]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/include/llvm/CodeGen/LiveVariables.h
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / include / llvm / CodeGen / LiveVariables.h
1 //===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveVariables analysis pass.  For each machine
11 // instruction in the function, this pass calculates the set of registers that
12 // are immediately dead after the instruction (i.e., the instruction calculates
13 // the value, but it is never used) and the set of registers that are used by
14 // the instruction, but are never used after the instruction (i.e., they are
15 // killed).
16 //
17 // This class computes live variables using a sparse implementation based on
18 // the machine code SSA form.  This class computes live variable information for
19 // each virtual and _register allocatable_ physical register in a function.  It
20 // uses the dominance properties of SSA form to efficiently compute live
21 // variables for virtual registers, and assumes that physical registers are only
22 // live within a single basic block (allowing it to do a single local analysis
23 // to resolve physical register lifetimes in each basic block).  If a physical
24 // register is not register allocatable, it is not tracked.  This is useful for
25 // things like the stack pointer and condition codes.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #ifndef LLVM_CODEGEN_LIVEVARIABLES_H
30 #define LLVM_CODEGEN_LIVEVARIABLES_H
31
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/Target/TargetRegisterInfo.h"
36 #include "llvm/ADT/BitVector.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/IndexedMap.h"
39 #include "llvm/ADT/SmallSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/SparseBitVector.h"
42
43 namespace llvm {
44
45 class MachineRegisterInfo;
46 class TargetRegisterInfo;
47
48 class LiveVariables : public MachineFunctionPass {
49 public:
50   static char ID; // Pass identification, replacement for typeid
51   LiveVariables() : MachineFunctionPass(ID) {
52     initializeLiveVariablesPass(*PassRegistry::getPassRegistry());
53   }
54
55   /// VarInfo - This represents the regions where a virtual register is live in
56   /// the program.  We represent this with three different pieces of
57   /// information: the set of blocks in which the instruction is live
58   /// throughout, the set of blocks in which the instruction is actually used,
59   /// and the set of non-phi instructions that are the last users of the value.
60   ///
61   /// In the common case where a value is defined and killed in the same block,
62   /// There is one killing instruction, and AliveBlocks is empty.
63   ///
64   /// Otherwise, the value is live out of the block.  If the value is live
65   /// throughout any blocks, these blocks are listed in AliveBlocks.  Blocks
66   /// where the liveness range ends are not included in AliveBlocks, instead
67   /// being captured by the Kills set.  In these blocks, the value is live into
68   /// the block (unless the value is defined and killed in the same block) and
69   /// lives until the specified instruction.  Note that there cannot ever be a
70   /// value whose Kills set contains two instructions from the same basic block.
71   ///
72   /// PHI nodes complicate things a bit.  If a PHI node is the last user of a
73   /// value in one of its predecessor blocks, it is not listed in the kills set,
74   /// but does include the predecessor block in the AliveBlocks set (unless that
75   /// block also defines the value).  This leads to the (perfectly sensical)
76   /// situation where a value is defined in a block, and the last use is a phi
77   /// node in the successor.  In this case, AliveBlocks is empty (the value is
78   /// not live across any  blocks) and Kills is empty (phi nodes are not
79   /// included). This is sensical because the value must be live to the end of
80   /// the block, but is not live in any successor blocks.
81   struct VarInfo {
82     /// AliveBlocks - Set of blocks in which this value is alive completely
83     /// through.  This is a bit set which uses the basic block number as an
84     /// index.
85     ///
86     SparseBitVector<> AliveBlocks;
87
88     /// NumUses - Number of uses of this register across the entire function.
89     ///
90     unsigned NumUses;
91
92     /// Kills - List of MachineInstruction's which are the last use of this
93     /// virtual register (kill it) in their basic block.
94     ///
95     std::vector<MachineInstr*> Kills;
96
97     VarInfo() : NumUses(0) {}
98
99     /// removeKill - Delete a kill corresponding to the specified
100     /// machine instruction. Returns true if there was a kill
101     /// corresponding to this instruction, false otherwise.
102     bool removeKill(MachineInstr *MI) {
103       std::vector<MachineInstr*>::iterator
104         I = std::find(Kills.begin(), Kills.end(), MI);
105       if (I == Kills.end())
106         return false;
107       Kills.erase(I);
108       return true;
109     }
110
111     /// findKill - Find a kill instruction in MBB. Return NULL if none is found.
112     MachineInstr *findKill(const MachineBasicBlock *MBB) const;
113
114     /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through
115     /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in
116     /// MBB, it is not considered live in.
117     bool isLiveIn(const MachineBasicBlock &MBB,
118                   unsigned Reg,
119                   MachineRegisterInfo &MRI);
120
121     void dump() const;
122   };
123
124 private:
125   /// VirtRegInfo - This list is a mapping from virtual register number to
126   /// variable information.
127   ///
128   IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo;
129
130   /// PHIJoins - list of virtual registers that are PHI joins. These registers
131   /// may have multiple definitions, and they require special handling when
132   /// building live intervals.
133   SparseBitVector<> PHIJoins;
134
135   /// ReservedRegisters - This vector keeps track of which registers
136   /// are reserved register which are not allocatable by the target machine.
137   /// We can not track liveness for values that are in this set.
138   ///
139   BitVector ReservedRegisters;
140
141 private:   // Intermediate data structures
142   MachineFunction *MF;
143
144   MachineRegisterInfo* MRI;
145
146   const TargetRegisterInfo *TRI;
147
148   // PhysRegInfo - Keep track of which instruction was the last def of a
149   // physical register. This is a purely local property, because all physical
150   // register references are presumed dead across basic blocks.
151   MachineInstr **PhysRegDef;
152
153   // PhysRegInfo - Keep track of which instruction was the last use of a
154   // physical register. This is a purely local property, because all physical
155   // register references are presumed dead across basic blocks.
156   MachineInstr **PhysRegUse;
157
158   SmallVector<unsigned, 4> *PHIVarInfo;
159
160   // DistanceMap - Keep track the distance of a MI from the start of the
161   // current basic block.
162   DenseMap<MachineInstr*, unsigned> DistanceMap;
163
164   /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
165   /// uses. Pay special attention to the sub-register uses which may come below
166   /// the last use of the whole register.
167   bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI);
168
169   void HandlePhysRegUse(unsigned Reg, MachineInstr *MI);
170   void HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
171                         SmallVector<unsigned, 4> &Defs);
172   void UpdatePhysRegDefs(MachineInstr *MI, SmallVector<unsigned, 4> &Defs);
173
174   /// FindLastRefOrPartRef - Return the last reference or partial reference of
175   /// the specified register.
176   MachineInstr *FindLastRefOrPartRef(unsigned Reg);
177
178   /// FindLastPartialDef - Return the last partial def of the specified
179   /// register. Also returns the sub-registers that're defined by the
180   /// instruction.
181   MachineInstr *FindLastPartialDef(unsigned Reg,
182                                    SmallSet<unsigned,4> &PartDefRegs);
183
184   /// analyzePHINodes - Gather information about the PHI nodes in here. In
185   /// particular, we want to map the variable information of a virtual
186   /// register which is used in a PHI node. We map that to the BB the vreg
187   /// is coming from.
188   void analyzePHINodes(const MachineFunction& Fn);
189 public:
190
191   virtual bool runOnMachineFunction(MachineFunction &MF);
192
193   /// RegisterDefIsDead - Return true if the specified instruction defines the
194   /// specified register, but that definition is dead.
195   bool RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const;
196
197   //===--------------------------------------------------------------------===//
198   //  API to update live variable information
199
200   /// replaceKillInstruction - Update register kill info by replacing a kill
201   /// instruction with a new one.
202   void replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
203                               MachineInstr *NewMI);
204
205   /// addVirtualRegisterKilled - Add information about the fact that the
206   /// specified register is killed after being used by the specified
207   /// instruction. If AddIfNotFound is true, add a implicit operand if it's
208   /// not found.
209   void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr *MI,
210                                 bool AddIfNotFound = false) {
211     if (MI->addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
212       getVarInfo(IncomingReg).Kills.push_back(MI); 
213   }
214
215   /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
216   /// register from the live variable information. Returns true if the
217   /// variable was marked as killed by the specified instruction,
218   /// false otherwise.
219   bool removeVirtualRegisterKilled(unsigned reg, MachineInstr *MI) {
220     if (!getVarInfo(reg).removeKill(MI))
221       return false;
222
223     bool Removed = false;
224     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
225       MachineOperand &MO = MI->getOperand(i);
226       if (MO.isReg() && MO.isKill() && MO.getReg() == reg) {
227         MO.setIsKill(false);
228         Removed = true;
229         break;
230       }
231     }
232
233     assert(Removed && "Register is not used by this instruction!");
234     (void)Removed;
235     return true;
236   }
237
238   /// removeVirtualRegistersKilled - Remove all killed info for the specified
239   /// instruction.
240   void removeVirtualRegistersKilled(MachineInstr *MI);
241
242   /// addVirtualRegisterDead - Add information about the fact that the specified
243   /// register is dead after being used by the specified instruction. If
244   /// AddIfNotFound is true, add a implicit operand if it's not found.
245   void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr *MI,
246                               bool AddIfNotFound = false) {
247     if (MI->addRegisterDead(IncomingReg, TRI, AddIfNotFound))
248       getVarInfo(IncomingReg).Kills.push_back(MI);
249   }
250
251   /// removeVirtualRegisterDead - Remove the specified kill of the virtual
252   /// register from the live variable information. Returns true if the
253   /// variable was marked dead at the specified instruction, false
254   /// otherwise.
255   bool removeVirtualRegisterDead(unsigned reg, MachineInstr *MI) {
256     if (!getVarInfo(reg).removeKill(MI))
257       return false;
258
259     bool Removed = false;
260     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
261       MachineOperand &MO = MI->getOperand(i);
262       if (MO.isReg() && MO.isDef() && MO.getReg() == reg) {
263         MO.setIsDead(false);
264         Removed = true;
265         break;
266       }
267     }
268     assert(Removed && "Register is not defined by this instruction!");
269     (void)Removed;
270     return true;
271   }
272   
273   void getAnalysisUsage(AnalysisUsage &AU) const;
274
275   virtual void releaseMemory() {
276     VirtRegInfo.clear();
277   }
278
279   /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
280   /// register.
281   VarInfo &getVarInfo(unsigned RegIdx);
282
283   void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
284                                MachineBasicBlock *BB);
285   void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
286                                MachineBasicBlock *BB,
287                                std::vector<MachineBasicBlock*> &WorkList);
288   void HandleVirtRegDef(unsigned reg, MachineInstr *MI);
289   void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
290                         MachineInstr *MI);
291
292   bool isLiveIn(unsigned Reg, const MachineBasicBlock &MBB) {
293     return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI);
294   }
295
296   /// isLiveOut - Determine if Reg is live out from MBB, when not considering
297   /// PHI nodes. This means that Reg is either killed by a successor block or
298   /// passed through one.
299   bool isLiveOut(unsigned Reg, const MachineBasicBlock &MBB);
300
301   /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All
302   /// variables that are live out of DomBB and live into SuccBB will be marked
303   /// as passing live through BB. This method assumes that the machine code is
304   /// still in SSA form.
305   void addNewBlock(MachineBasicBlock *BB,
306                    MachineBasicBlock *DomBB,
307                    MachineBasicBlock *SuccBB);
308
309   /// isPHIJoin - Return true if Reg is a phi join register.
310   bool isPHIJoin(unsigned Reg) { return PHIJoins.test(Reg); }
311
312   /// setPHIJoin - Mark Reg as a phi join register.
313   void setPHIJoin(unsigned Reg) { PHIJoins.set(Reg); }
314 };
315
316 } // End llvm namespace
317
318 #endif