]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/include/llvm/MC/MCInstrDesc.h
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / include / llvm / MC / MCInstrDesc.h
1 //===-- llvm/Mc/McInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MCOperandInfo and MCInstrDesc classes, which
11 // are used to describe target instructions and their operands.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_MC_MCINSTRDESC_H
16 #define LLVM_MC_MCINSTRDESC_H
17
18 #include "llvm/Support/DataTypes.h"
19
20 namespace llvm {
21
22 //===----------------------------------------------------------------------===//
23 // Machine Operand Flags and Description
24 //===----------------------------------------------------------------------===//
25
26 namespace MCOI {
27   // Operand constraints
28   enum OperandConstraint {
29     TIED_TO = 0,    // Must be allocated the same register as.
30     EARLY_CLOBBER   // Operand is an early clobber register operand
31   };
32
33   /// OperandFlags - These are flags set on operands, but should be considered
34   /// private, all access should go through the MCOperandInfo accessors.
35   /// See the accessors for a description of what these are.
36   enum OperandFlags {
37     LookupPtrRegClass = 0,
38     Predicate,
39     OptionalDef
40   };
41
42   /// Operand Type - Operands are tagged with one of the values of this enum.
43   enum OperandType {
44     OPERAND_UNKNOWN,
45     OPERAND_IMMEDIATE,
46     OPERAND_REGISTER,
47     OPERAND_MEMORY,
48     OPERAND_PCREL
49   };
50 }
51
52 /// MCOperandInfo - This holds information about one operand of a machine
53 /// instruction, indicating the register class for register operands, etc.
54 ///
55 class MCOperandInfo {
56 public:
57   /// RegClass - This specifies the register class enumeration of the operand
58   /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
59   /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
60   /// get a dynamic register class.
61   short RegClass;
62
63   /// Flags - These are flags from the MCOI::OperandFlags enum.
64   unsigned short Flags;
65
66   /// Lower 16 bits are used to specify which constraints are set. The higher 16
67   /// bits are used to specify the value of constraints (4 bits each).
68   unsigned Constraints;
69
70   /// OperandType - Information about the type of the operand.
71   MCOI::OperandType OperandType;
72   /// Currently no other information.
73
74   /// isLookupPtrRegClass - Set if this operand is a pointer value and it
75   /// requires a callback to look up its register class.
76   bool isLookupPtrRegClass() const {return Flags&(1 <<MCOI::LookupPtrRegClass);}
77
78   /// isPredicate - Set if this is one of the operands that made up of
79   /// the predicate operand that controls an isPredicable() instruction.
80   bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
81
82   /// isOptionalDef - Set if this operand is a optional def.
83   ///
84   bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
85 };
86
87
88 //===----------------------------------------------------------------------===//
89 // Machine Instruction Flags and Description
90 //===----------------------------------------------------------------------===//
91
92 /// MCInstrDesc flags - These should be considered private to the
93 /// implementation of the MCInstrDesc class.  Clients should use the predicate
94 /// methods on MCInstrDesc, not use these directly.  These all correspond to
95 /// bitfields in the MCInstrDesc::Flags field.
96 namespace MCID {
97   enum {
98     Variadic = 0,
99     HasOptionalDef,
100     Pseudo,
101     Return,
102     Call,
103     Barrier,
104     Terminator,
105     Branch,
106     IndirectBranch,
107     Compare,
108     MoveImm,
109     Bitcast,
110     DelaySlot,
111     FoldableAsLoad,
112     MayLoad,
113     MayStore,
114     Predicable,
115     NotDuplicable,
116     UnmodeledSideEffects,
117     Commutable,
118     ConvertibleTo3Addr,
119     UsesCustomInserter,
120     HasPostISelHook,
121     Rematerializable,
122     CheapAsAMove,
123     ExtraSrcRegAllocReq,
124     ExtraDefRegAllocReq
125   };
126 }
127
128 /// MCInstrDesc - Describe properties that are true of each instruction in the
129 /// target description file.  This captures information about side effects,
130 /// register use and many other things.  There is one instance of this struct
131 /// for each target instruction class, and the MachineInstr class points to
132 /// this struct directly to describe itself.
133 class MCInstrDesc {
134 public:
135   unsigned short  Opcode;        // The opcode number
136   unsigned short  NumOperands;   // Num of args (may be more if variable_ops)
137   unsigned short  NumDefs;       // Num of args that are definitions
138   unsigned short  SchedClass;    // enum identifying instr sched class
139   unsigned short  Size;          // Number of bytes in encoding.
140   const char *    Name;          // Name of the instruction record in td file
141   unsigned        Flags;         // Flags identifying machine instr class
142   uint64_t        TSFlags;       // Target Specific Flag values
143   const unsigned *ImplicitUses;  // Registers implicitly read by this instr
144   const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
145   const MCOperandInfo *OpInfo;   // 'NumOperands' entries about operands
146
147   /// getOperandConstraint - Returns the value of the specific constraint if
148   /// it is set. Returns -1 if it is not set.
149   int getOperandConstraint(unsigned OpNum,
150                            MCOI::OperandConstraint Constraint) const {
151     if (OpNum < NumOperands &&
152         (OpInfo[OpNum].Constraints & (1 << Constraint))) {
153       unsigned Pos = 16 + Constraint * 4;
154       return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
155     }
156     return -1;
157   }
158
159   /// getOpcode - Return the opcode number for this descriptor.
160   unsigned getOpcode() const {
161     return Opcode;
162   }
163
164   /// getName - Return the name of the record in the .td file for this
165   /// instruction, for example "ADD8ri".
166   const char *getName() const {
167     return Name;
168   }
169
170   /// getNumOperands - Return the number of declared MachineOperands for this
171   /// MachineInstruction.  Note that variadic (isVariadic() returns true)
172   /// instructions may have additional operands at the end of the list, and note
173   /// that the machine instruction may include implicit register def/uses as
174   /// well.
175   unsigned getNumOperands() const {
176     return NumOperands;
177   }
178
179   /// getNumDefs - Return the number of MachineOperands that are register
180   /// definitions.  Register definitions always occur at the start of the
181   /// machine operand list.  This is the number of "outs" in the .td file,
182   /// and does not include implicit defs.
183   unsigned getNumDefs() const {
184     return NumDefs;
185   }
186
187   /// isVariadic - Return true if this instruction can have a variable number of
188   /// operands.  In this case, the variable operands will be after the normal
189   /// operands but before the implicit definitions and uses (if any are
190   /// present).
191   bool isVariadic() const {
192     return Flags & (1 << MCID::Variadic);
193   }
194
195   /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
196   /// ARM instructions which can set condition code if 's' bit is set.
197   bool hasOptionalDef() const {
198     return Flags & (1 << MCID::HasOptionalDef);
199   }
200
201   /// getImplicitUses - Return a list of registers that are potentially
202   /// read by any instance of this machine instruction.  For example, on X86,
203   /// the "adc" instruction adds two register operands and adds the carry bit in
204   /// from the flags register.  In this case, the instruction is marked as
205   /// implicitly reading the flags.  Likewise, the variable shift instruction on
206   /// X86 is marked as implicitly reading the 'CL' register, which it always
207   /// does.
208   ///
209   /// This method returns null if the instruction has no implicit uses.
210   const unsigned *getImplicitUses() const {
211     return ImplicitUses;
212   }
213
214   /// getNumImplicitUses - Return the number of implicit uses this instruction
215   /// has.
216   unsigned getNumImplicitUses() const {
217     if (ImplicitUses == 0) return 0;
218     unsigned i = 0;
219     for (; ImplicitUses[i]; ++i) /*empty*/;
220     return i;
221   }
222
223   /// getImplicitDefs - Return a list of registers that are potentially
224   /// written by any instance of this machine instruction.  For example, on X86,
225   /// many instructions implicitly set the flags register.  In this case, they
226   /// are marked as setting the FLAGS.  Likewise, many instructions always
227   /// deposit their result in a physical register.  For example, the X86 divide
228   /// instruction always deposits the quotient and remainder in the EAX/EDX
229   /// registers.  For that instruction, this will return a list containing the
230   /// EAX/EDX/EFLAGS registers.
231   ///
232   /// This method returns null if the instruction has no implicit defs.
233   const unsigned *getImplicitDefs() const {
234     return ImplicitDefs;
235   }
236
237   /// getNumImplicitDefs - Return the number of implicit defs this instruction
238   /// has.
239   unsigned getNumImplicitDefs() const {
240     if (ImplicitDefs == 0) return 0;
241     unsigned i = 0;
242     for (; ImplicitDefs[i]; ++i) /*empty*/;
243     return i;
244   }
245
246   /// hasImplicitUseOfPhysReg - Return true if this instruction implicitly
247   /// uses the specified physical register.
248   bool hasImplicitUseOfPhysReg(unsigned Reg) const {
249     if (const unsigned *ImpUses = ImplicitUses)
250       for (; *ImpUses; ++ImpUses)
251         if (*ImpUses == Reg) return true;
252     return false;
253   }
254
255   /// hasImplicitDefOfPhysReg - Return true if this instruction implicitly
256   /// defines the specified physical register.
257   bool hasImplicitDefOfPhysReg(unsigned Reg) const {
258     if (const unsigned *ImpDefs = ImplicitDefs)
259       for (; *ImpDefs; ++ImpDefs)
260         if (*ImpDefs == Reg) return true;
261     return false;
262   }
263
264   /// getSchedClass - Return the scheduling class for this instruction.  The
265   /// scheduling class is an index into the InstrItineraryData table.  This
266   /// returns zero if there is no known scheduling information for the
267   /// instruction.
268   ///
269   unsigned getSchedClass() const {
270     return SchedClass;
271   }
272
273   /// getSize - Return the number of bytes in the encoding of this instruction,
274   /// or zero if the encoding size cannot be known from the opcode.
275   unsigned getSize() const {
276     return Size;
277   }
278
279   /// isPseudo - Return true if this is a pseudo instruction that doesn't
280   /// correspond to a real machine instruction.
281   ///
282   bool isPseudo() const {
283     return Flags & (1 << MCID::Pseudo);
284   }
285
286   bool isReturn() const {
287     return Flags & (1 << MCID::Return);
288   }
289
290   bool isCall() const {
291     return Flags & (1 << MCID::Call);
292   }
293
294   /// isBarrier - Returns true if the specified instruction stops control flow
295   /// from executing the instruction immediately following it.  Examples include
296   /// unconditional branches and return instructions.
297   bool isBarrier() const {
298     return Flags & (1 << MCID::Barrier);
299   }
300
301   /// findFirstPredOperandIdx() - Find the index of the first operand in the
302   /// operand list that is used to represent the predicate. It returns -1 if
303   /// none is found.
304   int findFirstPredOperandIdx() const {
305     if (isPredicable()) {
306       for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
307         if (OpInfo[i].isPredicate())
308           return i;
309     }
310     return -1;
311   }
312
313   /// isTerminator - Returns true if this instruction part of the terminator for
314   /// a basic block.  Typically this is things like return and branch
315   /// instructions.
316   ///
317   /// Various passes use this to insert code into the bottom of a basic block,
318   /// but before control flow occurs.
319   bool isTerminator() const {
320     return Flags & (1 << MCID::Terminator);
321   }
322
323   /// isBranch - Returns true if this is a conditional, unconditional, or
324   /// indirect branch.  Predicates below can be used to discriminate between
325   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
326   /// get more information.
327   bool isBranch() const {
328     return Flags & (1 << MCID::Branch);
329   }
330
331   /// isIndirectBranch - Return true if this is an indirect branch, such as a
332   /// branch through a register.
333   bool isIndirectBranch() const {
334     return Flags & (1 << MCID::IndirectBranch);
335   }
336
337   /// isConditionalBranch - Return true if this is a branch which may fall
338   /// through to the next instruction or may transfer control flow to some other
339   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
340   /// information about this branch.
341   bool isConditionalBranch() const {
342     return isBranch() & !isBarrier() & !isIndirectBranch();
343   }
344
345   /// isUnconditionalBranch - Return true if this is a branch which always
346   /// transfers control flow to some other block.  The
347   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
348   /// about this branch.
349   bool isUnconditionalBranch() const {
350     return isBranch() & isBarrier() & !isIndirectBranch();
351   }
352
353   // isPredicable - Return true if this instruction has a predicate operand that
354   // controls execution.  It may be set to 'always', or may be set to other
355   /// values.   There are various methods in TargetInstrInfo that can be used to
356   /// control and modify the predicate in this instruction.
357   bool isPredicable() const {
358     return Flags & (1 << MCID::Predicable);
359   }
360
361   /// isCompare - Return true if this instruction is a comparison.
362   bool isCompare() const {
363     return Flags & (1 << MCID::Compare);
364   }
365
366   /// isMoveImmediate - Return true if this instruction is a move immediate
367   /// (including conditional moves) instruction.
368   bool isMoveImmediate() const {
369     return Flags & (1 << MCID::MoveImm);
370   }
371
372   /// isBitcast - Return true if this instruction is a bitcast instruction.
373   ///
374   bool isBitcast() const {
375     return Flags & (1 << MCID::Bitcast);
376   }
377
378   /// isNotDuplicable - Return true if this instruction cannot be safely
379   /// duplicated.  For example, if the instruction has a unique labels attached
380   /// to it, duplicating it would cause multiple definition errors.
381   bool isNotDuplicable() const {
382     return Flags & (1 << MCID::NotDuplicable);
383   }
384
385   /// hasDelaySlot - Returns true if the specified instruction has a delay slot
386   /// which must be filled by the code generator.
387   bool hasDelaySlot() const {
388     return Flags & (1 << MCID::DelaySlot);
389   }
390
391   /// canFoldAsLoad - Return true for instructions that can be folded as
392   /// memory operands in other instructions. The most common use for this
393   /// is instructions that are simple loads from memory that don't modify
394   /// the loaded value in any way, but it can also be used for instructions
395   /// that can be expressed as constant-pool loads, such as V_SETALLONES
396   /// on x86, to allow them to be folded when it is beneficial.
397   /// This should only be set on instructions that return a value in their
398   /// only virtual register definition.
399   bool canFoldAsLoad() const {
400     return Flags & (1 << MCID::FoldableAsLoad);
401   }
402
403   //===--------------------------------------------------------------------===//
404   // Side Effect Analysis
405   //===--------------------------------------------------------------------===//
406
407   /// mayLoad - Return true if this instruction could possibly read memory.
408   /// Instructions with this flag set are not necessarily simple load
409   /// instructions, they may load a value and modify it, for example.
410   bool mayLoad() const {
411     return Flags & (1 << MCID::MayLoad);
412   }
413
414
415   /// mayStore - Return true if this instruction could possibly modify memory.
416   /// Instructions with this flag set are not necessarily simple store
417   /// instructions, they may store a modified value based on their operands, or
418   /// may not actually modify anything, for example.
419   bool mayStore() const {
420     return Flags & (1 << MCID::MayStore);
421   }
422
423   /// hasUnmodeledSideEffects - Return true if this instruction has side
424   /// effects that are not modeled by other flags.  This does not return true
425   /// for instructions whose effects are captured by:
426   ///
427   ///  1. Their operand list and implicit definition/use list.  Register use/def
428   ///     info is explicit for instructions.
429   ///  2. Memory accesses.  Use mayLoad/mayStore.
430   ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
431   ///
432   /// Examples of side effects would be modifying 'invisible' machine state like
433   /// a control register, flushing a cache, modifying a register invisible to
434   /// LLVM, etc.
435   ///
436   bool hasUnmodeledSideEffects() const {
437     return Flags & (1 << MCID::UnmodeledSideEffects);
438   }
439
440   //===--------------------------------------------------------------------===//
441   // Flags that indicate whether an instruction can be modified by a method.
442   //===--------------------------------------------------------------------===//
443
444   /// isCommutable - Return true if this may be a 2- or 3-address
445   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
446   /// result if Y and Z are exchanged.  If this flag is set, then the
447   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
448   /// instruction.
449   ///
450   /// Note that this flag may be set on instructions that are only commutable
451   /// sometimes.  In these cases, the call to commuteInstruction will fail.
452   /// Also note that some instructions require non-trivial modification to
453   /// commute them.
454   bool isCommutable() const {
455     return Flags & (1 << MCID::Commutable);
456   }
457
458   /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
459   /// which can be changed into a 3-address instruction if needed.  Doing this
460   /// transformation can be profitable in the register allocator, because it
461   /// means that the instruction can use a 2-address form if possible, but
462   /// degrade into a less efficient form if the source and dest register cannot
463   /// be assigned to the same register.  For example, this allows the x86
464   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
465   /// is the same speed as the shift but has bigger code size.
466   ///
467   /// If this returns true, then the target must implement the
468   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
469   /// is allowed to fail if the transformation isn't valid for this specific
470   /// instruction (e.g. shl reg, 4 on x86).
471   ///
472   bool isConvertibleTo3Addr() const {
473     return Flags & (1 << MCID::ConvertibleTo3Addr);
474   }
475
476   /// usesCustomInsertionHook - Return true if this instruction requires
477   /// custom insertion support when the DAG scheduler is inserting it into a
478   /// machine basic block.  If this is true for the instruction, it basically
479   /// means that it is a pseudo instruction used at SelectionDAG time that is
480   /// expanded out into magic code by the target when MachineInstrs are formed.
481   ///
482   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
483   /// is used to insert this into the MachineBasicBlock.
484   bool usesCustomInsertionHook() const {
485     return Flags & (1 << MCID::UsesCustomInserter);
486   }
487
488   /// hasPostISelHook - Return true if this instruction requires *adjustment*
489   /// after instruction selection by calling a target hook. For example, this
490   /// can be used to fill in ARM 's' optional operand depending on whether
491   /// the conditional flag register is used.
492   bool hasPostISelHook() const {
493     return Flags & (1 << MCID::HasPostISelHook);
494   }
495
496   /// isRematerializable - Returns true if this instruction is a candidate for
497   /// remat.  This flag is deprecated, please don't use it anymore.  If this
498   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
499   /// verify the instruction is really rematable.
500   bool isRematerializable() const {
501     return Flags & (1 << MCID::Rematerializable);
502   }
503
504   /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
505   /// less) than a move instruction. This is useful during certain types of
506   /// optimizations (e.g., remat during two-address conversion or machine licm)
507   /// where we would like to remat or hoist the instruction, but not if it costs
508   /// more than moving the instruction into the appropriate register. Note, we
509   /// are not marking copies from and to the same register class with this flag.
510   bool isAsCheapAsAMove() const {
511     return Flags & (1 << MCID::CheapAsAMove);
512   }
513
514   /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
515   /// have special register allocation requirements that are not captured by the
516   /// operand register classes. e.g. ARM::STRD's two source registers must be an
517   /// even / odd pair, ARM::STM registers have to be in ascending order.
518   /// Post-register allocation passes should not attempt to change allocations
519   /// for sources of instructions with this flag.
520   bool hasExtraSrcRegAllocReq() const {
521     return Flags & (1 << MCID::ExtraSrcRegAllocReq);
522   }
523
524   /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
525   /// have special register allocation requirements that are not captured by the
526   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
527   /// even / odd pair, ARM::LDM registers have to be in ascending order.
528   /// Post-register allocation passes should not attempt to change allocations
529   /// for definitions of instructions with this flag.
530   bool hasExtraDefRegAllocReq() const {
531     return Flags & (1 << MCID::ExtraDefRegAllocReq);
532   }
533 };
534
535 } // end namespace llvm
536
537 #endif