]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - cddl/contrib/opensolaris/lib/libzfs/common/libzfs_import.c
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / cddl / contrib / opensolaris / lib / libzfs / common / libzfs_import.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24
25 /*
26  * Pool import support functions.
27  *
28  * To import a pool, we rely on reading the configuration information from the
29  * ZFS label of each device.  If we successfully read the label, then we
30  * organize the configuration information in the following hierarchy:
31  *
32  *      pool guid -> toplevel vdev guid -> label txg
33  *
34  * Duplicate entries matching this same tuple will be discarded.  Once we have
35  * examined every device, we pick the best label txg config for each toplevel
36  * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
37  * update any paths that have changed.  Finally, we attempt to import the pool
38  * using our derived config, and record the results.
39  */
40
41 #include <ctype.h>
42 #include <devid.h>
43 #include <dirent.h>
44 #include <errno.h>
45 #include <libintl.h>
46 #include <stddef.h>
47 #include <stdlib.h>
48 #include <string.h>
49 #include <sys/stat.h>
50 #include <unistd.h>
51 #include <fcntl.h>
52 #include <thread_pool.h>
53 #include <libgeom.h>
54
55 #include <sys/vdev_impl.h>
56
57 #include "libzfs.h"
58 #include "libzfs_impl.h"
59
60 /*
61  * Intermediate structures used to gather configuration information.
62  */
63 typedef struct config_entry {
64         uint64_t                ce_txg;
65         nvlist_t                *ce_config;
66         struct config_entry     *ce_next;
67 } config_entry_t;
68
69 typedef struct vdev_entry {
70         uint64_t                ve_guid;
71         config_entry_t          *ve_configs;
72         struct vdev_entry       *ve_next;
73 } vdev_entry_t;
74
75 typedef struct pool_entry {
76         uint64_t                pe_guid;
77         vdev_entry_t            *pe_vdevs;
78         struct pool_entry       *pe_next;
79 } pool_entry_t;
80
81 typedef struct name_entry {
82         char                    *ne_name;
83         uint64_t                ne_guid;
84         struct name_entry       *ne_next;
85 } name_entry_t;
86
87 typedef struct pool_list {
88         pool_entry_t            *pools;
89         name_entry_t            *names;
90 } pool_list_t;
91
92 static char *
93 get_devid(const char *path)
94 {
95         int fd;
96         ddi_devid_t devid;
97         char *minor, *ret;
98
99         if ((fd = open(path, O_RDONLY)) < 0)
100                 return (NULL);
101
102         minor = NULL;
103         ret = NULL;
104         if (devid_get(fd, &devid) == 0) {
105                 if (devid_get_minor_name(fd, &minor) == 0)
106                         ret = devid_str_encode(devid, minor);
107                 if (minor != NULL)
108                         devid_str_free(minor);
109                 devid_free(devid);
110         }
111         (void) close(fd);
112
113         return (ret);
114 }
115
116
117 /*
118  * Go through and fix up any path and/or devid information for the given vdev
119  * configuration.
120  */
121 static int
122 fix_paths(nvlist_t *nv, name_entry_t *names)
123 {
124         nvlist_t **child;
125         uint_t c, children;
126         uint64_t guid;
127         name_entry_t *ne, *best;
128         char *path, *devid;
129         int matched;
130
131         if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
132             &child, &children) == 0) {
133                 for (c = 0; c < children; c++)
134                         if (fix_paths(child[c], names) != 0)
135                                 return (-1);
136                 return (0);
137         }
138
139         /*
140          * This is a leaf (file or disk) vdev.  In either case, go through
141          * the name list and see if we find a matching guid.  If so, replace
142          * the path and see if we can calculate a new devid.
143          *
144          * There may be multiple names associated with a particular guid, in
145          * which case we have overlapping slices or multiple paths to the same
146          * disk.  If this is the case, then we want to pick the path that is
147          * the most similar to the original, where "most similar" is the number
148          * of matching characters starting from the end of the path.  This will
149          * preserve slice numbers even if the disks have been reorganized, and
150          * will also catch preferred disk names if multiple paths exist.
151          */
152         verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
153         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
154                 path = NULL;
155
156         matched = 0;
157         best = NULL;
158         for (ne = names; ne != NULL; ne = ne->ne_next) {
159                 if (ne->ne_guid == guid) {
160                         const char *src, *dst;
161                         int count;
162
163                         if (path == NULL) {
164                                 best = ne;
165                                 break;
166                         }
167
168                         src = ne->ne_name + strlen(ne->ne_name) - 1;
169                         dst = path + strlen(path) - 1;
170                         for (count = 0; src >= ne->ne_name && dst >= path;
171                             src--, dst--, count++)
172                                 if (*src != *dst)
173                                         break;
174
175                         /*
176                          * At this point, 'count' is the number of characters
177                          * matched from the end.
178                          */
179                         if (count > matched || best == NULL) {
180                                 best = ne;
181                                 matched = count;
182                         }
183                 }
184         }
185
186         if (best == NULL)
187                 return (0);
188
189         if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
190                 return (-1);
191
192         if ((devid = get_devid(best->ne_name)) == NULL) {
193                 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
194         } else {
195                 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0)
196                         return (-1);
197                 devid_str_free(devid);
198         }
199
200         return (0);
201 }
202
203 /*
204  * Add the given configuration to the list of known devices.
205  */
206 static int
207 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
208     nvlist_t *config)
209 {
210         uint64_t pool_guid, vdev_guid, top_guid, txg, state;
211         pool_entry_t *pe;
212         vdev_entry_t *ve;
213         config_entry_t *ce;
214         name_entry_t *ne;
215
216         /*
217          * If this is a hot spare not currently in use or level 2 cache
218          * device, add it to the list of names to translate, but don't do
219          * anything else.
220          */
221         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
222             &state) == 0 &&
223             (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
224             nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
225                 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
226                         return (-1);
227
228                 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
229                         free(ne);
230                         return (-1);
231                 }
232                 ne->ne_guid = vdev_guid;
233                 ne->ne_next = pl->names;
234                 pl->names = ne;
235                 return (0);
236         }
237
238         /*
239          * If we have a valid config but cannot read any of these fields, then
240          * it means we have a half-initialized label.  In vdev_label_init()
241          * we write a label with txg == 0 so that we can identify the device
242          * in case the user refers to the same disk later on.  If we fail to
243          * create the pool, we'll be left with a label in this state
244          * which should not be considered part of a valid pool.
245          */
246         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
247             &pool_guid) != 0 ||
248             nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
249             &vdev_guid) != 0 ||
250             nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
251             &top_guid) != 0 ||
252             nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
253             &txg) != 0 || txg == 0) {
254                 nvlist_free(config);
255                 return (0);
256         }
257
258         /*
259          * First, see if we know about this pool.  If not, then add it to the
260          * list of known pools.
261          */
262         for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
263                 if (pe->pe_guid == pool_guid)
264                         break;
265         }
266
267         if (pe == NULL) {
268                 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
269                         nvlist_free(config);
270                         return (-1);
271                 }
272                 pe->pe_guid = pool_guid;
273                 pe->pe_next = pl->pools;
274                 pl->pools = pe;
275         }
276
277         /*
278          * Second, see if we know about this toplevel vdev.  Add it if its
279          * missing.
280          */
281         for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
282                 if (ve->ve_guid == top_guid)
283                         break;
284         }
285
286         if (ve == NULL) {
287                 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
288                         nvlist_free(config);
289                         return (-1);
290                 }
291                 ve->ve_guid = top_guid;
292                 ve->ve_next = pe->pe_vdevs;
293                 pe->pe_vdevs = ve;
294         }
295
296         /*
297          * Third, see if we have a config with a matching transaction group.  If
298          * so, then we do nothing.  Otherwise, add it to the list of known
299          * configs.
300          */
301         for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
302                 if (ce->ce_txg == txg)
303                         break;
304         }
305
306         if (ce == NULL) {
307                 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
308                         nvlist_free(config);
309                         return (-1);
310                 }
311                 ce->ce_txg = txg;
312                 ce->ce_config = config;
313                 ce->ce_next = ve->ve_configs;
314                 ve->ve_configs = ce;
315         } else {
316                 nvlist_free(config);
317         }
318
319         /*
320          * At this point we've successfully added our config to the list of
321          * known configs.  The last thing to do is add the vdev guid -> path
322          * mappings so that we can fix up the configuration as necessary before
323          * doing the import.
324          */
325         if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
326                 return (-1);
327
328         if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
329                 free(ne);
330                 return (-1);
331         }
332
333         ne->ne_guid = vdev_guid;
334         ne->ne_next = pl->names;
335         pl->names = ne;
336
337         return (0);
338 }
339
340 /*
341  * Returns true if the named pool matches the given GUID.
342  */
343 static int
344 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
345     boolean_t *isactive)
346 {
347         zpool_handle_t *zhp;
348         uint64_t theguid;
349
350         if (zpool_open_silent(hdl, name, &zhp) != 0)
351                 return (-1);
352
353         if (zhp == NULL) {
354                 *isactive = B_FALSE;
355                 return (0);
356         }
357
358         verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
359             &theguid) == 0);
360
361         zpool_close(zhp);
362
363         *isactive = (theguid == guid);
364         return (0);
365 }
366
367 static nvlist_t *
368 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
369 {
370         nvlist_t *nvl;
371         zfs_cmd_t zc = { 0 };
372         int err;
373
374         if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
375                 return (NULL);
376
377         if (zcmd_alloc_dst_nvlist(hdl, &zc,
378             zc.zc_nvlist_conf_size * 2) != 0) {
379                 zcmd_free_nvlists(&zc);
380                 return (NULL);
381         }
382
383         while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
384             &zc)) != 0 && errno == ENOMEM) {
385                 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
386                         zcmd_free_nvlists(&zc);
387                         return (NULL);
388                 }
389         }
390
391         if (err) {
392                 zcmd_free_nvlists(&zc);
393                 return (NULL);
394         }
395
396         if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
397                 zcmd_free_nvlists(&zc);
398                 return (NULL);
399         }
400
401         zcmd_free_nvlists(&zc);
402         return (nvl);
403 }
404
405 /*
406  * Determine if the vdev id is a hole in the namespace.
407  */
408 boolean_t
409 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
410 {
411         for (int c = 0; c < holes; c++) {
412
413                 /* Top-level is a hole */
414                 if (hole_array[c] == id)
415                         return (B_TRUE);
416         }
417         return (B_FALSE);
418 }
419
420 /*
421  * Convert our list of pools into the definitive set of configurations.  We
422  * start by picking the best config for each toplevel vdev.  Once that's done,
423  * we assemble the toplevel vdevs into a full config for the pool.  We make a
424  * pass to fix up any incorrect paths, and then add it to the main list to
425  * return to the user.
426  */
427 static nvlist_t *
428 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
429 {
430         pool_entry_t *pe;
431         vdev_entry_t *ve;
432         config_entry_t *ce;
433         nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
434         nvlist_t **spares, **l2cache;
435         uint_t i, nspares, nl2cache;
436         boolean_t config_seen;
437         uint64_t best_txg;
438         char *name, *hostname;
439         uint64_t version, guid;
440         uint_t children = 0;
441         nvlist_t **child = NULL;
442         uint_t holes;
443         uint64_t *hole_array, max_id;
444         uint_t c;
445         boolean_t isactive;
446         uint64_t hostid;
447         nvlist_t *nvl;
448         boolean_t found_one = B_FALSE;
449         boolean_t valid_top_config = B_FALSE;
450
451         if (nvlist_alloc(&ret, 0, 0) != 0)
452                 goto nomem;
453
454         for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
455                 uint64_t id, max_txg = 0;
456
457                 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
458                         goto nomem;
459                 config_seen = B_FALSE;
460
461                 /*
462                  * Iterate over all toplevel vdevs.  Grab the pool configuration
463                  * from the first one we find, and then go through the rest and
464                  * add them as necessary to the 'vdevs' member of the config.
465                  */
466                 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
467
468                         /*
469                          * Determine the best configuration for this vdev by
470                          * selecting the config with the latest transaction
471                          * group.
472                          */
473                         best_txg = 0;
474                         for (ce = ve->ve_configs; ce != NULL;
475                             ce = ce->ce_next) {
476
477                                 if (ce->ce_txg > best_txg) {
478                                         tmp = ce->ce_config;
479                                         best_txg = ce->ce_txg;
480                                 }
481                         }
482
483                         /*
484                          * We rely on the fact that the max txg for the
485                          * pool will contain the most up-to-date information
486                          * about the valid top-levels in the vdev namespace.
487                          */
488                         if (best_txg > max_txg) {
489                                 (void) nvlist_remove(config,
490                                     ZPOOL_CONFIG_VDEV_CHILDREN,
491                                     DATA_TYPE_UINT64);
492                                 (void) nvlist_remove(config,
493                                     ZPOOL_CONFIG_HOLE_ARRAY,
494                                     DATA_TYPE_UINT64_ARRAY);
495
496                                 max_txg = best_txg;
497                                 hole_array = NULL;
498                                 holes = 0;
499                                 max_id = 0;
500                                 valid_top_config = B_FALSE;
501
502                                 if (nvlist_lookup_uint64(tmp,
503                                     ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
504                                         verify(nvlist_add_uint64(config,
505                                             ZPOOL_CONFIG_VDEV_CHILDREN,
506                                             max_id) == 0);
507                                         valid_top_config = B_TRUE;
508                                 }
509
510                                 if (nvlist_lookup_uint64_array(tmp,
511                                     ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
512                                     &holes) == 0) {
513                                         verify(nvlist_add_uint64_array(config,
514                                             ZPOOL_CONFIG_HOLE_ARRAY,
515                                             hole_array, holes) == 0);
516                                 }
517                         }
518
519                         if (!config_seen) {
520                                 /*
521                                  * Copy the relevant pieces of data to the pool
522                                  * configuration:
523                                  *
524                                  *      version
525                                  *      pool guid
526                                  *      name
527                                  *      pool state
528                                  *      hostid (if available)
529                                  *      hostname (if available)
530                                  */
531                                 uint64_t state;
532
533                                 verify(nvlist_lookup_uint64(tmp,
534                                     ZPOOL_CONFIG_VERSION, &version) == 0);
535                                 if (nvlist_add_uint64(config,
536                                     ZPOOL_CONFIG_VERSION, version) != 0)
537                                         goto nomem;
538                                 verify(nvlist_lookup_uint64(tmp,
539                                     ZPOOL_CONFIG_POOL_GUID, &guid) == 0);
540                                 if (nvlist_add_uint64(config,
541                                     ZPOOL_CONFIG_POOL_GUID, guid) != 0)
542                                         goto nomem;
543                                 verify(nvlist_lookup_string(tmp,
544                                     ZPOOL_CONFIG_POOL_NAME, &name) == 0);
545                                 if (nvlist_add_string(config,
546                                     ZPOOL_CONFIG_POOL_NAME, name) != 0)
547                                         goto nomem;
548                                 verify(nvlist_lookup_uint64(tmp,
549                                     ZPOOL_CONFIG_POOL_STATE, &state) == 0);
550                                 if (nvlist_add_uint64(config,
551                                     ZPOOL_CONFIG_POOL_STATE, state) != 0)
552                                         goto nomem;
553                                 hostid = 0;
554                                 if (nvlist_lookup_uint64(tmp,
555                                     ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
556                                         if (nvlist_add_uint64(config,
557                                             ZPOOL_CONFIG_HOSTID, hostid) != 0)
558                                                 goto nomem;
559                                         verify(nvlist_lookup_string(tmp,
560                                             ZPOOL_CONFIG_HOSTNAME,
561                                             &hostname) == 0);
562                                         if (nvlist_add_string(config,
563                                             ZPOOL_CONFIG_HOSTNAME,
564                                             hostname) != 0)
565                                                 goto nomem;
566                                 }
567
568                                 config_seen = B_TRUE;
569                         }
570
571                         /*
572                          * Add this top-level vdev to the child array.
573                          */
574                         verify(nvlist_lookup_nvlist(tmp,
575                             ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
576                         verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
577                             &id) == 0);
578
579                         if (id >= children) {
580                                 nvlist_t **newchild;
581
582                                 newchild = zfs_alloc(hdl, (id + 1) *
583                                     sizeof (nvlist_t *));
584                                 if (newchild == NULL)
585                                         goto nomem;
586
587                                 for (c = 0; c < children; c++)
588                                         newchild[c] = child[c];
589
590                                 free(child);
591                                 child = newchild;
592                                 children = id + 1;
593                         }
594                         if (nvlist_dup(nvtop, &child[id], 0) != 0)
595                                 goto nomem;
596
597                 }
598
599                 /*
600                  * If we have information about all the top-levels then
601                  * clean up the nvlist which we've constructed. This
602                  * means removing any extraneous devices that are
603                  * beyond the valid range or adding devices to the end
604                  * of our array which appear to be missing.
605                  */
606                 if (valid_top_config) {
607                         if (max_id < children) {
608                                 for (c = max_id; c < children; c++)
609                                         nvlist_free(child[c]);
610                                 children = max_id;
611                         } else if (max_id > children) {
612                                 nvlist_t **newchild;
613
614                                 newchild = zfs_alloc(hdl, (max_id) *
615                                     sizeof (nvlist_t *));
616                                 if (newchild == NULL)
617                                         goto nomem;
618
619                                 for (c = 0; c < children; c++)
620                                         newchild[c] = child[c];
621
622                                 free(child);
623                                 child = newchild;
624                                 children = max_id;
625                         }
626                 }
627
628                 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
629                     &guid) == 0);
630
631                 /*
632                  * The vdev namespace may contain holes as a result of
633                  * device removal. We must add them back into the vdev
634                  * tree before we process any missing devices.
635                  */
636                 if (holes > 0) {
637                         ASSERT(valid_top_config);
638
639                         for (c = 0; c < children; c++) {
640                                 nvlist_t *holey;
641
642                                 if (child[c] != NULL ||
643                                     !vdev_is_hole(hole_array, holes, c))
644                                         continue;
645
646                                 if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
647                                     0) != 0)
648                                         goto nomem;
649
650                                 /*
651                                  * Holes in the namespace are treated as
652                                  * "hole" top-level vdevs and have a
653                                  * special flag set on them.
654                                  */
655                                 if (nvlist_add_string(holey,
656                                     ZPOOL_CONFIG_TYPE,
657                                     VDEV_TYPE_HOLE) != 0 ||
658                                     nvlist_add_uint64(holey,
659                                     ZPOOL_CONFIG_ID, c) != 0 ||
660                                     nvlist_add_uint64(holey,
661                                     ZPOOL_CONFIG_GUID, 0ULL) != 0)
662                                         goto nomem;
663                                 child[c] = holey;
664                         }
665                 }
666
667                 /*
668                  * Look for any missing top-level vdevs.  If this is the case,
669                  * create a faked up 'missing' vdev as a placeholder.  We cannot
670                  * simply compress the child array, because the kernel performs
671                  * certain checks to make sure the vdev IDs match their location
672                  * in the configuration.
673                  */
674                 for (c = 0; c < children; c++) {
675                         if (child[c] == NULL) {
676                                 nvlist_t *missing;
677                                 if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
678                                     0) != 0)
679                                         goto nomem;
680                                 if (nvlist_add_string(missing,
681                                     ZPOOL_CONFIG_TYPE,
682                                     VDEV_TYPE_MISSING) != 0 ||
683                                     nvlist_add_uint64(missing,
684                                     ZPOOL_CONFIG_ID, c) != 0 ||
685                                     nvlist_add_uint64(missing,
686                                     ZPOOL_CONFIG_GUID, 0ULL) != 0) {
687                                         nvlist_free(missing);
688                                         goto nomem;
689                                 }
690                                 child[c] = missing;
691                         }
692                 }
693
694                 /*
695                  * Put all of this pool's top-level vdevs into a root vdev.
696                  */
697                 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
698                         goto nomem;
699                 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
700                     VDEV_TYPE_ROOT) != 0 ||
701                     nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
702                     nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
703                     nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
704                     child, children) != 0) {
705                         nvlist_free(nvroot);
706                         goto nomem;
707                 }
708
709                 for (c = 0; c < children; c++)
710                         nvlist_free(child[c]);
711                 free(child);
712                 children = 0;
713                 child = NULL;
714
715                 /*
716                  * Go through and fix up any paths and/or devids based on our
717                  * known list of vdev GUID -> path mappings.
718                  */
719                 if (fix_paths(nvroot, pl->names) != 0) {
720                         nvlist_free(nvroot);
721                         goto nomem;
722                 }
723
724                 /*
725                  * Add the root vdev to this pool's configuration.
726                  */
727                 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
728                     nvroot) != 0) {
729                         nvlist_free(nvroot);
730                         goto nomem;
731                 }
732                 nvlist_free(nvroot);
733
734                 /*
735                  * zdb uses this path to report on active pools that were
736                  * imported or created using -R.
737                  */
738                 if (active_ok)
739                         goto add_pool;
740
741                 /*
742                  * Determine if this pool is currently active, in which case we
743                  * can't actually import it.
744                  */
745                 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
746                     &name) == 0);
747                 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
748                     &guid) == 0);
749
750                 if (pool_active(hdl, name, guid, &isactive) != 0)
751                         goto error;
752
753                 if (isactive) {
754                         nvlist_free(config);
755                         config = NULL;
756                         continue;
757                 }
758
759                 if ((nvl = refresh_config(hdl, config)) == NULL) {
760                         nvlist_free(config);
761                         config = NULL;
762                         continue;
763                 }
764
765                 nvlist_free(config);
766                 config = nvl;
767
768                 /*
769                  * Go through and update the paths for spares, now that we have
770                  * them.
771                  */
772                 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
773                     &nvroot) == 0);
774                 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
775                     &spares, &nspares) == 0) {
776                         for (i = 0; i < nspares; i++) {
777                                 if (fix_paths(spares[i], pl->names) != 0)
778                                         goto nomem;
779                         }
780                 }
781
782                 /*
783                  * Update the paths for l2cache devices.
784                  */
785                 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
786                     &l2cache, &nl2cache) == 0) {
787                         for (i = 0; i < nl2cache; i++) {
788                                 if (fix_paths(l2cache[i], pl->names) != 0)
789                                         goto nomem;
790                         }
791                 }
792
793                 /*
794                  * Restore the original information read from the actual label.
795                  */
796                 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
797                     DATA_TYPE_UINT64);
798                 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
799                     DATA_TYPE_STRING);
800                 if (hostid != 0) {
801                         verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
802                             hostid) == 0);
803                         verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
804                             hostname) == 0);
805                 }
806
807 add_pool:
808                 /*
809                  * Add this pool to the list of configs.
810                  */
811                 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
812                     &name) == 0);
813                 if (nvlist_add_nvlist(ret, name, config) != 0)
814                         goto nomem;
815
816                 found_one = B_TRUE;
817                 nvlist_free(config);
818                 config = NULL;
819         }
820
821         if (!found_one) {
822                 nvlist_free(ret);
823                 ret = NULL;
824         }
825
826         return (ret);
827
828 nomem:
829         (void) no_memory(hdl);
830 error:
831         nvlist_free(config);
832         nvlist_free(ret);
833         for (c = 0; c < children; c++)
834                 nvlist_free(child[c]);
835         free(child);
836
837         return (NULL);
838 }
839
840 /*
841  * Return the offset of the given label.
842  */
843 static uint64_t
844 label_offset(uint64_t size, int l)
845 {
846         ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
847         return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
848             0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
849 }
850
851 /*
852  * Given a file descriptor, read the label information and return an nvlist
853  * describing the configuration, if there is one.
854  */
855 int
856 zpool_read_label(int fd, nvlist_t **config)
857 {
858         struct stat64 statbuf;
859         int l;
860         vdev_label_t *label;
861         uint64_t state, txg, size;
862
863         *config = NULL;
864
865         if (fstat64(fd, &statbuf) == -1)
866                 return (0);
867         size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
868
869         if ((label = malloc(sizeof (vdev_label_t))) == NULL)
870                 return (-1);
871
872         for (l = 0; l < VDEV_LABELS; l++) {
873                 if (pread64(fd, label, sizeof (vdev_label_t),
874                     label_offset(size, l)) != sizeof (vdev_label_t))
875                         continue;
876
877                 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
878                     sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
879                         continue;
880
881                 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
882                     &state) != 0 || state > POOL_STATE_L2CACHE) {
883                         nvlist_free(*config);
884                         continue;
885                 }
886
887                 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
888                     (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
889                     &txg) != 0 || txg == 0)) {
890                         nvlist_free(*config);
891                         continue;
892                 }
893
894                 free(label);
895                 return (0);
896         }
897
898         free(label);
899         *config = NULL;
900         return (0);
901 }
902
903 typedef struct rdsk_node {
904         char *rn_name;
905         int rn_dfd;
906         libzfs_handle_t *rn_hdl;
907         nvlist_t *rn_config;
908         avl_tree_t *rn_avl;
909         avl_node_t rn_node;
910         boolean_t rn_nozpool;
911 } rdsk_node_t;
912
913 static int
914 slice_cache_compare(const void *arg1, const void *arg2)
915 {
916         const char  *nm1 = ((rdsk_node_t *)arg1)->rn_name;
917         const char  *nm2 = ((rdsk_node_t *)arg2)->rn_name;
918         char *nm1slice, *nm2slice;
919         int rv;
920
921         /*
922          * slices zero and two are the most likely to provide results,
923          * so put those first
924          */
925         nm1slice = strstr(nm1, "s0");
926         nm2slice = strstr(nm2, "s0");
927         if (nm1slice && !nm2slice) {
928                 return (-1);
929         }
930         if (!nm1slice && nm2slice) {
931                 return (1);
932         }
933         nm1slice = strstr(nm1, "s2");
934         nm2slice = strstr(nm2, "s2");
935         if (nm1slice && !nm2slice) {
936                 return (-1);
937         }
938         if (!nm1slice && nm2slice) {
939                 return (1);
940         }
941
942         rv = strcmp(nm1, nm2);
943         if (rv == 0)
944                 return (0);
945         return (rv > 0 ? 1 : -1);
946 }
947
948 #ifdef sun
949 static void
950 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
951     diskaddr_t size, uint_t blksz)
952 {
953         rdsk_node_t tmpnode;
954         rdsk_node_t *node;
955         char sname[MAXNAMELEN];
956
957         tmpnode.rn_name = &sname[0];
958         (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
959             diskname, partno);
960         /*
961          * protect against division by zero for disk labels that
962          * contain a bogus sector size
963          */
964         if (blksz == 0)
965                 blksz = DEV_BSIZE;
966         /* too small to contain a zpool? */
967         if ((size < (SPA_MINDEVSIZE / blksz)) &&
968             (node = avl_find(r, &tmpnode, NULL)))
969                 node->rn_nozpool = B_TRUE;
970 }
971 #endif  /* sun */
972
973 static void
974 nozpool_all_slices(avl_tree_t *r, const char *sname)
975 {
976 #ifdef sun
977         char diskname[MAXNAMELEN];
978         char *ptr;
979         int i;
980
981         (void) strncpy(diskname, sname, MAXNAMELEN);
982         if (((ptr = strrchr(diskname, 's')) == NULL) &&
983             ((ptr = strrchr(diskname, 'p')) == NULL))
984                 return;
985         ptr[0] = 's';
986         ptr[1] = '\0';
987         for (i = 0; i < NDKMAP; i++)
988                 check_one_slice(r, diskname, i, 0, 1);
989         ptr[0] = 'p';
990         for (i = 0; i <= FD_NUMPART; i++)
991                 check_one_slice(r, diskname, i, 0, 1);
992 #endif  /* sun */
993 }
994
995 static void
996 check_slices(avl_tree_t *r, int fd, const char *sname)
997 {
998 #ifdef sun
999         struct extvtoc vtoc;
1000         struct dk_gpt *gpt;
1001         char diskname[MAXNAMELEN];
1002         char *ptr;
1003         int i;
1004
1005         (void) strncpy(diskname, sname, MAXNAMELEN);
1006         if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1007                 return;
1008         ptr[1] = '\0';
1009
1010         if (read_extvtoc(fd, &vtoc) >= 0) {
1011                 for (i = 0; i < NDKMAP; i++)
1012                         check_one_slice(r, diskname, i,
1013                             vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1014         } else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1015                 /*
1016                  * on x86 we'll still have leftover links that point
1017                  * to slices s[9-15], so use NDKMAP instead
1018                  */
1019                 for (i = 0; i < NDKMAP; i++)
1020                         check_one_slice(r, diskname, i,
1021                             gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1022                 /* nodes p[1-4] are never used with EFI labels */
1023                 ptr[0] = 'p';
1024                 for (i = 1; i <= FD_NUMPART; i++)
1025                         check_one_slice(r, diskname, i, 0, 1);
1026                 efi_free(gpt);
1027         }
1028 #endif  /* sun */
1029 }
1030
1031 static void
1032 zpool_open_func(void *arg)
1033 {
1034         rdsk_node_t *rn = arg;
1035         struct stat64 statbuf;
1036         nvlist_t *config;
1037         int fd;
1038
1039         if (rn->rn_nozpool)
1040                 return;
1041         if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1042                 /* symlink to a device that's no longer there */
1043                 if (errno == ENOENT)
1044                         nozpool_all_slices(rn->rn_avl, rn->rn_name);
1045                 return;
1046         }
1047         /*
1048          * Ignore failed stats.  We only want regular
1049          * files, character devs and block devs.
1050          */
1051         if (fstat64(fd, &statbuf) != 0 ||
1052             (!S_ISREG(statbuf.st_mode) &&
1053             !S_ISCHR(statbuf.st_mode) &&
1054             !S_ISBLK(statbuf.st_mode))) {
1055                 (void) close(fd);
1056                 return;
1057         }
1058         /* this file is too small to hold a zpool */
1059         if (S_ISREG(statbuf.st_mode) &&
1060             statbuf.st_size < SPA_MINDEVSIZE) {
1061                 (void) close(fd);
1062                 return;
1063         } else if (!S_ISREG(statbuf.st_mode)) {
1064                 /*
1065                  * Try to read the disk label first so we don't have to
1066                  * open a bunch of minor nodes that can't have a zpool.
1067                  */
1068                 check_slices(rn->rn_avl, fd, rn->rn_name);
1069         }
1070
1071         if ((zpool_read_label(fd, &config)) != 0) {
1072                 (void) close(fd);
1073                 (void) no_memory(rn->rn_hdl);
1074                 return;
1075         }
1076         (void) close(fd);
1077
1078
1079         rn->rn_config = config;
1080         if (config != NULL) {
1081                 assert(rn->rn_nozpool == B_FALSE);
1082         }
1083 }
1084
1085 /*
1086  * Given a file descriptor, clear (zero) the label information.  This function
1087  * is used in the appliance stack as part of the ZFS sysevent module and
1088  * to implement the "zpool labelclear" command.
1089  */
1090 int
1091 zpool_clear_label(int fd)
1092 {
1093         struct stat64 statbuf;
1094         int l;
1095         vdev_label_t *label;
1096         uint64_t size;
1097
1098         if (fstat64(fd, &statbuf) == -1)
1099                 return (0);
1100         size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1101
1102         if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1103                 return (-1);
1104
1105         for (l = 0; l < VDEV_LABELS; l++) {
1106                 if (pwrite64(fd, label, sizeof (vdev_label_t),
1107                     label_offset(size, l)) != sizeof (vdev_label_t))
1108                         return (-1);
1109         }
1110
1111         free(label);
1112         return (0);
1113 }
1114
1115 /*
1116  * Given a list of directories to search, find all pools stored on disk.  This
1117  * includes partial pools which are not available to import.  If no args are
1118  * given (argc is 0), then the default directory (/dev/dsk) is searched.
1119  * poolname or guid (but not both) are provided by the caller when trying
1120  * to import a specific pool.
1121  */
1122 static nvlist_t *
1123 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1124 {
1125         int i, dirs = iarg->paths;
1126         DIR *dirp = NULL;
1127         struct dirent64 *dp;
1128         char path[MAXPATHLEN];
1129         char *end, **dir = iarg->path;
1130         size_t pathleft;
1131         nvlist_t *ret = NULL;
1132         static char *default_dir = "/dev/dsk";
1133         pool_list_t pools = { 0 };
1134         pool_entry_t *pe, *penext;
1135         vdev_entry_t *ve, *venext;
1136         config_entry_t *ce, *cenext;
1137         name_entry_t *ne, *nenext;
1138         avl_tree_t slice_cache;
1139         rdsk_node_t *slice;
1140         void *cookie;
1141
1142         if (dirs == 0) {
1143                 dirs = 1;
1144                 dir = &default_dir;
1145         }
1146
1147         /*
1148          * Go through and read the label configuration information from every
1149          * possible device, organizing the information according to pool GUID
1150          * and toplevel GUID.
1151          */
1152         for (i = 0; i < dirs; i++) {
1153                 tpool_t *t;
1154                 char *rdsk;
1155                 int dfd;
1156
1157                 /* use realpath to normalize the path */
1158                 if (realpath(dir[i], path) == 0) {
1159                         (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1160                             dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1161                         goto error;
1162                 }
1163                 end = &path[strlen(path)];
1164                 *end++ = '/';
1165                 *end = 0;
1166                 pathleft = &path[sizeof (path)] - end;
1167
1168                 /*
1169                  * Using raw devices instead of block devices when we're
1170                  * reading the labels skips a bunch of slow operations during
1171                  * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1172                  */
1173                 if (strcmp(path, "/dev/dsk/") == 0)
1174                         rdsk = "/dev/";
1175                 else
1176                         rdsk = path;
1177
1178                 if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1179                     (dirp = fdopendir(dfd)) == NULL) {
1180                         zfs_error_aux(hdl, strerror(errno));
1181                         (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1182                             dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1183                             rdsk);
1184                         goto error;
1185                 }
1186
1187                 avl_create(&slice_cache, slice_cache_compare,
1188                     sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1189
1190                 if (strcmp(rdsk, "/dev/") == 0) {
1191                         struct gmesh mesh;
1192                         struct gclass *mp;
1193                         struct ggeom *gp;
1194                         struct gprovider *pp;
1195
1196                         errno = geom_gettree(&mesh);
1197                         if (errno != 0) {
1198                                 zfs_error_aux(hdl, strerror(errno));
1199                                 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1200                                     dgettext(TEXT_DOMAIN, "cannot get GEOM tree"));
1201                                 goto error;
1202                         }
1203
1204                         LIST_FOREACH(mp, &mesh.lg_class, lg_class) {
1205                                 LIST_FOREACH(gp, &mp->lg_geom, lg_geom) {
1206                                         LIST_FOREACH(pp, &gp->lg_provider, lg_provider) {
1207                                                 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1208                                                 slice->rn_name = zfs_strdup(hdl, pp->lg_name);
1209                                                 slice->rn_avl = &slice_cache;
1210                                                 slice->rn_dfd = dfd;
1211                                                 slice->rn_hdl = hdl;
1212                                                 slice->rn_nozpool = B_FALSE;
1213                                                 avl_add(&slice_cache, slice);
1214                                         }
1215                                 }
1216                         }
1217
1218                         geom_deletetree(&mesh);
1219                         goto skipdir;
1220                 }
1221
1222                 /*
1223                  * This is not MT-safe, but we have no MT consumers of libzfs
1224                  */
1225                 while ((dp = readdir64(dirp)) != NULL) {
1226                         const char *name = dp->d_name;
1227                         if (name[0] == '.' &&
1228                             (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1229                                 continue;
1230
1231                         slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1232                         slice->rn_name = zfs_strdup(hdl, name);
1233                         slice->rn_avl = &slice_cache;
1234                         slice->rn_dfd = dfd;
1235                         slice->rn_hdl = hdl;
1236                         slice->rn_nozpool = B_FALSE;
1237                         avl_add(&slice_cache, slice);
1238                 }
1239 skipdir:
1240                 /*
1241                  * create a thread pool to do all of this in parallel;
1242                  * rn_nozpool is not protected, so this is racy in that
1243                  * multiple tasks could decide that the same slice can
1244                  * not hold a zpool, which is benign.  Also choose
1245                  * double the number of processors; we hold a lot of
1246                  * locks in the kernel, so going beyond this doesn't
1247                  * buy us much.
1248                  */
1249                 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1250                     0, NULL);
1251                 for (slice = avl_first(&slice_cache); slice;
1252                     (slice = avl_walk(&slice_cache, slice,
1253                     AVL_AFTER)))
1254                         (void) tpool_dispatch(t, zpool_open_func, slice);
1255                 tpool_wait(t);
1256                 tpool_destroy(t);
1257
1258                 cookie = NULL;
1259                 while ((slice = avl_destroy_nodes(&slice_cache,
1260                     &cookie)) != NULL) {
1261                         if (slice->rn_config != NULL) {
1262                                 nvlist_t *config = slice->rn_config;
1263                                 boolean_t matched = B_TRUE;
1264
1265                                 if (iarg->poolname != NULL) {
1266                                         char *pname;
1267
1268                                         matched = nvlist_lookup_string(config,
1269                                             ZPOOL_CONFIG_POOL_NAME,
1270                                             &pname) == 0 &&
1271                                             strcmp(iarg->poolname, pname) == 0;
1272                                 } else if (iarg->guid != 0) {
1273                                         uint64_t this_guid;
1274
1275                                         matched = nvlist_lookup_uint64(config,
1276                                             ZPOOL_CONFIG_POOL_GUID,
1277                                             &this_guid) == 0 &&
1278                                             iarg->guid == this_guid;
1279                                 }
1280                                 if (!matched) {
1281                                         nvlist_free(config);
1282                                         config = NULL;
1283                                         continue;
1284                                 }
1285                                 /* use the non-raw path for the config */
1286                                 (void) strlcpy(end, slice->rn_name, pathleft);
1287                                 if (add_config(hdl, &pools, path, config) != 0)
1288                                         goto error;
1289                         }
1290                         free(slice->rn_name);
1291                         free(slice);
1292                 }
1293                 avl_destroy(&slice_cache);
1294
1295                 (void) closedir(dirp);
1296                 dirp = NULL;
1297         }
1298
1299         ret = get_configs(hdl, &pools, iarg->can_be_active);
1300
1301 error:
1302         for (pe = pools.pools; pe != NULL; pe = penext) {
1303                 penext = pe->pe_next;
1304                 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1305                         venext = ve->ve_next;
1306                         for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1307                                 cenext = ce->ce_next;
1308                                 if (ce->ce_config)
1309                                         nvlist_free(ce->ce_config);
1310                                 free(ce);
1311                         }
1312                         free(ve);
1313                 }
1314                 free(pe);
1315         }
1316
1317         for (ne = pools.names; ne != NULL; ne = nenext) {
1318                 nenext = ne->ne_next;
1319                 if (ne->ne_name)
1320                         free(ne->ne_name);
1321                 free(ne);
1322         }
1323
1324         if (dirp)
1325                 (void) closedir(dirp);
1326
1327         return (ret);
1328 }
1329
1330 nvlist_t *
1331 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1332 {
1333         importargs_t iarg = { 0 };
1334
1335         iarg.paths = argc;
1336         iarg.path = argv;
1337
1338         return (zpool_find_import_impl(hdl, &iarg));
1339 }
1340
1341 /*
1342  * Given a cache file, return the contents as a list of importable pools.
1343  * poolname or guid (but not both) are provided by the caller when trying
1344  * to import a specific pool.
1345  */
1346 nvlist_t *
1347 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1348     char *poolname, uint64_t guid)
1349 {
1350         char *buf;
1351         int fd;
1352         struct stat64 statbuf;
1353         nvlist_t *raw, *src, *dst;
1354         nvlist_t *pools;
1355         nvpair_t *elem;
1356         char *name;
1357         uint64_t this_guid;
1358         boolean_t active;
1359
1360         verify(poolname == NULL || guid == 0);
1361
1362         if ((fd = open(cachefile, O_RDONLY)) < 0) {
1363                 zfs_error_aux(hdl, "%s", strerror(errno));
1364                 (void) zfs_error(hdl, EZFS_BADCACHE,
1365                     dgettext(TEXT_DOMAIN, "failed to open cache file"));
1366                 return (NULL);
1367         }
1368
1369         if (fstat64(fd, &statbuf) != 0) {
1370                 zfs_error_aux(hdl, "%s", strerror(errno));
1371                 (void) close(fd);
1372                 (void) zfs_error(hdl, EZFS_BADCACHE,
1373                     dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1374                 return (NULL);
1375         }
1376
1377         if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1378                 (void) close(fd);
1379                 return (NULL);
1380         }
1381
1382         if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1383                 (void) close(fd);
1384                 free(buf);
1385                 (void) zfs_error(hdl, EZFS_BADCACHE,
1386                     dgettext(TEXT_DOMAIN,
1387                     "failed to read cache file contents"));
1388                 return (NULL);
1389         }
1390
1391         (void) close(fd);
1392
1393         if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1394                 free(buf);
1395                 (void) zfs_error(hdl, EZFS_BADCACHE,
1396                     dgettext(TEXT_DOMAIN,
1397                     "invalid or corrupt cache file contents"));
1398                 return (NULL);
1399         }
1400
1401         free(buf);
1402
1403         /*
1404          * Go through and get the current state of the pools and refresh their
1405          * state.
1406          */
1407         if (nvlist_alloc(&pools, 0, 0) != 0) {
1408                 (void) no_memory(hdl);
1409                 nvlist_free(raw);
1410                 return (NULL);
1411         }
1412
1413         elem = NULL;
1414         while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1415                 verify(nvpair_value_nvlist(elem, &src) == 0);
1416
1417                 verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME,
1418                     &name) == 0);
1419                 if (poolname != NULL && strcmp(poolname, name) != 0)
1420                         continue;
1421
1422                 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1423                     &this_guid) == 0);
1424                 if (guid != 0) {
1425                         verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1426                             &this_guid) == 0);
1427                         if (guid != this_guid)
1428                                 continue;
1429                 }
1430
1431                 if (pool_active(hdl, name, this_guid, &active) != 0) {
1432                         nvlist_free(raw);
1433                         nvlist_free(pools);
1434                         return (NULL);
1435                 }
1436
1437                 if (active)
1438                         continue;
1439
1440                 if ((dst = refresh_config(hdl, src)) == NULL) {
1441                         nvlist_free(raw);
1442                         nvlist_free(pools);
1443                         return (NULL);
1444                 }
1445
1446                 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1447                         (void) no_memory(hdl);
1448                         nvlist_free(dst);
1449                         nvlist_free(raw);
1450                         nvlist_free(pools);
1451                         return (NULL);
1452                 }
1453                 nvlist_free(dst);
1454         }
1455
1456         nvlist_free(raw);
1457         return (pools);
1458 }
1459
1460 static int
1461 name_or_guid_exists(zpool_handle_t *zhp, void *data)
1462 {
1463         importargs_t *import = data;
1464         int found = 0;
1465
1466         if (import->poolname != NULL) {
1467                 char *pool_name;
1468
1469                 verify(nvlist_lookup_string(zhp->zpool_config,
1470                     ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1471                 if (strcmp(pool_name, import->poolname) == 0)
1472                         found = 1;
1473         } else {
1474                 uint64_t pool_guid;
1475
1476                 verify(nvlist_lookup_uint64(zhp->zpool_config,
1477                     ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1478                 if (pool_guid == import->guid)
1479                         found = 1;
1480         }
1481
1482         zpool_close(zhp);
1483         return (found);
1484 }
1485
1486 nvlist_t *
1487 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1488 {
1489         verify(import->poolname == NULL || import->guid == 0);
1490
1491         if (import->unique)
1492                 import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1493
1494         if (import->cachefile != NULL)
1495                 return (zpool_find_import_cached(hdl, import->cachefile,
1496                     import->poolname, import->guid));
1497
1498         return (zpool_find_import_impl(hdl, import));
1499 }
1500
1501 boolean_t
1502 find_guid(nvlist_t *nv, uint64_t guid)
1503 {
1504         uint64_t tmp;
1505         nvlist_t **child;
1506         uint_t c, children;
1507
1508         verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1509         if (tmp == guid)
1510                 return (B_TRUE);
1511
1512         if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1513             &child, &children) == 0) {
1514                 for (c = 0; c < children; c++)
1515                         if (find_guid(child[c], guid))
1516                                 return (B_TRUE);
1517         }
1518
1519         return (B_FALSE);
1520 }
1521
1522 typedef struct aux_cbdata {
1523         const char      *cb_type;
1524         uint64_t        cb_guid;
1525         zpool_handle_t  *cb_zhp;
1526 } aux_cbdata_t;
1527
1528 static int
1529 find_aux(zpool_handle_t *zhp, void *data)
1530 {
1531         aux_cbdata_t *cbp = data;
1532         nvlist_t **list;
1533         uint_t i, count;
1534         uint64_t guid;
1535         nvlist_t *nvroot;
1536
1537         verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1538             &nvroot) == 0);
1539
1540         if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1541             &list, &count) == 0) {
1542                 for (i = 0; i < count; i++) {
1543                         verify(nvlist_lookup_uint64(list[i],
1544                             ZPOOL_CONFIG_GUID, &guid) == 0);
1545                         if (guid == cbp->cb_guid) {
1546                                 cbp->cb_zhp = zhp;
1547                                 return (1);
1548                         }
1549                 }
1550         }
1551
1552         zpool_close(zhp);
1553         return (0);
1554 }
1555
1556 /*
1557  * Determines if the pool is in use.  If so, it returns true and the state of
1558  * the pool as well as the name of the pool.  Both strings are allocated and
1559  * must be freed by the caller.
1560  */
1561 int
1562 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1563     boolean_t *inuse)
1564 {
1565         nvlist_t *config;
1566         char *name;
1567         boolean_t ret;
1568         uint64_t guid, vdev_guid;
1569         zpool_handle_t *zhp;
1570         nvlist_t *pool_config;
1571         uint64_t stateval, isspare;
1572         aux_cbdata_t cb = { 0 };
1573         boolean_t isactive;
1574
1575         *inuse = B_FALSE;
1576
1577         if (zpool_read_label(fd, &config) != 0) {
1578                 (void) no_memory(hdl);
1579                 return (-1);
1580         }
1581
1582         if (config == NULL)
1583                 return (0);
1584
1585         verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1586             &stateval) == 0);
1587         verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1588             &vdev_guid) == 0);
1589
1590         if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1591                 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1592                     &name) == 0);
1593                 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1594                     &guid) == 0);
1595         }
1596
1597         switch (stateval) {
1598         case POOL_STATE_EXPORTED:
1599                 /*
1600                  * A pool with an exported state may in fact be imported
1601                  * read-only, so check the in-core state to see if it's
1602                  * active and imported read-only.  If it is, set
1603                  * its state to active.
1604                  */
1605                 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1606                     (zhp = zpool_open_canfail(hdl, name)) != NULL &&
1607                     zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1608                         stateval = POOL_STATE_ACTIVE;
1609
1610                 ret = B_TRUE;
1611                 break;
1612
1613         case POOL_STATE_ACTIVE:
1614                 /*
1615                  * For an active pool, we have to determine if it's really part
1616                  * of a currently active pool (in which case the pool will exist
1617                  * and the guid will be the same), or whether it's part of an
1618                  * active pool that was disconnected without being explicitly
1619                  * exported.
1620                  */
1621                 if (pool_active(hdl, name, guid, &isactive) != 0) {
1622                         nvlist_free(config);
1623                         return (-1);
1624                 }
1625
1626                 if (isactive) {
1627                         /*
1628                          * Because the device may have been removed while
1629                          * offlined, we only report it as active if the vdev is
1630                          * still present in the config.  Otherwise, pretend like
1631                          * it's not in use.
1632                          */
1633                         if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1634                             (pool_config = zpool_get_config(zhp, NULL))
1635                             != NULL) {
1636                                 nvlist_t *nvroot;
1637
1638                                 verify(nvlist_lookup_nvlist(pool_config,
1639                                     ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1640                                 ret = find_guid(nvroot, vdev_guid);
1641                         } else {
1642                                 ret = B_FALSE;
1643                         }
1644
1645                         /*
1646                          * If this is an active spare within another pool, we
1647                          * treat it like an unused hot spare.  This allows the
1648                          * user to create a pool with a hot spare that currently
1649                          * in use within another pool.  Since we return B_TRUE,
1650                          * libdiskmgt will continue to prevent generic consumers
1651                          * from using the device.
1652                          */
1653                         if (ret && nvlist_lookup_uint64(config,
1654                             ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1655                                 stateval = POOL_STATE_SPARE;
1656
1657                         if (zhp != NULL)
1658                                 zpool_close(zhp);
1659                 } else {
1660                         stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1661                         ret = B_TRUE;
1662                 }
1663                 break;
1664
1665         case POOL_STATE_SPARE:
1666                 /*
1667                  * For a hot spare, it can be either definitively in use, or
1668                  * potentially active.  To determine if it's in use, we iterate
1669                  * over all pools in the system and search for one with a spare
1670                  * with a matching guid.
1671                  *
1672                  * Due to the shared nature of spares, we don't actually report
1673                  * the potentially active case as in use.  This means the user
1674                  * can freely create pools on the hot spares of exported pools,
1675                  * but to do otherwise makes the resulting code complicated, and
1676                  * we end up having to deal with this case anyway.
1677                  */
1678                 cb.cb_zhp = NULL;
1679                 cb.cb_guid = vdev_guid;
1680                 cb.cb_type = ZPOOL_CONFIG_SPARES;
1681                 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1682                         name = (char *)zpool_get_name(cb.cb_zhp);
1683                         ret = TRUE;
1684                 } else {
1685                         ret = FALSE;
1686                 }
1687                 break;
1688
1689         case POOL_STATE_L2CACHE:
1690
1691                 /*
1692                  * Check if any pool is currently using this l2cache device.
1693                  */
1694                 cb.cb_zhp = NULL;
1695                 cb.cb_guid = vdev_guid;
1696                 cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1697                 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1698                         name = (char *)zpool_get_name(cb.cb_zhp);
1699                         ret = TRUE;
1700                 } else {
1701                         ret = FALSE;
1702                 }
1703                 break;
1704
1705         default:
1706                 ret = B_FALSE;
1707         }
1708
1709
1710         if (ret) {
1711                 if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1712                         if (cb.cb_zhp)
1713                                 zpool_close(cb.cb_zhp);
1714                         nvlist_free(config);
1715                         return (-1);
1716                 }
1717                 *state = (pool_state_t)stateval;
1718         }
1719
1720         if (cb.cb_zhp)
1721                 zpool_close(cb.cb_zhp);
1722
1723         nvlist_free(config);
1724         *inuse = ret;
1725         return (0);
1726 }