]> CyberLeo.Net >> Repos - FreeBSD/releng/8.1.git/blob - sys/kern/kern_thread.c
Copy stable/8 to releng/8.1 in preparation for 8.1-RC1.
[FreeBSD/releng/8.1.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include "opt_witness.h"
30 #include "opt_hwpmc_hooks.h"
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/resourcevar.h>
42 #include <sys/smp.h>
43 #include <sys/sysctl.h>
44 #include <sys/sched.h>
45 #include <sys/sleepqueue.h>
46 #include <sys/selinfo.h>
47 #include <sys/turnstile.h>
48 #include <sys/ktr.h>
49 #include <sys/umtx.h>
50 #include <sys/cpuset.h>
51 #ifdef  HWPMC_HOOKS
52 #include <sys/pmckern.h>
53 #endif
54
55 #include <security/audit/audit.h>
56
57 #include <vm/vm.h>
58 #include <vm/vm_extern.h>
59 #include <vm/uma.h>
60 #include <sys/eventhandler.h>
61
62 /*
63  * thread related storage.
64  */
65 static uma_zone_t thread_zone;
66
67 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
68
69 int max_threads_per_proc = 1500;
70 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
71         &max_threads_per_proc, 0, "Limit on threads per proc");
72
73 int max_threads_hits;
74 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
75         &max_threads_hits, 0, "");
76
77 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
78 static struct mtx zombie_lock;
79 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
80
81 static void thread_zombie(struct thread *);
82
83 struct mtx tid_lock;
84 static struct unrhdr *tid_unrhdr;
85
86 /*
87  * Prepare a thread for use.
88  */
89 static int
90 thread_ctor(void *mem, int size, void *arg, int flags)
91 {
92         struct thread   *td;
93
94         td = (struct thread *)mem;
95         td->td_state = TDS_INACTIVE;
96         td->td_oncpu = NOCPU;
97
98         td->td_tid = alloc_unr(tid_unrhdr);
99         td->td_syscalls = 0;
100
101         /*
102          * Note that td_critnest begins life as 1 because the thread is not
103          * running and is thereby implicitly waiting to be on the receiving
104          * end of a context switch.
105          */
106         td->td_critnest = 1;
107         EVENTHANDLER_INVOKE(thread_ctor, td);
108 #ifdef AUDIT
109         audit_thread_alloc(td);
110 #endif
111         umtx_thread_alloc(td);
112         return (0);
113 }
114
115 /*
116  * Reclaim a thread after use.
117  */
118 static void
119 thread_dtor(void *mem, int size, void *arg)
120 {
121         struct thread *td;
122
123         td = (struct thread *)mem;
124
125 #ifdef INVARIANTS
126         /* Verify that this thread is in a safe state to free. */
127         switch (td->td_state) {
128         case TDS_INHIBITED:
129         case TDS_RUNNING:
130         case TDS_CAN_RUN:
131         case TDS_RUNQ:
132                 /*
133                  * We must never unlink a thread that is in one of
134                  * these states, because it is currently active.
135                  */
136                 panic("bad state for thread unlinking");
137                 /* NOTREACHED */
138         case TDS_INACTIVE:
139                 break;
140         default:
141                 panic("bad thread state");
142                 /* NOTREACHED */
143         }
144 #endif
145 #ifdef AUDIT
146         audit_thread_free(td);
147 #endif
148         /* Free all OSD associated to this thread. */
149         osd_thread_exit(td);
150
151         EVENTHANDLER_INVOKE(thread_dtor, td);
152         free_unr(tid_unrhdr, td->td_tid);
153 }
154
155 /*
156  * Initialize type-stable parts of a thread (when newly created).
157  */
158 static int
159 thread_init(void *mem, int size, int flags)
160 {
161         struct thread *td;
162
163         td = (struct thread *)mem;
164
165         td->td_sleepqueue = sleepq_alloc();
166         td->td_turnstile = turnstile_alloc();
167         EVENTHANDLER_INVOKE(thread_init, td);
168         td->td_sched = (struct td_sched *)&td[1];
169         umtx_thread_init(td);
170         td->td_kstack = 0;
171         return (0);
172 }
173
174 /*
175  * Tear down type-stable parts of a thread (just before being discarded).
176  */
177 static void
178 thread_fini(void *mem, int size)
179 {
180         struct thread *td;
181
182         td = (struct thread *)mem;
183         EVENTHANDLER_INVOKE(thread_fini, td);
184         turnstile_free(td->td_turnstile);
185         sleepq_free(td->td_sleepqueue);
186         umtx_thread_fini(td);
187         seltdfini(td);
188 }
189
190 /*
191  * For a newly created process,
192  * link up all the structures and its initial threads etc.
193  * called from:
194  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
195  * proc_dtor() (should go away)
196  * proc_init()
197  */
198 void
199 proc_linkup0(struct proc *p, struct thread *td)
200 {
201         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
202         proc_linkup(p, td);
203 }
204
205 void
206 proc_linkup(struct proc *p, struct thread *td)
207 {
208
209         sigqueue_init(&p->p_sigqueue, p);
210         p->p_ksi = ksiginfo_alloc(1);
211         if (p->p_ksi != NULL) {
212                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
213                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
214         }
215         LIST_INIT(&p->p_mqnotifier);
216         p->p_numthreads = 0;
217         thread_link(td, p);
218 }
219
220 /*
221  * Initialize global thread allocation resources.
222  */
223 void
224 threadinit(void)
225 {
226
227         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
228         /* leave one number for thread0 */
229         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
230
231         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
232             thread_ctor, thread_dtor, thread_init, thread_fini,
233             16 - 1, 0);
234 }
235
236 /*
237  * Place an unused thread on the zombie list.
238  * Use the slpq as that must be unused by now.
239  */
240 void
241 thread_zombie(struct thread *td)
242 {
243         mtx_lock_spin(&zombie_lock);
244         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
245         mtx_unlock_spin(&zombie_lock);
246 }
247
248 /*
249  * Release a thread that has exited after cpu_throw().
250  */
251 void
252 thread_stash(struct thread *td)
253 {
254         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
255         thread_zombie(td);
256 }
257
258 /*
259  * Reap zombie resources.
260  */
261 void
262 thread_reap(void)
263 {
264         struct thread *td_first, *td_next;
265
266         /*
267          * Don't even bother to lock if none at this instant,
268          * we really don't care about the next instant..
269          */
270         if (!TAILQ_EMPTY(&zombie_threads)) {
271                 mtx_lock_spin(&zombie_lock);
272                 td_first = TAILQ_FIRST(&zombie_threads);
273                 if (td_first)
274                         TAILQ_INIT(&zombie_threads);
275                 mtx_unlock_spin(&zombie_lock);
276                 while (td_first) {
277                         td_next = TAILQ_NEXT(td_first, td_slpq);
278                         if (td_first->td_ucred)
279                                 crfree(td_first->td_ucred);
280                         thread_free(td_first);
281                         td_first = td_next;
282                 }
283         }
284 }
285
286 /*
287  * Allocate a thread.
288  */
289 struct thread *
290 thread_alloc(int pages)
291 {
292         struct thread *td;
293
294         thread_reap(); /* check if any zombies to get */
295
296         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
297         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
298         if (!vm_thread_new(td, pages)) {
299                 uma_zfree(thread_zone, td);
300                 return (NULL);
301         }
302         cpu_thread_alloc(td);
303         return (td);
304 }
305
306 int
307 thread_alloc_stack(struct thread *td, int pages)
308 {
309
310         KASSERT(td->td_kstack == 0,
311             ("thread_alloc_stack called on a thread with kstack"));
312         if (!vm_thread_new(td, pages))
313                 return (0);
314         cpu_thread_alloc(td);
315         return (1);
316 }
317
318 /*
319  * Deallocate a thread.
320  */
321 void
322 thread_free(struct thread *td)
323 {
324
325         lock_profile_thread_exit(td);
326         if (td->td_cpuset)
327                 cpuset_rel(td->td_cpuset);
328         td->td_cpuset = NULL;
329         cpu_thread_free(td);
330         if (td->td_kstack != 0)
331                 vm_thread_dispose(td);
332         uma_zfree(thread_zone, td);
333 }
334
335 /*
336  * Discard the current thread and exit from its context.
337  * Always called with scheduler locked.
338  *
339  * Because we can't free a thread while we're operating under its context,
340  * push the current thread into our CPU's deadthread holder. This means
341  * we needn't worry about someone else grabbing our context before we
342  * do a cpu_throw().
343  */
344 void
345 thread_exit(void)
346 {
347         uint64_t new_switchtime;
348         struct thread *td;
349         struct thread *td2;
350         struct proc *p;
351         int wakeup_swapper;
352
353         td = curthread;
354         p = td->td_proc;
355
356         PROC_SLOCK_ASSERT(p, MA_OWNED);
357         mtx_assert(&Giant, MA_NOTOWNED);
358
359         PROC_LOCK_ASSERT(p, MA_OWNED);
360         KASSERT(p != NULL, ("thread exiting without a process"));
361         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
362             (long)p->p_pid, td->td_name);
363         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
364
365 #ifdef AUDIT
366         AUDIT_SYSCALL_EXIT(0, td);
367 #endif
368         umtx_thread_exit(td);
369         /*
370          * drop FPU & debug register state storage, or any other
371          * architecture specific resources that
372          * would not be on a new untouched process.
373          */
374         cpu_thread_exit(td);    /* XXXSMP */
375
376         /* Do the same timestamp bookkeeping that mi_switch() would do. */
377         new_switchtime = cpu_ticks();
378         p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
379         PCPU_SET(switchtime, new_switchtime);
380         PCPU_SET(switchticks, ticks);
381         PCPU_INC(cnt.v_swtch);
382         /* Save our resource usage in our process. */
383         td->td_ru.ru_nvcsw++;
384         rucollect(&p->p_ru, &td->td_ru);
385         /*
386          * The last thread is left attached to the process
387          * So that the whole bundle gets recycled. Skip
388          * all this stuff if we never had threads.
389          * EXIT clears all sign of other threads when
390          * it goes to single threading, so the last thread always
391          * takes the short path.
392          */
393         if (p->p_flag & P_HADTHREADS) {
394                 if (p->p_numthreads > 1) {
395                         thread_unlink(td);
396                         td2 = FIRST_THREAD_IN_PROC(p);
397                         sched_exit_thread(td2, td);
398
399                         /*
400                          * The test below is NOT true if we are the
401                          * sole exiting thread. P_STOPPED_SINGLE is unset
402                          * in exit1() after it is the only survivor.
403                          */
404                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
405                                 if (p->p_numthreads == p->p_suspcount) {
406                                         thread_lock(p->p_singlethread);
407                                         wakeup_swapper = thread_unsuspend_one(
408                                                 p->p_singlethread);
409                                         thread_unlock(p->p_singlethread);
410                                         if (wakeup_swapper)
411                                                 kick_proc0();
412                                 }
413                         }
414
415                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
416                         PCPU_SET(deadthread, td);
417                 } else {
418                         /*
419                          * The last thread is exiting.. but not through exit()
420                          */
421                         panic ("thread_exit: Last thread exiting on its own");
422                 }
423         } 
424 #ifdef  HWPMC_HOOKS
425         /*
426          * If this thread is part of a process that is being tracked by hwpmc(4),
427          * inform the module of the thread's impending exit.
428          */
429         if (PMC_PROC_IS_USING_PMCS(td->td_proc))
430                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
431 #endif
432         PROC_UNLOCK(p);
433         ruxagg(p, td);
434         thread_lock(td);
435         PROC_SUNLOCK(p);
436         td->td_state = TDS_INACTIVE;
437 #ifdef WITNESS
438         witness_thread_exit(td);
439 #endif
440         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
441         sched_throw(td);
442         panic("I'm a teapot!");
443         /* NOTREACHED */
444 }
445
446 /*
447  * Do any thread specific cleanups that may be needed in wait()
448  * called with Giant, proc and schedlock not held.
449  */
450 void
451 thread_wait(struct proc *p)
452 {
453         struct thread *td;
454
455         mtx_assert(&Giant, MA_NOTOWNED);
456         KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
457         td = FIRST_THREAD_IN_PROC(p);
458         /* Lock the last thread so we spin until it exits cpu_throw(). */
459         thread_lock(td);
460         thread_unlock(td);
461         /* Wait for any remaining threads to exit cpu_throw(). */
462         while (p->p_exitthreads)
463                 sched_relinquish(curthread);
464         lock_profile_thread_exit(td);
465         cpuset_rel(td->td_cpuset);
466         td->td_cpuset = NULL;
467         cpu_thread_clean(td);
468         crfree(td->td_ucred);
469         thread_reap();  /* check for zombie threads etc. */
470 }
471
472 /*
473  * Link a thread to a process.
474  * set up anything that needs to be initialized for it to
475  * be used by the process.
476  */
477 void
478 thread_link(struct thread *td, struct proc *p)
479 {
480
481         /*
482          * XXX This can't be enabled because it's called for proc0 before
483          * its lock has been created.
484          * PROC_LOCK_ASSERT(p, MA_OWNED);
485          */
486         td->td_state    = TDS_INACTIVE;
487         td->td_proc     = p;
488         td->td_flags    = TDF_INMEM;
489
490         LIST_INIT(&td->td_contested);
491         LIST_INIT(&td->td_lprof[0]);
492         LIST_INIT(&td->td_lprof[1]);
493         sigqueue_init(&td->td_sigqueue, p);
494         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
495         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
496         p->p_numthreads++;
497 }
498
499 /*
500  * Convert a process with one thread to an unthreaded process.
501  */
502 void
503 thread_unthread(struct thread *td)
504 {
505         struct proc *p = td->td_proc;
506
507         KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
508         p->p_flag &= ~P_HADTHREADS;
509 }
510
511 /*
512  * Called from:
513  *  thread_exit()
514  */
515 void
516 thread_unlink(struct thread *td)
517 {
518         struct proc *p = td->td_proc;
519
520         PROC_LOCK_ASSERT(p, MA_OWNED);
521         TAILQ_REMOVE(&p->p_threads, td, td_plist);
522         p->p_numthreads--;
523         /* could clear a few other things here */
524         /* Must  NOT clear links to proc! */
525 }
526
527 static int
528 calc_remaining(struct proc *p, int mode)
529 {
530         int remaining;
531
532         if (mode == SINGLE_EXIT)
533                 remaining = p->p_numthreads;
534         else if (mode == SINGLE_BOUNDARY)
535                 remaining = p->p_numthreads - p->p_boundary_count;
536         else if (mode == SINGLE_NO_EXIT)
537                 remaining = p->p_numthreads - p->p_suspcount;
538         else
539                 panic("calc_remaining: wrong mode %d", mode);
540         return (remaining);
541 }
542
543 /*
544  * Enforce single-threading.
545  *
546  * Returns 1 if the caller must abort (another thread is waiting to
547  * exit the process or similar). Process is locked!
548  * Returns 0 when you are successfully the only thread running.
549  * A process has successfully single threaded in the suspend mode when
550  * There are no threads in user mode. Threads in the kernel must be
551  * allowed to continue until they get to the user boundary. They may even
552  * copy out their return values and data before suspending. They may however be
553  * accelerated in reaching the user boundary as we will wake up
554  * any sleeping threads that are interruptable. (PCATCH).
555  */
556 int
557 thread_single(int mode)
558 {
559         struct thread *td;
560         struct thread *td2;
561         struct proc *p;
562         int remaining, wakeup_swapper;
563
564         td = curthread;
565         p = td->td_proc;
566         mtx_assert(&Giant, MA_NOTOWNED);
567         PROC_LOCK_ASSERT(p, MA_OWNED);
568         KASSERT((td != NULL), ("curthread is NULL"));
569
570         if ((p->p_flag & P_HADTHREADS) == 0)
571                 return (0);
572
573         /* Is someone already single threading? */
574         if (p->p_singlethread != NULL && p->p_singlethread != td)
575                 return (1);
576
577         if (mode == SINGLE_EXIT) {
578                 p->p_flag |= P_SINGLE_EXIT;
579                 p->p_flag &= ~P_SINGLE_BOUNDARY;
580         } else {
581                 p->p_flag &= ~P_SINGLE_EXIT;
582                 if (mode == SINGLE_BOUNDARY)
583                         p->p_flag |= P_SINGLE_BOUNDARY;
584                 else
585                         p->p_flag &= ~P_SINGLE_BOUNDARY;
586         }
587         p->p_flag |= P_STOPPED_SINGLE;
588         PROC_SLOCK(p);
589         p->p_singlethread = td;
590         remaining = calc_remaining(p, mode);
591         while (remaining != 1) {
592                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
593                         goto stopme;
594                 wakeup_swapper = 0;
595                 FOREACH_THREAD_IN_PROC(p, td2) {
596                         if (td2 == td)
597                                 continue;
598                         thread_lock(td2);
599                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
600                         if (TD_IS_INHIBITED(td2)) {
601                                 switch (mode) {
602                                 case SINGLE_EXIT:
603                                         if (TD_IS_SUSPENDED(td2))
604                                                 wakeup_swapper |=
605                                                     thread_unsuspend_one(td2);
606                                         if (TD_ON_SLEEPQ(td2) &&
607                                             (td2->td_flags & TDF_SINTR))
608                                                 wakeup_swapper |=
609                                                     sleepq_abort(td2, EINTR);
610                                         break;
611                                 case SINGLE_BOUNDARY:
612                                         if (TD_IS_SUSPENDED(td2) &&
613                                             !(td2->td_flags & TDF_BOUNDARY))
614                                                 wakeup_swapper |=
615                                                     thread_unsuspend_one(td2);
616                                         if (TD_ON_SLEEPQ(td2) &&
617                                             (td2->td_flags & TDF_SINTR))
618                                                 wakeup_swapper |=
619                                                     sleepq_abort(td2, ERESTART);
620                                         break;
621                                 case SINGLE_NO_EXIT:
622                                         if (TD_IS_SUSPENDED(td2) &&
623                                             !(td2->td_flags & TDF_BOUNDARY))
624                                                 wakeup_swapper |=
625                                                     thread_unsuspend_one(td2);
626                                         if (TD_ON_SLEEPQ(td2) &&
627                                             (td2->td_flags & TDF_SINTR))
628                                                 wakeup_swapper |=
629                                                     sleepq_abort(td2, ERESTART);
630                                         break;
631                                 default:
632                                         break;
633                                 }
634                         }
635 #ifdef SMP
636                         else if (TD_IS_RUNNING(td2) && td != td2) {
637                                 forward_signal(td2);
638                         }
639 #endif
640                         thread_unlock(td2);
641                 }
642                 if (wakeup_swapper)
643                         kick_proc0();
644                 remaining = calc_remaining(p, mode);
645
646                 /*
647                  * Maybe we suspended some threads.. was it enough?
648                  */
649                 if (remaining == 1)
650                         break;
651
652 stopme:
653                 /*
654                  * Wake us up when everyone else has suspended.
655                  * In the mean time we suspend as well.
656                  */
657                 thread_suspend_switch(td);
658                 remaining = calc_remaining(p, mode);
659         }
660         if (mode == SINGLE_EXIT) {
661                 /*
662                  * We have gotten rid of all the other threads and we
663                  * are about to either exit or exec. In either case,
664                  * we try our utmost  to revert to being a non-threaded
665                  * process.
666                  */
667                 p->p_singlethread = NULL;
668                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
669                 thread_unthread(td);
670         }
671         PROC_SUNLOCK(p);
672         return (0);
673 }
674
675 /*
676  * Called in from locations that can safely check to see
677  * whether we have to suspend or at least throttle for a
678  * single-thread event (e.g. fork).
679  *
680  * Such locations include userret().
681  * If the "return_instead" argument is non zero, the thread must be able to
682  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
683  *
684  * The 'return_instead' argument tells the function if it may do a
685  * thread_exit() or suspend, or whether the caller must abort and back
686  * out instead.
687  *
688  * If the thread that set the single_threading request has set the
689  * P_SINGLE_EXIT bit in the process flags then this call will never return
690  * if 'return_instead' is false, but will exit.
691  *
692  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
693  *---------------+--------------------+---------------------
694  *       0       | returns 0          |   returns 0 or 1
695  *               | when ST ends       |   immediatly
696  *---------------+--------------------+---------------------
697  *       1       | thread exits       |   returns 1
698  *               |                    |  immediatly
699  * 0 = thread_exit() or suspension ok,
700  * other = return error instead of stopping the thread.
701  *
702  * While a full suspension is under effect, even a single threading
703  * thread would be suspended if it made this call (but it shouldn't).
704  * This call should only be made from places where
705  * thread_exit() would be safe as that may be the outcome unless
706  * return_instead is set.
707  */
708 int
709 thread_suspend_check(int return_instead)
710 {
711         struct thread *td;
712         struct proc *p;
713         int wakeup_swapper;
714
715         td = curthread;
716         p = td->td_proc;
717         mtx_assert(&Giant, MA_NOTOWNED);
718         PROC_LOCK_ASSERT(p, MA_OWNED);
719         while (P_SHOULDSTOP(p) ||
720               ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
721                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
722                         KASSERT(p->p_singlethread != NULL,
723                             ("singlethread not set"));
724                         /*
725                          * The only suspension in action is a
726                          * single-threading. Single threader need not stop.
727                          * XXX Should be safe to access unlocked
728                          * as it can only be set to be true by us.
729                          */
730                         if (p->p_singlethread == td)
731                                 return (0);     /* Exempt from stopping. */
732                 }
733                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
734                         return (EINTR);
735
736                 /* Should we goto user boundary if we didn't come from there? */
737                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
738                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
739                         return (ERESTART);
740
741                 /* If thread will exit, flush its pending signals */
742                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
743                         sigqueue_flush(&td->td_sigqueue);
744
745                 PROC_SLOCK(p);
746                 thread_stopped(p);
747                 /*
748                  * If the process is waiting for us to exit,
749                  * this thread should just suicide.
750                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
751                  */
752                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
753                         thread_exit();
754                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
755                         if (p->p_numthreads == p->p_suspcount + 1) {
756                                 thread_lock(p->p_singlethread);
757                                 wakeup_swapper =
758                                     thread_unsuspend_one(p->p_singlethread);
759                                 thread_unlock(p->p_singlethread);
760                                 if (wakeup_swapper)
761                                         kick_proc0();
762                         }
763                 }
764                 PROC_UNLOCK(p);
765                 thread_lock(td);
766                 /*
767                  * When a thread suspends, it just
768                  * gets taken off all queues.
769                  */
770                 thread_suspend_one(td);
771                 if (return_instead == 0) {
772                         p->p_boundary_count++;
773                         td->td_flags |= TDF_BOUNDARY;
774                 }
775                 PROC_SUNLOCK(p);
776                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
777                 if (return_instead == 0)
778                         td->td_flags &= ~TDF_BOUNDARY;
779                 thread_unlock(td);
780                 PROC_LOCK(p);
781                 if (return_instead == 0)
782                         p->p_boundary_count--;
783         }
784         return (0);
785 }
786
787 void
788 thread_suspend_switch(struct thread *td)
789 {
790         struct proc *p;
791
792         p = td->td_proc;
793         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
794         PROC_LOCK_ASSERT(p, MA_OWNED);
795         PROC_SLOCK_ASSERT(p, MA_OWNED);
796         /*
797          * We implement thread_suspend_one in stages here to avoid
798          * dropping the proc lock while the thread lock is owned.
799          */
800         thread_stopped(p);
801         p->p_suspcount++;
802         PROC_UNLOCK(p);
803         thread_lock(td);
804         td->td_flags &= ~TDF_NEEDSUSPCHK;
805         TD_SET_SUSPENDED(td);
806         sched_sleep(td, 0);
807         PROC_SUNLOCK(p);
808         DROP_GIANT();
809         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
810         thread_unlock(td);
811         PICKUP_GIANT();
812         PROC_LOCK(p);
813         PROC_SLOCK(p);
814 }
815
816 void
817 thread_suspend_one(struct thread *td)
818 {
819         struct proc *p = td->td_proc;
820
821         PROC_SLOCK_ASSERT(p, MA_OWNED);
822         THREAD_LOCK_ASSERT(td, MA_OWNED);
823         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
824         p->p_suspcount++;
825         td->td_flags &= ~TDF_NEEDSUSPCHK;
826         TD_SET_SUSPENDED(td);
827         sched_sleep(td, 0);
828 }
829
830 int
831 thread_unsuspend_one(struct thread *td)
832 {
833         struct proc *p = td->td_proc;
834
835         PROC_SLOCK_ASSERT(p, MA_OWNED);
836         THREAD_LOCK_ASSERT(td, MA_OWNED);
837         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
838         TD_CLR_SUSPENDED(td);
839         p->p_suspcount--;
840         return (setrunnable(td));
841 }
842
843 /*
844  * Allow all threads blocked by single threading to continue running.
845  */
846 void
847 thread_unsuspend(struct proc *p)
848 {
849         struct thread *td;
850         int wakeup_swapper;
851
852         PROC_LOCK_ASSERT(p, MA_OWNED);
853         PROC_SLOCK_ASSERT(p, MA_OWNED);
854         wakeup_swapper = 0;
855         if (!P_SHOULDSTOP(p)) {
856                 FOREACH_THREAD_IN_PROC(p, td) {
857                         thread_lock(td);
858                         if (TD_IS_SUSPENDED(td)) {
859                                 wakeup_swapper |= thread_unsuspend_one(td);
860                         }
861                         thread_unlock(td);
862                 }
863         } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
864             (p->p_numthreads == p->p_suspcount)) {
865                 /*
866                  * Stopping everything also did the job for the single
867                  * threading request. Now we've downgraded to single-threaded,
868                  * let it continue.
869                  */
870                 thread_lock(p->p_singlethread);
871                 wakeup_swapper = thread_unsuspend_one(p->p_singlethread);
872                 thread_unlock(p->p_singlethread);
873         }
874         if (wakeup_swapper)
875                 kick_proc0();
876 }
877
878 /*
879  * End the single threading mode..
880  */
881 void
882 thread_single_end(void)
883 {
884         struct thread *td;
885         struct proc *p;
886         int wakeup_swapper;
887
888         td = curthread;
889         p = td->td_proc;
890         PROC_LOCK_ASSERT(p, MA_OWNED);
891         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
892         PROC_SLOCK(p);
893         p->p_singlethread = NULL;
894         wakeup_swapper = 0;
895         /*
896          * If there are other threads they may now run,
897          * unless of course there is a blanket 'stop order'
898          * on the process. The single threader must be allowed
899          * to continue however as this is a bad place to stop.
900          */
901         if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
902                 FOREACH_THREAD_IN_PROC(p, td) {
903                         thread_lock(td);
904                         if (TD_IS_SUSPENDED(td)) {
905                                 wakeup_swapper |= thread_unsuspend_one(td);
906                         }
907                         thread_unlock(td);
908                 }
909         }
910         PROC_SUNLOCK(p);
911         if (wakeup_swapper)
912                 kick_proc0();
913 }
914
915 struct thread *
916 thread_find(struct proc *p, lwpid_t tid)
917 {
918         struct thread *td;
919
920         PROC_LOCK_ASSERT(p, MA_OWNED);
921         FOREACH_THREAD_IN_PROC(p, td) {
922                 if (td->td_tid == tid)
923                         break;
924         }
925         return (td);
926 }