sc, int type)
2285 {
2286         struct g_raid3_disk *disk;
2287         struct g_consumer *cp;
2288
2289         g_topology_assert_not();
2290         sx_assert(&sc->sc_lock, SX_LOCKED);
2291
2292         KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
2293             ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
2294             sc->sc_state));
2295         disk = sc->sc_syncdisk;
2296         sc->sc_syncdisk = NULL;
2297         KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name));
2298         KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2299             ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2300             g_raid3_disk_state2str(disk->d_state)));
2301         if (disk->d_sync.ds_consumer == NULL)
2302                 return;
2303
2304         if (type == 0) {
2305                 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.",
2306                     sc->sc_name, g_raid3_get_diskname(disk));
2307         } else /* if (type == 1) */ {
2308                 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.",
2309                     sc->sc_name, g_raid3_get_diskname(disk));
2310         }
2311         free(disk->d_sync.ds_bios, M_RAID3);
2312         disk->d_sync.ds_bios = NULL;
2313         cp = disk->d_sync.ds_consumer;
2314         disk->d_sync.ds_consumer = NULL;
2315         disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2316         sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
2317         g_topology_lock();
2318         g_raid3_kill_consumer(sc, cp);
2319         g_topology_unlock();
2320         sx_xlock(&sc->sc_lock);
2321 }
2322
2323 static void
2324 g_raid3_launch_provider(struct g_raid3_softc *sc)
2325 {
2326         struct g_provider *pp;
2327         struct g_raid3_disk *disk;
2328         int n;
2329
2330         sx_assert(&sc->sc_lock, SX_LOCKED);
2331
2332         g_topology_lock();
2333         pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name);
2334         pp->mediasize = sc->sc_mediasize;
2335         pp->sectorsize = sc->sc_sectorsize;
2336         pp->stripesize = 0;
2337         pp->stripeoffset = 0;
2338         for (n = 0; n < sc->sc_ndisks; n++) {
2339                 disk = &sc->sc_disks[n];
2340                 if (disk->d_consumer && disk->d_consumer->provider &&
2341                     disk->d_consumer->provider->stripesize > pp->stripesize) {
2342                         pp->stripesize = disk->d_consumer->provider->stripesize;
2343                         pp->stripeoffset = disk->d_consumer->provider->stripeoffset;
2344                 }
2345         }
2346         pp->stripesize *= sc->sc_ndisks - 1;
2347         pp->stripeoffset *= sc->sc_ndisks - 1;
2348         sc->sc_provider = pp;
2349         g_error_provider(pp, 0);
2350         g_topology_unlock();
2351         G_RAID3_DEBUG(0, "Device %s launched (%u/%u).", pp->name,
2352             g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE), sc->sc_ndisks);
2353
2354         if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED)
2355                 g_raid3_sync_start(sc);
2356 }
2357
2358 static void
2359 g_raid3_destroy_provider(struct g_raid3_softc *sc)
2360 {
2361         struct bio *bp;
2362
2363         g_topology_assert_not();
2364         KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).",
2365             sc->sc_name));
2366
2367         g_topology_lock();
2368         g_error_provider(sc->sc_provider, ENXIO);
2369         mtx_lock(&sc->sc_queue_mtx);
2370         while ((bp = bioq_first(&sc->sc_queue)) != NULL) {
2371                 bioq_remove(&sc->sc_queue, bp);
2372                 g_io_deliver(bp, ENXIO);
2373         }
2374         mtx_unlock(&sc->sc_queue_mtx);
2375         G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name,
2376             sc->sc_provider->name);
2377         sc->sc_provider->flags |= G_PF_WITHER;
2378         g_orphan_provider(sc->sc_provider, ENXIO);
2379         g_topology_unlock();
2380         sc->sc_provider = NULL;
2381         if (sc->sc_syncdisk != NULL)
2382                 g_raid3_sync_stop(sc, 1);
2383 }
2384
2385 static void
2386 g_raid3_go(void *arg)
2387 {
2388         struct g_raid3_softc *sc;
2389
2390         sc = arg;
2391         G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name);
2392         g_raid3_event_send(sc, 0,
2393             G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE);
2394 }
2395
2396 static u_int
2397 g_raid3_determine_state(struct g_raid3_disk *disk)
2398 {
2399         struct g_raid3_softc *sc;
2400         u_int state;
2401
2402         sc = disk->d_softc;
2403         if (sc->sc_syncid == disk->d_sync.ds_syncid) {
2404                 if ((disk->d_flags &
2405                     G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) {
2406                         /* Disk does not need synchronization. */
2407                         state = G_RAID3_DISK_STATE_ACTIVE;
2408                 } else {
2409                         if ((sc->sc_flags &
2410                              G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
2411                             (disk->d_flags &
2412                              G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
2413                                 /*
2414                                  * We can start synchronization from
2415                                  * the stored offset.
2416                                  */
2417                                 state = G_RAID3_DISK_STATE_SYNCHRONIZING;
2418                         } else {
2419                                 state = G_RAID3_DISK_STATE_STALE;
2420                         }
2421                 }
2422         } else if (disk->d_sync.ds_syncid < sc->sc_syncid) {
2423                 /*
2424                  * Reset all synchronization data for this disk,
2425                  * because if it even was synchronized, it was
2426                  * synchronized to disks with different syncid.
2427                  */
2428                 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
2429                 disk->d_sync.ds_offset = 0;
2430                 disk->d_sync.ds_offset_done = 0;
2431                 disk->d_sync.ds_syncid = sc->sc_syncid;
2432                 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
2433                     (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
2434                         state = G_RAID3_DISK_STATE_SYNCHRONIZING;
2435                 } else {
2436                         state = G_RAID3_DISK_STATE_STALE;
2437                 }
2438         } else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ {
2439                 /*
2440                  * Not good, NOT GOOD!
2441                  * It means that device was started on stale disks
2442                  * and more fresh disk just arrive.
2443                  * If there were writes, device is broken, sorry.
2444                  * I think the best choice here is don't touch
2445                  * this disk and inform the user loudly.
2446                  */
2447                 G_RAID3_DEBUG(0, "Device %s was started before the freshest "
2448                     "disk (%s) arrives!! It will not be connected to the "
2449                     "running device.", sc->sc_name,
2450                     g_raid3_get_diskname(disk));
2451                 g_raid3_destroy_disk(disk);
2452                 state = G_RAID3_DISK_STATE_NONE;
2453                 /* Return immediately, because disk was destroyed. */
2454                 return (state);
2455         }
2456         G_RAID3_DEBUG(3, "State for %s disk: %s.",
2457             g_raid3_get_diskname(disk), g_raid3_disk_state2str(state));
2458         return (state);
2459 }
2460
2461 /*
2462  * Update device state.
2463  */
2464 static void
2465 g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force)
2466 {
2467         struct g_raid3_disk *disk;
2468         u_int state;
2469
2470         sx_assert(&sc->sc_lock, SX_XLOCKED);
2471
2472         switch (sc->sc_state) {
2473         case G_RAID3_DEVICE_STATE_STARTING:
2474             {
2475                 u_int n, ndirty, ndisks, genid, syncid;
2476
2477                 KASSERT(sc->sc_provider == NULL,
2478                     ("Non-NULL provider in STARTING state (%s).", sc->sc_name));
2479                 /*
2480                  * Are we ready? We are, if all disks are connected or
2481                  * one disk is missing and 'force' is true.
2482                  */
2483                 if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) {
2484                         if (!force)
2485                                 callout_drain(&sc->sc_callout);
2486                 } else {
2487                         if (force) {
2488                                 /*
2489                                  * Timeout expired, so destroy device.
2490                                  */
2491                                 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2492                                 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p",
2493                                     __LINE__, sc->sc_rootmount);
2494                                 root_mount_rel(sc->sc_rootmount);
2495                                 sc->sc_rootmount = NULL;
2496                         }
2497                         return;
2498                 }
2499
2500                 /*
2501                  * Find the biggest genid.
2502                  */
2503                 genid = 0;
2504                 for (n = 0; n < sc->sc_ndisks; n++) {
2505                         disk = &sc->sc_disks[n];
2506                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2507                                 continue;
2508                         if (disk->d_genid > genid)
2509                                 genid = disk->d_genid;
2510                 }
2511                 sc->sc_genid = genid;
2512                 /*
2513                  * Remove all disks without the biggest genid.
2514                  */
2515                 for (n = 0; n < sc->sc_ndisks; n++) {
2516                         disk = &sc->sc_disks[n];
2517                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2518                                 continue;
2519                         if (disk->d_genid < genid) {
2520                                 G_RAID3_DEBUG(0,
2521                                     "Component %s (device %s) broken, skipping.",
2522                                     g_raid3_get_diskname(disk), sc->sc_name);
2523                                 g_raid3_destroy_disk(disk);
2524                         }
2525                 }
2526
2527                 /*
2528                  * There must be at least 'sc->sc_ndisks - 1' components
2529                  * with the same syncid and without SYNCHRONIZING flag.
2530                  */
2531
2532                 /*
2533                  * Find the biggest syncid, number of valid components and
2534                  * number of dirty components.
2535                  */
2536                 ndirty = ndisks = syncid = 0;
2537                 for (n = 0; n < sc->sc_ndisks; n++) {
2538                         disk = &sc->sc_disks[n];
2539                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2540                                 continue;
2541                         if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0)
2542                                 ndirty++;
2543                         if (disk->d_sync.ds_syncid > syncid) {
2544                                 syncid = disk->d_sync.ds_syncid;
2545                                 ndisks = 0;
2546                         } else if (disk->d_sync.ds_syncid < syncid) {
2547                                 continue;
2548                         }
2549                         if ((disk->d_flags &
2550                             G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) {
2551                                 continue;
2552                         }
2553                         ndisks++;
2554                 }
2555                 /*
2556                  * Do we have enough valid components?
2557                  */
2558                 if (ndisks + 1 < sc->sc_ndisks) {
2559                         G_RAID3_DEBUG(0,
2560                             "Device %s is broken, too few valid components.",
2561                             sc->sc_name);
2562                         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2563                         return;
2564                 }
2565                 /*
2566                  * If there is one DIRTY component and all disks are present,
2567                  * mark it for synchronization. If there is more than one DIRTY
2568                  * component, mark parity component for synchronization.
2569                  */
2570                 if (ndisks == sc->sc_ndisks && ndirty == 1) {
2571                         for (n = 0; n < sc->sc_ndisks; n++) {
2572                                 disk = &sc->sc_disks[n];
2573                                 if ((disk->d_flags &
2574                                     G_RAID3_DISK_FLAG_DIRTY) == 0) {
2575                                         continue;
2576                                 }
2577                                 disk->d_flags |=
2578                                     G_RAID3_DISK_FLAG_SYNCHRONIZING;
2579                         }
2580                 } else if (ndisks == sc->sc_ndisks && ndirty > 1) {
2581                         disk = &sc->sc_disks[sc->sc_ndisks - 1];
2582                         disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
2583                 }
2584
2585                 sc->sc_syncid = syncid;
2586                 if (force) {
2587                         /* Remember to bump syncid on first write. */
2588                         sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
2589                 }
2590                 if (ndisks == sc->sc_ndisks)
2591                         state = G_RAID3_DEVICE_STATE_COMPLETE;
2592                 else /* if (ndisks == sc->sc_ndisks - 1) */
2593                         state = G_RAID3_DEVICE_STATE_DEGRADED;
2594                 G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.",
2595                     sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2596                     g_raid3_device_state2str(state));
2597                 sc->sc_state = state;
2598                 for (n = 0; n < sc->sc_ndisks; n++) {
2599                         disk = &sc->sc_disks[n];
2600                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2601                                 continue;
2602                         state = g_raid3_determine_state(disk);
2603                         g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT);
2604                         if (state == G_RAID3_DISK_STATE_STALE)
2605                                 sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
2606                 }
2607                 break;
2608             }
2609         case G_RAID3_DEVICE_STATE_DEGRADED:
2610                 /*
2611                  * Genid need to be bumped immediately, so do it here.
2612                  */
2613                 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
2614                         sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
2615                         g_raid3_bump_genid(sc);
2616                 }
2617
2618                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
2619                         return;
2620                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) <
2621                     sc->sc_ndisks - 1) {
2622                         if (sc->sc_provider != NULL)
2623                                 g_raid3_destroy_provider(sc);
2624                         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2625                         return;
2626                 }
2627                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
2628                     sc->sc_ndisks) {
2629                         state = G_RAID3_DEVICE_STATE_COMPLETE;
2630                         G_RAID3_DEBUG(1,
2631                             "Device %s state changed from %s to %s.",
2632                             sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2633                             g_raid3_device_state2str(state));
2634                         sc->sc_state = state;
2635                 }
2636                 if (sc->sc_provider == NULL)
2637                         g_raid3_launch_provider(sc);
2638                 if (sc->sc_rootmount != NULL) {
2639                         G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
2640                             sc->sc_rootmount);
2641                         root_mount_rel(sc->sc_rootmount);
2642                         sc->sc_rootmount = NULL;
2643                 }
2644                 break;
2645         case G_RAID3_DEVICE_STATE_COMPLETE:
2646                 /*
2647                  * Genid need to be bumped immediately, so do it here.
2648                  */
2649                 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
2650                         sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
2651                         g_raid3_bump_genid(sc);
2652                 }
2653
2654                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
2655                         return;
2656                 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >=
2657                     sc->sc_ndisks - 1,
2658                     ("Too few ACTIVE components in COMPLETE state (device %s).",
2659                     sc->sc_name));
2660                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
2661                     sc->sc_ndisks - 1) {
2662                         state = G_RAID3_DEVICE_STATE_DEGRADED;
2663                         G_RAID3_DEBUG(1,
2664                             "Device %s state changed from %s to %s.",
2665                             sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2666                             g_raid3_device_state2str(state));
2667                         sc->sc_state = state;
2668                 }
2669                 if (sc->sc_provider == NULL)
2670                         g_raid3_launch_provider(sc);
2671                 if (sc->sc_rootmount != NULL) {
2672                         G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
2673                             sc->sc_rootmount);
2674                         root_mount_rel(sc->sc_rootmount);
2675                         sc->sc_rootmount = NULL;
2676                 }
2677                 break;
2678         default:
2679                 KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name,
2680                     g_raid3_device_state2str(sc->sc_state)));
2681                 break;
2682         }
2683 }
2684
2685 /*
2686  * Update disk state and device state if needed.
2687  */
2688 #define DISK_STATE_CHANGED()    G_RAID3_DEBUG(1,                        \
2689         "Disk %s state changed from %s to %s (device %s).",             \
2690         g_raid3_get_diskname(disk),                                     \
2691         g_raid3_disk_state2str(disk->d_state),                          \
2692         g_raid3_disk_state2str(state), sc->sc_name)
2693 static int
2694 g_raid3_update_disk(struct g_raid3_disk *disk, u_int state)
2695 {
2696         struct g_raid3_softc *sc;
2697
2698         sc = disk->d_softc;
2699         sx_assert(&sc->sc_lock, SX_XLOCKED);
2700
2701 again:
2702         G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.",
2703             g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state),
2704             g_raid3_disk_state2str(state));
2705         switch (state) {
2706         case G_RAID3_DISK_STATE_NEW:
2707                 /*
2708                  * Possible scenarios:
2709                  * 1. New disk arrive.
2710                  */
2711                 /* Previous state should be NONE. */
2712                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE,
2713                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2714                     g_raid3_disk_state2str(disk->d_state)));
2715                 DISK_STATE_CHANGED();
2716
2717                 disk->d_state = state;
2718                 G_RAID3_DEBUG(1, "Device %s: provider %s detected.",
2719                     sc->sc_name, g_raid3_get_diskname(disk));
2720                 if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING)
2721                         break;
2722                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2723                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2724                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2725                     g_raid3_device_state2str(sc->sc_state),
2726                     g_raid3_get_diskname(disk),
2727                     g_raid3_disk_state2str(disk->d_state)));
2728                 state = g_raid3_determine_state(disk);
2729                 if (state != G_RAID3_DISK_STATE_NONE)
2730                         goto again;
2731                 break;
2732         case G_RAID3_DISK_STATE_ACTIVE:
2733                 /*
2734                  * Possible scenarios:
2735                  * 1. New disk does not need synchronization.
2736                  * 2. Synchronization process finished successfully.
2737                  */
2738                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2739                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2740                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2741                     g_raid3_device_state2str(sc->sc_state),
2742                     g_raid3_get_diskname(disk),
2743                     g_raid3_disk_state2str(disk->d_state)));
2744                 /* Previous state should be NEW or SYNCHRONIZING. */
2745                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW ||
2746                     disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2747                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2748                     g_raid3_disk_state2str(disk->d_state)));
2749                 DISK_STATE_CHANGED();
2750
2751                 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
2752                         disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING;
2753                         disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC;
2754                         g_raid3_sync_stop(sc, 0);
2755                 }
2756                 disk->d_state = state;
2757                 disk->d_sync.ds_offset = 0;
2758                 disk->d_sync.ds_offset_done = 0;
2759                 g_raid3_update_idle(sc, disk);
2760                 g_raid3_update_metadata(disk);
2761                 G_RAID3_DEBUG(1, "Device %s: provider %s activated.",
2762                     sc->sc_name, g_raid3_get_diskname(disk));
2763                 break;
2764         case G_RAID3_DISK_STATE_STALE:
2765                 /*
2766                  * Possible scenarios:
2767                  * 1. Stale disk was connected.
2768                  */
2769                 /* Previous state should be NEW. */
2770                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2771                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2772                     g_raid3_disk_state2str(disk->d_state)));
2773                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2774                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2775                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2776                     g_raid3_device_state2str(sc->sc_state),
2777                     g_raid3_get_diskname(disk),
2778                     g_raid3_disk_state2str(disk->d_state)));
2779                 /*
2780                  * STALE state is only possible if device is marked
2781                  * NOAUTOSYNC.
2782                  */
2783                 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0,
2784                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2785                     g_raid3_device_state2str(sc->sc_state),
2786                     g_raid3_get_diskname(disk),
2787                     g_raid3_disk_state2str(disk->d_state)));
2788                 DISK_STATE_CHANGED();
2789
2790                 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2791                 disk->d_state = state;
2792                 g_raid3_update_metadata(disk);
2793                 G_RAID3_DEBUG(0, "Device %s: provider %s is stale.",
2794                     sc->sc_name, g_raid3_get_diskname(disk));
2795                 break;
2796         case G_RAID3_DISK_STATE_SYNCHRONIZING:
2797                 /*
2798                  * Possible scenarios:
2799                  * 1. Disk which needs synchronization was connected.
2800                  */
2801                 /* Previous state should be NEW. */
2802                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2803                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2804                     g_raid3_disk_state2str(disk->d_state)));
2805                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2806                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2807                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2808                     g_raid3_device_state2str(sc->sc_state),
2809                     g_raid3_get_diskname(disk),
2810                     g_raid3_disk_state2str(disk->d_state)));
2811                 DISK_STATE_CHANGED();
2812
2813                 if (disk->d_state == G_RAID3_DISK_STATE_NEW)
2814                         disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2815                 disk->d_state = state;
2816                 if (sc->sc_provider != NULL) {
2817                         g_raid3_sync_start(sc);
2818                         g_raid3_update_metadata(disk);
2819                 }
2820                 break;
2821         case G_RAID3_DISK_STATE_DISCONNECTED:
2822                 /*
2823                  * Possible scenarios:
2824                  * 1. Device wasn't running yet, but disk disappear.
2825                  * 2. Disk was active and disapppear.
2826                  * 3. Disk disappear during synchronization process.
2827                  */
2828                 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2829                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
2830                         /*
2831                          * Previous state should be ACTIVE, STALE or
2832                          * SYNCHRONIZING.
2833                          */
2834                         KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
2835                             disk->d_state == G_RAID3_DISK_STATE_STALE ||
2836                             disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2837                             ("Wrong disk state (%s, %s).",
2838                             g_raid3_get_diskname(disk),
2839                             g_raid3_disk_state2str(disk->d_state)));
2840                 } else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) {
2841                         /* Previous state should be NEW. */
2842                         KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2843                             ("Wrong disk state (%s, %s).",
2844                             g_raid3_get_diskname(disk),
2845                             g_raid3_disk_state2str(disk->d_state)));
2846                         /*
2847                          * Reset bumping syncid if disk disappeared in STARTING
2848                          * state.
2849                          */
2850                         if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0)
2851                                 sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
2852 #ifdef  INVARIANTS
2853                 } else {
2854                         KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).",
2855                             sc->sc_name,
2856                             g_raid3_device_state2str(sc->sc_state),
2857                             g_raid3_get_diskname(disk),
2858                             g_raid3_disk_state2str(disk->d_state)));
2859 #endif
2860                 }
2861                 DISK_STATE_CHANGED();
2862                 G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.",
2863                     sc->sc_name, g_raid3_get_diskname(disk));
2864
2865                 g_raid3_destroy_disk(disk);
2866                 break;
2867         default:
2868                 KASSERT(1 == 0, ("Unknown state (%u).", state));
2869                 break;
2870         }
2871         return (0);
2872 }
2873 #undef  DISK_STATE_CHANGED
2874
2875 int
2876 g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md)
2877 {
2878         struct g_provider *pp;
2879         u_char *buf;
2880         int error;
2881
2882         g_topology_assert();
2883
2884         error = g_access(cp, 1, 0, 0);
2885         if (error != 0)
2886                 return (error);
2887         pp = cp->provider;
2888         g_topology_unlock();
2889         /* Metadata are stored on last sector. */
2890         buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
2891             &error);
2892         g_topology_lock();
2893         g_access(cp, -1, 0, 0);
2894         if (buf == NULL) {
2895                 G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).",
2896                     cp->provider->name, error);
2897                 return (error);
2898         }
2899
2900         /* Decode metadata. */
2901         error = raid3_metadata_decode(buf, md);
2902         g_free(buf);
2903         if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0)
2904                 return (EINVAL);
2905         if (md->md_version > G_RAID3_VERSION) {
2906                 G_RAID3_DEBUG(0,
2907                     "Kernel module is too old to handle metadata from %s.",
2908                     cp->provider->name);
2909                 return (EINVAL);
2910         }
2911         if (error != 0) {
2912                 G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.",
2913                     cp->provider->name);
2914                 return (error);
2915         }
2916
2917         return (0);
2918 }
2919
2920 static int
2921 g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp,
2922     struct g_raid3_metadata *md)
2923 {
2924
2925         if (md->md_no >= sc->sc_ndisks) {
2926                 G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.",
2927                     pp->name, md->md_no);
2928                 return (EINVAL);
2929         }
2930         if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) {
2931                 G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.",
2932                     pp->name, md->md_no);
2933                 return (EEXIST);
2934         }
2935         if (md->md_all != sc->sc_ndisks) {
2936                 G_RAID3_DEBUG(1,
2937                     "Invalid '%s' field on disk %s (device %s), skipping.",
2938                     "md_all", pp->name, sc->sc_name);
2939                 return (EINVAL);
2940         }
2941         if ((md->md_mediasize % md->md_sectorsize) != 0) {
2942                 G_RAID3_DEBUG(1, "Invalid metadata (mediasize %% sectorsize != "
2943                     "0) on disk %s (device %s), skipping.", pp->name,
2944                     sc->sc_name);
2945                 return (EINVAL);
2946         }
2947         if (md->md_mediasize != sc->sc_mediasize) {
2948                 G_RAID3_DEBUG(1,
2949                     "Invalid '%s' field on disk %s (device %s), skipping.",
2950                     "md_mediasize", pp->name, sc->sc_name);
2951                 return (EINVAL);
2952         }
2953         if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) {
2954                 G_RAID3_DEBUG(1,
2955                     "Invalid '%s' field on disk %s (device %s), skipping.",
2956                     "md_mediasize", pp->name, sc->sc_name);
2957                 return (EINVAL);
2958         }
2959         if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) {
2960                 G_RAID3_DEBUG(1,
2961                     "Invalid size of disk %s (device %s), skipping.", pp->name,
2962                     sc->sc_name);
2963                 return (EINVAL);
2964         }
2965         if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) {
2966                 G_RAID3_DEBUG(1,
2967                     "Invalid '%s' field on disk %s (device %s), skipping.",
2968                     "md_sectorsize", pp->name, sc->sc_name);
2969                 return (EINVAL);
2970         }
2971         if (md->md_sectorsize != sc->sc_sectorsize) {
2972                 G_RAID3_DEBUG(1,
2973                     "Invalid '%s' field on disk %s (device %s), skipping.",
2974                     "md_sectorsize", pp->name, sc->sc_name);
2975                 return (EINVAL);
2976         }
2977         if ((sc->sc_sectorsize % pp->sectorsize) != 0) {
2978                 G_RAID3_DEBUG(1,
2979                     "Invalid sector size of disk %s (device %s), skipping.",
2980                     pp->name, sc->sc_name);
2981                 return (EINVAL);
2982         }
2983         if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) {
2984                 G_RAID3_DEBUG(1,
2985                     "Invalid device flags on disk %s (device %s), skipping.",
2986                     pp->name, sc->sc_name);
2987                 return (EINVAL);
2988         }
2989         if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
2990             (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) {
2991                 /*
2992                  * VERIFY and ROUND-ROBIN options are mutally exclusive.
2993                  */
2994                 G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on "
2995                     "disk %s (device %s), skipping.", pp->name, sc->sc_name);
2996                 return (EINVAL);
2997         }
2998         if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) {
2999                 G_RAID3_DEBUG(1,
3000                     "Invalid disk flags on disk %s (device %s), skipping.",
3001                     pp->name, sc->sc_name);
3002                 return (EINVAL);
3003         }
3004         return (0);
3005 }
3006
3007 int
3008 g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp,
3009     struct g_raid3_metadata *md)
3010 {
3011         struct g_raid3_disk *disk;
3012         int error;
3013
3014         g_topology_assert_not();
3015         G_RAID3_DEBUG(2, "Adding disk %s.", pp->name);
3016
3017         error = g_raid3_check_metadata(sc, pp, md);
3018         if (error != 0)
3019                 return (error);
3020         if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING &&
3021             md->md_genid < sc->sc_genid) {
3022                 G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.",
3023                     pp->name, sc->sc_name);
3024                 return (EINVAL);
3025         }
3026         disk = g_raid3_init_disk(sc, pp, md, &error);
3027         if (disk == NULL)
3028                 return (error);
3029         error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW,
3030             G_RAID3_EVENT_WAIT);
3031         if (error != 0)
3032                 return (error);
3033         if (md->md_version < G_RAID3_VERSION) {
3034                 G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).",
3035                     pp->name, md->md_version, G_RAID3_VERSION);
3036                 g_raid3_update_metadata(disk);
3037         }
3038         return (0);
3039 }
3040
3041 static void
3042 g_raid3_destroy_delayed(void *arg, int flag)
3043 {
3044         struct g_raid3_softc *sc;
3045         int error;
3046
3047         if (flag == EV_CANCEL) {
3048                 G_RAID3_DEBUG(1, "Destroying canceled.");
3049                 return;
3050         }
3051         sc = arg;
3052         g_topology_unlock();
3053         sx_xlock(&sc->sc_lock);
3054         KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0,
3055             ("DESTROY flag set on %s.", sc->sc_name));
3056         KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0,
3057             ("DESTROYING flag not set on %s.", sc->sc_name));
3058         G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name);
3059         error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT);
3060         if (error != 0) {
3061                 G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name);
3062                 sx_xunlock(&sc->sc_lock);
3063         }
3064         g_topology_lock();
3065 }
3066
3067 static int
3068 g_raid3_access(struct g_provider *pp, int acr, int acw, int ace)
3069 {
3070         struct g_raid3_softc *sc;
3071         int dcr, dcw, dce, error = 0;
3072
3073         g_topology_assert();
3074         G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr,
3075             acw, ace);
3076
3077         sc = pp->geom->softc;
3078         if (sc == NULL && acr <= 0 && acw <= 0 && ace <= 0)
3079                 return (0);
3080         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
3081
3082         dcr = pp->acr + acr;
3083         dcw = pp->acw + acw;
3084         dce = pp->ace + ace;
3085
3086         g_topology_unlock();
3087         sx_xlock(&sc->sc_lock);
3088         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 ||
3089             g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) {
3090                 if (acr > 0 || acw > 0 || ace > 0)
3091                         error = ENXIO;
3092                 goto end;
3093         }
3094         if (dcw == 0 && !sc->sc_idle)
3095                 g_raid3_idle(sc, dcw);
3096         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) {
3097                 if (acr > 0 || acw > 0 || ace > 0) {
3098                         error = ENXIO;
3099                         goto end;
3100                 }
3101                 if (dcr == 0 && dcw == 0 && dce == 0) {
3102                         g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK,
3103                             sc, NULL);
3104                 }
3105         }
3106 end:
3107         sx_xunlock(&sc->sc_lock);
3108         g_topology_lock();
3109         return (error);
3110 }
3111
3112 static struct g_geom *
3113 g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md)
3114 {
3115         struct g_raid3_softc *sc;
3116         struct g_geom *gp;
3117         int error, timeout;
3118         u_int n;
3119
3120         g_topology_assert();
3121         G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id);
3122
3123         /* One disk is minimum. */
3124         if (md->md_all < 1)
3125                 return (NULL);
3126         /*
3127          * Action geom.
3128          */
3129         gp = g_new_geomf(mp, "%s", md->md_name);
3130         sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO);
3131         sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3,
3132             M_WAITOK | M_ZERO);
3133         gp->start = g_raid3_start;
3134         gp->orphan = g_raid3_orphan;
3135         gp->access = g_raid3_access;
3136         gp->dumpconf = g_raid3_dumpconf;
3137
3138         sc->sc_id = md->md_id;
3139         sc->sc_mediasize = md->md_mediasize;
3140         sc->sc_sectorsize = md->md_sectorsize;
3141         sc->sc_ndisks = md->md_all;
3142         sc->sc_round_robin = 0;
3143         sc->sc_flags = md->md_mflags;
3144         sc->sc_bump_id = 0;
3145         sc->sc_idle = 1;
3146         sc->sc_last_write = time_uptime;
3147         sc->sc_writes = 0;
3148         for (n = 0; n < sc->sc_ndisks; n++) {
3149                 sc->sc_disks[n].d_softc = sc;
3150                 sc->sc_disks[n].d_no = n;
3151                 sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK;
3152         }
3153         sx_init(&sc->sc_lock, "graid3:lock");
3154         bioq_init(&sc->sc_queue);
3155         mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF);
3156         bioq_init(&sc->sc_regular_delayed);
3157         bioq_init(&sc->sc_inflight);
3158         bioq_init(&sc->sc_sync_delayed);
3159         TAILQ_INIT(&sc->sc_events);
3160         mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF);
3161         callout_init(&sc->sc_callout, CALLOUT_MPSAFE);
3162         sc->sc_state = G_RAID3_DEVICE_STATE_STARTING;
3163         gp->softc = sc;
3164         sc->sc_geom = gp;
3165         sc->sc_provider = NULL;
3166         /*
3167          * Synchronization geom.
3168          */
3169         gp = g_new_geomf(mp, "%s.sync", md->md_name);
3170         gp->softc = sc;
3171         gp->orphan = g_raid3_orphan;
3172         sc->sc_sync.ds_geom = gp;
3173
3174         if (!g_raid3_use_malloc) {
3175                 sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k",
3176                     65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3177                     UMA_ALIGN_PTR, 0);
3178                 sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0;
3179                 sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k;
3180                 sc->sc_zones[G_RAID3_ZONE_64K].sz_requested =
3181                     sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0;
3182                 sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k",
3183                     16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3184                     UMA_ALIGN_PTR, 0);
3185                 sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0;
3186                 sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k;
3187                 sc->sc_zones[G_RAID3_ZONE_16K].sz_requested =
3188                     sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0;
3189                 sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k",
3190                     4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3191                     UMA_ALIGN_PTR, 0);
3192                 sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0;
3193                 sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k;
3194                 sc->sc_zones[G_RAID3_ZONE_4K].sz_requested =
3195                     sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0;
3196         }
3197
3198         error = kproc_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0,
3199             "g_raid3 %s", md->md_name);
3200         if (error != 0) {
3201                 G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.",
3202                     sc->sc_name);
3203                 if (!g_raid3_use_malloc) {
3204                         uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
3205                         uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
3206                         uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
3207                 }
3208                 g_destroy_geom(sc->sc_sync.ds_geom);
3209                 mtx_destroy(&sc->sc_events_mtx);
3210                 mtx_destroy(&sc->sc_queue_mtx);
3211                 sx_destroy(&sc->sc_lock);
3212                 g_destroy_geom(sc->sc_geom);
3213                 free(sc->sc_disks, M_RAID3);
3214                 free(sc, M_RAID3);
3215                 return (NULL);
3216         }
3217
3218         G_RAID3_DEBUG(1, "Device %s created (%u components, id=%u).",
3219             sc->sc_name, sc->sc_ndisks, sc->sc_id);
3220
3221         sc->sc_rootmount = root_mount_hold("GRAID3");
3222         G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount);
3223
3224         /*
3225          * Run timeout.
3226          */
3227         timeout = atomic_load_acq_int(&g_raid3_timeout);
3228         callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc);
3229         return (sc->sc_geom);
3230 }
3231
3232 int
3233 g_raid3_destroy(struct g_raid3_softc *sc, int how)
3234 {
3235         struct g_provider *pp;
3236
3237         g_topology_assert_not();
3238         if (sc == NULL)
3239                 return (ENXIO);
3240         sx_assert(&sc->sc_lock, SX_XLOCKED);
3241
3242         pp = sc->sc_provider;
3243         if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) {
3244                 switch (how) {
3245                 case G_RAID3_DESTROY_SOFT:
3246                         G_RAID3_DEBUG(1,
3247                             "Device %s is still open (r%dw%de%d).", pp->name,
3248                             pp->acr, pp->acw, pp->ace);
3249                         return (EBUSY);
3250                 case G_RAID3_DESTROY_DELAYED:
3251                         G_RAID3_DEBUG(1,
3252                             "Device %s will be destroyed on last close.",
3253                             pp->name);
3254                         if (sc->sc_syncdisk != NULL)
3255                                 g_raid3_sync_stop(sc, 1);
3256                         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING;
3257                         return (EBUSY);
3258                 case G_RAID3_DESTROY_HARD:
3259                         G_RAID3_DEBUG(1, "Device %s is still open, so it "
3260                             "can't be definitely removed.", pp->name);
3261                         break;
3262                 }
3263         }
3264
3265         g_topology_lock();
3266         if (sc->sc_geom->softc == NULL) {
3267                 g_topology_unlock();
3268                 return (0);
3269         }
3270         sc->sc_geom->softc = NULL;
3271         sc->sc_sync.ds_geom->softc = NULL;
3272         g_topology_unlock();
3273
3274         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
3275         sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT;
3276         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
3277         sx_xunlock(&sc->sc_lock);
3278         mtx_lock(&sc->sc_queue_mtx);
3279         wakeup(sc);
3280         wakeup(&sc->sc_queue);
3281         mtx_unlock(&sc->sc_queue_mtx);
3282         G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker);
3283         while (sc->sc_worker != NULL)
3284                 tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5);
3285         G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker);
3286         sx_xlock(&sc->sc_lock);
3287         g_raid3_destroy_device(sc);
3288         free(sc->sc_disks, M_RAID3);
3289         free(sc, M_RAID3);
3290         return (0);
3291 }
3292
3293 static void
3294 g_raid3_taste_orphan(struct g_consumer *cp)
3295 {
3296
3297         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
3298             cp->provider->name));
3299 }
3300
3301 static struct g_geom *
3302 g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
3303 {
3304         struct g_raid3_metadata md;
3305         struct g_raid3_softc *sc;
3306         struct g_consumer *cp;
3307         struct g_geom *gp;
3308         int error;
3309
3310         g_topology_assert();
3311         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
3312         G_RAID3_DEBUG(2, "Tasting %s.", pp->name);
3313
3314         gp = g_new_geomf(mp, "raid3:taste");
3315         /* This orphan function should be never called. */
3316         gp->orphan = g_raid3_taste_orphan;
3317         cp = g_new_consumer(gp);
3318         g_attach(cp, pp);
3319         error = g_raid3_read_metadata(cp, &md);
3320         g_detach(cp);
3321         g_destroy_consumer(cp);
3322         g_destroy_geom(gp);
3323         if (error != 0)
3324                 return (NULL);
3325         gp = NULL;
3326
3327         if (md.md_provider[0] != '\0' && strcmp(md.md_provider, pp->name) != 0)
3328                 return (NULL);
3329         if (md.md_provsize != 0 && md.md_provsize != pp->mediasize)
3330                 return (NULL);
3331         if (g_raid3_debug >= 2)
3332                 raid3_metadata_dump(&md);
3333
3334         /*
3335          * Let's check if device already exists.
3336          */
3337         sc = NULL;
3338         LIST_FOREACH(gp, &mp->geom, geom) {
3339                 sc = gp->softc;
3340                 if (sc == NULL)
3341                         continue;
3342                 if (sc->sc_sync.ds_geom == gp)
3343                         continue;
3344                 if (strcmp(md.md_name, sc->sc_name) != 0)
3345                         continue;
3346                 if (md.md_id != sc->sc_id) {
3347                         G_RAID3_DEBUG(0, "Device %s already configured.",
3348                             sc->sc_name);
3349                         return (NULL);
3350                 }
3351                 break;
3352         }
3353         if (gp == NULL) {
3354                 gp = g_raid3_create(mp, &md);
3355                 if (gp == NULL) {
3356                         G_RAID3_DEBUG(0, "Cannot create device %s.",
3357                             md.md_name);
3358                         return (NULL);
3359                 }
3360                 sc = gp->softc;
3361         }
3362         G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name);
3363         g_topology_unlock();
3364         sx_xlock(&sc->sc_lock);
3365         error = g_raid3_add_disk(sc, pp, &md);
3366         if (error != 0) {
3367                 G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).",
3368                     pp->name, gp->name, error);
3369                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) ==
3370                     sc->sc_ndisks) {
3371                         g_cancel_event(sc);
3372                         g_raid3_destroy(sc, G_RAID3_DESTROY_HARD);
3373                         g_topology_lock();
3374                         return (NULL);
3375                 }
3376                 gp = NULL;
3377         }
3378         sx_xunlock(&sc->sc_lock);
3379         g_topology_lock();
3380         return (gp);
3381 }
3382
3383 static int
3384 g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused,
3385     struct g_geom *gp)
3386 {
3387         struct g_raid3_softc *sc;
3388         int error;
3389
3390         g_topology_unlock();
3391         sc = gp->softc;
3392         sx_xlock(&sc->sc_lock);
3393         g_cancel_event(sc);
3394         error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT);
3395         if (error != 0)
3396                 sx_xunlock(&sc->sc_lock);
3397         g_topology_lock();
3398         return (error);
3399 }
3400
3401 static void
3402 g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
3403     struct g_consumer *cp, struct g_provider *pp)
3404 {
3405         struct g_raid3_softc *sc;
3406
3407         g_topology_assert();
3408
3409         sc = gp->softc;
3410         if (sc == NULL)
3411                 return;
3412         /* Skip synchronization geom. */
3413         if (gp == sc->sc_sync.ds_geom)
3414                 return;
3415         if (pp != NULL) {
3416                 /* Nothing here. */
3417         } else if (cp != NULL) {
3418                 struct g_raid3_disk *disk;
3419
3420                 disk = cp->private;
3421                 if (disk == NULL)
3422                         return;
3423                 g_topology_unlock();
3424                 sx_xlock(&sc->sc_lock);
3425                 sbuf_printf(sb, "%s<Type>", indent);
3426                 if (disk->d_no == sc->sc_ndisks - 1)
3427                         sbuf_printf(sb, "PARITY");
3428                 else
3429                         sbuf_printf(sb, "DATA");
3430                 sbuf_printf(sb, "</Type>\n");
3431                 sbuf_printf(sb, "%s<Number>%u</Number>\n", indent,
3432                     (u_int)disk->d_no);
3433                 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
3434                         sbuf_printf(sb, "%s<Synchronized>", indent);
3435                         if (disk->d_sync.ds_offset == 0)
3436                                 sbuf_printf(sb, "0%%");
3437                         else {
3438                                 sbuf_printf(sb, "%u%%",
3439                                     (u_int)((disk->d_sync.ds_offset * 100) /
3440                                     (sc->sc_mediasize / (sc->sc_ndisks - 1))));
3441                         }
3442                         sbuf_printf(sb, "</Synchronized>\n");
3443                 }
3444                 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent,
3445                     disk->d_sync.ds_syncid);
3446                 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid);
3447                 sbuf_printf(sb, "%s<Flags>", indent);
3448                 if (disk->d_flags == 0)
3449                         sbuf_printf(sb, "NONE");
3450                 else {
3451                         int first = 1;
3452
3453 #define ADD_FLAG(flag, name)    do {                                    \
3454         if ((disk->d_flags & (flag)) != 0) {                            \
3455                 if (!first)                                             \
3456                         sbuf_printf(sb, ", ");                          \
3457                 else                                                    \
3458                         first = 0;                                      \
3459                 sbuf_printf(sb, name);                                  \
3460         }                                                               \
3461 } while (0)
3462                         ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY");
3463                         ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED");
3464                         ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING,
3465                             "SYNCHRONIZING");
3466                         ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC");
3467                         ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN");
3468 #undef  ADD_FLAG
3469                 }
3470                 sbuf_printf(sb, "</Flags>\n");
3471                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
3472                     g_raid3_disk_state2str(disk->d_state));
3473                 sx_xunlock(&sc->sc_lock);
3474                 g_topology_lock();
3475         } else {
3476                 g_topology_unlock();
3477                 sx_xlock(&sc->sc_lock);
3478                 if (!g_raid3_use_malloc) {
3479                         sbuf_printf(sb,
3480                             "%s<Zone4kRequested>%u</Zone4kRequested>\n", indent,
3481                             sc->sc_zones[G_RAID3_ZONE_4K].sz_requested);
3482                         sbuf_printf(sb,
3483                             "%s<Zone4kFailed>%u</Zone4kFailed>\n", indent,
3484                             sc->sc_zones[G_RAID3_ZONE_4K].sz_failed);
3485                         sbuf_printf(sb,
3486                             "%s<Zone16kRequested>%u</Zone16kRequested>\n", indent,
3487                             sc->sc_zones[G_RAID3_ZONE_16K].sz_requested);
3488                         sbuf_printf(sb,
3489                             "%s<Zone16kFailed>%u</Zone16kFailed>\n", indent,
3490                             sc->sc_zones[G_RAID3_ZONE_16K].sz_failed);
3491                         sbuf_printf(sb,
3492                             "%s<Zone64kRequested>%u</Zone64kRequested>\n", indent,
3493                             sc->sc_zones[G_RAID3_ZONE_64K].sz_requested);
3494                         sbuf_printf(sb,
3495                             "%s<Zone64kFailed>%u</Zone64kFailed>\n", indent,
3496                             sc->sc_zones[G_RAID3_ZONE_64K].sz_failed);
3497                 }
3498                 sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id);
3499                 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid);
3500                 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid);
3501                 sbuf_printf(sb, "%s<Flags>", indent);
3502                 if (sc->sc_flags == 0)
3503                         sbuf_printf(sb, "NONE");
3504                 else {
3505                         int first = 1;
3506
3507 #define ADD_FLAG(flag, name)    do {                                    \
3508         if ((sc->sc_flags & (flag)) != 0) {                             \
3509                 if (!first)                                             \
3510                         sbuf_printf(sb, ", ");                          \
3511                 else                                                    \
3512                         first = 0;                                      \
3513                 sbuf_printf(sb, name);                                  \
3514         }                                                               \
3515 } while (0)
3516                         ADD_FLAG(G_RAID3_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC");
3517                         ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC");
3518                         ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN,
3519                             "ROUND-ROBIN");
3520                         ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY");
3521 #undef  ADD_FLAG
3522                 }
3523                 sbuf_printf(sb, "</Flags>\n");
3524                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
3525                     sc->sc_ndisks);
3526                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
3527                     g_raid3_device_state2str(sc->sc_state));
3528                 sx_xunlock(&sc->sc_lock);
3529                 g_topology_lock();
3530         }
3531 }
3532
3533 static void
3534 g_raid3_shutdown_pre_sync(void *arg, int howto)
3535 {
3536         struct g_class *mp;
3537         struct g_geom *gp, *gp2;
3538         struct g_raid3_softc *sc;
3539         int error;
3540
3541         mp = arg;
3542         DROP_GIANT();
3543         g_topology_lock();
3544         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
3545                 if ((sc = gp->softc) == NULL)
3546                         continue;
3547                 /* Skip synchronization geom. */
3548                 if (gp == sc->sc_sync.ds_geom)
3549                         continue;
3550                 g_topology_unlock();
3551                 sx_xlock(&sc->sc_lock);
3552                 g_cancel_event(sc);
3553                 error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED);
3554                 if (error != 0)
3555                         sx_xunlock(&sc->sc_lock);
3556                 g_topology_lock();
3557         }
3558         g_topology_unlock();
3559         PICKUP_GIANT();
3560 }
3561
3562 static void
3563 g_raid3_init(struct g_class *mp)
3564 {
3565
3566         g_raid3_pre_sync = EVENTHANDLER_REGISTER(shutdown_pre_sync,
3567             g_raid3_shutdown_pre_sync, mp, SHUTDOWN_PRI_FIRST);
3568         if (g_raid3_pre_sync == NULL)
3569                 G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event.");
3570 }
3571
3572 static void
3573 g_raid3_fini(struct g_class *mp)
3574 {
3575
3576         if (g_raid3_pre_sync != NULL)
3577                 EVENTHANDLER_DEREGISTER(shutdown_pre_sync, g_raid3_pre_sync);
3578 }
3579
3580 DECLARE_GEOM_CLASS(g_raid3_class, g_raid3);