]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/include/llvm/Analysis/Dominators.h
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / include / llvm / Analysis / Dominators.h
1 //===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the DominatorTree class, which provides fast and efficient
11 // dominance queries.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_ANALYSIS_DOMINATORS_H
16 #define LLVM_ANALYSIS_DOMINATORS_H
17
18 #include "llvm/Pass.h"
19 #include "llvm/Function.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/GraphTraits.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/CFG.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>
29
30 namespace llvm {
31
32 //===----------------------------------------------------------------------===//
33 /// DominatorBase - Base class that other, more interesting dominator analyses
34 /// inherit from.
35 ///
36 template <class NodeT>
37 class DominatorBase {
38 protected:
39   std::vector<NodeT*> Roots;
40   const bool IsPostDominators;
41   inline explicit DominatorBase(bool isPostDom) :
42     Roots(), IsPostDominators(isPostDom) {}
43 public:
44
45   /// getRoots - Return the root blocks of the current CFG.  This may include
46   /// multiple blocks if we are computing post dominators.  For forward
47   /// dominators, this will always be a single block (the entry node).
48   ///
49   inline const std::vector<NodeT*> &getRoots() const { return Roots; }
50
51   /// isPostDominator - Returns true if analysis based of postdoms
52   ///
53   bool isPostDominator() const { return IsPostDominators; }
54 };
55
56
57 //===----------------------------------------------------------------------===//
58 // DomTreeNode - Dominator Tree Node
59 template<class NodeT> class DominatorTreeBase;
60 struct PostDominatorTree;
61 class MachineBasicBlock;
62
63 template <class NodeT>
64 class DomTreeNodeBase {
65   NodeT *TheBB;
66   DomTreeNodeBase<NodeT> *IDom;
67   std::vector<DomTreeNodeBase<NodeT> *> Children;
68   int DFSNumIn, DFSNumOut;
69
70   template<class N> friend class DominatorTreeBase;
71   friend struct PostDominatorTree;
72 public:
73   typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
74   typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
75                    const_iterator;
76
77   iterator begin()             { return Children.begin(); }
78   iterator end()               { return Children.end(); }
79   const_iterator begin() const { return Children.begin(); }
80   const_iterator end()   const { return Children.end(); }
81
82   NodeT *getBlock() const { return TheBB; }
83   DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
84   const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
85     return Children;
86   }
87
88   DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
89     : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
90
91   DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
92     Children.push_back(C);
93     return C;
94   }
95
96   size_t getNumChildren() const {
97     return Children.size();
98   }
99
100   void clearAllChildren() {
101     Children.clear();
102   }
103
104   bool compare(DomTreeNodeBase<NodeT> *Other) {
105     if (getNumChildren() != Other->getNumChildren())
106       return true;
107
108     SmallPtrSet<NodeT *, 4> OtherChildren;
109     for (iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
110       NodeT *Nd = (*I)->getBlock();
111       OtherChildren.insert(Nd);
112     }
113
114     for (iterator I = begin(), E = end(); I != E; ++I) {
115       NodeT *N = (*I)->getBlock();
116       if (OtherChildren.count(N) == 0)
117         return true;
118     }
119     return false;
120   }
121
122   void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
123     assert(IDom && "No immediate dominator?");
124     if (IDom != NewIDom) {
125       typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
126                   std::find(IDom->Children.begin(), IDom->Children.end(), this);
127       assert(I != IDom->Children.end() &&
128              "Not in immediate dominator children set!");
129       // I am no longer your child...
130       IDom->Children.erase(I);
131
132       // Switch to new dominator
133       IDom = NewIDom;
134       IDom->Children.push_back(this);
135     }
136   }
137
138   /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
139   /// not call them.
140   unsigned getDFSNumIn() const { return DFSNumIn; }
141   unsigned getDFSNumOut() const { return DFSNumOut; }
142 private:
143   // Return true if this node is dominated by other. Use this only if DFS info
144   // is valid.
145   bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
146     return this->DFSNumIn >= other->DFSNumIn &&
147       this->DFSNumOut <= other->DFSNumOut;
148   }
149 };
150
151 EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
152 EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
153
154 template<class NodeT>
155 static raw_ostream &operator<<(raw_ostream &o,
156                                const DomTreeNodeBase<NodeT> *Node) {
157   if (Node->getBlock())
158     WriteAsOperand(o, Node->getBlock(), false);
159   else
160     o << " <<exit node>>";
161
162   o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
163
164   return o << "\n";
165 }
166
167 template<class NodeT>
168 static void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
169                          unsigned Lev) {
170   o.indent(2*Lev) << "[" << Lev << "] " << N;
171   for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
172        E = N->end(); I != E; ++I)
173     PrintDomTree<NodeT>(*I, o, Lev+1);
174 }
175
176 typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
177
178 //===----------------------------------------------------------------------===//
179 /// DominatorTree - Calculate the immediate dominator tree for a function.
180 ///
181
182 template<class FuncT, class N>
183 void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
184                FuncT& F);
185
186 template<class NodeT>
187 class DominatorTreeBase : public DominatorBase<NodeT> {
188 protected:
189   typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
190   DomTreeNodeMapType DomTreeNodes;
191   DomTreeNodeBase<NodeT> *RootNode;
192
193   bool DFSInfoValid;
194   unsigned int SlowQueries;
195   // Information record used during immediate dominators computation.
196   struct InfoRec {
197     unsigned DFSNum;
198     unsigned Parent;
199     unsigned Semi;
200     NodeT *Label;
201
202     InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(0) {}
203   };
204
205   DenseMap<NodeT*, NodeT*> IDoms;
206
207   // Vertex - Map the DFS number to the BasicBlock*
208   std::vector<NodeT*> Vertex;
209
210   // Info - Collection of information used during the computation of idoms.
211   DenseMap<NodeT*, InfoRec> Info;
212
213   void reset() {
214     for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
215            E = DomTreeNodes.end(); I != E; ++I)
216       delete I->second;
217     DomTreeNodes.clear();
218     IDoms.clear();
219     this->Roots.clear();
220     Vertex.clear();
221     RootNode = 0;
222   }
223
224   // NewBB is split and now it has one successor. Update dominator tree to
225   // reflect this change.
226   template<class N, class GraphT>
227   void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
228              typename GraphT::NodeType* NewBB) {
229     assert(std::distance(GraphT::child_begin(NewBB),
230                          GraphT::child_end(NewBB)) == 1 &&
231            "NewBB should have a single successor!");
232     typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
233
234     std::vector<typename GraphT::NodeType*> PredBlocks;
235     typedef GraphTraits<Inverse<N> > InvTraits;
236     for (typename InvTraits::ChildIteratorType PI =
237          InvTraits::child_begin(NewBB),
238          PE = InvTraits::child_end(NewBB); PI != PE; ++PI)
239       PredBlocks.push_back(*PI);
240
241     assert(!PredBlocks.empty() && "No predblocks?");
242
243     bool NewBBDominatesNewBBSucc = true;
244     for (typename InvTraits::ChildIteratorType PI =
245          InvTraits::child_begin(NewBBSucc),
246          E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) {
247       typename InvTraits::NodeType *ND = *PI;
248       if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
249           DT.isReachableFromEntry(ND)) {
250         NewBBDominatesNewBBSucc = false;
251         break;
252       }
253     }
254
255     // Find NewBB's immediate dominator and create new dominator tree node for
256     // NewBB.
257     NodeT *NewBBIDom = 0;
258     unsigned i = 0;
259     for (i = 0; i < PredBlocks.size(); ++i)
260       if (DT.isReachableFromEntry(PredBlocks[i])) {
261         NewBBIDom = PredBlocks[i];
262         break;
263       }
264
265     // It's possible that none of the predecessors of NewBB are reachable;
266     // in that case, NewBB itself is unreachable, so nothing needs to be
267     // changed.
268     if (!NewBBIDom)
269       return;
270
271     for (i = i + 1; i < PredBlocks.size(); ++i) {
272       if (DT.isReachableFromEntry(PredBlocks[i]))
273         NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
274     }
275
276     // Create the new dominator tree node... and set the idom of NewBB.
277     DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
278
279     // If NewBB strictly dominates other blocks, then it is now the immediate
280     // dominator of NewBBSucc.  Update the dominator tree as appropriate.
281     if (NewBBDominatesNewBBSucc) {
282       DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
283       DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
284     }
285   }
286
287 public:
288   explicit DominatorTreeBase(bool isPostDom)
289     : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
290   virtual ~DominatorTreeBase() { reset(); }
291
292   /// compare - Return false if the other dominator tree base matches this
293   /// dominator tree base. Otherwise return true.
294   bool compare(DominatorTreeBase &Other) const {
295
296     const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
297     if (DomTreeNodes.size() != OtherDomTreeNodes.size())
298       return true;
299
300     for (typename DomTreeNodeMapType::const_iterator
301            I = this->DomTreeNodes.begin(),
302            E = this->DomTreeNodes.end(); I != E; ++I) {
303       NodeT *BB = I->first;
304       typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
305       if (OI == OtherDomTreeNodes.end())
306         return true;
307
308       DomTreeNodeBase<NodeT>* MyNd = I->second;
309       DomTreeNodeBase<NodeT>* OtherNd = OI->second;
310
311       if (MyNd->compare(OtherNd))
312         return true;
313     }
314
315     return false;
316   }
317
318   virtual void releaseMemory() { reset(); }
319
320   /// getNode - return the (Post)DominatorTree node for the specified basic
321   /// block.  This is the same as using operator[] on this class.
322   ///
323   inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
324     typename DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
325     return I != DomTreeNodes.end() ? I->second : 0;
326   }
327
328   /// getRootNode - This returns the entry node for the CFG of the function.  If
329   /// this tree represents the post-dominance relations for a function, however,
330   /// this root may be a node with the block == NULL.  This is the case when
331   /// there are multiple exit nodes from a particular function.  Consumers of
332   /// post-dominance information must be capable of dealing with this
333   /// possibility.
334   ///
335   DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
336   const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
337
338   /// properlyDominates - Returns true iff this dominates N and this != N.
339   /// Note that this is not a constant time operation!
340   ///
341   bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
342                          const DomTreeNodeBase<NodeT> *B) const {
343     if (A == 0 || B == 0) return false;
344     return dominatedBySlowTreeWalk(A, B);
345   }
346
347   inline bool properlyDominates(const NodeT *A, const NodeT *B) {
348     if (A == B)
349       return false;
350
351     // Cast away the const qualifiers here. This is ok since
352     // this function doesn't actually return the values returned
353     // from getNode.
354     return properlyDominates(getNode(const_cast<NodeT *>(A)),
355                              getNode(const_cast<NodeT *>(B)));
356   }
357
358   bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
359                                const DomTreeNodeBase<NodeT> *B) const {
360     const DomTreeNodeBase<NodeT> *IDom;
361     if (A == 0 || B == 0) return false;
362     while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
363       B = IDom;   // Walk up the tree
364     return IDom != 0;
365   }
366
367
368   /// isReachableFromEntry - Return true if A is dominated by the entry
369   /// block of the function containing it.
370   bool isReachableFromEntry(const NodeT* A) {
371     assert(!this->isPostDominator() &&
372            "This is not implemented for post dominators");
373     return dominates(&A->getParent()->front(), A);
374   }
375
376   /// dominates - Returns true iff A dominates B.  Note that this is not a
377   /// constant time operation!
378   ///
379   inline bool dominates(const DomTreeNodeBase<NodeT> *A,
380                         const DomTreeNodeBase<NodeT> *B) {
381     if (B == A)
382       return true;  // A node trivially dominates itself.
383
384     if (A == 0 || B == 0)
385       return false;
386
387     // Compare the result of the tree walk and the dfs numbers, if expensive
388     // checks are enabled.
389 #ifdef XDEBUG
390     assert((!DFSInfoValid ||
391             (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
392            "Tree walk disagrees with dfs numbers!");
393 #endif
394
395     if (DFSInfoValid)
396       return B->DominatedBy(A);
397
398     // If we end up with too many slow queries, just update the
399     // DFS numbers on the theory that we are going to keep querying.
400     SlowQueries++;
401     if (SlowQueries > 32) {
402       updateDFSNumbers();
403       return B->DominatedBy(A);
404     }
405
406     return dominatedBySlowTreeWalk(A, B);
407   }
408
409   inline bool dominates(const NodeT *A, const NodeT *B) {
410     if (A == B)
411       return true;
412
413     // Cast away the const qualifiers here. This is ok since
414     // this function doesn't actually return the values returned
415     // from getNode.
416     return dominates(getNode(const_cast<NodeT *>(A)),
417                      getNode(const_cast<NodeT *>(B)));
418   }
419
420   NodeT *getRoot() const {
421     assert(this->Roots.size() == 1 && "Should always have entry node!");
422     return this->Roots[0];
423   }
424
425   /// findNearestCommonDominator - Find nearest common dominator basic block
426   /// for basic block A and B. If there is no such block then return NULL.
427   NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
428     assert(A->getParent() == B->getParent() &&
429            "Two blocks are not in same function");
430
431     // If either A or B is a entry block then it is nearest common dominator
432     // (for forward-dominators).
433     if (!this->isPostDominator()) {
434       NodeT &Entry = A->getParent()->front();
435       if (A == &Entry || B == &Entry)
436         return &Entry;
437     }
438
439     // If B dominates A then B is nearest common dominator.
440     if (dominates(B, A))
441       return B;
442
443     // If A dominates B then A is nearest common dominator.
444     if (dominates(A, B))
445       return A;
446
447     DomTreeNodeBase<NodeT> *NodeA = getNode(A);
448     DomTreeNodeBase<NodeT> *NodeB = getNode(B);
449
450     // Collect NodeA dominators set.
451     SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
452     NodeADoms.insert(NodeA);
453     DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
454     while (IDomA) {
455       NodeADoms.insert(IDomA);
456       IDomA = IDomA->getIDom();
457     }
458
459     // Walk NodeB immediate dominators chain and find common dominator node.
460     DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
461     while (IDomB) {
462       if (NodeADoms.count(IDomB) != 0)
463         return IDomB->getBlock();
464
465       IDomB = IDomB->getIDom();
466     }
467
468     return NULL;
469   }
470
471   const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
472     // Cast away the const qualifiers here. This is ok since
473     // const is re-introduced on the return type.
474     return findNearestCommonDominator(const_cast<NodeT *>(A),
475                                       const_cast<NodeT *>(B));
476   }
477
478   //===--------------------------------------------------------------------===//
479   // API to update (Post)DominatorTree information based on modifications to
480   // the CFG...
481
482   /// addNewBlock - Add a new node to the dominator tree information.  This
483   /// creates a new node as a child of DomBB dominator node,linking it into
484   /// the children list of the immediate dominator.
485   DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
486     assert(getNode(BB) == 0 && "Block already in dominator tree!");
487     DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
488     assert(IDomNode && "Not immediate dominator specified for block!");
489     DFSInfoValid = false;
490     return DomTreeNodes[BB] =
491       IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
492   }
493
494   /// changeImmediateDominator - This method is used to update the dominator
495   /// tree information when a node's immediate dominator changes.
496   ///
497   void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
498                                 DomTreeNodeBase<NodeT> *NewIDom) {
499     assert(N && NewIDom && "Cannot change null node pointers!");
500     DFSInfoValid = false;
501     N->setIDom(NewIDom);
502   }
503
504   void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
505     changeImmediateDominator(getNode(BB), getNode(NewBB));
506   }
507
508   /// eraseNode - Removes a node from the dominator tree. Block must not
509   /// dominate any other blocks. Removes node from its immediate dominator's
510   /// children list. Deletes dominator node associated with basic block BB.
511   void eraseNode(NodeT *BB) {
512     DomTreeNodeBase<NodeT> *Node = getNode(BB);
513     assert(Node && "Removing node that isn't in dominator tree.");
514     assert(Node->getChildren().empty() && "Node is not a leaf node.");
515
516       // Remove node from immediate dominator's children list.
517     DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
518     if (IDom) {
519       typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
520         std::find(IDom->Children.begin(), IDom->Children.end(), Node);
521       assert(I != IDom->Children.end() &&
522              "Not in immediate dominator children set!");
523       // I am no longer your child...
524       IDom->Children.erase(I);
525     }
526
527     DomTreeNodes.erase(BB);
528     delete Node;
529   }
530
531   /// removeNode - Removes a node from the dominator tree.  Block must not
532   /// dominate any other blocks.  Invalidates any node pointing to removed
533   /// block.
534   void removeNode(NodeT *BB) {
535     assert(getNode(BB) && "Removing node that isn't in dominator tree.");
536     DomTreeNodes.erase(BB);
537   }
538
539   /// splitBlock - BB is split and now it has one successor. Update dominator
540   /// tree to reflect this change.
541   void splitBlock(NodeT* NewBB) {
542     if (this->IsPostDominators)
543       this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
544     else
545       this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
546   }
547
548   /// print - Convert to human readable form
549   ///
550   void print(raw_ostream &o) const {
551     o << "=============================--------------------------------\n";
552     if (this->isPostDominator())
553       o << "Inorder PostDominator Tree: ";
554     else
555       o << "Inorder Dominator Tree: ";
556     if (!this->DFSInfoValid)
557       o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
558     o << "\n";
559
560     // The postdom tree can have a null root if there are no returns.
561     if (getRootNode())
562       PrintDomTree<NodeT>(getRootNode(), o, 1);
563   }
564
565 protected:
566   template<class GraphT>
567   friend typename GraphT::NodeType* Eval(
568                                DominatorTreeBase<typename GraphT::NodeType>& DT,
569                                          typename GraphT::NodeType* V,
570                                          unsigned LastLinked);
571
572   template<class GraphT>
573   friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
574                           typename GraphT::NodeType* V,
575                           unsigned N);
576
577   template<class FuncT, class N>
578   friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
579                         FuncT& F);
580
581   /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
582   /// dominator tree in dfs order.
583   void updateDFSNumbers() {
584     unsigned DFSNum = 0;
585
586     SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
587                 typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
588
589     DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
590
591     if (!ThisRoot)
592       return;
593
594     // Even in the case of multiple exits that form the post dominator root
595     // nodes, do not iterate over all exits, but start from the virtual root
596     // node. Otherwise bbs, that are not post dominated by any exit but by the
597     // virtual root node, will never be assigned a DFS number.
598     WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
599     ThisRoot->DFSNumIn = DFSNum++;
600
601     while (!WorkStack.empty()) {
602       DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
603       typename DomTreeNodeBase<NodeT>::iterator ChildIt =
604         WorkStack.back().second;
605
606       // If we visited all of the children of this node, "recurse" back up the
607       // stack setting the DFOutNum.
608       if (ChildIt == Node->end()) {
609         Node->DFSNumOut = DFSNum++;
610         WorkStack.pop_back();
611       } else {
612         // Otherwise, recursively visit this child.
613         DomTreeNodeBase<NodeT> *Child = *ChildIt;
614         ++WorkStack.back().second;
615
616         WorkStack.push_back(std::make_pair(Child, Child->begin()));
617         Child->DFSNumIn = DFSNum++;
618       }
619     }
620
621     SlowQueries = 0;
622     DFSInfoValid = true;
623   }
624
625   DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
626     typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.find(BB);
627     if (I != this->DomTreeNodes.end() && I->second)
628       return I->second;
629
630     // Haven't calculated this node yet?  Get or calculate the node for the
631     // immediate dominator.
632     NodeT *IDom = getIDom(BB);
633
634     assert(IDom || this->DomTreeNodes[NULL]);
635     DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
636
637     // Add a new tree node for this BasicBlock, and link it as a child of
638     // IDomNode
639     DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
640     return this->DomTreeNodes[BB] = IDomNode->addChild(C);
641   }
642
643   inline NodeT *getIDom(NodeT *BB) const {
644     typename DenseMap<NodeT*, NodeT*>::const_iterator I = IDoms.find(BB);
645     return I != IDoms.end() ? I->second : 0;
646   }
647
648   inline void addRoot(NodeT* BB) {
649     this->Roots.push_back(BB);
650   }
651
652 public:
653   /// recalculate - compute a dominator tree for the given function
654   template<class FT>
655   void recalculate(FT& F) {
656     reset();
657     this->Vertex.push_back(0);
658
659     if (!this->IsPostDominators) {
660       // Initialize root
661       this->Roots.push_back(&F.front());
662       this->IDoms[&F.front()] = 0;
663       this->DomTreeNodes[&F.front()] = 0;
664
665       Calculate<FT, NodeT*>(*this, F);
666     } else {
667       // Initialize the roots list
668       for (typename FT::iterator I = F.begin(), E = F.end(); I != E; ++I) {
669         if (std::distance(GraphTraits<FT*>::child_begin(I),
670                           GraphTraits<FT*>::child_end(I)) == 0)
671           addRoot(I);
672
673         // Prepopulate maps so that we don't get iterator invalidation issues later.
674         this->IDoms[I] = 0;
675         this->DomTreeNodes[I] = 0;
676       }
677
678       Calculate<FT, Inverse<NodeT*> >(*this, F);
679     }
680   }
681 };
682
683 EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
684
685 //===-------------------------------------
686 /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
687 /// compute a normal dominator tree.
688 ///
689 class DominatorTree : public FunctionPass {
690 public:
691   static char ID; // Pass ID, replacement for typeid
692   DominatorTreeBase<BasicBlock>* DT;
693
694   DominatorTree() : FunctionPass(ID) {
695     initializeDominatorTreePass(*PassRegistry::getPassRegistry());
696     DT = new DominatorTreeBase<BasicBlock>(false);
697   }
698
699   ~DominatorTree() {
700     delete DT;
701   }
702
703   DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
704
705   /// getRoots - Return the root blocks of the current CFG.  This may include
706   /// multiple blocks if we are computing post dominators.  For forward
707   /// dominators, this will always be a single block (the entry node).
708   ///
709   inline const std::vector<BasicBlock*> &getRoots() const {
710     return DT->getRoots();
711   }
712
713   inline BasicBlock *getRoot() const {
714     return DT->getRoot();
715   }
716
717   inline DomTreeNode *getRootNode() const {
718     return DT->getRootNode();
719   }
720
721   /// compare - Return false if the other dominator tree matches this
722   /// dominator tree. Otherwise return true.
723   inline bool compare(DominatorTree &Other) const {
724     DomTreeNode *R = getRootNode();
725     DomTreeNode *OtherR = Other.getRootNode();
726
727     if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
728       return true;
729
730     if (DT->compare(Other.getBase()))
731       return true;
732
733     return false;
734   }
735
736   virtual bool runOnFunction(Function &F);
737
738   virtual void verifyAnalysis() const;
739
740   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
741     AU.setPreservesAll();
742   }
743
744   inline bool dominates(const DomTreeNode* A, const DomTreeNode* B) const {
745     return DT->dominates(A, B);
746   }
747
748   inline bool dominates(const BasicBlock* A, const BasicBlock* B) const {
749     return DT->dominates(A, B);
750   }
751
752   // dominates - Return true if A dominates B. This performs the
753   // special checks necessary if A and B are in the same basic block.
754   bool dominates(const Instruction *A, const Instruction *B) const;
755
756   bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const {
757     return DT->properlyDominates(A, B);
758   }
759
760   bool properlyDominates(const BasicBlock *A, const BasicBlock *B) const {
761     return DT->properlyDominates(A, B);
762   }
763
764   /// findNearestCommonDominator - Find nearest common dominator basic block
765   /// for basic block A and B. If there is no such block then return NULL.
766   inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
767     return DT->findNearestCommonDominator(A, B);
768   }
769
770   inline const BasicBlock *findNearestCommonDominator(const BasicBlock *A,
771                                                       const BasicBlock *B) {
772     return DT->findNearestCommonDominator(A, B);
773   }
774
775   inline DomTreeNode *operator[](BasicBlock *BB) const {
776     return DT->getNode(BB);
777   }
778
779   /// getNode - return the (Post)DominatorTree node for the specified basic
780   /// block.  This is the same as using operator[] on this class.
781   ///
782   inline DomTreeNode *getNode(BasicBlock *BB) const {
783     return DT->getNode(BB);
784   }
785
786   /// addNewBlock - Add a new node to the dominator tree information.  This
787   /// creates a new node as a child of DomBB dominator node,linking it into
788   /// the children list of the immediate dominator.
789   inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
790     return DT->addNewBlock(BB, DomBB);
791   }
792
793   /// changeImmediateDominator - This method is used to update the dominator
794   /// tree information when a node's immediate dominator changes.
795   ///
796   inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
797     DT->changeImmediateDominator(N, NewIDom);
798   }
799
800   inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
801     DT->changeImmediateDominator(N, NewIDom);
802   }
803
804   /// eraseNode - Removes a node from the dominator tree. Block must not
805   /// dominate any other blocks. Removes node from its immediate dominator's
806   /// children list. Deletes dominator node associated with basic block BB.
807   inline void eraseNode(BasicBlock *BB) {
808     DT->eraseNode(BB);
809   }
810
811   /// splitBlock - BB is split and now it has one successor. Update dominator
812   /// tree to reflect this change.
813   inline void splitBlock(BasicBlock* NewBB) {
814     DT->splitBlock(NewBB);
815   }
816
817   bool isReachableFromEntry(const BasicBlock* A) {
818     return DT->isReachableFromEntry(A);
819   }
820
821
822   virtual void releaseMemory() {
823     DT->releaseMemory();
824   }
825
826   virtual void print(raw_ostream &OS, const Module* M= 0) const;
827 };
828
829 //===-------------------------------------
830 /// DominatorTree GraphTraits specialization so the DominatorTree can be
831 /// iterable by generic graph iterators.
832 ///
833 template <> struct GraphTraits<DomTreeNode*> {
834   typedef DomTreeNode NodeType;
835   typedef NodeType::iterator  ChildIteratorType;
836
837   static NodeType *getEntryNode(NodeType *N) {
838     return N;
839   }
840   static inline ChildIteratorType child_begin(NodeType *N) {
841     return N->begin();
842   }
843   static inline ChildIteratorType child_end(NodeType *N) {
844     return N->end();
845   }
846
847   typedef df_iterator<DomTreeNode*> nodes_iterator;
848
849   static nodes_iterator nodes_begin(DomTreeNode *N) {
850     return df_begin(getEntryNode(N));
851   }
852
853   static nodes_iterator nodes_end(DomTreeNode *N) {
854     return df_end(getEntryNode(N));
855   }
856 };
857
858 template <> struct GraphTraits<DominatorTree*>
859   : public GraphTraits<DomTreeNode*> {
860   static NodeType *getEntryNode(DominatorTree *DT) {
861     return DT->getRootNode();
862   }
863
864   static nodes_iterator nodes_begin(DominatorTree *N) {
865     return df_begin(getEntryNode(N));
866   }
867
868   static nodes_iterator nodes_end(DominatorTree *N) {
869     return df_end(getEntryNode(N));
870   }
871 };
872
873
874 } // End llvm namespace
875
876 #endif