]> CyberLeo.Net >> Repos - FreeBSD/releng/8.1.git/blob - usr.sbin/makefs/ffs/mkfs.c
Copy stable/8 to releng/8.1 in preparation for 8.1-RC1.
[FreeBSD/releng/8.1.git] / usr.sbin / makefs / ffs / mkfs.c
1 /*      $NetBSD: mkfs.c,v 1.20 2004/06/24 22:30:13 lukem Exp $  */
2
3 /*
4  * Copyright (c) 2002 Networks Associates Technology, Inc.
5  * All rights reserved.
6  *
7  * This software was developed for the FreeBSD Project by Marshall
8  * Kirk McKusick and Network Associates Laboratories, the Security
9  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11  * research program
12  *
13  * Copyright (c) 1980, 1989, 1993
14  *      The Regents of the University of California.  All rights reserved.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include <sys/param.h>
45 #include <sys/time.h>
46 #include <sys/resource.h>
47
48 #include <stdio.h>
49 #include <stdlib.h>
50 #include <string.h>
51 #include <unistd.h>
52 #include <errno.h>
53
54 #include "makefs.h"
55
56 #include <ufs/ufs/dinode.h>
57 #include <ufs/ffs/fs.h>
58
59 #include "ffs/ufs_bswap.h"
60 #include "ffs/ufs_inode.h"
61 #include "ffs/ffs_extern.h"
62 #include "ffs/newfs_extern.h"
63
64 static void initcg(int, time_t, const fsinfo_t *);
65 static int ilog2(int);
66
67 static int count_digits(int);
68
69 /*
70  * make file system for cylinder-group style file systems
71  */
72 #define UMASK           0755
73 #define POWEROF2(num)   (((num) & ((num) - 1)) == 0)
74
75 union {
76         struct fs fs;
77         char pad[SBLOCKSIZE];
78 } fsun;
79 #define sblock  fsun.fs
80 struct  csum *fscs;
81
82 union {
83         struct cg cg;
84         char pad[FFS_MAXBSIZE];
85 } cgun;
86 #define acg     cgun.cg
87
88 char *iobuf;
89 int iobufsize;
90
91 char writebuf[FFS_MAXBSIZE];
92
93 static int     Oflag;      /* format as an 4.3BSD file system */
94 static int64_t fssize;     /* file system size */
95 static int     sectorsize;         /* bytes/sector */
96 static int     fsize;      /* fragment size */
97 static int     bsize;      /* block size */
98 static int     maxbsize;   /* maximum clustering */
99 static int     maxblkspercg;
100 static int     minfree;    /* free space threshold */
101 static int     opt;                /* optimization preference (space or time) */
102 static int     density;    /* number of bytes per inode */
103 static int     maxcontig;          /* max contiguous blocks to allocate */
104 static int     maxbpg;     /* maximum blocks per file in a cyl group */
105 static int     sbsize;     /* superblock size */
106 static int     avgfilesize;        /* expected average file size */
107 static int     avgfpdir;           /* expected number of files per directory */
108
109 struct fs *
110 ffs_mkfs(const char *fsys, const fsinfo_t *fsopts)
111 {
112         int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
113         int32_t cylno, i, csfrags;
114         long long sizepb;
115         void *space;
116         int size, blks;
117         int nprintcols, printcolwidth;
118
119         Oflag =         fsopts->version;
120         fssize =        fsopts->size / fsopts->sectorsize;
121         sectorsize =    fsopts->sectorsize;
122         fsize =         fsopts->fsize;
123         bsize =         fsopts->bsize;
124         maxbsize =      fsopts->maxbsize;
125         maxblkspercg =  fsopts->maxblkspercg;
126         minfree =       fsopts->minfree;
127         opt =           fsopts->optimization;
128         density =       fsopts->density;
129         maxcontig =     fsopts->maxcontig;
130         maxbpg =        fsopts->maxbpg;
131         avgfilesize =   fsopts->avgfilesize;
132         avgfpdir =      fsopts->avgfpdir;
133         sbsize =        SBLOCKSIZE;
134         
135         if (Oflag == 0) {
136                 sblock.fs_old_inodefmt = FS_42INODEFMT;
137                 sblock.fs_maxsymlinklen = 0;
138                 sblock.fs_old_flags = 0;
139         } else {
140                 sblock.fs_old_inodefmt = FS_44INODEFMT;
141                 sblock.fs_maxsymlinklen = (Oflag == 1 ? MAXSYMLINKLEN_UFS1 :
142                     MAXSYMLINKLEN_UFS2);
143                 sblock.fs_old_flags = FS_FLAGS_UPDATED;
144                 sblock.fs_flags = 0;
145         }
146         /*
147          * Validate the given file system size.
148          * Verify that its last block can actually be accessed.
149          * Convert to file system fragment sized units.
150          */
151         if (fssize <= 0) {
152                 printf("preposterous size %lld\n", (long long)fssize);
153                 exit(13);
154         }
155         ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts);
156
157         /*
158          * collect and verify the filesystem density info
159          */
160         sblock.fs_avgfilesize = avgfilesize;
161         sblock.fs_avgfpdir = avgfpdir;
162         if (sblock.fs_avgfilesize <= 0)
163                 printf("illegal expected average file size %d\n",
164                     sblock.fs_avgfilesize), exit(14);
165         if (sblock.fs_avgfpdir <= 0)
166                 printf("illegal expected number of files per directory %d\n",
167                     sblock.fs_avgfpdir), exit(15);
168         /*
169          * collect and verify the block and fragment sizes
170          */
171         sblock.fs_bsize = bsize;
172         sblock.fs_fsize = fsize;
173         if (!POWEROF2(sblock.fs_bsize)) {
174                 printf("block size must be a power of 2, not %d\n",
175                     sblock.fs_bsize);
176                 exit(16);
177         }
178         if (!POWEROF2(sblock.fs_fsize)) {
179                 printf("fragment size must be a power of 2, not %d\n",
180                     sblock.fs_fsize);
181                 exit(17);
182         }
183         if (sblock.fs_fsize < sectorsize) {
184                 printf("fragment size %d is too small, minimum is %d\n",
185                     sblock.fs_fsize, sectorsize);
186                 exit(18);
187         }
188         if (sblock.fs_bsize < MINBSIZE) {
189                 printf("block size %d is too small, minimum is %d\n",
190                     sblock.fs_bsize, MINBSIZE);
191                 exit(19);
192         }
193         if (sblock.fs_bsize > FFS_MAXBSIZE) {
194                 printf("block size %d is too large, maximum is %d\n",
195                     sblock.fs_bsize, FFS_MAXBSIZE);
196                 exit(19);
197         }
198         if (sblock.fs_bsize < sblock.fs_fsize) {
199                 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
200                     sblock.fs_bsize, sblock.fs_fsize);
201                 exit(20);
202         }
203
204         if (maxbsize < bsize || !POWEROF2(maxbsize)) {
205                 sblock.fs_maxbsize = sblock.fs_bsize;
206                 printf("Extent size set to %d\n", sblock.fs_maxbsize);
207         } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
208                 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
209                 printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
210         } else {
211                 sblock.fs_maxbsize = maxbsize;
212         }
213         sblock.fs_maxcontig = maxcontig;
214         if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
215                 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
216                 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
217         }
218
219         if (sblock.fs_maxcontig > 1)
220                 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
221
222         sblock.fs_bmask = ~(sblock.fs_bsize - 1);
223         sblock.fs_fmask = ~(sblock.fs_fsize - 1);
224         sblock.fs_qbmask = ~sblock.fs_bmask;
225         sblock.fs_qfmask = ~sblock.fs_fmask;
226         for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
227                 sblock.fs_bshift++;
228         for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
229                 sblock.fs_fshift++;
230         sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
231         for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
232                 sblock.fs_fragshift++;
233         if (sblock.fs_frag > MAXFRAG) {
234                 printf("fragment size %d is too small, "
235                         "minimum with block size %d is %d\n",
236                     sblock.fs_fsize, sblock.fs_bsize,
237                     sblock.fs_bsize / MAXFRAG);
238                 exit(21);
239         }
240         sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
241         sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
242
243         if (Oflag <= 1) {
244                 sblock.fs_magic = FS_UFS1_MAGIC;
245                 sblock.fs_sblockloc = SBLOCK_UFS1;
246                 sblock.fs_nindir = sblock.fs_bsize / sizeof(int32_t);
247                 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
248                 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
249                     sizeof (int32_t));
250                 sblock.fs_old_inodefmt = FS_44INODEFMT;
251                 sblock.fs_old_cgoffset = 0;
252                 sblock.fs_old_cgmask = 0xffffffff;
253                 sblock.fs_old_size = sblock.fs_size;
254                 sblock.fs_old_rotdelay = 0;
255                 sblock.fs_old_rps = 60;
256                 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
257                 sblock.fs_old_cpg = 1;
258                 sblock.fs_old_interleave = 1;
259                 sblock.fs_old_trackskew = 0;
260                 sblock.fs_old_cpc = 0;
261                 sblock.fs_old_postblformat = 1;
262                 sblock.fs_old_nrpos = 1;
263         } else {
264                 sblock.fs_magic = FS_UFS2_MAGIC;
265 #if 0 /* XXX makefs is used for small filesystems. */
266                 sblock.fs_sblockloc = SBLOCK_UFS2;
267 #else
268                 sblock.fs_sblockloc = SBLOCK_UFS1;
269 #endif
270                 sblock.fs_nindir = sblock.fs_bsize / sizeof(int64_t);
271                 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
272                 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
273                     sizeof (int64_t));
274         }
275
276         sblock.fs_sblkno =
277             roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
278                 sblock.fs_frag);
279         sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
280             roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag));
281         sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
282         sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
283         for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
284                 sizepb *= NINDIR(&sblock);
285                 sblock.fs_maxfilesize += sizepb;
286         }
287
288         /*
289          * Calculate the number of blocks to put into each cylinder group.
290          *
291          * This algorithm selects the number of blocks per cylinder
292          * group. The first goal is to have at least enough data blocks
293          * in each cylinder group to meet the density requirement. Once
294          * this goal is achieved we try to expand to have at least
295          * 1 cylinder group. Once this goal is achieved, we pack as
296          * many blocks into each cylinder group map as will fit.
297          *
298          * We start by calculating the smallest number of blocks that we
299          * can put into each cylinder group. If this is too big, we reduce
300          * the density until it fits.
301          */
302         origdensity = density;
303         for (;;) {
304                 fragsperinode = MAX(numfrags(&sblock, density), 1);
305                 minfpg = fragsperinode * INOPB(&sblock);
306                 if (minfpg > sblock.fs_size)
307                         minfpg = sblock.fs_size;
308                 sblock.fs_ipg = INOPB(&sblock);
309                 sblock.fs_fpg = roundup(sblock.fs_iblkno +
310                     sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
311                 if (sblock.fs_fpg < minfpg)
312                         sblock.fs_fpg = minfpg;
313                 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
314                     INOPB(&sblock));
315                 sblock.fs_fpg = roundup(sblock.fs_iblkno +
316                     sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
317                 if (sblock.fs_fpg < minfpg)
318                         sblock.fs_fpg = minfpg;
319                 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
320                     INOPB(&sblock));
321                 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
322                         break;
323                 density -= sblock.fs_fsize;
324         }
325         if (density != origdensity)
326                 printf("density reduced from %d to %d\n", origdensity, density);
327
328         if (maxblkspercg <= 0 || maxblkspercg >= fssize)
329                 maxblkspercg = fssize - 1;
330         /*
331          * Start packing more blocks into the cylinder group until
332          * it cannot grow any larger, the number of cylinder groups
333          * drops below 1, or we reach the size requested.
334          */
335         for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
336                 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
337                     INOPB(&sblock));
338                 if (sblock.fs_size / sblock.fs_fpg < 1)
339                         break;
340                 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
341                         continue;
342                 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
343                         break;
344                 sblock.fs_fpg -= sblock.fs_frag;
345                 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
346                     INOPB(&sblock));
347                 break;
348         }
349         /*
350          * Check to be sure that the last cylinder group has enough blocks
351          * to be viable. If it is too small, reduce the number of blocks
352          * per cylinder group which will have the effect of moving more
353          * blocks into the last cylinder group.
354          */
355         optimalfpg = sblock.fs_fpg;
356         for (;;) {
357                 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
358                 lastminfpg = roundup(sblock.fs_iblkno +
359                     sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
360                 if (sblock.fs_size < lastminfpg) {
361                         printf("Filesystem size %lld < minimum size of %d\n",
362                             (long long)sblock.fs_size, lastminfpg);
363                         exit(28);
364                 }
365                 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
366                     sblock.fs_size % sblock.fs_fpg == 0)
367                         break;
368                 sblock.fs_fpg -= sblock.fs_frag;
369                 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
370                     INOPB(&sblock));
371         }
372         if (optimalfpg != sblock.fs_fpg)
373                 printf("Reduced frags per cylinder group from %d to %d %s\n",
374                    optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
375         sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
376         sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
377         if (Oflag <= 1) {
378                 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
379                 sblock.fs_old_nsect = sblock.fs_old_spc;
380                 sblock.fs_old_npsect = sblock.fs_old_spc;
381                 sblock.fs_old_ncyl = sblock.fs_ncg;
382         }
383
384         /*
385          * fill in remaining fields of the super block
386          */
387         sblock.fs_csaddr = cgdmin(&sblock, 0);
388         sblock.fs_cssize =
389             fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
390
391         /*
392          * Setup memory for temporary in-core cylgroup summaries.
393          * Cribbed from ffs_mountfs().
394          */
395         size = sblock.fs_cssize;
396         blks = howmany(size, sblock.fs_fsize);
397         if (sblock.fs_contigsumsize > 0)
398                 size += sblock.fs_ncg * sizeof(int32_t);
399         if ((space = (char *)calloc(1, size)) == NULL)
400                 err(1, "memory allocation error for cg summaries");
401         sblock.fs_csp = space;
402         space = (char *)space + sblock.fs_cssize;
403         if (sblock.fs_contigsumsize > 0) {
404                 int32_t *lp;
405
406                 sblock.fs_maxcluster = lp = space;
407                 for (i = 0; i < sblock.fs_ncg; i++)
408                 *lp++ = sblock.fs_contigsumsize;
409         }
410
411         sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
412         if (sblock.fs_sbsize > SBLOCKSIZE)
413                 sblock.fs_sbsize = SBLOCKSIZE;
414         sblock.fs_minfree = minfree;
415         sblock.fs_maxcontig = maxcontig;
416         sblock.fs_maxbpg = maxbpg;
417         sblock.fs_optim = opt;
418         sblock.fs_cgrotor = 0;
419         sblock.fs_pendingblocks = 0;
420         sblock.fs_pendinginodes = 0;
421         sblock.fs_cstotal.cs_ndir = 0;
422         sblock.fs_cstotal.cs_nbfree = 0;
423         sblock.fs_cstotal.cs_nifree = 0;
424         sblock.fs_cstotal.cs_nffree = 0;
425         sblock.fs_fmod = 0;
426         sblock.fs_ronly = 0;
427         sblock.fs_state = 0;
428         sblock.fs_clean = FS_ISCLEAN;
429         sblock.fs_ronly = 0;
430         sblock.fs_id[0] = start_time.tv_sec;
431         sblock.fs_id[1] = random();
432         sblock.fs_fsmnt[0] = '\0';
433         csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
434         sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
435             sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
436         sblock.fs_cstotal.cs_nbfree =
437             fragstoblks(&sblock, sblock.fs_dsize) -
438             howmany(csfrags, sblock.fs_frag);
439         sblock.fs_cstotal.cs_nffree =
440             fragnum(&sblock, sblock.fs_size) +
441             (fragnum(&sblock, csfrags) > 0 ?
442             sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
443         sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
444         sblock.fs_cstotal.cs_ndir = 0;
445         sblock.fs_dsize -= csfrags;
446         sblock.fs_time = start_time.tv_sec;
447         if (Oflag <= 1) {
448                 sblock.fs_old_time = start_time.tv_sec;
449                 sblock.fs_old_dsize = sblock.fs_dsize;
450                 sblock.fs_old_csaddr = sblock.fs_csaddr;
451                 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
452                 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
453                 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
454                 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
455         }
456         /*
457          * Dump out summary information about file system.
458          */
459 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
460         printf("%s: %.1fMB (%lld sectors) block size %d, "
461                "fragment size %d\n",
462             fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
463             (long long)fsbtodb(&sblock, sblock.fs_size),
464             sblock.fs_bsize, sblock.fs_fsize);
465         printf("\tusing %d cylinder groups of %.2fMB, %d blks, "
466                "%d inodes.\n",
467             sblock.fs_ncg,
468             (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
469             sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
470 #undef B2MBFACTOR
471         /*
472          * Now determine how wide each column will be, and calculate how
473          * many columns will fit in a 76 char line. 76 is the width of the
474          * subwindows in sysinst.
475          */
476         printcolwidth = count_digits(
477                         fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
478         nprintcols = 76 / (printcolwidth + 2);
479
480         /*
481          * allocate space for superblock, cylinder group map, and
482          * two sets of inode blocks.
483          */
484         if (sblock.fs_bsize < SBLOCKSIZE)
485                 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
486         else
487                 iobufsize = 4 * sblock.fs_bsize;
488         if ((iobuf = malloc(iobufsize)) == 0) {
489                 printf("Cannot allocate I/O buffer\n");
490                 exit(38);
491         }
492         memset(iobuf, 0, iobufsize);
493         /*
494          * Make a copy of the superblock into the buffer that we will be
495          * writing out in each cylinder group.
496          */
497         memcpy(writebuf, &sblock, sbsize);
498         if (fsopts->needswap)
499                 ffs_sb_swap(&sblock, (struct fs*)writebuf);
500         memcpy(iobuf, writebuf, SBLOCKSIZE);
501
502         printf("super-block backups (for fsck -b #) at:");
503         for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
504                 initcg(cylno, start_time.tv_sec, fsopts);
505                 if (cylno % nprintcols == 0)
506                         printf("\n");
507                 printf(" %*lld,", printcolwidth,
508                         (long long)fsbtodb(&sblock, cgsblock(&sblock, cylno)));
509                 fflush(stdout);
510         }
511         printf("\n");
512
513         /*
514          * Now construct the initial file system,
515          * then write out the super-block.
516          */
517         sblock.fs_time = start_time.tv_sec;
518         if (Oflag <= 1) {
519                 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
520                 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
521                 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
522                 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
523         }
524         if (fsopts->needswap)
525                 sblock.fs_flags |= FS_SWAPPED;
526         ffs_write_superblock(&sblock, fsopts);
527         return (&sblock);
528 }
529
530 /*
531  * Write out the superblock and its duplicates,
532  * and the cylinder group summaries
533  */
534 void
535 ffs_write_superblock(struct fs *fs, const fsinfo_t *fsopts)
536 {
537         int cylno, size, blks, i, saveflag;
538         void *space;
539         char *wrbuf;
540
541         saveflag = fs->fs_flags & FS_INTERNAL;
542         fs->fs_flags &= ~FS_INTERNAL;
543
544         memcpy(writebuf, &sblock, sbsize);
545         if (fsopts->needswap)
546                 ffs_sb_swap(fs, (struct fs*)writebuf);
547         ffs_wtfs(fs->fs_sblockloc / sectorsize, sbsize, writebuf, fsopts);
548
549         /* Write out the duplicate super blocks */
550         for (cylno = 0; cylno < fs->fs_ncg; cylno++)
551                 ffs_wtfs(fsbtodb(fs, cgsblock(fs, cylno)),
552                     sbsize, writebuf, fsopts);
553
554         /* Write out the cylinder group summaries */
555         size = fs->fs_cssize;
556         blks = howmany(size, fs->fs_fsize);
557         space = (void *)fs->fs_csp;
558         if ((wrbuf = malloc(size)) == NULL)
559                 err(1, "ffs_write_superblock: malloc %d", size);
560         for (i = 0; i < blks; i+= fs->fs_frag) {
561                 size = fs->fs_bsize;
562                 if (i + fs->fs_frag > blks)
563                         size = (blks - i) * fs->fs_fsize;
564                 if (fsopts->needswap)
565                         ffs_csum_swap((struct csum *)space,
566                             (struct csum *)wrbuf, size);
567                 else
568                         memcpy(wrbuf, space, (u_int)size);
569                 ffs_wtfs(fsbtodb(fs, fs->fs_csaddr + i), size, wrbuf, fsopts);
570                 space = (char *)space + size;
571         }
572         free(wrbuf);
573         fs->fs_flags |= saveflag;
574 }
575
576 /*
577  * Initialize a cylinder group.
578  */
579 static void
580 initcg(int cylno, time_t utime, const fsinfo_t *fsopts)
581 {
582         daddr_t cbase, dmax;
583         int32_t i, j, d, dlower, dupper, blkno;
584         struct ufs1_dinode *dp1;
585         struct ufs2_dinode *dp2;
586         int start;
587
588         /*
589          * Determine block bounds for cylinder group.
590          * Allow space for super block summary information in first
591          * cylinder group.
592          */
593         cbase = cgbase(&sblock, cylno);
594         dmax = cbase + sblock.fs_fpg;
595         if (dmax > sblock.fs_size)
596                 dmax = sblock.fs_size;
597         dlower = cgsblock(&sblock, cylno) - cbase;
598         dupper = cgdmin(&sblock, cylno) - cbase;
599         if (cylno == 0)
600                 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
601         memset(&acg, 0, sblock.fs_cgsize);
602         acg.cg_time = utime;
603         acg.cg_magic = CG_MAGIC;
604         acg.cg_cgx = cylno;
605         acg.cg_niblk = sblock.fs_ipg;
606         acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
607             sblock.fs_ipg : 2 * INOPB(&sblock);
608         acg.cg_ndblk = dmax - cbase;
609         if (sblock.fs_contigsumsize > 0)
610                 acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift;
611         start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
612         if (Oflag == 2) {
613                 acg.cg_iusedoff = start;
614         } else {
615                 if (cylno == sblock.fs_ncg - 1)
616                         acg.cg_old_ncyl = howmany(acg.cg_ndblk,
617                             sblock.fs_fpg / sblock.fs_old_cpg);
618                 else
619                         acg.cg_old_ncyl = sblock.fs_old_cpg;
620                 acg.cg_old_time = acg.cg_time;
621                 acg.cg_time = 0;
622                 acg.cg_old_niblk = acg.cg_niblk;
623                 acg.cg_niblk = 0;
624                 acg.cg_initediblk = 0;
625                 acg.cg_old_btotoff = start;
626                 acg.cg_old_boff = acg.cg_old_btotoff +
627                     sblock.fs_old_cpg * sizeof(int32_t);
628                 acg.cg_iusedoff = acg.cg_old_boff +
629                     sblock.fs_old_cpg * sizeof(u_int16_t);
630         }
631         acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
632         if (sblock.fs_contigsumsize <= 0) {
633                 acg.cg_nextfreeoff = acg.cg_freeoff +
634                    howmany(sblock.fs_fpg, CHAR_BIT);
635         } else {
636                 acg.cg_clustersumoff = acg.cg_freeoff +
637                     howmany(sblock.fs_fpg, CHAR_BIT) - sizeof(int32_t);
638                 acg.cg_clustersumoff =
639                     roundup(acg.cg_clustersumoff, sizeof(int32_t));
640                 acg.cg_clusteroff = acg.cg_clustersumoff +
641                     (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
642                 acg.cg_nextfreeoff = acg.cg_clusteroff +
643                     howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
644         }
645         if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
646                 printf("Panic: cylinder group too big\n");
647                 exit(37);
648         }
649         acg.cg_cs.cs_nifree += sblock.fs_ipg;
650         if (cylno == 0)
651                 for (i = 0; i < ROOTINO; i++) {
652                         setbit(cg_inosused_swap(&acg, 0), i);
653                         acg.cg_cs.cs_nifree--;
654                 }
655         if (cylno > 0) {
656                 /*
657                  * In cylno 0, beginning space is reserved
658                  * for boot and super blocks.
659                  */
660                 for (d = 0, blkno = 0; d < dlower;) {
661                         ffs_setblock(&sblock, cg_blksfree_swap(&acg, 0), blkno);
662                         if (sblock.fs_contigsumsize > 0)
663                                 setbit(cg_clustersfree_swap(&acg, 0), blkno);
664                         acg.cg_cs.cs_nbfree++;
665                         d += sblock.fs_frag;
666                         blkno++;
667                 }
668         }
669         if ((i = (dupper & (sblock.fs_frag - 1))) != 0) {
670                 acg.cg_frsum[sblock.fs_frag - i]++;
671                 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
672                         setbit(cg_blksfree_swap(&acg, 0), dupper);
673                         acg.cg_cs.cs_nffree++;
674                 }
675         }
676         for (d = dupper, blkno = dupper >> sblock.fs_fragshift;
677              d + sblock.fs_frag <= acg.cg_ndblk; ) {
678                 ffs_setblock(&sblock, cg_blksfree_swap(&acg, 0), blkno);
679                 if (sblock.fs_contigsumsize > 0)
680                         setbit(cg_clustersfree_swap(&acg, 0), blkno);
681                 acg.cg_cs.cs_nbfree++;
682                 d += sblock.fs_frag;
683                 blkno++;
684         }
685         if (d < acg.cg_ndblk) {
686                 acg.cg_frsum[acg.cg_ndblk - d]++;
687                 for (; d < acg.cg_ndblk; d++) {
688                         setbit(cg_blksfree_swap(&acg, 0), d);
689                         acg.cg_cs.cs_nffree++;
690                 }
691         }
692         if (sblock.fs_contigsumsize > 0) {
693                 int32_t *sump = cg_clustersum_swap(&acg, 0);
694                 u_char *mapp = cg_clustersfree_swap(&acg, 0);
695                 int map = *mapp++;
696                 int bit = 1;
697                 int run = 0;
698
699                 for (i = 0; i < acg.cg_nclusterblks; i++) {
700                         if ((map & bit) != 0) {
701                                 run++;
702                         } else if (run != 0) {
703                                 if (run > sblock.fs_contigsumsize)
704                                         run = sblock.fs_contigsumsize;
705                                 sump[run]++;
706                                 run = 0;
707                         }
708                         if ((i & (CHAR_BIT - 1)) != (CHAR_BIT - 1)) {
709                                 bit <<= 1;
710                         } else {
711                                 map = *mapp++;
712                                 bit = 1;
713                         }
714                 }
715                 if (run != 0) {
716                         if (run > sblock.fs_contigsumsize)
717                                 run = sblock.fs_contigsumsize;
718                         sump[run]++;
719                 }
720         }
721         sblock.fs_cs(&sblock, cylno) = acg.cg_cs;
722         /*
723          * Write out the duplicate super block, the cylinder group map
724          * and two blocks worth of inodes in a single write.
725          */
726         start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
727         memcpy(&iobuf[start], &acg, sblock.fs_cgsize);
728         if (fsopts->needswap)
729                 ffs_cg_swap(&acg, (struct cg*)&iobuf[start], &sblock);
730         start += sblock.fs_bsize;
731         dp1 = (struct ufs1_dinode *)(&iobuf[start]);
732         dp2 = (struct ufs2_dinode *)(&iobuf[start]);
733         for (i = 0; i < acg.cg_initediblk; i++) {
734                 if (sblock.fs_magic == FS_UFS1_MAGIC) {
735                         /* No need to swap, it'll stay random */
736                         dp1->di_gen = random();
737                         dp1++;
738                 } else {
739                         dp2->di_gen = random();
740                         dp2++;
741                 }
742         }
743         ffs_wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf,
744             fsopts);
745         /*
746          * For the old file system, we have to initialize all the inodes.
747          */
748         if (Oflag <= 1) {
749                 for (i = 2 * sblock.fs_frag;
750                      i < sblock.fs_ipg / INOPF(&sblock);
751                      i += sblock.fs_frag) {
752                         dp1 = (struct ufs1_dinode *)(&iobuf[start]);
753                         for (j = 0; j < INOPB(&sblock); j++) {
754                                 dp1->di_gen = random();
755                                 dp1++;
756                         }
757                         ffs_wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
758                             sblock.fs_bsize, &iobuf[start], fsopts);
759                 }
760         }
761 }
762
763 /*
764  * read a block from the file system
765  */
766 void
767 ffs_rdfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
768 {
769         int n;
770         off_t offset;
771
772         offset = bno;
773         offset *= fsopts->sectorsize;
774         if (lseek(fsopts->fd, offset, SEEK_SET) < 0)
775                 err(1, "ffs_rdfs: seek error for sector %lld: %s\n",
776                     (long long)bno, strerror(errno));
777         n = read(fsopts->fd, bf, size);
778         if (n == -1) {
779                 abort();
780                 err(1, "ffs_rdfs: read error bno %lld size %d", (long long)bno,
781                     size);
782         }
783         else if (n != size)
784                 errx(1, "ffs_rdfs: read error for sector %lld: %s\n",
785                     (long long)bno, strerror(errno));
786 }
787
788 /*
789  * write a block to the file system
790  */
791 void
792 ffs_wtfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
793 {
794         int n;
795         off_t offset;
796
797         offset = bno;
798         offset *= fsopts->sectorsize;
799         if (lseek(fsopts->fd, offset, SEEK_SET) < 0)
800                 err(1, "wtfs: seek error for sector %lld: %s\n",
801                     (long long)bno, strerror(errno));
802         n = write(fsopts->fd, bf, size);
803         if (n == -1)
804                 err(1, "wtfs: write error for sector %lld: %s\n",
805                     (long long)bno, strerror(errno));
806         else if (n != size)
807                 errx(1, "wtfs: write error for sector %lld: %s\n",
808                     (long long)bno, strerror(errno));
809 }
810
811
812 /* Determine how many digits are needed to print a given integer */
813 static int
814 count_digits(int num)
815 {
816         int ndig;
817
818         for(ndig = 1; num > 9; num /=10, ndig++);
819
820         return (ndig);
821 }
822
823 static int
824 ilog2(int val)
825 {
826         u_int n;
827
828         for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
829                 if (1 << n == val)
830                         return (n);
831         errx(1, "ilog2: %d is not a power of 2\n", val);
832 }