]> CyberLeo.Net >> Repos - FreeBSD/releng/8.1.git/blob - sys/kern/subr_witness.c
Copy stable/8 to releng/8.1 in preparation for 8.1-RC1.
[FreeBSD/releng/8.1.git] / sys / kern / subr_witness.c
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40
41 /*
42  *      Main Entry: witness
43  *      Pronunciation: 'wit-n&s
44  *      Function: noun
45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *          testimony, witness, from 2wit
47  *      Date: before 12th century
48  *      1 : attestation of a fact or event : TESTIMONY
49  *      2 : one that gives evidence; specifically : one who testifies in
50  *          a cause or before a judicial tribunal
51  *      3 : one asked to be present at a transaction so as to be able to
52  *          testify to its having taken place
53  *      4 : one who has personal knowledge of something
54  *      5 a : something serving as evidence or proof : SIGN
55  *        b : public affirmation by word or example of usually
56  *            religious faith or conviction <the heroic witness to divine
57  *            life -- Pilot>
58  *      6 capitalized : a member of the Jehovah's Witnesses 
59  */
60
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/systm.h>
110
111 #ifdef DDB
112 #include <ddb/ddb.h>
113 #endif
114
115 #include <machine/stdarg.h>
116
117 #if !defined(DDB) && !defined(STACK)
118 #error "DDB or STACK options are required for WITNESS"
119 #endif
120
121 /* Note that these traces do not work with KTR_ALQ. */
122 #if 0
123 #define KTR_WITNESS     KTR_SUBSYS
124 #else
125 #define KTR_WITNESS     0
126 #endif
127
128 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
129 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
130 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
131
132 /* Define this to check for blessed mutexes */
133 #undef BLESSING
134
135 #define WITNESS_COUNT           1024
136 #define WITNESS_CHILDCOUNT      (WITNESS_COUNT * 4)
137 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
138 #define WITNESS_PENDLIST        512
139
140 /* Allocate 256 KB of stack data space */
141 #define WITNESS_LO_DATA_COUNT   2048
142
143 /* Prime, gives load factor of ~2 at full load */
144 #define WITNESS_LO_HASH_SIZE    1021
145
146 /*
147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149  * probably be safe for the most part, but it's still a SWAG.
150  */
151 #define LOCK_NCHILDREN  5
152 #define LOCK_CHILDCOUNT 2048
153
154 #define MAX_W_NAME      64
155
156 #define BADSTACK_SBUF_SIZE      (256 * WITNESS_COUNT)
157 #define CYCLEGRAPH_SBUF_SIZE    8192
158 #define FULLGRAPH_SBUF_SIZE     32768
159
160 /*
161  * These flags go in the witness relationship matrix and describe the
162  * relationship between any two struct witness objects.
163  */
164 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
165 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
166 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
167 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
168 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
169 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
170 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
171 #define WITNESS_RELATED_MASK                                            \
172         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
173 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
174                                           * observed. */
175 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
176 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
177 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
178
179 /* Descendant to ancestor flags */
180 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
181
182 /* Ancestor to descendant flags */
183 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
184
185 #define WITNESS_INDEX_ASSERT(i)                                         \
186         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
187
188 MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
189
190 /*
191  * Lock instances.  A lock instance is the data associated with a lock while
192  * it is held by witness.  For example, a lock instance will hold the
193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
194  * are held in a per-cpu list while sleep locks are held in per-thread list.
195  */
196 struct lock_instance {
197         struct lock_object      *li_lock;
198         const char              *li_file;
199         int                     li_line;
200         u_int                   li_flags;
201 };
202
203 /*
204  * A simple list type used to build the list of locks held by a thread
205  * or CPU.  We can't simply embed the list in struct lock_object since a
206  * lock may be held by more than one thread if it is a shared lock.  Locks
207  * are added to the head of the list, so we fill up each list entry from
208  * "the back" logically.  To ease some of the arithmetic, we actually fill
209  * in each list entry the normal way (children[0] then children[1], etc.) but
210  * when we traverse the list we read children[count-1] as the first entry
211  * down to children[0] as the final entry.
212  */
213 struct lock_list_entry {
214         struct lock_list_entry  *ll_next;
215         struct lock_instance    ll_children[LOCK_NCHILDREN];
216         u_int                   ll_count;
217 };
218
219 /*
220  * The main witness structure. One of these per named lock type in the system
221  * (for example, "vnode interlock").
222  */
223 struct witness {
224         char                    w_name[MAX_W_NAME];
225         uint32_t                w_index;  /* Index in the relationship matrix */
226         struct lock_class       *w_class;
227         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
228         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
229         struct witness          *w_hash_next; /* Linked list in hash buckets. */
230         const char              *w_file; /* File where last acquired */
231         uint32_t                w_line; /* Line where last acquired */
232         uint32_t                w_refcount;
233         uint16_t                w_num_ancestors; /* direct/indirect
234                                                   * ancestor count */
235         uint16_t                w_num_descendants; /* direct/indirect
236                                                     * descendant count */
237         int16_t                 w_ddb_level;
238         unsigned                w_displayed:1;
239         unsigned                w_reversed:1;
240 };
241
242 STAILQ_HEAD(witness_list, witness);
243
244 /*
245  * The witness hash table. Keys are witness names (const char *), elements are
246  * witness objects (struct witness *).
247  */
248 struct witness_hash {
249         struct witness  *wh_array[WITNESS_HASH_SIZE];
250         uint32_t        wh_size;
251         uint32_t        wh_count;
252 };
253
254 /*
255  * Key type for the lock order data hash table.
256  */
257 struct witness_lock_order_key {
258         uint16_t        from;
259         uint16_t        to;
260 };
261
262 struct witness_lock_order_data {
263         struct stack                    wlod_stack;
264         struct witness_lock_order_key   wlod_key;
265         struct witness_lock_order_data  *wlod_next;
266 };
267
268 /*
269  * The witness lock order data hash table. Keys are witness index tuples
270  * (struct witness_lock_order_key), elements are lock order data objects
271  * (struct witness_lock_order_data). 
272  */
273 struct witness_lock_order_hash {
274         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
275         u_int   wloh_size;
276         u_int   wloh_count;
277 };
278
279 #ifdef BLESSING
280 struct witness_blessed {
281         const char      *b_lock1;
282         const char      *b_lock2;
283 };
284 #endif
285
286 struct witness_pendhelp {
287         const char              *wh_type;
288         struct lock_object      *wh_lock;
289 };
290
291 struct witness_order_list_entry {
292         const char              *w_name;
293         struct lock_class       *w_class;
294 };
295
296 /*
297  * Returns 0 if one of the locks is a spin lock and the other is not.
298  * Returns 1 otherwise.
299  */
300 static __inline int
301 witness_lock_type_equal(struct witness *w1, struct witness *w2)
302 {
303
304         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
305                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
306 }
307
308 static __inline int
309 witness_lock_order_key_empty(const struct witness_lock_order_key *key)
310 {
311
312         return (key->from == 0 && key->to == 0);
313 }
314
315 static __inline int
316 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
317     const struct witness_lock_order_key *b)
318 {
319
320         return (a->from == b->from && a->to == b->to);
321 }
322
323 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
324                     const char *fname);
325 #ifdef KDB
326 static void     _witness_debugger(int cond, const char *msg);
327 #endif
328 static void     adopt(struct witness *parent, struct witness *child);
329 #ifdef BLESSING
330 static int      blessed(struct witness *, struct witness *);
331 #endif
332 static void     depart(struct witness *w);
333 static struct witness   *enroll(const char *description,
334                             struct lock_class *lock_class);
335 static struct lock_instance     *find_instance(struct lock_list_entry *list,
336                                     struct lock_object *lock);
337 static int      isitmychild(struct witness *parent, struct witness *child);
338 static int      isitmydescendant(struct witness *parent, struct witness *child);
339 static void     itismychild(struct witness *parent, struct witness *child);
340 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
341 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
342 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
343 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
344 #ifdef DDB
345 static void     witness_ddb_compute_levels(void);
346 static void     witness_ddb_display(int(*)(const char *fmt, ...));
347 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
348                     struct witness *, int indent);
349 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
350                     struct witness_list *list);
351 static void     witness_ddb_level_descendants(struct witness *parent, int l);
352 static void     witness_ddb_list(struct thread *td);
353 #endif
354 static void     witness_free(struct witness *m);
355 static struct witness   *witness_get(void);
356 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
357 static struct witness   *witness_hash_get(const char *key);
358 static void     witness_hash_put(struct witness *w);
359 static void     witness_init_hash_tables(void);
360 static void     witness_increment_graph_generation(void);
361 static void     witness_lock_list_free(struct lock_list_entry *lle);
362 static struct lock_list_entry   *witness_lock_list_get(void);
363 static int      witness_lock_order_add(struct witness *parent,
364                     struct witness *child);
365 static int      witness_lock_order_check(struct witness *parent,
366                     struct witness *child);
367 static struct witness_lock_order_data   *witness_lock_order_get(
368                                             struct witness *parent,
369                                             struct witness *child);
370 static void     witness_list_lock(struct lock_instance *instance,
371                     int (*prnt)(const char *fmt, ...));
372 static void     witness_setflag(struct lock_object *lock, int flag, int set);
373
374 #ifdef KDB
375 #define witness_debugger(c)     _witness_debugger(c, __func__)
376 #else
377 #define witness_debugger(c)
378 #endif
379
380 SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL, "Witness Locking");
381
382 /*
383  * If set to 0, lock order checking is disabled.  If set to -1,
384  * witness is completely disabled.  Otherwise witness performs full
385  * lock order checking for all locks.  At runtime, lock order checking
386  * may be toggled.  However, witness cannot be reenabled once it is
387  * completely disabled.
388  */
389 static int witness_watch = 1;
390 TUNABLE_INT("debug.witness.watch", &witness_watch);
391 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
392     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
393
394 #ifdef KDB
395 /*
396  * When KDB is enabled and witness_kdb is 1, it will cause the system
397  * to drop into kdebug() when:
398  *      - a lock hierarchy violation occurs
399  *      - locks are held when going to sleep.
400  */
401 #ifdef WITNESS_KDB
402 int     witness_kdb = 1;
403 #else
404 int     witness_kdb = 0;
405 #endif
406 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
407 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
408
409 /*
410  * When KDB is enabled and witness_trace is 1, it will cause the system
411  * to print a stack trace:
412  *      - a lock hierarchy violation occurs
413  *      - locks are held when going to sleep.
414  */
415 int     witness_trace = 1;
416 TUNABLE_INT("debug.witness.trace", &witness_trace);
417 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
418 #endif /* KDB */
419
420 #ifdef WITNESS_SKIPSPIN
421 int     witness_skipspin = 1;
422 #else
423 int     witness_skipspin = 0;
424 #endif
425 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
426 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
427     0, "");
428
429 /*
430  * Call this to print out the relations between locks.
431  */
432 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
433     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
434
435 /*
436  * Call this to print out the witness faulty stacks.
437  */
438 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
439     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
440
441 static struct mtx w_mtx;
442
443 /* w_list */
444 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
445 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
446
447 /* w_typelist */
448 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
449 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
450
451 /* lock list */
452 static struct lock_list_entry *w_lock_list_free = NULL;
453 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
454 static u_int pending_cnt;
455
456 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
457 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
458 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
459 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
460     "");
461
462 static struct witness *w_data;
463 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
464 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
465 static struct witness_hash w_hash;      /* The witness hash table. */
466
467 /* The lock order data hash */
468 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
469 static struct witness_lock_order_data *w_lofree = NULL;
470 static struct witness_lock_order_hash w_lohash;
471 static int w_max_used_index = 0;
472 static unsigned int w_generation = 0;
473 static const char w_notrunning[] = "Witness not running\n";
474 static const char w_stillcold[] = "Witness is still cold\n";
475
476
477 static struct witness_order_list_entry order_lists[] = {
478         /*
479          * sx locks
480          */
481         { "proctree", &lock_class_sx },
482         { "allproc", &lock_class_sx },
483         { "allprison", &lock_class_sx },
484         { NULL, NULL },
485         /*
486          * Various mutexes
487          */
488         { "Giant", &lock_class_mtx_sleep },
489         { "pipe mutex", &lock_class_mtx_sleep },
490         { "sigio lock", &lock_class_mtx_sleep },
491         { "process group", &lock_class_mtx_sleep },
492         { "process lock", &lock_class_mtx_sleep },
493         { "session", &lock_class_mtx_sleep },
494         { "uidinfo hash", &lock_class_rw },
495 #ifdef  HWPMC_HOOKS
496         { "pmc-sleep", &lock_class_mtx_sleep },
497 #endif
498         { NULL, NULL },
499         /*
500          * Sockets
501          */
502         { "accept", &lock_class_mtx_sleep },
503         { "so_snd", &lock_class_mtx_sleep },
504         { "so_rcv", &lock_class_mtx_sleep },
505         { "sellck", &lock_class_mtx_sleep },
506         { NULL, NULL },
507         /*
508          * Routing
509          */
510         { "so_rcv", &lock_class_mtx_sleep },
511         { "radix node head", &lock_class_rw },
512         { "rtentry", &lock_class_mtx_sleep },
513         { "ifaddr", &lock_class_mtx_sleep },
514         { NULL, NULL },
515         /*
516          * IPv4 multicast:
517          * protocol locks before interface locks, after UDP locks.
518          */
519         { "udpinp", &lock_class_rw },
520         { "in_multi_mtx", &lock_class_mtx_sleep },
521         { "igmp_mtx", &lock_class_mtx_sleep },
522         { "if_addr_mtx", &lock_class_mtx_sleep },
523         { NULL, NULL },
524         /*
525          * IPv6 multicast:
526          * protocol locks before interface locks, after UDP locks.
527          */
528         { "udpinp", &lock_class_rw },
529         { "in6_multi_mtx", &lock_class_mtx_sleep },
530         { "mld_mtx", &lock_class_mtx_sleep },
531         { "if_addr_mtx", &lock_class_mtx_sleep },
532         { NULL, NULL },
533         /*
534          * UNIX Domain Sockets
535          */
536         { "unp_global_rwlock", &lock_class_rw },
537         { "unp_list_lock", &lock_class_mtx_sleep },
538         { "unp", &lock_class_mtx_sleep },
539         { "so_snd", &lock_class_mtx_sleep },
540         { NULL, NULL },
541         /*
542          * UDP/IP
543          */
544         { "udp", &lock_class_rw },
545         { "udpinp", &lock_class_rw },
546         { "so_snd", &lock_class_mtx_sleep },
547         { NULL, NULL },
548         /*
549          * TCP/IP
550          */
551         { "tcp", &lock_class_rw },
552         { "tcpinp", &lock_class_rw },
553         { "so_snd", &lock_class_mtx_sleep },
554         { NULL, NULL },
555         /*
556          * SLIP
557          */
558         { "slip_mtx", &lock_class_mtx_sleep },
559         { "slip sc_mtx", &lock_class_mtx_sleep },
560         { NULL, NULL },
561         /*
562          * netatalk
563          */
564         { "ddp_list_mtx", &lock_class_mtx_sleep },
565         { "ddp_mtx", &lock_class_mtx_sleep },
566         { NULL, NULL },
567         /*
568          * BPF
569          */
570         { "bpf global lock", &lock_class_mtx_sleep },
571         { "bpf interface lock", &lock_class_mtx_sleep },
572         { "bpf cdev lock", &lock_class_mtx_sleep },
573         { NULL, NULL },
574         /*
575          * NFS server
576          */
577         { "nfsd_mtx", &lock_class_mtx_sleep },
578         { "so_snd", &lock_class_mtx_sleep },
579         { NULL, NULL },
580
581         /*
582          * IEEE 802.11
583          */
584         { "802.11 com lock", &lock_class_mtx_sleep},
585         { NULL, NULL },
586         /*
587          * Network drivers
588          */
589         { "network driver", &lock_class_mtx_sleep},
590         { NULL, NULL },
591
592         /*
593          * Netgraph
594          */
595         { "ng_node", &lock_class_mtx_sleep },
596         { "ng_worklist", &lock_class_mtx_sleep },
597         { NULL, NULL },
598         /*
599          * CDEV
600          */
601         { "system map", &lock_class_mtx_sleep },
602         { "vm page queue mutex", &lock_class_mtx_sleep },
603         { "vnode interlock", &lock_class_mtx_sleep },
604         { "cdev", &lock_class_mtx_sleep },
605         { NULL, NULL },
606         /*
607          * kqueue/VFS interaction
608          */
609         { "kqueue", &lock_class_mtx_sleep },
610         { "struct mount mtx", &lock_class_mtx_sleep },
611         { "vnode interlock", &lock_class_mtx_sleep },
612         { NULL, NULL },
613         /*
614          * ZFS locking
615          */
616         { "dn->dn_mtx", &lock_class_sx },
617         { "dr->dt.di.dr_mtx", &lock_class_sx },
618         { "db->db_mtx", &lock_class_sx },
619         { NULL, NULL },
620         /*
621          * spin locks
622          */
623 #ifdef SMP
624         { "ap boot", &lock_class_mtx_spin },
625 #endif
626         { "rm.mutex_mtx", &lock_class_mtx_spin },
627         { "sio", &lock_class_mtx_spin },
628         { "scrlock", &lock_class_mtx_spin },
629 #ifdef __i386__
630         { "cy", &lock_class_mtx_spin },
631 #endif
632 #ifdef __sparc64__
633         { "pcib_mtx", &lock_class_mtx_spin },
634         { "rtc_mtx", &lock_class_mtx_spin },
635 #endif
636         { "scc_hwmtx", &lock_class_mtx_spin },
637         { "uart_hwmtx", &lock_class_mtx_spin },
638         { "fast_taskqueue", &lock_class_mtx_spin },
639         { "intr table", &lock_class_mtx_spin },
640 #ifdef  HWPMC_HOOKS
641         { "pmc-per-proc", &lock_class_mtx_spin },
642 #endif
643         { "process slock", &lock_class_mtx_spin },
644         { "sleepq chain", &lock_class_mtx_spin },
645         { "umtx lock", &lock_class_mtx_spin },
646         { "rm_spinlock", &lock_class_mtx_spin },
647         { "turnstile chain", &lock_class_mtx_spin },
648         { "turnstile lock", &lock_class_mtx_spin },
649         { "sched lock", &lock_class_mtx_spin },
650         { "td_contested", &lock_class_mtx_spin },
651         { "callout", &lock_class_mtx_spin },
652         { "entropy harvest mutex", &lock_class_mtx_spin },
653         { "syscons video lock", &lock_class_mtx_spin },
654         { "time lock", &lock_class_mtx_spin },
655 #ifdef SMP
656         { "smp rendezvous", &lock_class_mtx_spin },
657 #endif
658 #ifdef __powerpc__
659         { "tlb0", &lock_class_mtx_spin },
660 #endif
661         /*
662          * leaf locks
663          */
664         { "intrcnt", &lock_class_mtx_spin },
665         { "icu", &lock_class_mtx_spin },
666 #if defined(SMP) && defined(__sparc64__)
667         { "ipi", &lock_class_mtx_spin },
668 #endif
669 #ifdef __i386__
670         { "allpmaps", &lock_class_mtx_spin },
671         { "descriptor tables", &lock_class_mtx_spin },
672 #endif
673         { "clk", &lock_class_mtx_spin },
674         { "cpuset", &lock_class_mtx_spin },
675         { "mprof lock", &lock_class_mtx_spin },
676         { "zombie lock", &lock_class_mtx_spin },
677         { "ALD Queue", &lock_class_mtx_spin },
678 #ifdef __ia64__
679         { "MCA spin lock", &lock_class_mtx_spin },
680 #endif
681 #if defined(__i386__) || defined(__amd64__)
682         { "pcicfg", &lock_class_mtx_spin },
683         { "NDIS thread lock", &lock_class_mtx_spin },
684 #endif
685         { "tw_osl_io_lock", &lock_class_mtx_spin },
686         { "tw_osl_q_lock", &lock_class_mtx_spin },
687         { "tw_cl_io_lock", &lock_class_mtx_spin },
688         { "tw_cl_intr_lock", &lock_class_mtx_spin },
689         { "tw_cl_gen_lock", &lock_class_mtx_spin },
690 #ifdef  HWPMC_HOOKS
691         { "pmc-leaf", &lock_class_mtx_spin },
692 #endif
693         { "blocked lock", &lock_class_mtx_spin },
694         { NULL, NULL },
695         { NULL, NULL }
696 };
697
698 #ifdef BLESSING
699 /*
700  * Pairs of locks which have been blessed
701  * Don't complain about order problems with blessed locks
702  */
703 static struct witness_blessed blessed_list[] = {
704 };
705 static int blessed_count =
706         sizeof(blessed_list) / sizeof(struct witness_blessed);
707 #endif
708
709 /*
710  * This global is set to 0 once it becomes safe to use the witness code.
711  */
712 static int witness_cold = 1;
713
714 /*
715  * This global is set to 1 once the static lock orders have been enrolled
716  * so that a warning can be issued for any spin locks enrolled later.
717  */
718 static int witness_spin_warn = 0;
719
720 /*
721  * The WITNESS-enabled diagnostic code.  Note that the witness code does
722  * assume that the early boot is single-threaded at least until after this
723  * routine is completed.
724  */
725 static void
726 witness_initialize(void *dummy __unused)
727 {
728         struct lock_object *lock;
729         struct witness_order_list_entry *order;
730         struct witness *w, *w1;
731         int i;
732
733         w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
734             M_NOWAIT | M_ZERO);
735
736         /*
737          * We have to release Giant before initializing its witness
738          * structure so that WITNESS doesn't get confused.
739          */
740         mtx_unlock(&Giant);
741         mtx_assert(&Giant, MA_NOTOWNED);
742
743         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
744         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
745             MTX_NOWITNESS | MTX_NOPROFILE);
746         for (i = WITNESS_COUNT - 1; i >= 0; i--) {
747                 w = &w_data[i];
748                 memset(w, 0, sizeof(*w));
749                 w_data[i].w_index = i;  /* Witness index never changes. */
750                 witness_free(w);
751         }
752         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
753             ("%s: Invalid list of free witness objects", __func__));
754
755         /* Witness with index 0 is not used to aid in debugging. */
756         STAILQ_REMOVE_HEAD(&w_free, w_list);
757         w_free_cnt--;
758
759         memset(w_rmatrix, 0,
760             (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
761
762         for (i = 0; i < LOCK_CHILDCOUNT; i++)
763                 witness_lock_list_free(&w_locklistdata[i]);
764         witness_init_hash_tables();
765
766         /* First add in all the specified order lists. */
767         for (order = order_lists; order->w_name != NULL; order++) {
768                 w = enroll(order->w_name, order->w_class);
769                 if (w == NULL)
770                         continue;
771                 w->w_file = "order list";
772                 for (order++; order->w_name != NULL; order++) {
773                         w1 = enroll(order->w_name, order->w_class);
774                         if (w1 == NULL)
775                                 continue;
776                         w1->w_file = "order list";
777                         itismychild(w, w1);
778                         w = w1;
779                 }
780         }
781         witness_spin_warn = 1;
782
783         /* Iterate through all locks and add them to witness. */
784         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
785                 lock = pending_locks[i].wh_lock;
786                 KASSERT(lock->lo_flags & LO_WITNESS,
787                     ("%s: lock %s is on pending list but not LO_WITNESS",
788                     __func__, lock->lo_name));
789                 lock->lo_witness = enroll(pending_locks[i].wh_type,
790                     LOCK_CLASS(lock));
791         }
792
793         /* Mark the witness code as being ready for use. */
794         witness_cold = 0;
795
796         mtx_lock(&Giant);
797 }
798 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
799     NULL);
800
801 void
802 witness_init(struct lock_object *lock, const char *type)
803 {
804         struct lock_class *class;
805
806         /* Various sanity checks. */
807         class = LOCK_CLASS(lock);
808         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
809             (class->lc_flags & LC_RECURSABLE) == 0)
810                 panic("%s: lock (%s) %s can not be recursable", __func__,
811                     class->lc_name, lock->lo_name);
812         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
813             (class->lc_flags & LC_SLEEPABLE) == 0)
814                 panic("%s: lock (%s) %s can not be sleepable", __func__,
815                     class->lc_name, lock->lo_name);
816         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
817             (class->lc_flags & LC_UPGRADABLE) == 0)
818                 panic("%s: lock (%s) %s can not be upgradable", __func__,
819                     class->lc_name, lock->lo_name);
820
821         /*
822          * If we shouldn't watch this lock, then just clear lo_witness.
823          * Otherwise, if witness_cold is set, then it is too early to
824          * enroll this lock, so defer it to witness_initialize() by adding
825          * it to the pending_locks list.  If it is not too early, then enroll
826          * the lock now.
827          */
828         if (witness_watch < 1 || panicstr != NULL ||
829             (lock->lo_flags & LO_WITNESS) == 0)
830                 lock->lo_witness = NULL;
831         else if (witness_cold) {
832                 pending_locks[pending_cnt].wh_lock = lock;
833                 pending_locks[pending_cnt++].wh_type = type;
834                 if (pending_cnt > WITNESS_PENDLIST)
835                         panic("%s: pending locks list is too small, bump it\n",
836                             __func__);
837         } else
838                 lock->lo_witness = enroll(type, class);
839 }
840
841 void
842 witness_destroy(struct lock_object *lock)
843 {
844         struct lock_class *class;
845         struct witness *w;
846
847         class = LOCK_CLASS(lock);
848
849         if (witness_cold)
850                 panic("lock (%s) %s destroyed while witness_cold",
851                     class->lc_name, lock->lo_name);
852
853         /* XXX: need to verify that no one holds the lock */
854         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
855                 return;
856         w = lock->lo_witness;
857
858         mtx_lock_spin(&w_mtx);
859         MPASS(w->w_refcount > 0);
860         w->w_refcount--;
861
862         if (w->w_refcount == 0)
863                 depart(w);
864         mtx_unlock_spin(&w_mtx);
865 }
866
867 #ifdef DDB
868 static void
869 witness_ddb_compute_levels(void)
870 {
871         struct witness *w;
872
873         /*
874          * First clear all levels.
875          */
876         STAILQ_FOREACH(w, &w_all, w_list)
877                 w->w_ddb_level = -1;
878
879         /*
880          * Look for locks with no parents and level all their descendants.
881          */
882         STAILQ_FOREACH(w, &w_all, w_list) {
883
884                 /* If the witness has ancestors (is not a root), skip it. */
885                 if (w->w_num_ancestors > 0)
886                         continue;
887                 witness_ddb_level_descendants(w, 0);
888         }
889 }
890
891 static void
892 witness_ddb_level_descendants(struct witness *w, int l)
893 {
894         int i;
895
896         if (w->w_ddb_level >= l)
897                 return;
898
899         w->w_ddb_level = l;
900         l++;
901
902         for (i = 1; i <= w_max_used_index; i++) {
903                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
904                         witness_ddb_level_descendants(&w_data[i], l);
905         }
906 }
907
908 static void
909 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
910     struct witness *w, int indent)
911 {
912         int i;
913
914         for (i = 0; i < indent; i++)
915                 prnt(" ");
916         prnt("%s (type: %s, depth: %d, active refs: %d)",
917              w->w_name, w->w_class->lc_name,
918              w->w_ddb_level, w->w_refcount);
919         if (w->w_displayed) {
920                 prnt(" -- (already displayed)\n");
921                 return;
922         }
923         w->w_displayed = 1;
924         if (w->w_file != NULL && w->w_line != 0)
925                 prnt(" -- last acquired @ %s:%d\n", w->w_file,
926                     w->w_line);
927         else
928                 prnt(" -- never acquired\n");
929         indent++;
930         WITNESS_INDEX_ASSERT(w->w_index);
931         for (i = 1; i <= w_max_used_index; i++) {
932                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
933                         witness_ddb_display_descendants(prnt, &w_data[i],
934                             indent);
935         }
936 }
937
938 static void
939 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
940     struct witness_list *list)
941 {
942         struct witness *w;
943
944         STAILQ_FOREACH(w, list, w_typelist) {
945                 if (w->w_file == NULL || w->w_ddb_level > 0)
946                         continue;
947
948                 /* This lock has no anscestors - display its descendants. */
949                 witness_ddb_display_descendants(prnt, w, 0);
950         }
951 }
952         
953 static void
954 witness_ddb_display(int(*prnt)(const char *fmt, ...))
955 {
956         struct witness *w;
957
958         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
959         witness_ddb_compute_levels();
960
961         /* Clear all the displayed flags. */
962         STAILQ_FOREACH(w, &w_all, w_list)
963                 w->w_displayed = 0;
964
965         /*
966          * First, handle sleep locks which have been acquired at least
967          * once.
968          */
969         prnt("Sleep locks:\n");
970         witness_ddb_display_list(prnt, &w_sleep);
971         
972         /*
973          * Now do spin locks which have been acquired at least once.
974          */
975         prnt("\nSpin locks:\n");
976         witness_ddb_display_list(prnt, &w_spin);
977         
978         /*
979          * Finally, any locks which have not been acquired yet.
980          */
981         prnt("\nLocks which were never acquired:\n");
982         STAILQ_FOREACH(w, &w_all, w_list) {
983                 if (w->w_file != NULL || w->w_refcount == 0)
984                         continue;
985                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
986                     w->w_class->lc_name, w->w_ddb_level);
987         }
988 }
989 #endif /* DDB */
990
991 /* Trim useless garbage from filenames. */
992 static const char *
993 fixup_filename(const char *file)
994 {
995
996         if (file == NULL)
997                 return (NULL);
998         while (strncmp(file, "../", 3) == 0)
999                 file += 3;
1000         return (file);
1001 }
1002
1003 int
1004 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1005 {
1006
1007         if (witness_watch == -1 || panicstr != NULL)
1008                 return (0);
1009
1010         /* Require locks that witness knows about. */
1011         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1012             lock2->lo_witness == NULL)
1013                 return (EINVAL);
1014
1015         mtx_assert(&w_mtx, MA_NOTOWNED);
1016         mtx_lock_spin(&w_mtx);
1017
1018         /*
1019          * If we already have either an explicit or implied lock order that
1020          * is the other way around, then return an error.
1021          */
1022         if (witness_watch &&
1023             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1024                 mtx_unlock_spin(&w_mtx);
1025                 return (EDOOFUS);
1026         }
1027         
1028         /* Try to add the new order. */
1029         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1030             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1031         itismychild(lock1->lo_witness, lock2->lo_witness);
1032         mtx_unlock_spin(&w_mtx);
1033         return (0);
1034 }
1035
1036 void
1037 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1038     int line, struct lock_object *interlock)
1039 {
1040         struct lock_list_entry *lock_list, *lle;
1041         struct lock_instance *lock1, *lock2, *plock;
1042         struct lock_class *class;
1043         struct witness *w, *w1;
1044         struct thread *td;
1045         int i, j;
1046
1047         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1048             panicstr != NULL)
1049                 return;
1050
1051         w = lock->lo_witness;
1052         class = LOCK_CLASS(lock);
1053         td = curthread;
1054         file = fixup_filename(file);
1055
1056         if (class->lc_flags & LC_SLEEPLOCK) {
1057
1058                 /*
1059                  * Since spin locks include a critical section, this check
1060                  * implicitly enforces a lock order of all sleep locks before
1061                  * all spin locks.
1062                  */
1063                 if (td->td_critnest != 0 && !kdb_active)
1064                         panic("blockable sleep lock (%s) %s @ %s:%d",
1065                             class->lc_name, lock->lo_name, file, line);
1066
1067                 /*
1068                  * If this is the first lock acquired then just return as
1069                  * no order checking is needed.
1070                  */
1071                 lock_list = td->td_sleeplocks;
1072                 if (lock_list == NULL || lock_list->ll_count == 0)
1073                         return;
1074         } else {
1075
1076                 /*
1077                  * If this is the first lock, just return as no order
1078                  * checking is needed.  Avoid problems with thread
1079                  * migration pinning the thread while checking if
1080                  * spinlocks are held.  If at least one spinlock is held
1081                  * the thread is in a safe path and it is allowed to
1082                  * unpin it.
1083                  */
1084                 sched_pin();
1085                 lock_list = PCPU_GET(spinlocks);
1086                 if (lock_list == NULL || lock_list->ll_count == 0) {
1087                         sched_unpin();
1088                         return;
1089                 }
1090                 sched_unpin();
1091         }
1092
1093         /*
1094          * Check to see if we are recursing on a lock we already own.  If
1095          * so, make sure that we don't mismatch exclusive and shared lock
1096          * acquires.
1097          */
1098         lock1 = find_instance(lock_list, lock);
1099         if (lock1 != NULL) {
1100                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1101                     (flags & LOP_EXCLUSIVE) == 0) {
1102                         printf("shared lock of (%s) %s @ %s:%d\n",
1103                             class->lc_name, lock->lo_name, file, line);
1104                         printf("while exclusively locked from %s:%d\n",
1105                             lock1->li_file, lock1->li_line);
1106                         panic("share->excl");
1107                 }
1108                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1109                     (flags & LOP_EXCLUSIVE) != 0) {
1110                         printf("exclusive lock of (%s) %s @ %s:%d\n",
1111                             class->lc_name, lock->lo_name, file, line);
1112                         printf("while share locked from %s:%d\n",
1113                             lock1->li_file, lock1->li_line);
1114                         panic("excl->share");
1115                 }
1116                 return;
1117         }
1118
1119         /*
1120          * Find the previously acquired lock, but ignore interlocks.
1121          */
1122         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1123         if (interlock != NULL && plock->li_lock == interlock) {
1124                 if (lock_list->ll_count > 1)
1125                         plock =
1126                             &lock_list->ll_children[lock_list->ll_count - 2];
1127                 else {
1128                         lle = lock_list->ll_next;
1129
1130                         /*
1131                          * The interlock is the only lock we hold, so
1132                          * simply return.
1133                          */
1134                         if (lle == NULL)
1135                                 return;
1136                         plock = &lle->ll_children[lle->ll_count - 1];
1137                 }
1138         }
1139         
1140         /*
1141          * Try to perform most checks without a lock.  If this succeeds we
1142          * can skip acquiring the lock and return success.
1143          */
1144         w1 = plock->li_lock->lo_witness;
1145         if (witness_lock_order_check(w1, w))
1146                 return;
1147
1148         /*
1149          * Check for duplicate locks of the same type.  Note that we only
1150          * have to check for this on the last lock we just acquired.  Any
1151          * other cases will be caught as lock order violations.
1152          */
1153         mtx_lock_spin(&w_mtx);
1154         witness_lock_order_add(w1, w);
1155         if (w1 == w) {
1156                 i = w->w_index;
1157                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1158                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1159                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1160                         w->w_reversed = 1;
1161                         mtx_unlock_spin(&w_mtx);
1162                         printf(
1163                             "acquiring duplicate lock of same type: \"%s\"\n", 
1164                             w->w_name);
1165                         printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1166                                plock->li_file, plock->li_line);
1167                         printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
1168                         witness_debugger(1);
1169                     } else
1170                             mtx_unlock_spin(&w_mtx);
1171                 return;
1172         }
1173         mtx_assert(&w_mtx, MA_OWNED);
1174
1175         /*
1176          * If we know that the the lock we are acquiring comes after
1177          * the lock we most recently acquired in the lock order tree,
1178          * then there is no need for any further checks.
1179          */
1180         if (isitmychild(w1, w))
1181                 goto out;
1182
1183         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1184                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1185
1186                         MPASS(j < WITNESS_COUNT);
1187                         lock1 = &lle->ll_children[i];
1188
1189                         /*
1190                          * Ignore the interlock the first time we see it.
1191                          */
1192                         if (interlock != NULL && interlock == lock1->li_lock) {
1193                                 interlock = NULL;
1194                                 continue;
1195                         }
1196
1197                         /*
1198                          * If this lock doesn't undergo witness checking,
1199                          * then skip it.
1200                          */
1201                         w1 = lock1->li_lock->lo_witness;
1202                         if (w1 == NULL) {
1203                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1204                                     ("lock missing witness structure"));
1205                                 continue;
1206                         }
1207
1208                         /*
1209                          * If we are locking Giant and this is a sleepable
1210                          * lock, then skip it.
1211                          */
1212                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1213                             lock == &Giant.lock_object)
1214                                 continue;
1215
1216                         /*
1217                          * If we are locking a sleepable lock and this lock
1218                          * is Giant, then skip it.
1219                          */
1220                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1221                             lock1->li_lock == &Giant.lock_object)
1222                                 continue;
1223
1224                         /*
1225                          * If we are locking a sleepable lock and this lock
1226                          * isn't sleepable, we want to treat it as a lock
1227                          * order violation to enfore a general lock order of
1228                          * sleepable locks before non-sleepable locks.
1229                          */
1230                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1231                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1232                                 goto reversal;
1233
1234                         /*
1235                          * If we are locking Giant and this is a non-sleepable
1236                          * lock, then treat it as a reversal.
1237                          */
1238                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1239                             lock == &Giant.lock_object)
1240                                 goto reversal;
1241
1242                         /*
1243                          * Check the lock order hierarchy for a reveresal.
1244                          */
1245                         if (!isitmydescendant(w, w1))
1246                                 continue;
1247                 reversal:
1248
1249                         /*
1250                          * We have a lock order violation, check to see if it
1251                          * is allowed or has already been yelled about.
1252                          */
1253 #ifdef BLESSING
1254
1255                         /*
1256                          * If the lock order is blessed, just bail.  We don't
1257                          * look for other lock order violations though, which
1258                          * may be a bug.
1259                          */
1260                         if (blessed(w, w1))
1261                                 goto out;
1262 #endif
1263
1264                         /* Bail if this violation is known */
1265                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1266                                 goto out;
1267
1268                         /* Record this as a violation */
1269                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1270                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1271                         w->w_reversed = w1->w_reversed = 1;
1272                         witness_increment_graph_generation();
1273                         mtx_unlock_spin(&w_mtx);
1274                         
1275                         /*
1276                          * Ok, yell about it.
1277                          */
1278                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1279                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1280                                 printf(
1281                 "lock order reversal: (sleepable after non-sleepable)\n");
1282                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1283                             && lock == &Giant.lock_object)
1284                                 printf(
1285                 "lock order reversal: (Giant after non-sleepable)\n");
1286                         else
1287                                 printf("lock order reversal:\n");
1288
1289                         /*
1290                          * Try to locate an earlier lock with
1291                          * witness w in our list.
1292                          */
1293                         do {
1294                                 lock2 = &lle->ll_children[i];
1295                                 MPASS(lock2->li_lock != NULL);
1296                                 if (lock2->li_lock->lo_witness == w)
1297                                         break;
1298                                 if (i == 0 && lle->ll_next != NULL) {
1299                                         lle = lle->ll_next;
1300                                         i = lle->ll_count - 1;
1301                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1302                                 } else
1303                                         i--;
1304                         } while (i >= 0);
1305                         if (i < 0) {
1306                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1307                                     lock1->li_lock, lock1->li_lock->lo_name,
1308                                     w1->w_name, lock1->li_file, lock1->li_line);
1309                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1310                                     lock->lo_name, w->w_name, file, line);
1311                         } else {
1312                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1313                                     lock2->li_lock, lock2->li_lock->lo_name,
1314                                     lock2->li_lock->lo_witness->w_name,
1315                                     lock2->li_file, lock2->li_line);
1316                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
1317                                     lock1->li_lock, lock1->li_lock->lo_name,
1318                                     w1->w_name, lock1->li_file, lock1->li_line);
1319                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1320                                     lock->lo_name, w->w_name, file, line);
1321                         }
1322                         witness_debugger(1);
1323                         return;
1324                 }
1325         }
1326
1327         /*
1328          * If requested, build a new lock order.  However, don't build a new
1329          * relationship between a sleepable lock and Giant if it is in the
1330          * wrong direction.  The correct lock order is that sleepable locks
1331          * always come before Giant.
1332          */
1333         if (flags & LOP_NEWORDER &&
1334             !(plock->li_lock == &Giant.lock_object &&
1335             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1336                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1337                     w->w_name, plock->li_lock->lo_witness->w_name);
1338                 itismychild(plock->li_lock->lo_witness, w);
1339         }
1340 out:
1341         mtx_unlock_spin(&w_mtx);
1342 }
1343
1344 void
1345 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1346 {
1347         struct lock_list_entry **lock_list, *lle;
1348         struct lock_instance *instance;
1349         struct witness *w;
1350         struct thread *td;
1351
1352         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1353             panicstr != NULL)
1354                 return;
1355         w = lock->lo_witness;
1356         td = curthread;
1357         file = fixup_filename(file);
1358
1359         /* Determine lock list for this lock. */
1360         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1361                 lock_list = &td->td_sleeplocks;
1362         else
1363                 lock_list = PCPU_PTR(spinlocks);
1364
1365         /* Check to see if we are recursing on a lock we already own. */
1366         instance = find_instance(*lock_list, lock);
1367         if (instance != NULL) {
1368                 instance->li_flags++;
1369                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1370                     td->td_proc->p_pid, lock->lo_name,
1371                     instance->li_flags & LI_RECURSEMASK);
1372                 instance->li_file = file;
1373                 instance->li_line = line;
1374                 return;
1375         }
1376
1377         /* Update per-witness last file and line acquire. */
1378         w->w_file = file;
1379         w->w_line = line;
1380
1381         /* Find the next open lock instance in the list and fill it. */
1382         lle = *lock_list;
1383         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1384                 lle = witness_lock_list_get();
1385                 if (lle == NULL)
1386                         return;
1387                 lle->ll_next = *lock_list;
1388                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1389                     td->td_proc->p_pid, lle);
1390                 *lock_list = lle;
1391         }
1392         instance = &lle->ll_children[lle->ll_count++];
1393         instance->li_lock = lock;
1394         instance->li_line = line;
1395         instance->li_file = file;
1396         if ((flags & LOP_EXCLUSIVE) != 0)
1397                 instance->li_flags = LI_EXCLUSIVE;
1398         else
1399                 instance->li_flags = 0;
1400         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1401             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1402 }
1403
1404 void
1405 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1406 {
1407         struct lock_instance *instance;
1408         struct lock_class *class;
1409
1410         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1411         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1412                 return;
1413         class = LOCK_CLASS(lock);
1414         file = fixup_filename(file);
1415         if (witness_watch) {
1416                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1417                         panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1418                             class->lc_name, lock->lo_name, file, line);
1419                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1420                         panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1421                             class->lc_name, lock->lo_name, file, line);
1422         }
1423         instance = find_instance(curthread->td_sleeplocks, lock);
1424         if (instance == NULL)
1425                 panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1426                     class->lc_name, lock->lo_name, file, line);
1427         if (witness_watch) {
1428                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1429                         panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1430                             class->lc_name, lock->lo_name, file, line);
1431                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1432                         panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1433                             class->lc_name, lock->lo_name,
1434                             instance->li_flags & LI_RECURSEMASK, file, line);
1435         }
1436         instance->li_flags |= LI_EXCLUSIVE;
1437 }
1438
1439 void
1440 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1441     int line)
1442 {
1443         struct lock_instance *instance;
1444         struct lock_class *class;
1445
1446         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1447         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1448                 return;
1449         class = LOCK_CLASS(lock);
1450         file = fixup_filename(file);
1451         if (witness_watch) {
1452                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1453                 panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1454                             class->lc_name, lock->lo_name, file, line);
1455                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1456                         panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1457                             class->lc_name, lock->lo_name, file, line);
1458         }
1459         instance = find_instance(curthread->td_sleeplocks, lock);
1460         if (instance == NULL)
1461                 panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1462                     class->lc_name, lock->lo_name, file, line);
1463         if (witness_watch) {
1464                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1465                         panic("downgrade of shared lock (%s) %s @ %s:%d",
1466                             class->lc_name, lock->lo_name, file, line);
1467                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1468                         panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1469                             class->lc_name, lock->lo_name,
1470                             instance->li_flags & LI_RECURSEMASK, file, line);
1471         }
1472         instance->li_flags &= ~LI_EXCLUSIVE;
1473 }
1474
1475 void
1476 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1477 {
1478         struct lock_list_entry **lock_list, *lle;
1479         struct lock_instance *instance;
1480         struct lock_class *class;
1481         struct thread *td;
1482         register_t s;
1483         int i, j;
1484
1485         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1486                 return;
1487         td = curthread;
1488         class = LOCK_CLASS(lock);
1489         file = fixup_filename(file);
1490
1491         /* Find lock instance associated with this lock. */
1492         if (class->lc_flags & LC_SLEEPLOCK)
1493                 lock_list = &td->td_sleeplocks;
1494         else
1495                 lock_list = PCPU_PTR(spinlocks);
1496         lle = *lock_list;
1497         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1498                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1499                         instance = &(*lock_list)->ll_children[i];
1500                         if (instance->li_lock == lock)
1501                                 goto found;
1502                 }
1503
1504         /*
1505          * When disabling WITNESS through witness_watch we could end up in
1506          * having registered locks in the td_sleeplocks queue.
1507          * We have to make sure we flush these queues, so just search for
1508          * eventual register locks and remove them.
1509          */
1510         if (witness_watch > 0)
1511                 panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1512                     lock->lo_name, file, line);
1513         else
1514                 return;
1515 found:
1516
1517         /* First, check for shared/exclusive mismatches. */
1518         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1519             (flags & LOP_EXCLUSIVE) == 0) {
1520                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1521                     lock->lo_name, file, line);
1522                 printf("while exclusively locked from %s:%d\n",
1523                     instance->li_file, instance->li_line);
1524                 panic("excl->ushare");
1525         }
1526         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1527             (flags & LOP_EXCLUSIVE) != 0) {
1528                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1529                     lock->lo_name, file, line);
1530                 printf("while share locked from %s:%d\n", instance->li_file,
1531                     instance->li_line);
1532                 panic("share->uexcl");
1533         }
1534         /* If we are recursed, unrecurse. */
1535         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1536                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1537                     td->td_proc->p_pid, instance->li_lock->lo_name,
1538                     instance->li_flags);
1539                 instance->li_flags--;
1540                 return;
1541         }
1542         /* The lock is now being dropped, check for NORELEASE flag */
1543         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1544                 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1545                     lock->lo_name, file, line);
1546                 panic("lock marked norelease");
1547         }
1548
1549         /* Otherwise, remove this item from the list. */
1550         s = intr_disable();
1551         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1552             td->td_proc->p_pid, instance->li_lock->lo_name,
1553             (*lock_list)->ll_count - 1);
1554         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1555                 (*lock_list)->ll_children[j] =
1556                     (*lock_list)->ll_children[j + 1];
1557         (*lock_list)->ll_count--;
1558         intr_restore(s);
1559
1560         /*
1561          * In order to reduce contention on w_mtx, we want to keep always an
1562          * head object into lists so that frequent allocation from the 
1563          * free witness pool (and subsequent locking) is avoided.
1564          * In order to maintain the current code simple, when the head
1565          * object is totally unloaded it means also that we do not have
1566          * further objects in the list, so the list ownership needs to be
1567          * hand over to another object if the current head needs to be freed.
1568          */
1569         if ((*lock_list)->ll_count == 0) {
1570                 if (*lock_list == lle) {
1571                         if (lle->ll_next == NULL)
1572                                 return;
1573                 } else
1574                         lle = *lock_list;
1575                 *lock_list = lle->ll_next;
1576                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1577                     td->td_proc->p_pid, lle);
1578                 witness_lock_list_free(lle);
1579         }
1580 }
1581
1582 void
1583 witness_thread_exit(struct thread *td)
1584 {
1585         struct lock_list_entry *lle;
1586         int i, n;
1587
1588         lle = td->td_sleeplocks;
1589         if (lle == NULL || panicstr != NULL)
1590                 return;
1591         if (lle->ll_count != 0) {
1592                 for (n = 0; lle != NULL; lle = lle->ll_next)
1593                         for (i = lle->ll_count - 1; i >= 0; i--) {
1594                                 if (n == 0)
1595                 printf("Thread %p exiting with the following locks held:\n",
1596                                             td);
1597                                 n++;
1598                                 witness_list_lock(&lle->ll_children[i], printf);
1599                                 
1600                         }
1601                 panic("Thread %p cannot exit while holding sleeplocks\n", td);
1602         }
1603         witness_lock_list_free(lle);
1604 }
1605
1606 /*
1607  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1608  * exempt Giant and sleepable locks from the checks as well.  If any
1609  * non-exempt locks are held, then a supplied message is printed to the
1610  * console along with a list of the offending locks.  If indicated in the
1611  * flags then a failure results in a panic as well.
1612  */
1613 int
1614 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1615 {
1616         struct lock_list_entry *lock_list, *lle;
1617         struct lock_instance *lock1;
1618         struct thread *td;
1619         va_list ap;
1620         int i, n;
1621
1622         if (witness_cold || witness_watch < 1 || panicstr != NULL)
1623                 return (0);
1624         n = 0;
1625         td = curthread;
1626         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1627                 for (i = lle->ll_count - 1; i >= 0; i--) {
1628                         lock1 = &lle->ll_children[i];
1629                         if (lock1->li_lock == lock)
1630                                 continue;
1631                         if (flags & WARN_GIANTOK &&
1632                             lock1->li_lock == &Giant.lock_object)
1633                                 continue;
1634                         if (flags & WARN_SLEEPOK &&
1635                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1636                                 continue;
1637                         if (n == 0) {
1638                                 va_start(ap, fmt);
1639                                 vprintf(fmt, ap);
1640                                 va_end(ap);
1641                                 printf(" with the following");
1642                                 if (flags & WARN_SLEEPOK)
1643                                         printf(" non-sleepable");
1644                                 printf(" locks held:\n");
1645                         }
1646                         n++;
1647                         witness_list_lock(lock1, printf);
1648                 }
1649
1650         /*
1651          * Pin the thread in order to avoid problems with thread migration.
1652          * Once that all verifies are passed about spinlocks ownership,
1653          * the thread is in a safe path and it can be unpinned.
1654          */
1655         sched_pin();
1656         lock_list = PCPU_GET(spinlocks);
1657         if (lock_list != NULL && lock_list->ll_count != 0) {
1658                 sched_unpin();
1659
1660                 /*
1661                  * We should only have one spinlock and as long as
1662                  * the flags cannot match for this locks class,
1663                  * check if the first spinlock is the one curthread
1664                  * should hold.
1665                  */
1666                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1667                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1668                     lock1->li_lock == lock && n == 0)
1669                         return (0);
1670
1671                 va_start(ap, fmt);
1672                 vprintf(fmt, ap);
1673                 va_end(ap);
1674                 printf(" with the following");
1675                 if (flags & WARN_SLEEPOK)
1676                         printf(" non-sleepable");
1677                 printf(" locks held:\n");
1678                 n += witness_list_locks(&lock_list, printf);
1679         } else
1680                 sched_unpin();
1681         if (flags & WARN_PANIC && n)
1682                 panic("%s", __func__);
1683         else
1684                 witness_debugger(n);
1685         return (n);
1686 }
1687
1688 const char *
1689 witness_file(struct lock_object *lock)
1690 {
1691         struct witness *w;
1692
1693         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1694                 return ("?");
1695         w = lock->lo_witness;
1696         return (w->w_file);
1697 }
1698
1699 int
1700 witness_line(struct lock_object *lock)
1701 {
1702         struct witness *w;
1703
1704         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1705                 return (0);
1706         w = lock->lo_witness;
1707         return (w->w_line);
1708 }
1709
1710 static struct witness *
1711 enroll(const char *description, struct lock_class *lock_class)
1712 {
1713         struct witness *w;
1714         struct witness_list *typelist;
1715
1716         MPASS(description != NULL);
1717
1718         if (witness_watch == -1 || panicstr != NULL)
1719                 return (NULL);
1720         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1721                 if (witness_skipspin)
1722                         return (NULL);
1723                 else
1724                         typelist = &w_spin;
1725         } else if ((lock_class->lc_flags & LC_SLEEPLOCK))
1726                 typelist = &w_sleep;
1727         else
1728                 panic("lock class %s is not sleep or spin",
1729                     lock_class->lc_name);
1730
1731         mtx_lock_spin(&w_mtx);
1732         w = witness_hash_get(description);
1733         if (w)
1734                 goto found;
1735         if ((w = witness_get()) == NULL)
1736                 return (NULL);
1737         MPASS(strlen(description) < MAX_W_NAME);
1738         strcpy(w->w_name, description);
1739         w->w_class = lock_class;
1740         w->w_refcount = 1;
1741         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1742         if (lock_class->lc_flags & LC_SPINLOCK) {
1743                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1744                 w_spin_cnt++;
1745         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1746                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1747                 w_sleep_cnt++;
1748         }
1749
1750         /* Insert new witness into the hash */
1751         witness_hash_put(w);
1752         witness_increment_graph_generation();
1753         mtx_unlock_spin(&w_mtx);
1754         return (w);
1755 found:
1756         w->w_refcount++;
1757         mtx_unlock_spin(&w_mtx);
1758         if (lock_class != w->w_class)
1759                 panic(
1760                         "lock (%s) %s does not match earlier (%s) lock",
1761                         description, lock_class->lc_name,
1762                         w->w_class->lc_name);
1763         return (w);
1764 }
1765
1766 static void
1767 depart(struct witness *w)
1768 {
1769         struct witness_list *list;
1770
1771         MPASS(w->w_refcount == 0);
1772         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1773                 list = &w_sleep;
1774                 w_sleep_cnt--;
1775         } else {
1776                 list = &w_spin;
1777                 w_spin_cnt--;
1778         }
1779         /*
1780          * Set file to NULL as it may point into a loadable module.
1781          */
1782         w->w_file = NULL;
1783         w->w_line = 0;
1784         witness_increment_graph_generation();
1785 }
1786
1787
1788 static void
1789 adopt(struct witness *parent, struct witness *child)
1790 {
1791         int pi, ci, i, j;
1792
1793         if (witness_cold == 0)
1794                 mtx_assert(&w_mtx, MA_OWNED);
1795
1796         /* If the relationship is already known, there's no work to be done. */
1797         if (isitmychild(parent, child))
1798                 return;
1799
1800         /* When the structure of the graph changes, bump up the generation. */
1801         witness_increment_graph_generation();
1802
1803         /*
1804          * The hard part ... create the direct relationship, then propagate all
1805          * indirect relationships.
1806          */
1807         pi = parent->w_index;
1808         ci = child->w_index;
1809         WITNESS_INDEX_ASSERT(pi);
1810         WITNESS_INDEX_ASSERT(ci);
1811         MPASS(pi != ci);
1812         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1813         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1814
1815         /*
1816          * If parent was not already an ancestor of child,
1817          * then we increment the descendant and ancestor counters.
1818          */
1819         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1820                 parent->w_num_descendants++;
1821                 child->w_num_ancestors++;
1822         }
1823
1824         /* 
1825          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
1826          * an ancestor of 'pi' during this loop.
1827          */
1828         for (i = 1; i <= w_max_used_index; i++) {
1829                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
1830                     (i != pi))
1831                         continue;
1832
1833                 /* Find each descendant of 'i' and mark it as a descendant. */
1834                 for (j = 1; j <= w_max_used_index; j++) {
1835
1836                         /* 
1837                          * Skip children that are already marked as
1838                          * descendants of 'i'.
1839                          */
1840                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1841                                 continue;
1842
1843                         /*
1844                          * We are only interested in descendants of 'ci'. Note
1845                          * that 'ci' itself is counted as a descendant of 'ci'.
1846                          */
1847                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
1848                             (j != ci))
1849                                 continue;
1850                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1851                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1852                         w_data[i].w_num_descendants++;
1853                         w_data[j].w_num_ancestors++;
1854
1855                         /* 
1856                          * Make sure we aren't marking a node as both an
1857                          * ancestor and descendant. We should have caught 
1858                          * this as a lock order reversal earlier.
1859                          */
1860                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1861                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1862                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1863                                     "both ancestor and descendant\n",
1864                                     i, j, w_rmatrix[i][j]); 
1865                                 kdb_backtrace();
1866                                 printf("Witness disabled.\n");
1867                                 witness_watch = -1;
1868                         }
1869                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1870                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1871                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1872                                     "both ancestor and descendant\n",
1873                                     j, i, w_rmatrix[j][i]); 
1874                                 kdb_backtrace();
1875                                 printf("Witness disabled.\n");
1876                                 witness_watch = -1;
1877                         }
1878                 }
1879         }
1880 }
1881
1882 static void
1883 itismychild(struct witness *parent, struct witness *child)
1884 {
1885
1886         MPASS(child != NULL && parent != NULL);
1887         if (witness_cold == 0)
1888                 mtx_assert(&w_mtx, MA_OWNED);
1889
1890         if (!witness_lock_type_equal(parent, child)) {
1891                 if (witness_cold == 0)
1892                         mtx_unlock_spin(&w_mtx);
1893                 panic("%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1894                     "the same lock type", __func__, parent->w_name,
1895                     parent->w_class->lc_name, child->w_name,
1896                     child->w_class->lc_name);
1897         }
1898         adopt(parent, child);
1899 }
1900
1901 /*
1902  * Generic code for the isitmy*() functions. The rmask parameter is the
1903  * expected relationship of w1 to w2.
1904  */
1905 static int
1906 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1907 {
1908         unsigned char r1, r2;
1909         int i1, i2;
1910
1911         i1 = w1->w_index;
1912         i2 = w2->w_index;
1913         WITNESS_INDEX_ASSERT(i1);
1914         WITNESS_INDEX_ASSERT(i2);
1915         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1916         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1917
1918         /* The flags on one better be the inverse of the flags on the other */
1919         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1920                 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
1921                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
1922                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
1923                     "w_rmatrix[%d][%d] == %hhx\n",
1924                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
1925                     i2, i1, r2);
1926                 kdb_backtrace();
1927                 printf("Witness disabled.\n");
1928                 witness_watch = -1;
1929         }
1930         return (r1 & rmask);
1931 }
1932
1933 /*
1934  * Checks if @child is a direct child of @parent.
1935  */
1936 static int
1937 isitmychild(struct witness *parent, struct witness *child)
1938 {
1939
1940         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
1941 }
1942
1943 /*
1944  * Checks if @descendant is a direct or inderect descendant of @ancestor.
1945  */
1946 static int
1947 isitmydescendant(struct witness *ancestor, struct witness *descendant)
1948 {
1949
1950         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
1951             __func__));
1952 }
1953
1954 #ifdef BLESSING
1955 static int
1956 blessed(struct witness *w1, struct witness *w2)
1957 {
1958         int i;
1959         struct witness_blessed *b;
1960
1961         for (i = 0; i < blessed_count; i++) {
1962                 b = &blessed_list[i];
1963                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
1964                         if (strcmp(w2->w_name, b->b_lock2) == 0)
1965                                 return (1);
1966                         continue;
1967                 }
1968                 if (strcmp(w1->w_name, b->b_lock2) == 0)
1969                         if (strcmp(w2->w_name, b->b_lock1) == 0)
1970                                 return (1);
1971         }
1972         return (0);
1973 }
1974 #endif
1975
1976 static struct witness *
1977 witness_get(void)
1978 {
1979         struct witness *w;
1980         int index;
1981
1982         if (witness_cold == 0)
1983                 mtx_assert(&w_mtx, MA_OWNED);
1984
1985         if (witness_watch == -1) {
1986                 mtx_unlock_spin(&w_mtx);
1987                 return (NULL);
1988         }
1989         if (STAILQ_EMPTY(&w_free)) {
1990                 witness_watch = -1;
1991                 mtx_unlock_spin(&w_mtx);
1992                 printf("WITNESS: unable to allocate a new witness object\n");
1993                 return (NULL);
1994         }
1995         w = STAILQ_FIRST(&w_free);
1996         STAILQ_REMOVE_HEAD(&w_free, w_list);
1997         w_free_cnt--;
1998         index = w->w_index;
1999         MPASS(index > 0 && index == w_max_used_index+1 &&
2000             index < WITNESS_COUNT);
2001         bzero(w, sizeof(*w));
2002         w->w_index = index;
2003         if (index > w_max_used_index)
2004                 w_max_used_index = index;
2005         return (w);
2006 }
2007
2008 static void
2009 witness_free(struct witness *w)
2010 {
2011
2012         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2013         w_free_cnt++;
2014 }
2015
2016 static struct lock_list_entry *
2017 witness_lock_list_get(void)
2018 {
2019         struct lock_list_entry *lle;
2020
2021         if (witness_watch == -1)
2022                 return (NULL);
2023         mtx_lock_spin(&w_mtx);
2024         lle = w_lock_list_free;
2025         if (lle == NULL) {
2026                 witness_watch = -1;
2027                 mtx_unlock_spin(&w_mtx);
2028                 printf("%s: witness exhausted\n", __func__);
2029                 return (NULL);
2030         }
2031         w_lock_list_free = lle->ll_next;
2032         mtx_unlock_spin(&w_mtx);
2033         bzero(lle, sizeof(*lle));
2034         return (lle);
2035 }
2036                 
2037 static void
2038 witness_lock_list_free(struct lock_list_entry *lle)
2039 {
2040
2041         mtx_lock_spin(&w_mtx);
2042         lle->ll_next = w_lock_list_free;
2043         w_lock_list_free = lle;
2044         mtx_unlock_spin(&w_mtx);
2045 }
2046
2047 static struct lock_instance *
2048 find_instance(struct lock_list_entry *list, struct lock_object *lock)
2049 {
2050         struct lock_list_entry *lle;
2051         struct lock_instance *instance;
2052         int i;
2053
2054         for (lle = list; lle != NULL; lle = lle->ll_next)
2055                 for (i = lle->ll_count - 1; i >= 0; i--) {
2056                         instance = &lle->ll_children[i];
2057                         if (instance->li_lock == lock)
2058                                 return (instance);
2059                 }
2060         return (NULL);
2061 }
2062
2063 static void
2064 witness_list_lock(struct lock_instance *instance,
2065     int (*prnt)(const char *fmt, ...))
2066 {
2067         struct lock_object *lock;
2068
2069         lock = instance->li_lock;
2070         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2071             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2072         if (lock->lo_witness->w_name != lock->lo_name)
2073                 prnt(" (%s)", lock->lo_witness->w_name);
2074         prnt(" r = %d (%p) locked @ %s:%d\n",
2075             instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
2076             instance->li_line);
2077 }
2078
2079 #ifdef DDB
2080 static int
2081 witness_thread_has_locks(struct thread *td)
2082 {
2083
2084         if (td->td_sleeplocks == NULL)
2085                 return (0);
2086         return (td->td_sleeplocks->ll_count != 0);
2087 }
2088
2089 static int
2090 witness_proc_has_locks(struct proc *p)
2091 {
2092         struct thread *td;
2093
2094         FOREACH_THREAD_IN_PROC(p, td) {
2095                 if (witness_thread_has_locks(td))
2096                         return (1);
2097         }
2098         return (0);
2099 }
2100 #endif
2101
2102 int
2103 witness_list_locks(struct lock_list_entry **lock_list,
2104     int (*prnt)(const char *fmt, ...))
2105 {
2106         struct lock_list_entry *lle;
2107         int i, nheld;
2108
2109         nheld = 0;
2110         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2111                 for (i = lle->ll_count - 1; i >= 0; i--) {
2112                         witness_list_lock(&lle->ll_children[i], prnt);
2113                         nheld++;
2114                 }
2115         return (nheld);
2116 }
2117
2118 /*
2119  * This is a bit risky at best.  We call this function when we have timed
2120  * out acquiring a spin lock, and we assume that the other CPU is stuck
2121  * with this lock held.  So, we go groveling around in the other CPU's
2122  * per-cpu data to try to find the lock instance for this spin lock to
2123  * see when it was last acquired.
2124  */
2125 void
2126 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2127     int (*prnt)(const char *fmt, ...))
2128 {
2129         struct lock_instance *instance;
2130         struct pcpu *pc;
2131
2132         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2133                 return;
2134         pc = pcpu_find(owner->td_oncpu);
2135         instance = find_instance(pc->pc_spinlocks, lock);
2136         if (instance != NULL)
2137                 witness_list_lock(instance, prnt);
2138 }
2139
2140 void
2141 witness_save(struct lock_object *lock, const char **filep, int *linep)
2142 {
2143         struct lock_list_entry *lock_list;
2144         struct lock_instance *instance;
2145         struct lock_class *class;
2146
2147         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2148         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2149                 return;
2150         class = LOCK_CLASS(lock);
2151         if (class->lc_flags & LC_SLEEPLOCK)
2152                 lock_list = curthread->td_sleeplocks;
2153         else {
2154                 if (witness_skipspin)
2155                         return;
2156                 lock_list = PCPU_GET(spinlocks);
2157         }
2158         instance = find_instance(lock_list, lock);
2159         if (instance == NULL)
2160                 panic("%s: lock (%s) %s not locked", __func__,
2161                     class->lc_name, lock->lo_name);
2162         *filep = instance->li_file;
2163         *linep = instance->li_line;
2164 }
2165
2166 void
2167 witness_restore(struct lock_object *lock, const char *file, int line)
2168 {
2169         struct lock_list_entry *lock_list;
2170         struct lock_instance *instance;
2171         struct lock_class *class;
2172
2173         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2174         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2175                 return;
2176         class = LOCK_CLASS(lock);
2177         if (class->lc_flags & LC_SLEEPLOCK)
2178                 lock_list = curthread->td_sleeplocks;
2179         else {
2180                 if (witness_skipspin)
2181                         return;
2182                 lock_list = PCPU_GET(spinlocks);
2183         }
2184         instance = find_instance(lock_list, lock);
2185         if (instance == NULL)
2186                 panic("%s: lock (%s) %s not locked", __func__,
2187                     class->lc_name, lock->lo_name);
2188         lock->lo_witness->w_file = file;
2189         lock->lo_witness->w_line = line;
2190         instance->li_file = file;
2191         instance->li_line = line;
2192 }
2193
2194 void
2195 witness_assert(struct lock_object *lock, int flags, const char *file, int line)
2196 {
2197 #ifdef INVARIANT_SUPPORT
2198         struct lock_instance *instance;
2199         struct lock_class *class;
2200
2201         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2202                 return;
2203         class = LOCK_CLASS(lock);
2204         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2205                 instance = find_instance(curthread->td_sleeplocks, lock);
2206         else if ((class->lc_flags & LC_SPINLOCK) != 0)
2207                 instance = find_instance(PCPU_GET(spinlocks), lock);
2208         else {
2209                 panic("Lock (%s) %s is not sleep or spin!",
2210                     class->lc_name, lock->lo_name);
2211         }
2212         file = fixup_filename(file);
2213         switch (flags) {
2214         case LA_UNLOCKED:
2215                 if (instance != NULL)
2216                         panic("Lock (%s) %s locked @ %s:%d.",
2217                             class->lc_name, lock->lo_name, file, line);
2218                 break;
2219         case LA_LOCKED:
2220         case LA_LOCKED | LA_RECURSED:
2221         case LA_LOCKED | LA_NOTRECURSED:
2222         case LA_SLOCKED:
2223         case LA_SLOCKED | LA_RECURSED:
2224         case LA_SLOCKED | LA_NOTRECURSED:
2225         case LA_XLOCKED:
2226         case LA_XLOCKED | LA_RECURSED:
2227         case LA_XLOCKED | LA_NOTRECURSED:
2228                 if (instance == NULL) {
2229                         panic("Lock (%s) %s not locked @ %s:%d.",
2230                             class->lc_name, lock->lo_name, file, line);
2231                         break;
2232                 }
2233                 if ((flags & LA_XLOCKED) != 0 &&
2234                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2235                         panic("Lock (%s) %s not exclusively locked @ %s:%d.",
2236                             class->lc_name, lock->lo_name, file, line);
2237                 if ((flags & LA_SLOCKED) != 0 &&
2238                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2239                         panic("Lock (%s) %s exclusively locked @ %s:%d.",
2240                             class->lc_name, lock->lo_name, file, line);
2241                 if ((flags & LA_RECURSED) != 0 &&
2242                     (instance->li_flags & LI_RECURSEMASK) == 0)
2243                         panic("Lock (%s) %s not recursed @ %s:%d.",
2244                             class->lc_name, lock->lo_name, file, line);
2245                 if ((flags & LA_NOTRECURSED) != 0 &&
2246                     (instance->li_flags & LI_RECURSEMASK) != 0)
2247                         panic("Lock (%s) %s recursed @ %s:%d.",
2248                             class->lc_name, lock->lo_name, file, line);
2249                 break;
2250         default:
2251                 panic("Invalid lock assertion at %s:%d.", file, line);
2252
2253         }
2254 #endif  /* INVARIANT_SUPPORT */
2255 }
2256
2257 static void
2258 witness_setflag(struct lock_object *lock, int flag, int set)
2259 {
2260         struct lock_list_entry *lock_list;
2261         struct lock_instance *instance;
2262         struct lock_class *class;
2263
2264         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2265                 return;
2266         class = LOCK_CLASS(lock);
2267         if (class->lc_flags & LC_SLEEPLOCK)
2268                 lock_list = curthread->td_sleeplocks;
2269         else {
2270                 if (witness_skipspin)
2271                         return;
2272                 lock_list = PCPU_GET(spinlocks);
2273         }
2274         instance = find_instance(lock_list, lock);
2275         if (instance == NULL)
2276                 panic("%s: lock (%s) %s not locked", __func__,
2277                     class->lc_name, lock->lo_name);
2278
2279         if (set)
2280                 instance->li_flags |= flag;
2281         else
2282                 instance->li_flags &= ~flag;
2283 }
2284
2285 void
2286 witness_norelease(struct lock_object *lock)
2287 {
2288
2289         witness_setflag(lock, LI_NORELEASE, 1);
2290 }
2291
2292 void
2293 witness_releaseok(struct lock_object *lock)
2294 {
2295
2296         witness_setflag(lock, LI_NORELEASE, 0);
2297 }
2298
2299 #ifdef DDB
2300 static void
2301 witness_ddb_list(struct thread *td)
2302 {
2303
2304         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2305         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2306
2307         if (witness_watch < 1)
2308                 return;
2309
2310         witness_list_locks(&td->td_sleeplocks, db_printf);
2311
2312         /*
2313          * We only handle spinlocks if td == curthread.  This is somewhat broken
2314          * if td is currently executing on some other CPU and holds spin locks
2315          * as we won't display those locks.  If we had a MI way of getting
2316          * the per-cpu data for a given cpu then we could use
2317          * td->td_oncpu to get the list of spinlocks for this thread
2318          * and "fix" this.
2319          *
2320          * That still wouldn't really fix this unless we locked the scheduler
2321          * lock or stopped the other CPU to make sure it wasn't changing the
2322          * list out from under us.  It is probably best to just not try to
2323          * handle threads on other CPU's for now.
2324          */
2325         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2326                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2327 }
2328
2329 DB_SHOW_COMMAND(locks, db_witness_list)
2330 {
2331         struct thread *td;
2332
2333         if (have_addr)
2334                 td = db_lookup_thread(addr, TRUE);
2335         else
2336                 td = kdb_thread;
2337         witness_ddb_list(td);
2338 }
2339
2340 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2341 {
2342         struct thread *td;
2343         struct proc *p;
2344
2345         /*
2346          * It would be nice to list only threads and processes that actually
2347          * held sleep locks, but that information is currently not exported
2348          * by WITNESS.
2349          */
2350         FOREACH_PROC_IN_SYSTEM(p) {
2351                 if (!witness_proc_has_locks(p))
2352                         continue;
2353                 FOREACH_THREAD_IN_PROC(p, td) {
2354                         if (!witness_thread_has_locks(td))
2355                                 continue;
2356                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2357                             p->p_comm, td, td->td_tid);
2358                         witness_ddb_list(td);
2359                 }
2360         }
2361 }
2362 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2363
2364 DB_SHOW_COMMAND(witness, db_witness_display)
2365 {
2366
2367         witness_ddb_display(db_printf);
2368 }
2369 #endif
2370
2371 static int
2372 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2373 {
2374         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2375         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2376         struct sbuf *sb;
2377         u_int w_rmatrix1, w_rmatrix2;
2378         int error, generation, i, j;
2379
2380         tmp_data1 = NULL;
2381         tmp_data2 = NULL;
2382         tmp_w1 = NULL;
2383         tmp_w2 = NULL;
2384         if (witness_watch < 1) {
2385                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2386                 return (error);
2387         }
2388         if (witness_cold) {
2389                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2390                 return (error);
2391         }
2392         error = 0;
2393         sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2394         if (sb == NULL)
2395                 return (ENOMEM);
2396
2397         /* Allocate and init temporary storage space. */
2398         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2399         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2400         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2401             M_WAITOK | M_ZERO);
2402         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2403             M_WAITOK | M_ZERO);
2404         stack_zero(&tmp_data1->wlod_stack);
2405         stack_zero(&tmp_data2->wlod_stack);
2406
2407 restart:
2408         mtx_lock_spin(&w_mtx);
2409         generation = w_generation;
2410         mtx_unlock_spin(&w_mtx);
2411         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2412             w_lohash.wloh_count);
2413         for (i = 1; i < w_max_used_index; i++) {
2414                 mtx_lock_spin(&w_mtx);
2415                 if (generation != w_generation) {
2416                         mtx_unlock_spin(&w_mtx);
2417
2418                         /* The graph has changed, try again. */
2419                         req->oldidx = 0;
2420                         sbuf_clear(sb);
2421                         goto restart;
2422                 }
2423
2424                 w1 = &w_data[i];
2425                 if (w1->w_reversed == 0) {
2426                         mtx_unlock_spin(&w_mtx);
2427                         continue;
2428                 }
2429
2430                 /* Copy w1 locally so we can release the spin lock. */
2431                 *tmp_w1 = *w1;
2432                 mtx_unlock_spin(&w_mtx);
2433
2434                 if (tmp_w1->w_reversed == 0)
2435                         continue;
2436                 for (j = 1; j < w_max_used_index; j++) {
2437                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2438                                 continue;
2439
2440                         mtx_lock_spin(&w_mtx);
2441                         if (generation != w_generation) {
2442                                 mtx_unlock_spin(&w_mtx);
2443
2444                                 /* The graph has changed, try again. */
2445                                 req->oldidx = 0;
2446                                 sbuf_clear(sb);
2447                                 goto restart;
2448                         }
2449
2450                         w2 = &w_data[j];
2451                         data1 = witness_lock_order_get(w1, w2);
2452                         data2 = witness_lock_order_get(w2, w1);
2453
2454                         /*
2455                          * Copy information locally so we can release the
2456                          * spin lock.
2457                          */
2458                         *tmp_w2 = *w2;
2459                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2460                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2461
2462                         if (data1) {
2463                                 stack_zero(&tmp_data1->wlod_stack);
2464                                 stack_copy(&data1->wlod_stack,
2465                                     &tmp_data1->wlod_stack);
2466                         }
2467                         if (data2 && data2 != data1) {
2468                                 stack_zero(&tmp_data2->wlod_stack);
2469                                 stack_copy(&data2->wlod_stack,
2470                                     &tmp_data2->wlod_stack);
2471                         }
2472                         mtx_unlock_spin(&w_mtx);
2473
2474                         sbuf_printf(sb,
2475             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2476                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2477                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2478 #if 0
2479                         sbuf_printf(sb,
2480                         "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2481                             tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2482                             tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2483 #endif
2484                         if (data1) {
2485                                 sbuf_printf(sb,
2486                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2487                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2488                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2489                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2490                                 sbuf_printf(sb, "\n");
2491                         }
2492                         if (data2 && data2 != data1) {
2493                                 sbuf_printf(sb,
2494                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2495                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2496                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2497                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2498                                 sbuf_printf(sb, "\n");
2499                         }
2500                 }
2501         }
2502         mtx_lock_spin(&w_mtx);
2503         if (generation != w_generation) {
2504                 mtx_unlock_spin(&w_mtx);
2505
2506                 /*
2507                  * The graph changed while we were printing stack data,
2508                  * try again.
2509                  */
2510                 req->oldidx = 0;
2511                 sbuf_clear(sb);
2512                 goto restart;
2513         }
2514         mtx_unlock_spin(&w_mtx);
2515
2516         /* Free temporary storage space. */
2517         free(tmp_data1, M_TEMP);
2518         free(tmp_data2, M_TEMP);
2519         free(tmp_w1, M_TEMP);
2520         free(tmp_w2, M_TEMP);
2521
2522         sbuf_finish(sb);
2523         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2524         sbuf_delete(sb);
2525
2526         return (error);
2527 }
2528
2529 static int
2530 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2531 {
2532         struct witness *w;
2533         struct sbuf *sb;
2534         int error;
2535
2536         if (witness_watch < 1) {
2537                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2538                 return (error);
2539         }
2540         if (witness_cold) {
2541                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2542                 return (error);
2543         }
2544         error = 0;
2545         sb = sbuf_new(NULL, NULL, FULLGRAPH_SBUF_SIZE, SBUF_FIXEDLEN);
2546         if (sb == NULL)
2547                 return (ENOMEM);
2548         sbuf_printf(sb, "\n");
2549
2550         mtx_lock_spin(&w_mtx);
2551         STAILQ_FOREACH(w, &w_all, w_list)
2552                 w->w_displayed = 0;
2553         STAILQ_FOREACH(w, &w_all, w_list)
2554                 witness_add_fullgraph(sb, w);
2555         mtx_unlock_spin(&w_mtx);
2556
2557         /*
2558          * While using SBUF_FIXEDLEN, check if the sbuf overflowed.
2559          */
2560         if (sbuf_overflowed(sb)) {
2561                 sbuf_delete(sb);
2562                 panic("%s: sbuf overflowed, bump FULLGRAPH_SBUF_SIZE value\n",
2563                     __func__);
2564         }
2565
2566         /*
2567          * Close the sbuf and return to userland.
2568          */
2569         sbuf_finish(sb);
2570         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2571         sbuf_delete(sb);
2572
2573         return (error);
2574 }
2575
2576 static int
2577 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2578 {
2579         int error, value;
2580
2581         value = witness_watch;
2582         error = sysctl_handle_int(oidp, &value, 0, req);
2583         if (error != 0 || req->newptr == NULL)
2584                 return (error);
2585         if (value > 1 || value < -1 ||
2586             (witness_watch == -1 && value != witness_watch))
2587                 return (EINVAL);
2588         witness_watch = value;
2589         return (0);
2590 }
2591
2592 static void
2593 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2594 {
2595         int i;
2596
2597         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2598                 return;
2599         w->w_displayed = 1;
2600
2601         WITNESS_INDEX_ASSERT(w->w_index);
2602         for (i = 1; i <= w_max_used_index; i++) {
2603                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2604                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2605                             w_data[i].w_name);
2606                         witness_add_fullgraph(sb, &w_data[i]);
2607                 }
2608         }
2609 }
2610
2611 /*
2612  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2613  * interprets the key as a string and reads until the null
2614  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2615  * hash value computed from the key.
2616  */
2617 static uint32_t
2618 witness_hash_djb2(const uint8_t *key, uint32_t size)
2619 {
2620         unsigned int hash = 5381;
2621         int i;
2622
2623         /* hash = hash * 33 + key[i] */
2624         if (size)
2625                 for (i = 0; i < size; i++)
2626                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2627         else
2628                 for (i = 0; key[i] != 0; i++)
2629                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2630
2631         return (hash);
2632 }
2633
2634
2635 /*
2636  * Initializes the two witness hash tables. Called exactly once from
2637  * witness_initialize().
2638  */
2639 static void
2640 witness_init_hash_tables(void)
2641 {
2642         int i;
2643
2644         MPASS(witness_cold);
2645
2646         /* Initialize the hash tables. */
2647         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2648                 w_hash.wh_array[i] = NULL;
2649
2650         w_hash.wh_size = WITNESS_HASH_SIZE;
2651         w_hash.wh_count = 0;
2652
2653         /* Initialize the lock order data hash. */
2654         w_lofree = NULL;
2655         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2656                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2657                 w_lodata[i].wlod_next = w_lofree;
2658                 w_lofree = &w_lodata[i];
2659         }
2660         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2661         w_lohash.wloh_count = 0;
2662         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2663                 w_lohash.wloh_array[i] = NULL;
2664 }
2665
2666 static struct witness *
2667 witness_hash_get(const char *key)
2668 {
2669         struct witness *w;
2670         uint32_t hash;
2671         
2672         MPASS(key != NULL);
2673         if (witness_cold == 0)
2674                 mtx_assert(&w_mtx, MA_OWNED);
2675         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2676         w = w_hash.wh_array[hash];
2677         while (w != NULL) {
2678                 if (strcmp(w->w_name, key) == 0)
2679                         goto out;
2680                 w = w->w_hash_next;
2681         }
2682
2683 out:
2684         return (w);
2685 }
2686
2687 static void
2688 witness_hash_put(struct witness *w)
2689 {
2690         uint32_t hash;
2691
2692         MPASS(w != NULL);
2693         MPASS(w->w_name != NULL);
2694         if (witness_cold == 0)
2695                 mtx_assert(&w_mtx, MA_OWNED);
2696         KASSERT(witness_hash_get(w->w_name) == NULL,
2697             ("%s: trying to add a hash entry that already exists!", __func__));
2698         KASSERT(w->w_hash_next == NULL,
2699             ("%s: w->w_hash_next != NULL", __func__));
2700
2701         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2702         w->w_hash_next = w_hash.wh_array[hash];
2703         w_hash.wh_array[hash] = w;
2704         w_hash.wh_count++;
2705 }
2706
2707
2708 static struct witness_lock_order_data *
2709 witness_lock_order_get(struct witness *parent, struct witness *child)
2710 {
2711         struct witness_lock_order_data *data = NULL;
2712         struct witness_lock_order_key key;
2713         unsigned int hash;
2714
2715         MPASS(parent != NULL && child != NULL);
2716         key.from = parent->w_index;
2717         key.to = child->w_index;
2718         WITNESS_INDEX_ASSERT(key.from);
2719         WITNESS_INDEX_ASSERT(key.to);
2720         if ((w_rmatrix[parent->w_index][child->w_index]
2721             & WITNESS_LOCK_ORDER_KNOWN) == 0)
2722                 goto out;
2723
2724         hash = witness_hash_djb2((const char*)&key,
2725             sizeof(key)) % w_lohash.wloh_size;
2726         data = w_lohash.wloh_array[hash];
2727         while (data != NULL) {
2728                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
2729                         break;
2730                 data = data->wlod_next;
2731         }
2732
2733 out:
2734         return (data);
2735 }
2736
2737 /*
2738  * Verify that parent and child have a known relationship, are not the same,
2739  * and child is actually a child of parent.  This is done without w_mtx
2740  * to avoid contention in the common case.
2741  */
2742 static int
2743 witness_lock_order_check(struct witness *parent, struct witness *child)
2744 {
2745
2746         if (parent != child &&
2747             w_rmatrix[parent->w_index][child->w_index]
2748             & WITNESS_LOCK_ORDER_KNOWN &&
2749             isitmychild(parent, child))
2750                 return (1);
2751
2752         return (0);
2753 }
2754
2755 static int
2756 witness_lock_order_add(struct witness *parent, struct witness *child)
2757 {
2758         struct witness_lock_order_data *data = NULL;
2759         struct witness_lock_order_key key;
2760         unsigned int hash;
2761         
2762         MPASS(parent != NULL && child != NULL);
2763         key.from = parent->w_index;
2764         key.to = child->w_index;
2765         WITNESS_INDEX_ASSERT(key.from);
2766         WITNESS_INDEX_ASSERT(key.to);
2767         if (w_rmatrix[parent->w_index][child->w_index]
2768             & WITNESS_LOCK_ORDER_KNOWN)
2769                 return (1);
2770
2771         hash = witness_hash_djb2((const char*)&key,
2772             sizeof(key)) % w_lohash.wloh_size;
2773         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2774         data = w_lofree;
2775         if (data == NULL)
2776                 return (0);
2777         w_lofree = data->wlod_next;
2778         data->wlod_next = w_lohash.wloh_array[hash];
2779         data->wlod_key = key;
2780         w_lohash.wloh_array[hash] = data;
2781         w_lohash.wloh_count++;
2782         stack_zero(&data->wlod_stack);
2783         stack_save(&data->wlod_stack);
2784         return (1);
2785 }
2786
2787 /* Call this whenver the structure of the witness graph changes. */
2788 static void
2789 witness_increment_graph_generation(void)
2790 {
2791
2792         if (witness_cold == 0)
2793                 mtx_assert(&w_mtx, MA_OWNED);
2794         w_generation++;
2795 }
2796
2797 #ifdef KDB
2798 static void
2799 _witness_debugger(int cond, const char *msg)
2800 {
2801
2802         if (witness_trace && cond)
2803                 kdb_backtrace();
2804         if (witness_kdb && cond)
2805                 kdb_enter(KDB_WHY_WITNESS, msg);
2806 }
2807 #endif