]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/include/llvm/ADT/Twine.h
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / include / llvm / ADT / Twine.h
1 //===-- Twine.h - Fast Temporary String Concatenation -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #ifndef LLVM_ADT_TWINE_H
11 #define LLVM_ADT_TWINE_H
12
13 #include "llvm/ADT/StringRef.h"
14 #include "llvm/Support/DataTypes.h"
15 #include <cassert>
16 #include <string>
17
18 namespace llvm {
19   template <typename T>
20   class SmallVectorImpl;
21   class StringRef;
22   class raw_ostream;
23
24   /// Twine - A lightweight data structure for efficiently representing the
25   /// concatenation of temporary values as strings.
26   ///
27   /// A Twine is a kind of rope, it represents a concatenated string using a
28   /// binary-tree, where the string is the preorder of the nodes. Since the
29   /// Twine can be efficiently rendered into a buffer when its result is used,
30   /// it avoids the cost of generating temporary values for intermediate string
31   /// results -- particularly in cases when the Twine result is never
32   /// required. By explicitly tracking the type of leaf nodes, we can also avoid
33   /// the creation of temporary strings for conversions operations (such as
34   /// appending an integer to a string).
35   ///
36   /// A Twine is not intended for use directly and should not be stored, its
37   /// implementation relies on the ability to store pointers to temporary stack
38   /// objects which may be deallocated at the end of a statement. Twines should
39   /// only be used accepted as const references in arguments, when an API wishes
40   /// to accept possibly-concatenated strings.
41   ///
42   /// Twines support a special 'null' value, which always concatenates to form
43   /// itself, and renders as an empty string. This can be returned from APIs to
44   /// effectively nullify any concatenations performed on the result.
45   ///
46   /// \b Implementation \n
47   ///
48   /// Given the nature of a Twine, it is not possible for the Twine's
49   /// concatenation method to construct interior nodes; the result must be
50   /// represented inside the returned value. For this reason a Twine object
51   /// actually holds two values, the left- and right-hand sides of a
52   /// concatenation. We also have nullary Twine objects, which are effectively
53   /// sentinel values that represent empty strings.
54   ///
55   /// Thus, a Twine can effectively have zero, one, or two children. The \see
56   /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
57   /// testing the number of children.
58   ///
59   /// We maintain a number of invariants on Twine objects (FIXME: Why):
60   ///  - Nullary twines are always represented with their Kind on the left-hand
61   ///    side, and the Empty kind on the right-hand side.
62   ///  - Unary twines are always represented with the value on the left-hand
63   ///    side, and the Empty kind on the right-hand side.
64   ///  - If a Twine has another Twine as a child, that child should always be
65   ///    binary (otherwise it could have been folded into the parent).
66   ///
67   /// These invariants are check by \see isValid().
68   ///
69   /// \b Efficiency Considerations \n
70   ///
71   /// The Twine is designed to yield efficient and small code for common
72   /// situations. For this reason, the concat() method is inlined so that
73   /// concatenations of leaf nodes can be optimized into stores directly into a
74   /// single stack allocated object.
75   ///
76   /// In practice, not all compilers can be trusted to optimize concat() fully,
77   /// so we provide two additional methods (and accompanying operator+
78   /// overloads) to guarantee that particularly important cases (cstring plus
79   /// StringRef) codegen as desired.
80   class Twine {
81     /// NodeKind - Represent the type of an argument.
82     enum NodeKind {
83       /// An empty string; the result of concatenating anything with it is also
84       /// empty.
85       NullKind,
86
87       /// The empty string.
88       EmptyKind,
89
90       /// A pointer to a Twine instance.
91       TwineKind,
92
93       /// A pointer to a C string instance.
94       CStringKind,
95
96       /// A pointer to an std::string instance.
97       StdStringKind,
98
99       /// A pointer to a StringRef instance.
100       StringRefKind,
101
102       /// A char value reinterpreted as a pointer, to render as a character.
103       CharKind,
104
105       /// An unsigned int value reinterpreted as a pointer, to render as an
106       /// unsigned decimal integer.
107       DecUIKind,
108
109       /// An int value reinterpreted as a pointer, to render as a signed
110       /// decimal integer.
111       DecIKind,
112
113       /// A pointer to an unsigned long value, to render as an unsigned decimal
114       /// integer.
115       DecULKind,
116
117       /// A pointer to a long value, to render as a signed decimal integer.
118       DecLKind,
119
120       /// A pointer to an unsigned long long value, to render as an unsigned
121       /// decimal integer.
122       DecULLKind,
123
124       /// A pointer to a long long value, to render as a signed decimal integer.
125       DecLLKind,
126
127       /// A pointer to a uint64_t value, to render as an unsigned hexadecimal
128       /// integer.
129       UHexKind
130     };
131
132     union Child
133     {
134       const Twine *twine;
135       const char *cString;
136       const std::string *stdString;
137       const StringRef *stringRef;
138       char character;
139       unsigned int decUI;
140       int decI;
141       const unsigned long *decUL;
142       const long *decL;
143       const unsigned long long *decULL;
144       const long long *decLL;
145       const uint64_t *uHex;
146     };
147
148   private:
149     /// LHS - The prefix in the concatenation, which may be uninitialized for
150     /// Null or Empty kinds.
151     Child LHS;
152     /// RHS - The suffix in the concatenation, which may be uninitialized for
153     /// Null or Empty kinds.
154     Child RHS;
155     // enums stored as unsigned chars to save on space while some compilers
156     // don't support specifying the backing type for an enum
157     /// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
158     unsigned char LHSKind;
159     /// RHSKind - The NodeKind of the left hand side, \see getLHSKind().
160     unsigned char RHSKind;
161
162   private:
163     /// Construct a nullary twine; the kind must be NullKind or EmptyKind.
164     explicit Twine(NodeKind Kind)
165       : LHSKind(Kind), RHSKind(EmptyKind) {
166       assert(isNullary() && "Invalid kind!");
167     }
168
169     /// Construct a binary twine.
170     explicit Twine(const Twine &_LHS, const Twine &_RHS)
171       : LHSKind(TwineKind), RHSKind(TwineKind) {
172       LHS.twine = &_LHS;
173       RHS.twine = &_RHS;
174       assert(isValid() && "Invalid twine!");
175     }
176
177     /// Construct a twine from explicit values.
178     explicit Twine(Child _LHS, NodeKind _LHSKind,
179                    Child _RHS, NodeKind _RHSKind)
180       : LHS(_LHS), RHS(_RHS), LHSKind(_LHSKind), RHSKind(_RHSKind) {
181       assert(isValid() && "Invalid twine!");
182     }
183
184     /// isNull - Check for the null twine.
185     bool isNull() const {
186       return getLHSKind() == NullKind;
187     }
188
189     /// isEmpty - Check for the empty twine.
190     bool isEmpty() const {
191       return getLHSKind() == EmptyKind;
192     }
193
194     /// isNullary - Check if this is a nullary twine (null or empty).
195     bool isNullary() const {
196       return isNull() || isEmpty();
197     }
198
199     /// isUnary - Check if this is a unary twine.
200     bool isUnary() const {
201       return getRHSKind() == EmptyKind && !isNullary();
202     }
203
204     /// isBinary - Check if this is a binary twine.
205     bool isBinary() const {
206       return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
207     }
208
209     /// isValid - Check if this is a valid twine (satisfying the invariants on
210     /// order and number of arguments).
211     bool isValid() const {
212       // Nullary twines always have Empty on the RHS.
213       if (isNullary() && getRHSKind() != EmptyKind)
214         return false;
215
216       // Null should never appear on the RHS.
217       if (getRHSKind() == NullKind)
218         return false;
219
220       // The RHS cannot be non-empty if the LHS is empty.
221       if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
222         return false;
223
224       // A twine child should always be binary.
225       if (getLHSKind() == TwineKind &&
226           !LHS.twine->isBinary())
227         return false;
228       if (getRHSKind() == TwineKind &&
229           !RHS.twine->isBinary())
230         return false;
231
232       return true;
233     }
234
235     /// getLHSKind - Get the NodeKind of the left-hand side.
236     NodeKind getLHSKind() const { return (NodeKind) LHSKind; }
237
238     /// getRHSKind - Get the NodeKind of the left-hand side.
239     NodeKind getRHSKind() const { return (NodeKind) RHSKind; }
240
241     /// printOneChild - Print one child from a twine.
242     void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const;
243
244     /// printOneChildRepr - Print the representation of one child from a twine.
245     void printOneChildRepr(raw_ostream &OS, Child Ptr,
246                            NodeKind Kind) const;
247
248   public:
249     /// @name Constructors
250     /// @{
251
252     /// Construct from an empty string.
253     /*implicit*/ Twine() : LHSKind(EmptyKind), RHSKind(EmptyKind) {
254       assert(isValid() && "Invalid twine!");
255     }
256
257     /// Construct from a C string.
258     ///
259     /// We take care here to optimize "" into the empty twine -- this will be
260     /// optimized out for string constants. This allows Twine arguments have
261     /// default "" values, without introducing unnecessary string constants.
262     /*implicit*/ Twine(const char *Str)
263       : RHSKind(EmptyKind) {
264       if (Str[0] != '\0') {
265         LHS.cString = Str;
266         LHSKind = CStringKind;
267       } else
268         LHSKind = EmptyKind;
269
270       assert(isValid() && "Invalid twine!");
271     }
272
273     /// Construct from an std::string.
274     /*implicit*/ Twine(const std::string &Str)
275       : LHSKind(StdStringKind), RHSKind(EmptyKind) {
276       LHS.stdString = &Str;
277       assert(isValid() && "Invalid twine!");
278     }
279
280     /// Construct from a StringRef.
281     /*implicit*/ Twine(const StringRef &Str)
282       : LHSKind(StringRefKind), RHSKind(EmptyKind) {
283       LHS.stringRef = &Str;
284       assert(isValid() && "Invalid twine!");
285     }
286
287     /// Construct from a char.
288     explicit Twine(char Val)
289       : LHSKind(CharKind), RHSKind(EmptyKind) {
290       LHS.character = Val;
291     }
292
293     /// Construct from a signed char.
294     explicit Twine(signed char Val)
295       : LHSKind(CharKind), RHSKind(EmptyKind) {
296       LHS.character = static_cast<char>(Val);
297     }
298
299     /// Construct from an unsigned char.
300     explicit Twine(unsigned char Val)
301       : LHSKind(CharKind), RHSKind(EmptyKind) {
302       LHS.character = static_cast<char>(Val);
303     }
304
305     /// Construct a twine to print \arg Val as an unsigned decimal integer.
306     explicit Twine(unsigned Val)
307       : LHSKind(DecUIKind), RHSKind(EmptyKind) {
308       LHS.decUI = Val;
309     }
310
311     /// Construct a twine to print \arg Val as a signed decimal integer.
312     explicit Twine(int Val)
313       : LHSKind(DecIKind), RHSKind(EmptyKind) {
314       LHS.decI = Val;
315     }
316
317     /// Construct a twine to print \arg Val as an unsigned decimal integer.
318     explicit Twine(const unsigned long &Val)
319       : LHSKind(DecULKind), RHSKind(EmptyKind) {
320       LHS.decUL = &Val;
321     }
322
323     /// Construct a twine to print \arg Val as a signed decimal integer.
324     explicit Twine(const long &Val)
325       : LHSKind(DecLKind), RHSKind(EmptyKind) {
326       LHS.decL = &Val;
327     }
328
329     /// Construct a twine to print \arg Val as an unsigned decimal integer.
330     explicit Twine(const unsigned long long &Val)
331       : LHSKind(DecULLKind), RHSKind(EmptyKind) {
332       LHS.decULL = &Val;
333     }
334
335     /// Construct a twine to print \arg Val as a signed decimal integer.
336     explicit Twine(const long long &Val)
337       : LHSKind(DecLLKind), RHSKind(EmptyKind) {
338       LHS.decLL = &Val;
339     }
340
341     // FIXME: Unfortunately, to make sure this is as efficient as possible we
342     // need extra binary constructors from particular types. We can't rely on
343     // the compiler to be smart enough to fold operator+()/concat() down to the
344     // right thing. Yet.
345
346     /// Construct as the concatenation of a C string and a StringRef.
347     /*implicit*/ Twine(const char *_LHS, const StringRef &_RHS)
348       : LHSKind(CStringKind), RHSKind(StringRefKind) {
349       LHS.cString = _LHS;
350       RHS.stringRef = &_RHS;
351       assert(isValid() && "Invalid twine!");
352     }
353
354     /// Construct as the concatenation of a StringRef and a C string.
355     /*implicit*/ Twine(const StringRef &_LHS, const char *_RHS)
356       : LHSKind(StringRefKind), RHSKind(CStringKind) {
357       LHS.stringRef = &_LHS;
358       RHS.cString = _RHS;
359       assert(isValid() && "Invalid twine!");
360     }
361
362     /// Create a 'null' string, which is an empty string that always
363     /// concatenates to form another empty string.
364     static Twine createNull() {
365       return Twine(NullKind);
366     }
367
368     /// @}
369     /// @name Numeric Conversions
370     /// @{
371
372     // Construct a twine to print \arg Val as an unsigned hexadecimal integer.
373     static Twine utohexstr(const uint64_t &Val) {
374       Child LHS, RHS;
375       LHS.uHex = &Val;
376       RHS.twine = 0;
377       return Twine(LHS, UHexKind, RHS, EmptyKind);
378     }
379
380     /// @}
381     /// @name Predicate Operations
382     /// @{
383
384     /// isTriviallyEmpty - Check if this twine is trivially empty; a false
385     /// return value does not necessarily mean the twine is empty.
386     bool isTriviallyEmpty() const {
387       return isNullary();
388     }
389
390     /// isSingleStringRef - Return true if this twine can be dynamically
391     /// accessed as a single StringRef value with getSingleStringRef().
392     bool isSingleStringRef() const {
393       if (getRHSKind() != EmptyKind) return false;
394
395       switch (getLHSKind()) {
396       case EmptyKind:
397       case CStringKind:
398       case StdStringKind:
399       case StringRefKind:
400         return true;
401       default:
402         return false;
403       }
404     }
405
406     /// @}
407     /// @name String Operations
408     /// @{
409
410     Twine concat(const Twine &Suffix) const;
411
412     /// @}
413     /// @name Output & Conversion.
414     /// @{
415
416     /// str - Return the twine contents as a std::string.
417     std::string str() const;
418
419     /// toVector - Write the concatenated string into the given SmallString or
420     /// SmallVector.
421     void toVector(SmallVectorImpl<char> &Out) const;
422
423     /// getSingleStringRef - This returns the twine as a single StringRef.  This
424     /// method is only valid if isSingleStringRef() is true.
425     StringRef getSingleStringRef() const {
426       assert(isSingleStringRef() &&"This cannot be had as a single stringref!");
427       switch (getLHSKind()) {
428       default: assert(0 && "Out of sync with isSingleStringRef");
429       case EmptyKind:      return StringRef();
430       case CStringKind:    return StringRef(LHS.cString);
431       case StdStringKind:  return StringRef(*LHS.stdString);
432       case StringRefKind:  return *LHS.stringRef;
433       }
434     }
435
436     /// toStringRef - This returns the twine as a single StringRef if it can be
437     /// represented as such. Otherwise the twine is written into the given
438     /// SmallVector and a StringRef to the SmallVector's data is returned.
439     StringRef toStringRef(SmallVectorImpl<char> &Out) const;
440
441     /// toNullTerminatedStringRef - This returns the twine as a single null
442     /// terminated StringRef if it can be represented as such. Otherwise the
443     /// twine is written into the given SmallVector and a StringRef to the
444     /// SmallVector's data is returned.
445     ///
446     /// The returned StringRef's size does not include the null terminator.
447     StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const;
448
449     /// print - Write the concatenated string represented by this twine to the
450     /// stream \arg OS.
451     void print(raw_ostream &OS) const;
452
453     /// dump - Dump the concatenated string represented by this twine to stderr.
454     void dump() const;
455
456     /// print - Write the representation of this twine to the stream \arg OS.
457     void printRepr(raw_ostream &OS) const;
458
459     /// dumpRepr - Dump the representation of this twine to stderr.
460     void dumpRepr() const;
461
462     /// @}
463   };
464
465   /// @name Twine Inline Implementations
466   /// @{
467
468   inline Twine Twine::concat(const Twine &Suffix) const {
469     // Concatenation with null is null.
470     if (isNull() || Suffix.isNull())
471       return Twine(NullKind);
472
473     // Concatenation with empty yields the other side.
474     if (isEmpty())
475       return Suffix;
476     if (Suffix.isEmpty())
477       return *this;
478
479     // Otherwise we need to create a new node, taking care to fold in unary
480     // twines.
481     Child NewLHS, NewRHS;
482     NewLHS.twine = this;
483     NewRHS.twine = &Suffix;
484     NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
485     if (isUnary()) {
486       NewLHS = LHS;
487       NewLHSKind = getLHSKind();
488     }
489     if (Suffix.isUnary()) {
490       NewRHS = Suffix.LHS;
491       NewRHSKind = Suffix.getLHSKind();
492     }
493
494     return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
495   }
496
497   inline Twine operator+(const Twine &LHS, const Twine &RHS) {
498     return LHS.concat(RHS);
499   }
500
501   /// Additional overload to guarantee simplified codegen; this is equivalent to
502   /// concat().
503
504   inline Twine operator+(const char *LHS, const StringRef &RHS) {
505     return Twine(LHS, RHS);
506   }
507
508   /// Additional overload to guarantee simplified codegen; this is equivalent to
509   /// concat().
510
511   inline Twine operator+(const StringRef &LHS, const char *RHS) {
512     return Twine(LHS, RHS);
513   }
514
515   inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
516     RHS.print(OS);
517     return OS;
518   }
519
520   /// @}
521 }
522
523 #endif