]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/include/llvm/ADT/ValueMap.h
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / include / llvm / ADT / ValueMap.h
1 //===- llvm/ADT/ValueMap.h - Safe map from Values to data -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the ValueMap class.  ValueMap maps Value* or any subclass
11 // to an arbitrary other type.  It provides the DenseMap interface but updates
12 // itself to remain safe when keys are RAUWed or deleted.  By default, when a
13 // key is RAUWed from V1 to V2, the old mapping V1->target is removed, and a new
14 // mapping V2->target is added.  If V2 already existed, its old target is
15 // overwritten.  When a key is deleted, its mapping is removed.
16 //
17 // You can override a ValueMap's Config parameter to control exactly what
18 // happens on RAUW and destruction and to get called back on each event.  It's
19 // legal to call back into the ValueMap from a Config's callbacks.  Config
20 // parameters should inherit from ValueMapConfig<KeyT> to get default
21 // implementations of all the methods ValueMap uses.  See ValueMapConfig for
22 // documentation of the functions you can override.
23 //
24 //===----------------------------------------------------------------------===//
25
26 #ifndef LLVM_ADT_VALUEMAP_H
27 #define LLVM_ADT_VALUEMAP_H
28
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/Support/ValueHandle.h"
31 #include "llvm/Support/type_traits.h"
32 #include "llvm/Support/Mutex.h"
33
34 #include <iterator>
35
36 namespace llvm {
37
38 template<typename KeyT, typename ValueT, typename Config, typename ValueInfoT>
39 class ValueMapCallbackVH;
40
41 template<typename DenseMapT, typename KeyT>
42 class ValueMapIterator;
43 template<typename DenseMapT, typename KeyT>
44 class ValueMapConstIterator;
45
46 /// This class defines the default behavior for configurable aspects of
47 /// ValueMap<>.  User Configs should inherit from this class to be as compatible
48 /// as possible with future versions of ValueMap.
49 template<typename KeyT>
50 struct ValueMapConfig {
51   /// If FollowRAUW is true, the ValueMap will update mappings on RAUW. If it's
52   /// false, the ValueMap will leave the original mapping in place.
53   enum { FollowRAUW = true };
54
55   // All methods will be called with a first argument of type ExtraData.  The
56   // default implementations in this class take a templated first argument so
57   // that users' subclasses can use any type they want without having to
58   // override all the defaults.
59   struct ExtraData {};
60
61   template<typename ExtraDataT>
62   static void onRAUW(const ExtraDataT & /*Data*/, KeyT /*Old*/, KeyT /*New*/) {}
63   template<typename ExtraDataT>
64   static void onDelete(const ExtraDataT &/*Data*/, KeyT /*Old*/) {}
65
66   /// Returns a mutex that should be acquired around any changes to the map.
67   /// This is only acquired from the CallbackVH (and held around calls to onRAUW
68   /// and onDelete) and not inside other ValueMap methods.  NULL means that no
69   /// mutex is necessary.
70   template<typename ExtraDataT>
71   static sys::Mutex *getMutex(const ExtraDataT &/*Data*/) { return NULL; }
72 };
73
74 /// See the file comment.
75 template<typename KeyT, typename ValueT, typename Config = ValueMapConfig<KeyT>,
76          typename ValueInfoT = DenseMapInfo<ValueT> >
77 class ValueMap {
78   friend class ValueMapCallbackVH<KeyT, ValueT, Config, ValueInfoT>;
79   typedef ValueMapCallbackVH<KeyT, ValueT, Config, ValueInfoT> ValueMapCVH;
80   typedef DenseMap<ValueMapCVH, ValueT, DenseMapInfo<ValueMapCVH>,
81                    ValueInfoT> MapT;
82   typedef typename Config::ExtraData ExtraData;
83   MapT Map;
84   ExtraData Data;
85   ValueMap(const ValueMap&); // DO NOT IMPLEMENT
86   ValueMap& operator=(const ValueMap&); // DO NOT IMPLEMENT
87 public:
88   typedef KeyT key_type;
89   typedef ValueT mapped_type;
90   typedef std::pair<KeyT, ValueT> value_type;
91
92   explicit ValueMap(unsigned NumInitBuckets = 64)
93     : Map(NumInitBuckets), Data() {}
94   explicit ValueMap(const ExtraData &Data, unsigned NumInitBuckets = 64)
95     : Map(NumInitBuckets), Data(Data) {}
96
97   ~ValueMap() {}
98
99   typedef ValueMapIterator<MapT, KeyT> iterator;
100   typedef ValueMapConstIterator<MapT, KeyT> const_iterator;
101   inline iterator begin() { return iterator(Map.begin()); }
102   inline iterator end() { return iterator(Map.end()); }
103   inline const_iterator begin() const { return const_iterator(Map.begin()); }
104   inline const_iterator end() const { return const_iterator(Map.end()); }
105
106   bool empty() const { return Map.empty(); }
107   unsigned size() const { return Map.size(); }
108
109   /// Grow the map so that it has at least Size buckets. Does not shrink
110   void resize(size_t Size) { Map.resize(Size); }
111
112   void clear() { Map.clear(); }
113
114   /// count - Return true if the specified key is in the map.
115   bool count(const KeyT &Val) const {
116     return Map.count(Wrap(Val));
117   }
118
119   iterator find(const KeyT &Val) {
120     return iterator(Map.find(Wrap(Val)));
121   }
122   const_iterator find(const KeyT &Val) const {
123     return const_iterator(Map.find(Wrap(Val)));
124   }
125
126   /// lookup - Return the entry for the specified key, or a default
127   /// constructed value if no such entry exists.
128   ValueT lookup(const KeyT &Val) const {
129     return Map.lookup(Wrap(Val));
130   }
131
132   // Inserts key,value pair into the map if the key isn't already in the map.
133   // If the key is already in the map, it returns false and doesn't update the
134   // value.
135   std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
136     std::pair<typename MapT::iterator, bool> map_result=
137       Map.insert(std::make_pair(Wrap(KV.first), KV.second));
138     return std::make_pair(iterator(map_result.first), map_result.second);
139   }
140
141   /// insert - Range insertion of pairs.
142   template<typename InputIt>
143   void insert(InputIt I, InputIt E) {
144     for (; I != E; ++I)
145       insert(*I);
146   }
147
148
149   bool erase(const KeyT &Val) {
150     return Map.erase(Wrap(Val));
151   }
152   void erase(iterator I) {
153     return Map.erase(I.base());
154   }
155
156   value_type& FindAndConstruct(const KeyT &Key) {
157     return Map.FindAndConstruct(Wrap(Key));
158   }
159
160   ValueT &operator[](const KeyT &Key) {
161     return Map[Wrap(Key)];
162   }
163
164   /// isPointerIntoBucketsArray - Return true if the specified pointer points
165   /// somewhere into the ValueMap's array of buckets (i.e. either to a key or
166   /// value in the ValueMap).
167   bool isPointerIntoBucketsArray(const void *Ptr) const {
168     return Map.isPointerIntoBucketsArray(Ptr);
169   }
170
171   /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
172   /// array.  In conjunction with the previous method, this can be used to
173   /// determine whether an insertion caused the ValueMap to reallocate.
174   const void *getPointerIntoBucketsArray() const {
175     return Map.getPointerIntoBucketsArray();
176   }
177
178 private:
179   // Takes a key being looked up in the map and wraps it into a
180   // ValueMapCallbackVH, the actual key type of the map.  We use a helper
181   // function because ValueMapCVH is constructed with a second parameter.
182   ValueMapCVH Wrap(KeyT key) const {
183     // The only way the resulting CallbackVH could try to modify *this (making
184     // the const_cast incorrect) is if it gets inserted into the map.  But then
185     // this function must have been called from a non-const method, making the
186     // const_cast ok.
187     return ValueMapCVH(key, const_cast<ValueMap*>(this));
188   }
189 };
190
191 // This CallbackVH updates its ValueMap when the contained Value changes,
192 // according to the user's preferences expressed through the Config object.
193 template<typename KeyT, typename ValueT, typename Config, typename ValueInfoT>
194 class ValueMapCallbackVH : public CallbackVH {
195   friend class ValueMap<KeyT, ValueT, Config, ValueInfoT>;
196   friend struct DenseMapInfo<ValueMapCallbackVH>;
197   typedef ValueMap<KeyT, ValueT, Config, ValueInfoT> ValueMapT;
198   typedef typename llvm::remove_pointer<KeyT>::type KeySansPointerT;
199
200   ValueMapT *Map;
201
202   ValueMapCallbackVH(KeyT Key, ValueMapT *Map)
203       : CallbackVH(const_cast<Value*>(static_cast<const Value*>(Key))),
204         Map(Map) {}
205
206 public:
207   KeyT Unwrap() const { return cast_or_null<KeySansPointerT>(getValPtr()); }
208
209   virtual void deleted() {
210     // Make a copy that won't get changed even when *this is destroyed.
211     ValueMapCallbackVH Copy(*this);
212     sys::Mutex *M = Config::getMutex(Copy.Map->Data);
213     if (M)
214       M->acquire();
215     Config::onDelete(Copy.Map->Data, Copy.Unwrap());  // May destroy *this.
216     Copy.Map->Map.erase(Copy);  // Definitely destroys *this.
217     if (M)
218       M->release();
219   }
220   virtual void allUsesReplacedWith(Value *new_key) {
221     assert(isa<KeySansPointerT>(new_key) &&
222            "Invalid RAUW on key of ValueMap<>");
223     // Make a copy that won't get changed even when *this is destroyed.
224     ValueMapCallbackVH Copy(*this);
225     sys::Mutex *M = Config::getMutex(Copy.Map->Data);
226     if (M)
227       M->acquire();
228
229     KeyT typed_new_key = cast<KeySansPointerT>(new_key);
230     // Can destroy *this:
231     Config::onRAUW(Copy.Map->Data, Copy.Unwrap(), typed_new_key);
232     if (Config::FollowRAUW) {
233       typename ValueMapT::MapT::iterator I = Copy.Map->Map.find(Copy);
234       // I could == Copy.Map->Map.end() if the onRAUW callback already
235       // removed the old mapping.
236       if (I != Copy.Map->Map.end()) {
237         ValueT Target(I->second);
238         Copy.Map->Map.erase(I);  // Definitely destroys *this.
239         Copy.Map->insert(std::make_pair(typed_new_key, Target));
240       }
241     }
242     if (M)
243       M->release();
244   }
245 };
246
247 template<typename KeyT, typename ValueT, typename Config, typename ValueInfoT>
248 struct DenseMapInfo<ValueMapCallbackVH<KeyT, ValueT, Config, ValueInfoT> > {
249   typedef ValueMapCallbackVH<KeyT, ValueT, Config, ValueInfoT> VH;
250   typedef DenseMapInfo<KeyT> PointerInfo;
251
252   static inline VH getEmptyKey() {
253     return VH(PointerInfo::getEmptyKey(), NULL);
254   }
255   static inline VH getTombstoneKey() {
256     return VH(PointerInfo::getTombstoneKey(), NULL);
257   }
258   static unsigned getHashValue(const VH &Val) {
259     return PointerInfo::getHashValue(Val.Unwrap());
260   }
261   static bool isEqual(const VH &LHS, const VH &RHS) {
262     return LHS == RHS;
263   }
264 };
265
266
267 template<typename DenseMapT, typename KeyT>
268 class ValueMapIterator :
269     public std::iterator<std::forward_iterator_tag,
270                          std::pair<KeyT, typename DenseMapT::mapped_type>,
271                          ptrdiff_t> {
272   typedef typename DenseMapT::iterator BaseT;
273   typedef typename DenseMapT::mapped_type ValueT;
274   BaseT I;
275 public:
276   ValueMapIterator() : I() {}
277
278   ValueMapIterator(BaseT I) : I(I) {}
279
280   BaseT base() const { return I; }
281
282   struct ValueTypeProxy {
283     const KeyT first;
284     ValueT& second;
285     ValueTypeProxy *operator->() { return this; }
286     operator std::pair<KeyT, ValueT>() const {
287       return std::make_pair(first, second);
288     }
289   };
290
291   ValueTypeProxy operator*() const {
292     ValueTypeProxy Result = {I->first.Unwrap(), I->second};
293     return Result;
294   }
295
296   ValueTypeProxy operator->() const {
297     return operator*();
298   }
299
300   bool operator==(const ValueMapIterator &RHS) const {
301     return I == RHS.I;
302   }
303   bool operator!=(const ValueMapIterator &RHS) const {
304     return I != RHS.I;
305   }
306
307   inline ValueMapIterator& operator++() {  // Preincrement
308     ++I;
309     return *this;
310   }
311   ValueMapIterator operator++(int) {  // Postincrement
312     ValueMapIterator tmp = *this; ++*this; return tmp;
313   }
314 };
315
316 template<typename DenseMapT, typename KeyT>
317 class ValueMapConstIterator :
318     public std::iterator<std::forward_iterator_tag,
319                          std::pair<KeyT, typename DenseMapT::mapped_type>,
320                          ptrdiff_t> {
321   typedef typename DenseMapT::const_iterator BaseT;
322   typedef typename DenseMapT::mapped_type ValueT;
323   BaseT I;
324 public:
325   ValueMapConstIterator() : I() {}
326   ValueMapConstIterator(BaseT I) : I(I) {}
327   ValueMapConstIterator(ValueMapIterator<DenseMapT, KeyT> Other)
328     : I(Other.base()) {}
329
330   BaseT base() const { return I; }
331
332   struct ValueTypeProxy {
333     const KeyT first;
334     const ValueT& second;
335     ValueTypeProxy *operator->() { return this; }
336     operator std::pair<KeyT, ValueT>() const {
337       return std::make_pair(first, second);
338     }
339   };
340
341   ValueTypeProxy operator*() const {
342     ValueTypeProxy Result = {I->first.Unwrap(), I->second};
343     return Result;
344   }
345
346   ValueTypeProxy operator->() const {
347     return operator*();
348   }
349
350   bool operator==(const ValueMapConstIterator &RHS) const {
351     return I == RHS.I;
352   }
353   bool operator!=(const ValueMapConstIterator &RHS) const {
354     return I != RHS.I;
355   }
356
357   inline ValueMapConstIterator& operator++() {  // Preincrement
358     ++I;
359     return *this;
360   }
361   ValueMapConstIterator operator++(int) {  // Postincrement
362     ValueMapConstIterator tmp = *this; ++*this; return tmp;
363   }
364 };
365
366 } // end namespace llvm
367
368 #endif