]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/include/llvm/ADT/FoldingSet.h
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / include / llvm / ADT / FoldingSet.h
1 //===-- llvm/ADT/FoldingSet.h - Uniquing Hash Set ---------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a hash set that can be used to remove duplication of nodes
11 // in a graph.  This code was originally created by Chris Lattner for use with
12 // SelectionDAGCSEMap, but was isolated to provide use across the llvm code set.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_ADT_FOLDINGSET_H
17 #define LLVM_ADT_FOLDINGSET_H
18
19 #include "llvm/Support/DataTypes.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22
23 namespace llvm {
24   class APFloat;
25   class APInt;
26   class BumpPtrAllocator;
27
28 /// This folding set used for two purposes:
29 ///   1. Given information about a node we want to create, look up the unique
30 ///      instance of the node in the set.  If the node already exists, return
31 ///      it, otherwise return the bucket it should be inserted into.
32 ///   2. Given a node that has already been created, remove it from the set.
33 ///
34 /// This class is implemented as a single-link chained hash table, where the
35 /// "buckets" are actually the nodes themselves (the next pointer is in the
36 /// node).  The last node points back to the bucket to simplify node removal.
37 ///
38 /// Any node that is to be included in the folding set must be a subclass of
39 /// FoldingSetNode.  The node class must also define a Profile method used to
40 /// establish the unique bits of data for the node.  The Profile method is
41 /// passed a FoldingSetNodeID object which is used to gather the bits.  Just
42 /// call one of the Add* functions defined in the FoldingSetImpl::NodeID class.
43 /// NOTE: That the folding set does not own the nodes and it is the
44 /// responsibility of the user to dispose of the nodes.
45 ///
46 /// Eg.
47 ///    class MyNode : public FoldingSetNode {
48 ///    private:
49 ///      std::string Name;
50 ///      unsigned Value;
51 ///    public:
52 ///      MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
53 ///       ...
54 ///      void Profile(FoldingSetNodeID &ID) const {
55 ///        ID.AddString(Name);
56 ///        ID.AddInteger(Value);
57 ///      }
58 ///      ...
59 ///    };
60 ///
61 /// To define the folding set itself use the FoldingSet template;
62 ///
63 /// Eg.
64 ///    FoldingSet<MyNode> MyFoldingSet;
65 ///
66 /// Four public methods are available to manipulate the folding set;
67 ///
68 /// 1) If you have an existing node that you want add to the set but unsure
69 /// that the node might already exist then call;
70 ///
71 ///    MyNode *M = MyFoldingSet.GetOrInsertNode(N);
72 ///
73 /// If The result is equal to the input then the node has been inserted.
74 /// Otherwise, the result is the node existing in the folding set, and the
75 /// input can be discarded (use the result instead.)
76 ///
77 /// 2) If you are ready to construct a node but want to check if it already
78 /// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
79 /// check;
80 ///
81 ///   FoldingSetNodeID ID;
82 ///   ID.AddString(Name);
83 ///   ID.AddInteger(Value);
84 ///   void *InsertPoint;
85 ///
86 ///    MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
87 ///
88 /// If found then M with be non-NULL, else InsertPoint will point to where it
89 /// should be inserted using InsertNode.
90 ///
91 /// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new
92 /// node with FindNodeOrInsertPos;
93 ///
94 ///    InsertNode(N, InsertPoint);
95 ///
96 /// 4) Finally, if you want to remove a node from the folding set call;
97 ///
98 ///    bool WasRemoved = RemoveNode(N);
99 ///
100 /// The result indicates whether the node existed in the folding set.
101
102 class FoldingSetNodeID;
103
104 //===----------------------------------------------------------------------===//
105 /// FoldingSetImpl - Implements the folding set functionality.  The main
106 /// structure is an array of buckets.  Each bucket is indexed by the hash of
107 /// the nodes it contains.  The bucket itself points to the nodes contained
108 /// in the bucket via a singly linked list.  The last node in the list points
109 /// back to the bucket to facilitate node removal.
110 ///
111 class FoldingSetImpl {
112 protected:
113   /// Buckets - Array of bucket chains.
114   ///
115   void **Buckets;
116
117   /// NumBuckets - Length of the Buckets array.  Always a power of 2.
118   ///
119   unsigned NumBuckets;
120
121   /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
122   /// is greater than twice the number of buckets.
123   unsigned NumNodes;
124
125 public:
126   explicit FoldingSetImpl(unsigned Log2InitSize = 6);
127   virtual ~FoldingSetImpl();
128
129   //===--------------------------------------------------------------------===//
130   /// Node - This class is used to maintain the singly linked bucket list in
131   /// a folding set.
132   ///
133   class Node {
134   private:
135     // NextInFoldingSetBucket - next link in the bucket list.
136     void *NextInFoldingSetBucket;
137
138   public:
139
140     Node() : NextInFoldingSetBucket(0) {}
141
142     // Accessors
143     void *getNextInBucket() const { return NextInFoldingSetBucket; }
144     void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
145   };
146
147   /// clear - Remove all nodes from the folding set.
148   void clear();
149
150   /// RemoveNode - Remove a node from the folding set, returning true if one
151   /// was removed or false if the node was not in the folding set.
152   bool RemoveNode(Node *N);
153
154   /// GetOrInsertNode - If there is an existing simple Node exactly
155   /// equal to the specified node, return it.  Otherwise, insert 'N' and return
156   /// it instead.
157   Node *GetOrInsertNode(Node *N);
158
159   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
160   /// return it.  If not, return the insertion token that will make insertion
161   /// faster.
162   Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
163
164   /// InsertNode - Insert the specified node into the folding set, knowing that
165   /// it is not already in the folding set.  InsertPos must be obtained from
166   /// FindNodeOrInsertPos.
167   void InsertNode(Node *N, void *InsertPos);
168
169   /// InsertNode - Insert the specified node into the folding set, knowing that
170   /// it is not already in the folding set.
171   void InsertNode(Node *N) {
172     Node *Inserted = GetOrInsertNode(N);
173     (void)Inserted;
174     assert(Inserted == N && "Node already inserted!");
175   }
176
177   /// size - Returns the number of nodes in the folding set.
178   unsigned size() const { return NumNodes; }
179
180   /// empty - Returns true if there are no nodes in the folding set.
181   bool empty() const { return NumNodes == 0; }
182
183 private:
184
185   /// GrowHashTable - Double the size of the hash table and rehash everything.
186   ///
187   void GrowHashTable();
188
189 protected:
190
191   /// GetNodeProfile - Instantiations of the FoldingSet template implement
192   /// this function to gather data bits for the given node.
193   virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0;
194   /// NodeEquals - Instantiations of the FoldingSet template implement
195   /// this function to compare the given node with the given ID.
196   virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID,
197                           FoldingSetNodeID &TempID) const=0;
198   /// NodeEquals - Instantiations of the FoldingSet template implement
199   /// this function to compute a hash value for the given node.
200   virtual unsigned ComputeNodeHash(Node *N,
201                                    FoldingSetNodeID &TempID) const = 0;
202 };
203
204 //===----------------------------------------------------------------------===//
205
206 template<typename T> struct FoldingSetTrait;
207
208 /// DefaultFoldingSetTrait - This class provides default implementations
209 /// for FoldingSetTrait implementations.
210 ///
211 template<typename T> struct DefaultFoldingSetTrait {
212   static void Profile(const T &X, FoldingSetNodeID &ID) {
213     X.Profile(ID);
214   }
215   static void Profile(T &X, FoldingSetNodeID &ID) {
216     X.Profile(ID);
217   }
218
219   // Equals - Test if the profile for X would match ID, using TempID
220   // to compute a temporary ID if necessary. The default implementation
221   // just calls Profile and does a regular comparison. Implementations
222   // can override this to provide more efficient implementations.
223   static inline bool Equals(T &X, const FoldingSetNodeID &ID,
224                             FoldingSetNodeID &TempID);
225
226   // ComputeHash - Compute a hash value for X, using TempID to
227   // compute a temporary ID if necessary. The default implementation
228   // just calls Profile and does a regular hash computation.
229   // Implementations can override this to provide more efficient
230   // implementations.
231   static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID);
232 };
233
234 /// FoldingSetTrait - This trait class is used to define behavior of how
235 /// to "profile" (in the FoldingSet parlance) an object of a given type.
236 /// The default behavior is to invoke a 'Profile' method on an object, but
237 /// through template specialization the behavior can be tailored for specific
238 /// types.  Combined with the FoldingSetNodeWrapper class, one can add objects
239 /// to FoldingSets that were not originally designed to have that behavior.
240 template<typename T> struct FoldingSetTrait
241   : public DefaultFoldingSetTrait<T> {};
242
243 template<typename T, typename Ctx> struct ContextualFoldingSetTrait;
244
245 /// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but
246 /// for ContextualFoldingSets.
247 template<typename T, typename Ctx>
248 struct DefaultContextualFoldingSetTrait {
249   static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) {
250     X.Profile(ID, Context);
251   }
252   static inline bool Equals(T &X, const FoldingSetNodeID &ID,
253                             FoldingSetNodeID &TempID, Ctx Context);
254   static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID,
255                                      Ctx Context);
256 };
257
258 /// ContextualFoldingSetTrait - Like FoldingSetTrait, but for
259 /// ContextualFoldingSets.
260 template<typename T, typename Ctx> struct ContextualFoldingSetTrait
261   : public DefaultContextualFoldingSetTrait<T, Ctx> {};
262
263 //===--------------------------------------------------------------------===//
264 /// FoldingSetNodeIDRef - This class describes a reference to an interned
265 /// FoldingSetNodeID, which can be a useful to store node id data rather
266 /// than using plain FoldingSetNodeIDs, since the 32-element SmallVector
267 /// is often much larger than necessary, and the possibility of heap
268 /// allocation means it requires a non-trivial destructor call.
269 class FoldingSetNodeIDRef {
270   const unsigned *Data;
271   size_t Size;
272 public:
273   FoldingSetNodeIDRef() : Data(0), Size(0) {}
274   FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {}
275
276   /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
277   /// used to lookup the node in the FoldingSetImpl.
278   unsigned ComputeHash() const;
279
280   bool operator==(FoldingSetNodeIDRef) const;
281
282   const unsigned *getData() const { return Data; }
283   size_t getSize() const { return Size; }
284 };
285
286 //===--------------------------------------------------------------------===//
287 /// FoldingSetNodeID - This class is used to gather all the unique data bits of
288 /// a node.  When all the bits are gathered this class is used to produce a
289 /// hash value for the node.
290 ///
291 class FoldingSetNodeID {
292   /// Bits - Vector of all the data bits that make the node unique.
293   /// Use a SmallVector to avoid a heap allocation in the common case.
294   SmallVector<unsigned, 32> Bits;
295
296 public:
297   FoldingSetNodeID() {}
298
299   FoldingSetNodeID(FoldingSetNodeIDRef Ref)
300     : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {}
301
302   /// Add* - Add various data types to Bit data.
303   ///
304   void AddPointer(const void *Ptr);
305   void AddInteger(signed I);
306   void AddInteger(unsigned I);
307   void AddInteger(long I);
308   void AddInteger(unsigned long I);
309   void AddInteger(long long I);
310   void AddInteger(unsigned long long I);
311   void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); }
312   void AddString(StringRef String);
313   void AddNodeID(const FoldingSetNodeID &ID);
314
315   template <typename T>
316   inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); }
317
318   /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
319   /// object to be used to compute a new profile.
320   inline void clear() { Bits.clear(); }
321
322   /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
323   /// to lookup the node in the FoldingSetImpl.
324   unsigned ComputeHash() const;
325
326   /// operator== - Used to compare two nodes to each other.
327   ///
328   bool operator==(const FoldingSetNodeID &RHS) const;
329   bool operator==(const FoldingSetNodeIDRef RHS) const;
330
331   /// Intern - Copy this node's data to a memory region allocated from the
332   /// given allocator and return a FoldingSetNodeIDRef describing the
333   /// interned data.
334   FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const;
335 };
336
337 // Convenience type to hide the implementation of the folding set.
338 typedef FoldingSetImpl::Node FoldingSetNode;
339 template<class T> class FoldingSetIterator;
340 template<class T> class FoldingSetBucketIterator;
341
342 // Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which
343 // require the definition of FoldingSetNodeID.
344 template<typename T>
345 inline bool
346 DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID,
347                                   FoldingSetNodeID &TempID) {
348   FoldingSetTrait<T>::Profile(X, TempID);
349   return TempID == ID;
350 }
351 template<typename T>
352 inline unsigned
353 DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) {
354   FoldingSetTrait<T>::Profile(X, TempID);
355   return TempID.ComputeHash();
356 }
357 template<typename T, typename Ctx>
358 inline bool
359 DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X,
360                                                  const FoldingSetNodeID &ID,
361                                                  FoldingSetNodeID &TempID,
362                                                  Ctx Context) {
363   ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
364   return TempID == ID;
365 }
366 template<typename T, typename Ctx>
367 inline unsigned
368 DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X,
369                                                       FoldingSetNodeID &TempID,
370                                                       Ctx Context) {
371   ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
372   return TempID.ComputeHash();
373 }
374
375 //===----------------------------------------------------------------------===//
376 /// FoldingSet - This template class is used to instantiate a specialized
377 /// implementation of the folding set to the node class T.  T must be a
378 /// subclass of FoldingSetNode and implement a Profile function.
379 ///
380 template<class T> class FoldingSet : public FoldingSetImpl {
381 private:
382   /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
383   /// way to convert nodes into a unique specifier.
384   virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const {
385     T *TN = static_cast<T *>(N);
386     FoldingSetTrait<T>::Profile(*TN, ID);
387   }
388   /// NodeEquals - Instantiations may optionally provide a way to compare a
389   /// node with a specified ID.
390   virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID,
391                           FoldingSetNodeID &TempID) const {
392     T *TN = static_cast<T *>(N);
393     return FoldingSetTrait<T>::Equals(*TN, ID, TempID);
394   }
395   /// NodeEquals - Instantiations may optionally provide a way to compute a
396   /// hash value directly from a node.
397   virtual unsigned ComputeNodeHash(Node *N,
398                                    FoldingSetNodeID &TempID) const {
399     T *TN = static_cast<T *>(N);
400     return FoldingSetTrait<T>::ComputeHash(*TN, TempID);
401   }
402
403 public:
404   explicit FoldingSet(unsigned Log2InitSize = 6)
405   : FoldingSetImpl(Log2InitSize)
406   {}
407
408   typedef FoldingSetIterator<T> iterator;
409   iterator begin() { return iterator(Buckets); }
410   iterator end() { return iterator(Buckets+NumBuckets); }
411
412   typedef FoldingSetIterator<const T> const_iterator;
413   const_iterator begin() const { return const_iterator(Buckets); }
414   const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
415
416   typedef FoldingSetBucketIterator<T> bucket_iterator;
417
418   bucket_iterator bucket_begin(unsigned hash) {
419     return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
420   }
421
422   bucket_iterator bucket_end(unsigned hash) {
423     return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
424   }
425
426   /// GetOrInsertNode - If there is an existing simple Node exactly
427   /// equal to the specified node, return it.  Otherwise, insert 'N' and
428   /// return it instead.
429   T *GetOrInsertNode(Node *N) {
430     return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
431   }
432
433   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
434   /// return it.  If not, return the insertion token that will make insertion
435   /// faster.
436   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
437     return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
438   }
439 };
440
441 //===----------------------------------------------------------------------===//
442 /// ContextualFoldingSet - This template class is a further refinement
443 /// of FoldingSet which provides a context argument when calling
444 /// Profile on its nodes.  Currently, that argument is fixed at
445 /// initialization time.
446 ///
447 /// T must be a subclass of FoldingSetNode and implement a Profile
448 /// function with signature
449 ///   void Profile(llvm::FoldingSetNodeID &, Ctx);
450 template <class T, class Ctx>
451 class ContextualFoldingSet : public FoldingSetImpl {
452   // Unfortunately, this can't derive from FoldingSet<T> because the
453   // construction vtable for FoldingSet<T> requires
454   // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn
455   // requires a single-argument T::Profile().
456
457 private:
458   Ctx Context;
459
460   /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
461   /// way to convert nodes into a unique specifier.
462   virtual void GetNodeProfile(FoldingSetImpl::Node *N,
463                               FoldingSetNodeID &ID) const {
464     T *TN = static_cast<T *>(N);
465     ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context);
466   }
467   virtual bool NodeEquals(FoldingSetImpl::Node *N,
468                           const FoldingSetNodeID &ID,
469                           FoldingSetNodeID &TempID) const {
470     T *TN = static_cast<T *>(N);
471     return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, TempID, Context);
472   }
473   virtual unsigned ComputeNodeHash(FoldingSetImpl::Node *N,
474                                    FoldingSetNodeID &TempID) const {
475     T *TN = static_cast<T *>(N);
476     return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context);
477   }
478
479 public:
480   explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6)
481   : FoldingSetImpl(Log2InitSize), Context(Context)
482   {}
483
484   Ctx getContext() const { return Context; }
485
486
487   typedef FoldingSetIterator<T> iterator;
488   iterator begin() { return iterator(Buckets); }
489   iterator end() { return iterator(Buckets+NumBuckets); }
490
491   typedef FoldingSetIterator<const T> const_iterator;
492   const_iterator begin() const { return const_iterator(Buckets); }
493   const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
494
495   typedef FoldingSetBucketIterator<T> bucket_iterator;
496
497   bucket_iterator bucket_begin(unsigned hash) {
498     return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
499   }
500
501   bucket_iterator bucket_end(unsigned hash) {
502     return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
503   }
504
505   /// GetOrInsertNode - If there is an existing simple Node exactly
506   /// equal to the specified node, return it.  Otherwise, insert 'N'
507   /// and return it instead.
508   T *GetOrInsertNode(Node *N) {
509     return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
510   }
511
512   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it
513   /// exists, return it.  If not, return the insertion token that will
514   /// make insertion faster.
515   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
516     return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
517   }
518 };
519
520 //===----------------------------------------------------------------------===//
521 /// FoldingSetIteratorImpl - This is the common iterator support shared by all
522 /// folding sets, which knows how to walk the folding set hash table.
523 class FoldingSetIteratorImpl {
524 protected:
525   FoldingSetNode *NodePtr;
526   FoldingSetIteratorImpl(void **Bucket);
527   void advance();
528
529 public:
530   bool operator==(const FoldingSetIteratorImpl &RHS) const {
531     return NodePtr == RHS.NodePtr;
532   }
533   bool operator!=(const FoldingSetIteratorImpl &RHS) const {
534     return NodePtr != RHS.NodePtr;
535   }
536 };
537
538
539 template<class T>
540 class FoldingSetIterator : public FoldingSetIteratorImpl {
541 public:
542   explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}
543
544   T &operator*() const {
545     return *static_cast<T*>(NodePtr);
546   }
547
548   T *operator->() const {
549     return static_cast<T*>(NodePtr);
550   }
551
552   inline FoldingSetIterator &operator++() {          // Preincrement
553     advance();
554     return *this;
555   }
556   FoldingSetIterator operator++(int) {        // Postincrement
557     FoldingSetIterator tmp = *this; ++*this; return tmp;
558   }
559 };
560
561 //===----------------------------------------------------------------------===//
562 /// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
563 /// shared by all folding sets, which knows how to walk a particular bucket
564 /// of a folding set hash table.
565
566 class FoldingSetBucketIteratorImpl {
567 protected:
568   void *Ptr;
569
570   explicit FoldingSetBucketIteratorImpl(void **Bucket);
571
572   FoldingSetBucketIteratorImpl(void **Bucket, bool)
573     : Ptr(Bucket) {}
574
575   void advance() {
576     void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket();
577     uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1;
578     Ptr = reinterpret_cast<void*>(x);
579   }
580
581 public:
582   bool operator==(const FoldingSetBucketIteratorImpl &RHS) const {
583     return Ptr == RHS.Ptr;
584   }
585   bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const {
586     return Ptr != RHS.Ptr;
587   }
588 };
589
590
591 template<class T>
592 class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl {
593 public:
594   explicit FoldingSetBucketIterator(void **Bucket) :
595     FoldingSetBucketIteratorImpl(Bucket) {}
596
597   FoldingSetBucketIterator(void **Bucket, bool) :
598     FoldingSetBucketIteratorImpl(Bucket, true) {}
599
600   T &operator*() const { return *static_cast<T*>(Ptr); }
601   T *operator->() const { return static_cast<T*>(Ptr); }
602
603   inline FoldingSetBucketIterator &operator++() { // Preincrement
604     advance();
605     return *this;
606   }
607   FoldingSetBucketIterator operator++(int) {      // Postincrement
608     FoldingSetBucketIterator tmp = *this; ++*this; return tmp;
609   }
610 };
611
612 //===----------------------------------------------------------------------===//
613 /// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
614 /// types in an enclosing object so that they can be inserted into FoldingSets.
615 template <typename T>
616 class FoldingSetNodeWrapper : public FoldingSetNode {
617   T data;
618 public:
619   explicit FoldingSetNodeWrapper(const T &x) : data(x) {}
620   virtual ~FoldingSetNodeWrapper() {}
621
622   template<typename A1>
623   explicit FoldingSetNodeWrapper(const A1 &a1)
624     : data(a1) {}
625
626   template <typename A1, typename A2>
627   explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2)
628     : data(a1,a2) {}
629
630   template <typename A1, typename A2, typename A3>
631   explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3)
632     : data(a1,a2,a3) {}
633
634   template <typename A1, typename A2, typename A3, typename A4>
635   explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3,
636                                  const A4 &a4)
637     : data(a1,a2,a3,a4) {}
638
639   template <typename A1, typename A2, typename A3, typename A4, typename A5>
640   explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3,
641                                  const A4 &a4, const A5 &a5)
642   : data(a1,a2,a3,a4,a5) {}
643
644
645   void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); }
646
647   T &getValue() { return data; }
648   const T &getValue() const { return data; }
649
650   operator T&() { return data; }
651   operator const T&() const { return data; }
652 };
653
654 //===----------------------------------------------------------------------===//
655 /// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores
656 /// a FoldingSetNodeID value rather than requiring the node to recompute it
657 /// each time it is needed. This trades space for speed (which can be
658 /// significant if the ID is long), and it also permits nodes to drop
659 /// information that would otherwise only be required for recomputing an ID.
660 class FastFoldingSetNode : public FoldingSetNode {
661   FoldingSetNodeID FastID;
662 protected:
663   explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {}
664 public:
665   void Profile(FoldingSetNodeID &ID) const { 
666     ID.AddNodeID(FastID); 
667   }
668 };
669
670 //===----------------------------------------------------------------------===//
671 // Partial specializations of FoldingSetTrait.
672
673 template<typename T> struct FoldingSetTrait<T*> {
674   static inline void Profile(T *X, FoldingSetNodeID &ID) {
675     ID.AddPointer(X);
676   }
677 };
678 } // End of namespace llvm.
679
680 #endif