]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/include/llvm/Target/TargetLowering.h
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / include / llvm / Target / TargetLowering.h
1 //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes how to lower LLVM code to machine code.  This has two
11 // main components:
12 //
13 //  1. Which ValueTypes are natively supported by the target.
14 //  2. Which operations are supported for supported ValueTypes.
15 //  3. Cost thresholds for alternative implementations of certain operations.
16 //
17 // In addition it has a few other components, like information about FP
18 // immediates.
19 //
20 //===----------------------------------------------------------------------===//
21
22 #ifndef LLVM_TARGET_TARGETLOWERING_H
23 #define LLVM_TARGET_TARGETLOWERING_H
24
25 #include "llvm/CallingConv.h"
26 #include "llvm/InlineAsm.h"
27 #include "llvm/Attributes.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/Support/DebugLoc.h"
32 #include "llvm/Target/TargetCallingConv.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <climits>
35 #include <map>
36 #include <vector>
37
38 namespace llvm {
39   class AllocaInst;
40   class APFloat;
41   class CallInst;
42   class CCState;
43   class Function;
44   class FastISel;
45   class FunctionLoweringInfo;
46   class ImmutableCallSite;
47   class MachineBasicBlock;
48   class MachineFunction;
49   class MachineFrameInfo;
50   class MachineInstr;
51   class MachineJumpTableInfo;
52   class MCContext;
53   class MCExpr;
54   class SDNode;
55   class SDValue;
56   class SelectionDAG;
57   template<typename T> class SmallVectorImpl;
58   class TargetData;
59   class TargetMachine;
60   class TargetRegisterClass;
61   class TargetLoweringObjectFile;
62   class Value;
63
64   // FIXME: should this be here?
65   namespace TLSModel {
66     enum Model {
67       GeneralDynamic,
68       LocalDynamic,
69       InitialExec,
70       LocalExec
71     };
72   }
73   TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
74
75
76 //===----------------------------------------------------------------------===//
77 /// TargetLowering - This class defines information used to lower LLVM code to
78 /// legal SelectionDAG operators that the target instruction selector can accept
79 /// natively.
80 ///
81 /// This class also defines callbacks that targets must implement to lower
82 /// target-specific constructs to SelectionDAG operators.
83 ///
84 class TargetLowering {
85   TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
86   void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
87 public:
88   /// LegalizeAction - This enum indicates whether operations are valid for a
89   /// target, and if not, what action should be used to make them valid.
90   enum LegalizeAction {
91     Legal,      // The target natively supports this operation.
92     Promote,    // This operation should be executed in a larger type.
93     Expand,     // Try to expand this to other ops, otherwise use a libcall.
94     Custom      // Use the LowerOperation hook to implement custom lowering.
95   };
96
97   /// LegalizeAction - This enum indicates whether a types are legal for a
98   /// target, and if not, what action should be used to make them valid.
99   enum LegalizeTypeAction {
100     TypeLegal,           // The target natively supports this type.
101     TypePromoteInteger,  // Replace this integer with a larger one.
102     TypeExpandInteger,   // Split this integer into two of half the size.
103     TypeSoftenFloat,     // Convert this float to a same size integer type.
104     TypeExpandFloat,     // Split this float into two of half the size.
105     TypeScalarizeVector, // Replace this one-element vector with its element.
106     TypeSplitVector,     // Split this vector into two of half the size.
107     TypeWidenVector      // This vector should be widened into a larger vector.
108   };
109
110   enum BooleanContent { // How the target represents true/false values.
111     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
112     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
113     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
114   };
115
116   static ISD::NodeType getExtendForContent(BooleanContent Content) {
117     switch (Content) {
118     default:
119       assert(false && "Unknown BooleanContent!");
120     case UndefinedBooleanContent:
121       // Extend by adding rubbish bits.
122       return ISD::ANY_EXTEND;
123     case ZeroOrOneBooleanContent:
124       // Extend by adding zero bits.
125       return ISD::ZERO_EXTEND;
126     case ZeroOrNegativeOneBooleanContent:
127       // Extend by copying the sign bit.
128       return ISD::SIGN_EXTEND;
129     }
130   }
131
132   /// NOTE: The constructor takes ownership of TLOF.
133   explicit TargetLowering(const TargetMachine &TM,
134                           const TargetLoweringObjectFile *TLOF);
135   virtual ~TargetLowering();
136
137   const TargetMachine &getTargetMachine() const { return TM; }
138   const TargetData *getTargetData() const { return TD; }
139   const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
140
141   bool isBigEndian() const { return !IsLittleEndian; }
142   bool isLittleEndian() const { return IsLittleEndian; }
143   MVT getPointerTy() const { return PointerTy; }
144   virtual MVT getShiftAmountTy(EVT LHSTy) const;
145
146   /// isSelectExpensive - Return true if the select operation is expensive for
147   /// this target.
148   bool isSelectExpensive() const { return SelectIsExpensive; }
149
150   /// isIntDivCheap() - Return true if integer divide is usually cheaper than
151   /// a sequence of several shifts, adds, and multiplies for this target.
152   bool isIntDivCheap() const { return IntDivIsCheap; }
153
154   /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
155   /// srl/add/sra.
156   bool isPow2DivCheap() const { return Pow2DivIsCheap; }
157
158   /// isJumpExpensive() - Return true if Flow Control is an expensive operation
159   /// that should be avoided.
160   bool isJumpExpensive() const { return JumpIsExpensive; }
161
162   /// getSetCCResultType - Return the ValueType of the result of SETCC
163   /// operations.  Also used to obtain the target's preferred type for
164   /// the condition operand of SELECT and BRCOND nodes.  In the case of
165   /// BRCOND the argument passed is MVT::Other since there are no other
166   /// operands to get a type hint from.
167   virtual EVT getSetCCResultType(EVT VT) const;
168
169   /// getCmpLibcallReturnType - Return the ValueType for comparison
170   /// libcalls. Comparions libcalls include floating point comparion calls,
171   /// and Ordered/Unordered check calls on floating point numbers.
172   virtual
173   MVT::SimpleValueType getCmpLibcallReturnType() const;
174
175   /// getBooleanContents - For targets without i1 registers, this gives the
176   /// nature of the high-bits of boolean values held in types wider than i1.
177   /// "Boolean values" are special true/false values produced by nodes like
178   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
179   /// Not to be confused with general values promoted from i1.
180   /// Some cpus distinguish between vectors of boolean and scalars; the isVec
181   /// parameter selects between the two kinds.  For example on X86 a scalar
182   /// boolean should be zero extended from i1, while the elements of a vector
183   /// of booleans should be sign extended from i1.
184   BooleanContent getBooleanContents(bool isVec) const {
185     return isVec ? BooleanVectorContents : BooleanContents;
186   }
187
188   /// getSchedulingPreference - Return target scheduling preference.
189   Sched::Preference getSchedulingPreference() const {
190     return SchedPreferenceInfo;
191   }
192
193   /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
194   /// different scheduling heuristics for different nodes. This function returns
195   /// the preference (or none) for the given node.
196   virtual Sched::Preference getSchedulingPreference(SDNode *) const {
197     return Sched::None;
198   }
199
200   /// getRegClassFor - Return the register class that should be used for the
201   /// specified value type.
202   virtual TargetRegisterClass *getRegClassFor(EVT VT) const {
203     assert(VT.isSimple() && "getRegClassFor called on illegal type!");
204     TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
205     assert(RC && "This value type is not natively supported!");
206     return RC;
207   }
208
209   /// getRepRegClassFor - Return the 'representative' register class for the
210   /// specified value type. The 'representative' register class is the largest
211   /// legal super-reg register class for the register class of the value type.
212   /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
213   /// while the rep register class is GR64 on x86_64.
214   virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
215     assert(VT.isSimple() && "getRepRegClassFor called on illegal type!");
216     const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
217     return RC;
218   }
219
220   /// getRepRegClassCostFor - Return the cost of the 'representative' register
221   /// class for the specified value type.
222   virtual uint8_t getRepRegClassCostFor(EVT VT) const {
223     assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
224     return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
225   }
226
227   /// isTypeLegal - Return true if the target has native support for the
228   /// specified value type.  This means that it has a register that directly
229   /// holds it without promotions or expansions.
230   bool isTypeLegal(EVT VT) const {
231     assert(!VT.isSimple() ||
232            (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
233     return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
234   }
235
236   class ValueTypeActionImpl {
237     /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
238     /// that indicates how instruction selection should deal with the type.
239     uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
240
241   public:
242     ValueTypeActionImpl() {
243       std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
244     }
245
246     LegalizeTypeAction getTypeAction(MVT VT) const {
247       return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
248     }
249
250     void setTypeAction(EVT VT, LegalizeTypeAction Action) {
251       unsigned I = VT.getSimpleVT().SimpleTy;
252       ValueTypeActions[I] = Action;
253     }
254   };
255
256   const ValueTypeActionImpl &getValueTypeActions() const {
257     return ValueTypeActions;
258   }
259
260   /// getTypeAction - Return how we should legalize values of this type, either
261   /// it is already legal (return 'Legal') or we need to promote it to a larger
262   /// type (return 'Promote'), or we need to expand it into multiple registers
263   /// of smaller integer type (return 'Expand').  'Custom' is not an option.
264   LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
265     return getTypeConversion(Context, VT).first;
266   }
267   LegalizeTypeAction getTypeAction(MVT VT) const {
268     return ValueTypeActions.getTypeAction(VT);
269   }
270
271   /// getTypeToTransformTo - For types supported by the target, this is an
272   /// identity function.  For types that must be promoted to larger types, this
273   /// returns the larger type to promote to.  For integer types that are larger
274   /// than the largest integer register, this contains one step in the expansion
275   /// to get to the smaller register. For illegal floating point types, this
276   /// returns the integer type to transform to.
277   EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
278     return getTypeConversion(Context, VT).second;
279   }
280
281   /// getTypeToExpandTo - For types supported by the target, this is an
282   /// identity function.  For types that must be expanded (i.e. integer types
283   /// that are larger than the largest integer register or illegal floating
284   /// point types), this returns the largest legal type it will be expanded to.
285   EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
286     assert(!VT.isVector());
287     while (true) {
288       switch (getTypeAction(Context, VT)) {
289       case TypeLegal:
290         return VT;
291       case TypeExpandInteger:
292         VT = getTypeToTransformTo(Context, VT);
293         break;
294       default:
295         assert(false && "Type is not legal nor is it to be expanded!");
296         return VT;
297       }
298     }
299     return VT;
300   }
301
302   /// getVectorTypeBreakdown - Vector types are broken down into some number of
303   /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
304   /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
305   /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
306   ///
307   /// This method returns the number of registers needed, and the VT for each
308   /// register.  It also returns the VT and quantity of the intermediate values
309   /// before they are promoted/expanded.
310   ///
311   unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
312                                   EVT &IntermediateVT,
313                                   unsigned &NumIntermediates,
314                                   EVT &RegisterVT) const;
315
316   /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
317   /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
318   /// this is the case, it returns true and store the intrinsic
319   /// information into the IntrinsicInfo that was passed to the function.
320   struct IntrinsicInfo {
321     unsigned     opc;         // target opcode
322     EVT          memVT;       // memory VT
323     const Value* ptrVal;      // value representing memory location
324     int          offset;      // offset off of ptrVal
325     unsigned     align;       // alignment
326     bool         vol;         // is volatile?
327     bool         readMem;     // reads memory?
328     bool         writeMem;    // writes memory?
329   };
330
331   virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
332                                   unsigned /*Intrinsic*/) const {
333     return false;
334   }
335
336   /// isFPImmLegal - Returns true if the target can instruction select the
337   /// specified FP immediate natively. If false, the legalizer will materialize
338   /// the FP immediate as a load from a constant pool.
339   virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
340     return false;
341   }
342
343   /// isShuffleMaskLegal - Targets can use this to indicate that they only
344   /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
345   /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
346   /// are assumed to be legal.
347   virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
348                                   EVT /*VT*/) const {
349     return true;
350   }
351
352   /// canOpTrap - Returns true if the operation can trap for the value type.
353   /// VT must be a legal type. By default, we optimistically assume most
354   /// operations don't trap except for divide and remainder.
355   virtual bool canOpTrap(unsigned Op, EVT VT) const;
356
357   /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
358   /// used by Targets can use this to indicate if there is a suitable
359   /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
360   /// pool entry.
361   virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
362                                       EVT /*VT*/) const {
363     return false;
364   }
365
366   /// getOperationAction - Return how this operation should be treated: either
367   /// it is legal, needs to be promoted to a larger size, needs to be
368   /// expanded to some other code sequence, or the target has a custom expander
369   /// for it.
370   LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
371     if (VT.isExtended()) return Expand;
372     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
373     unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
374     return (LegalizeAction)OpActions[I][Op];
375   }
376
377   /// isOperationLegalOrCustom - Return true if the specified operation is
378   /// legal on this target or can be made legal with custom lowering. This
379   /// is used to help guide high-level lowering decisions.
380   bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
381     return (VT == MVT::Other || isTypeLegal(VT)) &&
382       (getOperationAction(Op, VT) == Legal ||
383        getOperationAction(Op, VT) == Custom);
384   }
385
386   /// isOperationLegal - Return true if the specified operation is legal on this
387   /// target.
388   bool isOperationLegal(unsigned Op, EVT VT) const {
389     return (VT == MVT::Other || isTypeLegal(VT)) &&
390            getOperationAction(Op, VT) == Legal;
391   }
392
393   /// getLoadExtAction - Return how this load with extension should be treated:
394   /// either it is legal, needs to be promoted to a larger size, needs to be
395   /// expanded to some other code sequence, or the target has a custom expander
396   /// for it.
397   LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
398     assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
399            VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
400            "Table isn't big enough!");
401     return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
402   }
403
404   /// isLoadExtLegal - Return true if the specified load with extension is legal
405   /// on this target.
406   bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
407     return VT.isSimple() && getLoadExtAction(ExtType, VT) == Legal;
408   }
409
410   /// getTruncStoreAction - Return how this store with truncation should be
411   /// treated: either it is legal, needs to be promoted to a larger size, needs
412   /// to be expanded to some other code sequence, or the target has a custom
413   /// expander for it.
414   LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
415     assert(ValVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
416            MemVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
417            "Table isn't big enough!");
418     return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
419                                             [MemVT.getSimpleVT().SimpleTy];
420   }
421
422   /// isTruncStoreLegal - Return true if the specified store with truncation is
423   /// legal on this target.
424   bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
425     return isTypeLegal(ValVT) && MemVT.isSimple() &&
426            getTruncStoreAction(ValVT, MemVT) == Legal;
427   }
428
429   /// getIndexedLoadAction - Return how the indexed load should be treated:
430   /// either it is legal, needs to be promoted to a larger size, needs to be
431   /// expanded to some other code sequence, or the target has a custom expander
432   /// for it.
433   LegalizeAction
434   getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
435     assert(IdxMode < ISD::LAST_INDEXED_MODE &&
436            VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
437            "Table isn't big enough!");
438     unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
439     return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
440   }
441
442   /// isIndexedLoadLegal - Return true if the specified indexed load is legal
443   /// on this target.
444   bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
445     return VT.isSimple() &&
446       (getIndexedLoadAction(IdxMode, VT) == Legal ||
447        getIndexedLoadAction(IdxMode, VT) == Custom);
448   }
449
450   /// getIndexedStoreAction - Return how the indexed store should be treated:
451   /// either it is legal, needs to be promoted to a larger size, needs to be
452   /// expanded to some other code sequence, or the target has a custom expander
453   /// for it.
454   LegalizeAction
455   getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
456     assert(IdxMode < ISD::LAST_INDEXED_MODE &&
457            VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
458            "Table isn't big enough!");
459     unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
460     return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
461   }
462
463   /// isIndexedStoreLegal - Return true if the specified indexed load is legal
464   /// on this target.
465   bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
466     return VT.isSimple() &&
467       (getIndexedStoreAction(IdxMode, VT) == Legal ||
468        getIndexedStoreAction(IdxMode, VT) == Custom);
469   }
470
471   /// getCondCodeAction - Return how the condition code should be treated:
472   /// either it is legal, needs to be expanded to some other code sequence,
473   /// or the target has a custom expander for it.
474   LegalizeAction
475   getCondCodeAction(ISD::CondCode CC, EVT VT) const {
476     assert((unsigned)CC < array_lengthof(CondCodeActions) &&
477            (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
478            "Table isn't big enough!");
479     LegalizeAction Action = (LegalizeAction)
480       ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
481     assert(Action != Promote && "Can't promote condition code!");
482     return Action;
483   }
484
485   /// isCondCodeLegal - Return true if the specified condition code is legal
486   /// on this target.
487   bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
488     return getCondCodeAction(CC, VT) == Legal ||
489            getCondCodeAction(CC, VT) == Custom;
490   }
491
492
493   /// getTypeToPromoteTo - If the action for this operation is to promote, this
494   /// method returns the ValueType to promote to.
495   EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
496     assert(getOperationAction(Op, VT) == Promote &&
497            "This operation isn't promoted!");
498
499     // See if this has an explicit type specified.
500     std::map<std::pair<unsigned, MVT::SimpleValueType>,
501              MVT::SimpleValueType>::const_iterator PTTI =
502       PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
503     if (PTTI != PromoteToType.end()) return PTTI->second;
504
505     assert((VT.isInteger() || VT.isFloatingPoint()) &&
506            "Cannot autopromote this type, add it with AddPromotedToType.");
507
508     EVT NVT = VT;
509     do {
510       NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
511       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
512              "Didn't find type to promote to!");
513     } while (!isTypeLegal(NVT) ||
514               getOperationAction(Op, NVT) == Promote);
515     return NVT;
516   }
517
518   /// getValueType - Return the EVT corresponding to this LLVM type.
519   /// This is fixed by the LLVM operations except for the pointer size.  If
520   /// AllowUnknown is true, this will return MVT::Other for types with no EVT
521   /// counterpart (e.g. structs), otherwise it will assert.
522   EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
523     EVT VT = EVT::getEVT(Ty, AllowUnknown);
524     return VT == MVT::iPTR ? PointerTy : VT;
525   }
526
527   /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
528   /// function arguments in the caller parameter area.  This is the actual
529   /// alignment, not its logarithm.
530   virtual unsigned getByValTypeAlignment(Type *Ty) const;
531
532   /// getRegisterType - Return the type of registers that this ValueType will
533   /// eventually require.
534   EVT getRegisterType(MVT VT) const {
535     assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
536     return RegisterTypeForVT[VT.SimpleTy];
537   }
538
539   /// getRegisterType - Return the type of registers that this ValueType will
540   /// eventually require.
541   EVT getRegisterType(LLVMContext &Context, EVT VT) const {
542     if (VT.isSimple()) {
543       assert((unsigned)VT.getSimpleVT().SimpleTy <
544                 array_lengthof(RegisterTypeForVT));
545       return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
546     }
547     if (VT.isVector()) {
548       EVT VT1, RegisterVT;
549       unsigned NumIntermediates;
550       (void)getVectorTypeBreakdown(Context, VT, VT1,
551                                    NumIntermediates, RegisterVT);
552       return RegisterVT;
553     }
554     if (VT.isInteger()) {
555       return getRegisterType(Context, getTypeToTransformTo(Context, VT));
556     }
557     assert(0 && "Unsupported extended type!");
558     return EVT(MVT::Other); // Not reached
559   }
560
561   /// getNumRegisters - Return the number of registers that this ValueType will
562   /// eventually require.  This is one for any types promoted to live in larger
563   /// registers, but may be more than one for types (like i64) that are split
564   /// into pieces.  For types like i140, which are first promoted then expanded,
565   /// it is the number of registers needed to hold all the bits of the original
566   /// type.  For an i140 on a 32 bit machine this means 5 registers.
567   unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
568     if (VT.isSimple()) {
569       assert((unsigned)VT.getSimpleVT().SimpleTy <
570                 array_lengthof(NumRegistersForVT));
571       return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
572     }
573     if (VT.isVector()) {
574       EVT VT1, VT2;
575       unsigned NumIntermediates;
576       return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
577     }
578     if (VT.isInteger()) {
579       unsigned BitWidth = VT.getSizeInBits();
580       unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
581       return (BitWidth + RegWidth - 1) / RegWidth;
582     }
583     assert(0 && "Unsupported extended type!");
584     return 0; // Not reached
585   }
586
587   /// ShouldShrinkFPConstant - If true, then instruction selection should
588   /// seek to shrink the FP constant of the specified type to a smaller type
589   /// in order to save space and / or reduce runtime.
590   virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
591
592   /// hasTargetDAGCombine - If true, the target has custom DAG combine
593   /// transformations that it can perform for the specified node.
594   bool hasTargetDAGCombine(ISD::NodeType NT) const {
595     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
596     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
597   }
598
599   /// This function returns the maximum number of store operations permitted
600   /// to replace a call to llvm.memset. The value is set by the target at the
601   /// performance threshold for such a replacement. If OptSize is true,
602   /// return the limit for functions that have OptSize attribute.
603   /// @brief Get maximum # of store operations permitted for llvm.memset
604   unsigned getMaxStoresPerMemset(bool OptSize) const {
605     return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
606   }
607
608   /// This function returns the maximum number of store operations permitted
609   /// to replace a call to llvm.memcpy. The value is set by the target at the
610   /// performance threshold for such a replacement. If OptSize is true,
611   /// return the limit for functions that have OptSize attribute.
612   /// @brief Get maximum # of store operations permitted for llvm.memcpy
613   unsigned getMaxStoresPerMemcpy(bool OptSize) const {
614     return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
615   }
616
617   /// This function returns the maximum number of store operations permitted
618   /// to replace a call to llvm.memmove. The value is set by the target at the
619   /// performance threshold for such a replacement. If OptSize is true,
620   /// return the limit for functions that have OptSize attribute.
621   /// @brief Get maximum # of store operations permitted for llvm.memmove
622   unsigned getMaxStoresPerMemmove(bool OptSize) const {
623     return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
624   }
625
626   /// This function returns true if the target allows unaligned memory accesses.
627   /// of the specified type. This is used, for example, in situations where an
628   /// array copy/move/set is  converted to a sequence of store operations. It's
629   /// use helps to ensure that such replacements don't generate code that causes
630   /// an alignment error  (trap) on the target machine.
631   /// @brief Determine if the target supports unaligned memory accesses.
632   virtual bool allowsUnalignedMemoryAccesses(EVT) const {
633     return false;
634   }
635
636   /// This function returns true if the target would benefit from code placement
637   /// optimization.
638   /// @brief Determine if the target should perform code placement optimization.
639   bool shouldOptimizeCodePlacement() const {
640     return benefitFromCodePlacementOpt;
641   }
642
643   /// getOptimalMemOpType - Returns the target specific optimal type for load
644   /// and store operations as a result of memset, memcpy, and memmove
645   /// lowering. If DstAlign is zero that means it's safe to destination
646   /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
647   /// means there isn't a need to check it against alignment requirement,
648   /// probably because the source does not need to be loaded. If
649   /// 'NonScalarIntSafe' is true, that means it's safe to return a
650   /// non-scalar-integer type, e.g. empty string source, constant, or loaded
651   /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
652   /// constant so it does not need to be loaded.
653   /// It returns EVT::Other if the type should be determined using generic
654   /// target-independent logic.
655   virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
656                                   unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
657                                   bool /*NonScalarIntSafe*/,
658                                   bool /*MemcpyStrSrc*/,
659                                   MachineFunction &/*MF*/) const {
660     return MVT::Other;
661   }
662
663   /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
664   /// to implement llvm.setjmp.
665   bool usesUnderscoreSetJmp() const {
666     return UseUnderscoreSetJmp;
667   }
668
669   /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
670   /// to implement llvm.longjmp.
671   bool usesUnderscoreLongJmp() const {
672     return UseUnderscoreLongJmp;
673   }
674
675   /// getStackPointerRegisterToSaveRestore - If a physical register, this
676   /// specifies the register that llvm.savestack/llvm.restorestack should save
677   /// and restore.
678   unsigned getStackPointerRegisterToSaveRestore() const {
679     return StackPointerRegisterToSaveRestore;
680   }
681
682   /// getExceptionAddressRegister - If a physical register, this returns
683   /// the register that receives the exception address on entry to a landing
684   /// pad.
685   unsigned getExceptionAddressRegister() const {
686     return ExceptionPointerRegister;
687   }
688
689   /// getExceptionSelectorRegister - If a physical register, this returns
690   /// the register that receives the exception typeid on entry to a landing
691   /// pad.
692   unsigned getExceptionSelectorRegister() const {
693     return ExceptionSelectorRegister;
694   }
695
696   /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
697   /// set, the default is 200)
698   unsigned getJumpBufSize() const {
699     return JumpBufSize;
700   }
701
702   /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
703   /// (if never set, the default is 0)
704   unsigned getJumpBufAlignment() const {
705     return JumpBufAlignment;
706   }
707
708   /// getMinStackArgumentAlignment - return the minimum stack alignment of an
709   /// argument.
710   unsigned getMinStackArgumentAlignment() const {
711     return MinStackArgumentAlignment;
712   }
713
714   /// getMinFunctionAlignment - return the minimum function alignment.
715   ///
716   unsigned getMinFunctionAlignment() const {
717     return MinFunctionAlignment;
718   }
719
720   /// getPrefFunctionAlignment - return the preferred function alignment.
721   ///
722   unsigned getPrefFunctionAlignment() const {
723     return PrefFunctionAlignment;
724   }
725
726   /// getPrefLoopAlignment - return the preferred loop alignment.
727   ///
728   unsigned getPrefLoopAlignment() const {
729     return PrefLoopAlignment;
730   }
731
732   /// getShouldFoldAtomicFences - return whether the combiner should fold
733   /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
734   ///
735   bool getShouldFoldAtomicFences() const {
736     return ShouldFoldAtomicFences;
737   }
738
739   /// getInsertFencesFor - return whether the DAG builder should automatically
740   /// insert fences and reduce ordering for atomics.
741   ///
742   bool getInsertFencesForAtomic() const {
743     return InsertFencesForAtomic;
744   }
745
746   /// getPreIndexedAddressParts - returns true by value, base pointer and
747   /// offset pointer and addressing mode by reference if the node's address
748   /// can be legally represented as pre-indexed load / store address.
749   virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
750                                          SDValue &/*Offset*/,
751                                          ISD::MemIndexedMode &/*AM*/,
752                                          SelectionDAG &/*DAG*/) const {
753     return false;
754   }
755
756   /// getPostIndexedAddressParts - returns true by value, base pointer and
757   /// offset pointer and addressing mode by reference if this node can be
758   /// combined with a load / store to form a post-indexed load / store.
759   virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
760                                           SDValue &/*Base*/, SDValue &/*Offset*/,
761                                           ISD::MemIndexedMode &/*AM*/,
762                                           SelectionDAG &/*DAG*/) const {
763     return false;
764   }
765
766   /// getJumpTableEncoding - Return the entry encoding for a jump table in the
767   /// current function.  The returned value is a member of the
768   /// MachineJumpTableInfo::JTEntryKind enum.
769   virtual unsigned getJumpTableEncoding() const;
770
771   virtual const MCExpr *
772   LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
773                             const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
774                             MCContext &/*Ctx*/) const {
775     assert(0 && "Need to implement this hook if target has custom JTIs");
776     return 0;
777   }
778
779   /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
780   /// jumptable.
781   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
782                                            SelectionDAG &DAG) const;
783
784   /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
785   /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
786   /// MCExpr.
787   virtual const MCExpr *
788   getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
789                                unsigned JTI, MCContext &Ctx) const;
790
791   /// isOffsetFoldingLegal - Return true if folding a constant offset
792   /// with the given GlobalAddress is legal.  It is frequently not legal in
793   /// PIC relocation models.
794   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
795
796   /// getStackCookieLocation - Return true if the target stores stack
797   /// protector cookies at a fixed offset in some non-standard address
798   /// space, and populates the address space and offset as
799   /// appropriate.
800   virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
801                                       unsigned &/*Offset*/) const {
802     return false;
803   }
804
805   /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
806   /// used for loads / stores from the global.
807   virtual unsigned getMaximalGlobalOffset() const {
808     return 0;
809   }
810
811   //===--------------------------------------------------------------------===//
812   // TargetLowering Optimization Methods
813   //
814
815   /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
816   /// SDValues for returning information from TargetLowering to its clients
817   /// that want to combine
818   struct TargetLoweringOpt {
819     SelectionDAG &DAG;
820     bool LegalTys;
821     bool LegalOps;
822     SDValue Old;
823     SDValue New;
824
825     explicit TargetLoweringOpt(SelectionDAG &InDAG,
826                                bool LT, bool LO) :
827       DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
828
829     bool LegalTypes() const { return LegalTys; }
830     bool LegalOperations() const { return LegalOps; }
831
832     bool CombineTo(SDValue O, SDValue N) {
833       Old = O;
834       New = N;
835       return true;
836     }
837
838     /// ShrinkDemandedConstant - Check to see if the specified operand of the
839     /// specified instruction is a constant integer.  If so, check to see if
840     /// there are any bits set in the constant that are not demanded.  If so,
841     /// shrink the constant and return true.
842     bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
843
844     /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
845     /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
846     /// cast, but it could be generalized for targets with other types of
847     /// implicit widening casts.
848     bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
849                           DebugLoc dl);
850   };
851
852   /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
853   /// DemandedMask bits of the result of Op are ever used downstream.  If we can
854   /// use this information to simplify Op, create a new simplified DAG node and
855   /// return true, returning the original and new nodes in Old and New.
856   /// Otherwise, analyze the expression and return a mask of KnownOne and
857   /// KnownZero bits for the expression (used to simplify the caller).
858   /// The KnownZero/One bits may only be accurate for those bits in the
859   /// DemandedMask.
860   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
861                             APInt &KnownZero, APInt &KnownOne,
862                             TargetLoweringOpt &TLO, unsigned Depth = 0) const;
863
864   /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
865   /// Mask are known to be either zero or one and return them in the
866   /// KnownZero/KnownOne bitsets.
867   virtual void computeMaskedBitsForTargetNode(const SDValue Op,
868                                               const APInt &Mask,
869                                               APInt &KnownZero,
870                                               APInt &KnownOne,
871                                               const SelectionDAG &DAG,
872                                               unsigned Depth = 0) const;
873
874   /// ComputeNumSignBitsForTargetNode - This method can be implemented by
875   /// targets that want to expose additional information about sign bits to the
876   /// DAG Combiner.
877   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
878                                                    unsigned Depth = 0) const;
879
880   struct DAGCombinerInfo {
881     void *DC;  // The DAG Combiner object.
882     bool BeforeLegalize;
883     bool BeforeLegalizeOps;
884     bool CalledByLegalizer;
885   public:
886     SelectionDAG &DAG;
887
888     DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
889       : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
890         CalledByLegalizer(cl), DAG(dag) {}
891
892     bool isBeforeLegalize() const { return BeforeLegalize; }
893     bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
894     bool isCalledByLegalizer() const { return CalledByLegalizer; }
895
896     void AddToWorklist(SDNode *N);
897     void RemoveFromWorklist(SDNode *N);
898     SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
899                       bool AddTo = true);
900     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
901     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
902
903     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
904   };
905
906   /// SimplifySetCC - Try to simplify a setcc built with the specified operands
907   /// and cc. If it is unable to simplify it, return a null SDValue.
908   SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
909                           ISD::CondCode Cond, bool foldBooleans,
910                           DAGCombinerInfo &DCI, DebugLoc dl) const;
911
912   /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
913   /// node is a GlobalAddress + offset.
914   virtual bool
915   isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
916
917   /// PerformDAGCombine - This method will be invoked for all target nodes and
918   /// for any target-independent nodes that the target has registered with
919   /// invoke it for.
920   ///
921   /// The semantics are as follows:
922   /// Return Value:
923   ///   SDValue.Val == 0   - No change was made
924   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
925   ///   otherwise          - N should be replaced by the returned Operand.
926   ///
927   /// In addition, methods provided by DAGCombinerInfo may be used to perform
928   /// more complex transformations.
929   ///
930   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
931
932   /// isTypeDesirableForOp - Return true if the target has native support for
933   /// the specified value type and it is 'desirable' to use the type for the
934   /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
935   /// instruction encodings are longer and some i16 instructions are slow.
936   virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
937     // By default, assume all legal types are desirable.
938     return isTypeLegal(VT);
939   }
940
941   /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
942   /// to transform a floating point op of specified opcode to a equivalent op of
943   /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
944   virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
945                                                  EVT /*VT*/) const {
946     return false;
947   }
948
949   /// IsDesirableToPromoteOp - This method query the target whether it is
950   /// beneficial for dag combiner to promote the specified node. If true, it
951   /// should return the desired promotion type by reference.
952   virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
953     return false;
954   }
955
956   //===--------------------------------------------------------------------===//
957   // TargetLowering Configuration Methods - These methods should be invoked by
958   // the derived class constructor to configure this object for the target.
959   //
960
961 protected:
962   /// setBooleanContents - Specify how the target extends the result of a
963   /// boolean value from i1 to a wider type.  See getBooleanContents.
964   void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
965   /// setBooleanVectorContents - Specify how the target extends the result
966   /// of a vector boolean value from a vector of i1 to a wider type.  See
967   /// getBooleanContents.
968   void setBooleanVectorContents(BooleanContent Ty) {
969     BooleanVectorContents = Ty;
970   }
971
972   /// setSchedulingPreference - Specify the target scheduling preference.
973   void setSchedulingPreference(Sched::Preference Pref) {
974     SchedPreferenceInfo = Pref;
975   }
976
977   /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
978   /// use _setjmp to implement llvm.setjmp or the non _ version.
979   /// Defaults to false.
980   void setUseUnderscoreSetJmp(bool Val) {
981     UseUnderscoreSetJmp = Val;
982   }
983
984   /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
985   /// use _longjmp to implement llvm.longjmp or the non _ version.
986   /// Defaults to false.
987   void setUseUnderscoreLongJmp(bool Val) {
988     UseUnderscoreLongJmp = Val;
989   }
990
991   /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
992   /// specifies the register that llvm.savestack/llvm.restorestack should save
993   /// and restore.
994   void setStackPointerRegisterToSaveRestore(unsigned R) {
995     StackPointerRegisterToSaveRestore = R;
996   }
997
998   /// setExceptionPointerRegister - If set to a physical register, this sets
999   /// the register that receives the exception address on entry to a landing
1000   /// pad.
1001   void setExceptionPointerRegister(unsigned R) {
1002     ExceptionPointerRegister = R;
1003   }
1004
1005   /// setExceptionSelectorRegister - If set to a physical register, this sets
1006   /// the register that receives the exception typeid on entry to a landing
1007   /// pad.
1008   void setExceptionSelectorRegister(unsigned R) {
1009     ExceptionSelectorRegister = R;
1010   }
1011
1012   /// SelectIsExpensive - Tells the code generator not to expand operations
1013   /// into sequences that use the select operations if possible.
1014   void setSelectIsExpensive(bool isExpensive = true) {
1015     SelectIsExpensive = isExpensive;
1016   }
1017
1018   /// JumpIsExpensive - Tells the code generator not to expand sequence of
1019   /// operations into a separate sequences that increases the amount of
1020   /// flow control.
1021   void setJumpIsExpensive(bool isExpensive = true) {
1022     JumpIsExpensive = isExpensive;
1023   }
1024
1025   /// setIntDivIsCheap - Tells the code generator that integer divide is
1026   /// expensive, and if possible, should be replaced by an alternate sequence
1027   /// of instructions not containing an integer divide.
1028   void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1029
1030   /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
1031   /// srl/add/sra for a signed divide by power of two, and let the target handle
1032   /// it.
1033   void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
1034
1035   /// addRegisterClass - Add the specified register class as an available
1036   /// regclass for the specified value type.  This indicates the selector can
1037   /// handle values of that class natively.
1038   void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
1039     assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
1040     AvailableRegClasses.push_back(std::make_pair(VT, RC));
1041     RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
1042   }
1043
1044   /// findRepresentativeClass - Return the largest legal super-reg register class
1045   /// of the register class for the specified type and its associated "cost".
1046   virtual std::pair<const TargetRegisterClass*, uint8_t>
1047   findRepresentativeClass(EVT VT) const;
1048
1049   /// computeRegisterProperties - Once all of the register classes are added,
1050   /// this allows us to compute derived properties we expose.
1051   void computeRegisterProperties();
1052
1053   /// setOperationAction - Indicate that the specified operation does not work
1054   /// with the specified type and indicate what to do about it.
1055   void setOperationAction(unsigned Op, MVT VT,
1056                           LegalizeAction Action) {
1057     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1058     OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1059   }
1060
1061   /// setLoadExtAction - Indicate that the specified load with extension does
1062   /// not work with the specified type and indicate what to do about it.
1063   void setLoadExtAction(unsigned ExtType, MVT VT,
1064                         LegalizeAction Action) {
1065     assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
1066            "Table isn't big enough!");
1067     LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1068   }
1069
1070   /// setTruncStoreAction - Indicate that the specified truncating store does
1071   /// not work with the specified type and indicate what to do about it.
1072   void setTruncStoreAction(MVT ValVT, MVT MemVT,
1073                            LegalizeAction Action) {
1074     assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
1075            "Table isn't big enough!");
1076     TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1077   }
1078
1079   /// setIndexedLoadAction - Indicate that the specified indexed load does or
1080   /// does not work with the specified type and indicate what to do abort
1081   /// it. NOTE: All indexed mode loads are initialized to Expand in
1082   /// TargetLowering.cpp
1083   void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1084                             LegalizeAction Action) {
1085     assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1086            (unsigned)Action < 0xf && "Table isn't big enough!");
1087     // Load action are kept in the upper half.
1088     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1089     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1090   }
1091
1092   /// setIndexedStoreAction - Indicate that the specified indexed store does or
1093   /// does not work with the specified type and indicate what to do about
1094   /// it. NOTE: All indexed mode stores are initialized to Expand in
1095   /// TargetLowering.cpp
1096   void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1097                              LegalizeAction Action) {
1098     assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1099            (unsigned)Action < 0xf && "Table isn't big enough!");
1100     // Store action are kept in the lower half.
1101     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1102     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1103   }
1104
1105   /// setCondCodeAction - Indicate that the specified condition code is or isn't
1106   /// supported on the target and indicate what to do about it.
1107   void setCondCodeAction(ISD::CondCode CC, MVT VT,
1108                          LegalizeAction Action) {
1109     assert(VT < MVT::LAST_VALUETYPE &&
1110            (unsigned)CC < array_lengthof(CondCodeActions) &&
1111            "Table isn't big enough!");
1112     CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1113     CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1114   }
1115
1116   /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1117   /// promotion code defaults to trying a larger integer/fp until it can find
1118   /// one that works.  If that default is insufficient, this method can be used
1119   /// by the target to override the default.
1120   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1121     PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1122   }
1123
1124   /// setTargetDAGCombine - Targets should invoke this method for each target
1125   /// independent node that they want to provide a custom DAG combiner for by
1126   /// implementing the PerformDAGCombine virtual method.
1127   void setTargetDAGCombine(ISD::NodeType NT) {
1128     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1129     TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1130   }
1131
1132   /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1133   /// bytes); default is 200
1134   void setJumpBufSize(unsigned Size) {
1135     JumpBufSize = Size;
1136   }
1137
1138   /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1139   /// alignment (in bytes); default is 0
1140   void setJumpBufAlignment(unsigned Align) {
1141     JumpBufAlignment = Align;
1142   }
1143
1144   /// setMinFunctionAlignment - Set the target's minimum function alignment.
1145   void setMinFunctionAlignment(unsigned Align) {
1146     MinFunctionAlignment = Align;
1147   }
1148
1149   /// setPrefFunctionAlignment - Set the target's preferred function alignment.
1150   /// This should be set if there is a performance benefit to
1151   /// higher-than-minimum alignment
1152   void setPrefFunctionAlignment(unsigned Align) {
1153     PrefFunctionAlignment = Align;
1154   }
1155
1156   /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1157   /// alignment is zero, it means the target does not care about loop alignment.
1158   void setPrefLoopAlignment(unsigned Align) {
1159     PrefLoopAlignment = Align;
1160   }
1161
1162   /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1163   /// argument.
1164   void setMinStackArgumentAlignment(unsigned Align) {
1165     MinStackArgumentAlignment = Align;
1166   }
1167
1168   /// setShouldFoldAtomicFences - Set if the target's implementation of the
1169   /// atomic operation intrinsics includes locking. Default is false.
1170   void setShouldFoldAtomicFences(bool fold) {
1171     ShouldFoldAtomicFences = fold;
1172   }
1173
1174   /// setInsertFencesForAtomic - Set if the the DAG builder should
1175   /// automatically insert fences and reduce the order of atomic memory
1176   /// operations to Monotonic.
1177   void setInsertFencesForAtomic(bool fence) {
1178     InsertFencesForAtomic = fence;
1179   }
1180
1181 public:
1182   //===--------------------------------------------------------------------===//
1183   // Lowering methods - These methods must be implemented by targets so that
1184   // the SelectionDAGLowering code knows how to lower these.
1185   //
1186
1187   /// LowerFormalArguments - This hook must be implemented to lower the
1188   /// incoming (formal) arguments, described by the Ins array, into the
1189   /// specified DAG. The implementation should fill in the InVals array
1190   /// with legal-type argument values, and return the resulting token
1191   /// chain value.
1192   ///
1193   virtual SDValue
1194     LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1195                          bool /*isVarArg*/,
1196                          const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1197                          DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
1198                          SmallVectorImpl<SDValue> &/*InVals*/) const {
1199     assert(0 && "Not Implemented");
1200     return SDValue();    // this is here to silence compiler errors
1201   }
1202
1203   /// LowerCallTo - This function lowers an abstract call to a function into an
1204   /// actual call.  This returns a pair of operands.  The first element is the
1205   /// return value for the function (if RetTy is not VoidTy).  The second
1206   /// element is the outgoing token chain. It calls LowerCall to do the actual
1207   /// lowering.
1208   struct ArgListEntry {
1209     SDValue Node;
1210     Type* Ty;
1211     bool isSExt  : 1;
1212     bool isZExt  : 1;
1213     bool isInReg : 1;
1214     bool isSRet  : 1;
1215     bool isNest  : 1;
1216     bool isByVal : 1;
1217     uint16_t Alignment;
1218
1219     ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1220       isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1221   };
1222   typedef std::vector<ArgListEntry> ArgListTy;
1223   std::pair<SDValue, SDValue>
1224   LowerCallTo(SDValue Chain, Type *RetTy, bool RetSExt, bool RetZExt,
1225               bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1226               CallingConv::ID CallConv, bool isTailCall,
1227               bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1228               SelectionDAG &DAG, DebugLoc dl) const;
1229
1230   /// LowerCall - This hook must be implemented to lower calls into the
1231   /// the specified DAG. The outgoing arguments to the call are described
1232   /// by the Outs array, and the values to be returned by the call are
1233   /// described by the Ins array. The implementation should fill in the
1234   /// InVals array with legal-type return values from the call, and return
1235   /// the resulting token chain value.
1236   virtual SDValue
1237     LowerCall(SDValue /*Chain*/, SDValue /*Callee*/,
1238               CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
1239               bool &/*isTailCall*/,
1240               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1241               const SmallVectorImpl<SDValue> &/*OutVals*/,
1242               const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1243               DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
1244               SmallVectorImpl<SDValue> &/*InVals*/) const {
1245     assert(0 && "Not Implemented");
1246     return SDValue();    // this is here to silence compiler errors
1247   }
1248
1249   /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
1250   virtual void HandleByVal(CCState *, unsigned &) const {}
1251
1252   /// CanLowerReturn - This hook should be implemented to check whether the
1253   /// return values described by the Outs array can fit into the return
1254   /// registers.  If false is returned, an sret-demotion is performed.
1255   ///
1256   virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
1257                               MachineFunction &/*MF*/, bool /*isVarArg*/,
1258                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1259                LLVMContext &/*Context*/) const
1260   {
1261     // Return true by default to get preexisting behavior.
1262     return true;
1263   }
1264
1265   /// LowerReturn - This hook must be implemented to lower outgoing
1266   /// return values, described by the Outs array, into the specified
1267   /// DAG. The implementation should return the resulting token chain
1268   /// value.
1269   ///
1270   virtual SDValue
1271     LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1272                 bool /*isVarArg*/,
1273                 const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1274                 const SmallVectorImpl<SDValue> &/*OutVals*/,
1275                 DebugLoc /*dl*/, SelectionDAG &/*DAG*/) const {
1276     assert(0 && "Not Implemented");
1277     return SDValue();    // this is here to silence compiler errors
1278   }
1279
1280   /// isUsedByReturnOnly - Return true if result of the specified node is used
1281   /// by a return node only. This is used to determine whether it is possible
1282   /// to codegen a libcall as tail call at legalization time.
1283   virtual bool isUsedByReturnOnly(SDNode *) const {
1284     return false;
1285   }
1286
1287   /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
1288   /// call instruction as a tail call. This is used by optimization passes to
1289   /// determine if it's profitable to duplicate return instructions to enable
1290   /// tailcall optimization.
1291   virtual bool mayBeEmittedAsTailCall(CallInst *) const {
1292     return false;
1293   }
1294
1295   /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
1296   /// sign extend a zeroext/signext integer argument or return value.
1297   /// FIXME: Most C calling convention requires the return type to be promoted,
1298   /// but this is not true all the time, e.g. i1 on x86-64. It is also not
1299   /// necessary for non-C calling conventions. The frontend should handle this
1300   /// and include all of the necessary information.
1301   virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1302                                        ISD::NodeType /*ExtendKind*/) const {
1303     EVT MinVT = getRegisterType(Context, MVT::i32);
1304     return VT.bitsLT(MinVT) ? MinVT : VT;
1305   }
1306
1307   /// LowerOperationWrapper - This callback is invoked by the type legalizer
1308   /// to legalize nodes with an illegal operand type but legal result types.
1309   /// It replaces the LowerOperation callback in the type Legalizer.
1310   /// The reason we can not do away with LowerOperation entirely is that
1311   /// LegalizeDAG isn't yet ready to use this callback.
1312   /// TODO: Consider merging with ReplaceNodeResults.
1313
1314   /// The target places new result values for the node in Results (their number
1315   /// and types must exactly match those of the original return values of
1316   /// the node), or leaves Results empty, which indicates that the node is not
1317   /// to be custom lowered after all.
1318   /// The default implementation calls LowerOperation.
1319   virtual void LowerOperationWrapper(SDNode *N,
1320                                      SmallVectorImpl<SDValue> &Results,
1321                                      SelectionDAG &DAG) const;
1322
1323   /// LowerOperation - This callback is invoked for operations that are
1324   /// unsupported by the target, which are registered to use 'custom' lowering,
1325   /// and whose defined values are all legal.
1326   /// If the target has no operations that require custom lowering, it need not
1327   /// implement this.  The default implementation of this aborts.
1328   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1329
1330   /// ReplaceNodeResults - This callback is invoked when a node result type is
1331   /// illegal for the target, and the operation was registered to use 'custom'
1332   /// lowering for that result type.  The target places new result values for
1333   /// the node in Results (their number and types must exactly match those of
1334   /// the original return values of the node), or leaves Results empty, which
1335   /// indicates that the node is not to be custom lowered after all.
1336   ///
1337   /// If the target has no operations that require custom lowering, it need not
1338   /// implement this.  The default implementation aborts.
1339   virtual void ReplaceNodeResults(SDNode * /*N*/,
1340                                   SmallVectorImpl<SDValue> &/*Results*/,
1341                                   SelectionDAG &/*DAG*/) const {
1342     assert(0 && "ReplaceNodeResults not implemented for this target!");
1343   }
1344
1345   /// getTargetNodeName() - This method returns the name of a target specific
1346   /// DAG node.
1347   virtual const char *getTargetNodeName(unsigned Opcode) const;
1348
1349   /// createFastISel - This method returns a target specific FastISel object,
1350   /// or null if the target does not support "fast" ISel.
1351   virtual FastISel *createFastISel(FunctionLoweringInfo &) const {
1352     return 0;
1353   }
1354
1355   //===--------------------------------------------------------------------===//
1356   // Inline Asm Support hooks
1357   //
1358
1359   /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1360   /// call to be explicit llvm code if it wants to.  This is useful for
1361   /// turning simple inline asms into LLVM intrinsics, which gives the
1362   /// compiler more information about the behavior of the code.
1363   virtual bool ExpandInlineAsm(CallInst *) const {
1364     return false;
1365   }
1366
1367   enum ConstraintType {
1368     C_Register,            // Constraint represents specific register(s).
1369     C_RegisterClass,       // Constraint represents any of register(s) in class.
1370     C_Memory,              // Memory constraint.
1371     C_Other,               // Something else.
1372     C_Unknown              // Unsupported constraint.
1373   };
1374
1375   enum ConstraintWeight {
1376     // Generic weights.
1377     CW_Invalid  = -1,     // No match.
1378     CW_Okay     = 0,      // Acceptable.
1379     CW_Good     = 1,      // Good weight.
1380     CW_Better   = 2,      // Better weight.
1381     CW_Best     = 3,      // Best weight.
1382
1383     // Well-known weights.
1384     CW_SpecificReg  = CW_Okay,    // Specific register operands.
1385     CW_Register     = CW_Good,    // Register operands.
1386     CW_Memory       = CW_Better,  // Memory operands.
1387     CW_Constant     = CW_Best,    // Constant operand.
1388     CW_Default      = CW_Okay     // Default or don't know type.
1389   };
1390
1391   /// AsmOperandInfo - This contains information for each constraint that we are
1392   /// lowering.
1393   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1394     /// ConstraintCode - This contains the actual string for the code, like "m".
1395     /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1396     /// most closely matches the operand.
1397     std::string ConstraintCode;
1398
1399     /// ConstraintType - Information about the constraint code, e.g. Register,
1400     /// RegisterClass, Memory, Other, Unknown.
1401     TargetLowering::ConstraintType ConstraintType;
1402
1403     /// CallOperandval - If this is the result output operand or a
1404     /// clobber, this is null, otherwise it is the incoming operand to the
1405     /// CallInst.  This gets modified as the asm is processed.
1406     Value *CallOperandVal;
1407
1408     /// ConstraintVT - The ValueType for the operand value.
1409     EVT ConstraintVT;
1410
1411     /// isMatchingInputConstraint - Return true of this is an input operand that
1412     /// is a matching constraint like "4".
1413     bool isMatchingInputConstraint() const;
1414
1415     /// getMatchedOperand - If this is an input matching constraint, this method
1416     /// returns the output operand it matches.
1417     unsigned getMatchedOperand() const;
1418
1419     /// Copy constructor for copying from an AsmOperandInfo.
1420     AsmOperandInfo(const AsmOperandInfo &info)
1421       : InlineAsm::ConstraintInfo(info),
1422         ConstraintCode(info.ConstraintCode),
1423         ConstraintType(info.ConstraintType),
1424         CallOperandVal(info.CallOperandVal),
1425         ConstraintVT(info.ConstraintVT) {
1426     }
1427
1428     /// Copy constructor for copying from a ConstraintInfo.
1429     AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1430       : InlineAsm::ConstraintInfo(info),
1431         ConstraintType(TargetLowering::C_Unknown),
1432         CallOperandVal(0), ConstraintVT(MVT::Other) {
1433     }
1434   };
1435
1436   typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
1437
1438   /// ParseConstraints - Split up the constraint string from the inline
1439   /// assembly value into the specific constraints and their prefixes,
1440   /// and also tie in the associated operand values.
1441   /// If this returns an empty vector, and if the constraint string itself
1442   /// isn't empty, there was an error parsing.
1443   virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
1444
1445   /// Examine constraint type and operand type and determine a weight value.
1446   /// The operand object must already have been set up with the operand type.
1447   virtual ConstraintWeight getMultipleConstraintMatchWeight(
1448       AsmOperandInfo &info, int maIndex) const;
1449
1450   /// Examine constraint string and operand type and determine a weight value.
1451   /// The operand object must already have been set up with the operand type.
1452   virtual ConstraintWeight getSingleConstraintMatchWeight(
1453       AsmOperandInfo &info, const char *constraint) const;
1454
1455   /// ComputeConstraintToUse - Determines the constraint code and constraint
1456   /// type to use for the specific AsmOperandInfo, setting
1457   /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1458   /// being passed in is available, it can be passed in as Op, otherwise an
1459   /// empty SDValue can be passed.
1460   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1461                                       SDValue Op,
1462                                       SelectionDAG *DAG = 0) const;
1463
1464   /// getConstraintType - Given a constraint, return the type of constraint it
1465   /// is for this target.
1466   virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1467
1468   /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1469   /// {edx}), return the register number and the register class for the
1470   /// register.
1471   ///
1472   /// Given a register class constraint, like 'r', if this corresponds directly
1473   /// to an LLVM register class, return a register of 0 and the register class
1474   /// pointer.
1475   ///
1476   /// This should only be used for C_Register constraints.  On error,
1477   /// this returns a register number of 0 and a null register class pointer..
1478   virtual std::pair<unsigned, const TargetRegisterClass*>
1479     getRegForInlineAsmConstraint(const std::string &Constraint,
1480                                  EVT VT) const;
1481
1482   /// LowerXConstraint - try to replace an X constraint, which matches anything,
1483   /// with another that has more specific requirements based on the type of the
1484   /// corresponding operand.  This returns null if there is no replacement to
1485   /// make.
1486   virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1487
1488   /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1489   /// vector.  If it is invalid, don't add anything to Ops.
1490   virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1491                                             std::vector<SDValue> &Ops,
1492                                             SelectionDAG &DAG) const;
1493
1494   //===--------------------------------------------------------------------===//
1495   // Instruction Emitting Hooks
1496   //
1497
1498   // EmitInstrWithCustomInserter - This method should be implemented by targets
1499   // that mark instructions with the 'usesCustomInserter' flag.  These
1500   // instructions are special in various ways, which require special support to
1501   // insert.  The specified MachineInstr is created but not inserted into any
1502   // basic blocks, and this method is called to expand it into a sequence of
1503   // instructions, potentially also creating new basic blocks and control flow.
1504   virtual MachineBasicBlock *
1505     EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1506
1507   /// AdjustInstrPostInstrSelection - This method should be implemented by
1508   /// targets that mark instructions with the 'hasPostISelHook' flag. These
1509   /// instructions must be adjusted after instruction selection by target hooks.
1510   /// e.g. To fill in optional defs for ARM 's' setting instructions.
1511   virtual void
1512   AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
1513
1514   //===--------------------------------------------------------------------===//
1515   // Addressing mode description hooks (used by LSR etc).
1516   //
1517
1518   /// AddrMode - This represents an addressing mode of:
1519   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1520   /// If BaseGV is null,  there is no BaseGV.
1521   /// If BaseOffs is zero, there is no base offset.
1522   /// If HasBaseReg is false, there is no base register.
1523   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1524   /// no scale.
1525   ///
1526   struct AddrMode {
1527     GlobalValue *BaseGV;
1528     int64_t      BaseOffs;
1529     bool         HasBaseReg;
1530     int64_t      Scale;
1531     AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1532   };
1533
1534   /// isLegalAddressingMode - Return true if the addressing mode represented by
1535   /// AM is legal for this target, for a load/store of the specified type.
1536   /// The type may be VoidTy, in which case only return true if the addressing
1537   /// mode is legal for a load/store of any legal type.
1538   /// TODO: Handle pre/postinc as well.
1539   virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1540
1541   /// isLegalICmpImmediate - Return true if the specified immediate is legal
1542   /// icmp immediate, that is the target has icmp instructions which can compare
1543   /// a register against the immediate without having to materialize the
1544   /// immediate into a register.
1545   virtual bool isLegalICmpImmediate(int64_t) const {
1546     return true;
1547   }
1548
1549   /// isLegalAddImmediate - Return true if the specified immediate is legal
1550   /// add immediate, that is the target has add instructions which can add
1551   /// a register with the immediate without having to materialize the
1552   /// immediate into a register.
1553   virtual bool isLegalAddImmediate(int64_t) const {
1554     return true;
1555   }
1556
1557   /// isTruncateFree - Return true if it's free to truncate a value of
1558   /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1559   /// register EAX to i16 by referencing its sub-register AX.
1560   virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1561     return false;
1562   }
1563
1564   virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
1565     return false;
1566   }
1567
1568   /// isZExtFree - Return true if any actual instruction that defines a
1569   /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1570   /// register. This does not necessarily include registers defined in
1571   /// unknown ways, such as incoming arguments, or copies from unknown
1572   /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1573   /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1574   /// all instructions that define 32-bit values implicit zero-extend the
1575   /// result out to 64 bits.
1576   virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1577     return false;
1578   }
1579
1580   virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
1581     return false;
1582   }
1583
1584   /// isNarrowingProfitable - Return true if it's profitable to narrow
1585   /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1586   /// from i32 to i8 but not from i32 to i16.
1587   virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1588     return false;
1589   }
1590
1591   //===--------------------------------------------------------------------===//
1592   // Div utility functions
1593   //
1594   SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
1595                          SelectionDAG &DAG) const;
1596   SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1597                       std::vector<SDNode*>* Created) const;
1598   SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1599                       std::vector<SDNode*>* Created) const;
1600
1601
1602   //===--------------------------------------------------------------------===//
1603   // Runtime Library hooks
1604   //
1605
1606   /// setLibcallName - Rename the default libcall routine name for the specified
1607   /// libcall.
1608   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1609     LibcallRoutineNames[Call] = Name;
1610   }
1611
1612   /// getLibcallName - Get the libcall routine name for the specified libcall.
1613   ///
1614   const char *getLibcallName(RTLIB::Libcall Call) const {
1615     return LibcallRoutineNames[Call];
1616   }
1617
1618   /// setCmpLibcallCC - Override the default CondCode to be used to test the
1619   /// result of the comparison libcall against zero.
1620   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1621     CmpLibcallCCs[Call] = CC;
1622   }
1623
1624   /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1625   /// the comparison libcall against zero.
1626   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1627     return CmpLibcallCCs[Call];
1628   }
1629
1630   /// setLibcallCallingConv - Set the CallingConv that should be used for the
1631   /// specified libcall.
1632   void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1633     LibcallCallingConvs[Call] = CC;
1634   }
1635
1636   /// getLibcallCallingConv - Get the CallingConv that should be used for the
1637   /// specified libcall.
1638   CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1639     return LibcallCallingConvs[Call];
1640   }
1641
1642 private:
1643   const TargetMachine &TM;
1644   const TargetData *TD;
1645   const TargetLoweringObjectFile &TLOF;
1646
1647   /// We are in the process of implementing a new TypeLegalization action
1648   /// which is the promotion of vector elements. This feature is under
1649   /// development. Until this feature is complete, it is only enabled using a
1650   /// flag. We pass this flag using a member because of circular dep issues.
1651   /// This member will be removed with the flag once we complete the transition.
1652   bool mayPromoteElements;
1653
1654   /// PointerTy - The type to use for pointers, usually i32 or i64.
1655   ///
1656   MVT PointerTy;
1657
1658   /// IsLittleEndian - True if this is a little endian target.
1659   ///
1660   bool IsLittleEndian;
1661
1662   /// SelectIsExpensive - Tells the code generator not to expand operations
1663   /// into sequences that use the select operations if possible.
1664   bool SelectIsExpensive;
1665
1666   /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1667   /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1668   /// a real cost model is in place.  If we ever optimize for size, this will be
1669   /// set to true unconditionally.
1670   bool IntDivIsCheap;
1671
1672   /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1673   /// srl/add/sra for a signed divide by power of two, and let the target handle
1674   /// it.
1675   bool Pow2DivIsCheap;
1676
1677   /// JumpIsExpensive - Tells the code generator that it shouldn't generate
1678   /// extra flow control instructions and should attempt to combine flow
1679   /// control instructions via predication.
1680   bool JumpIsExpensive;
1681
1682   /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1683   /// llvm.setjmp.  Defaults to false.
1684   bool UseUnderscoreSetJmp;
1685
1686   /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1687   /// llvm.longjmp.  Defaults to false.
1688   bool UseUnderscoreLongJmp;
1689
1690   /// BooleanContents - Information about the contents of the high-bits in
1691   /// boolean values held in a type wider than i1.  See getBooleanContents.
1692   BooleanContent BooleanContents;
1693   /// BooleanVectorContents - Information about the contents of the high-bits
1694   /// in boolean vector values when the element type is wider than i1.  See
1695   /// getBooleanContents.
1696   BooleanContent BooleanVectorContents;
1697
1698   /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1699   /// total cycles or lowest register usage.
1700   Sched::Preference SchedPreferenceInfo;
1701
1702   /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1703   unsigned JumpBufSize;
1704
1705   /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1706   /// buffers
1707   unsigned JumpBufAlignment;
1708
1709   /// MinStackArgumentAlignment - The minimum alignment that any argument
1710   /// on the stack needs to have.
1711   ///
1712   unsigned MinStackArgumentAlignment;
1713
1714   /// MinFunctionAlignment - The minimum function alignment (used when
1715   /// optimizing for size, and to prevent explicitly provided alignment
1716   /// from leading to incorrect code).
1717   ///
1718   unsigned MinFunctionAlignment;
1719
1720   /// PrefFunctionAlignment - The preferred function alignment (used when
1721   /// alignment unspecified and optimizing for speed).
1722   ///
1723   unsigned PrefFunctionAlignment;
1724
1725   /// PrefLoopAlignment - The preferred loop alignment.
1726   ///
1727   unsigned PrefLoopAlignment;
1728
1729   /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1730   /// be folded into the enclosed atomic intrinsic instruction by the
1731   /// combiner.
1732   bool ShouldFoldAtomicFences;
1733
1734   /// InsertFencesForAtomic - Whether the DAG builder should automatically
1735   /// insert fences and reduce ordering for atomics.  (This will be set for
1736   /// for most architectures with weak memory ordering.)
1737   bool InsertFencesForAtomic;
1738
1739   /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1740   /// specifies the register that llvm.savestack/llvm.restorestack should save
1741   /// and restore.
1742   unsigned StackPointerRegisterToSaveRestore;
1743
1744   /// ExceptionPointerRegister - If set to a physical register, this specifies
1745   /// the register that receives the exception address on entry to a landing
1746   /// pad.
1747   unsigned ExceptionPointerRegister;
1748
1749   /// ExceptionSelectorRegister - If set to a physical register, this specifies
1750   /// the register that receives the exception typeid on entry to a landing
1751   /// pad.
1752   unsigned ExceptionSelectorRegister;
1753
1754   /// RegClassForVT - This indicates the default register class to use for
1755   /// each ValueType the target supports natively.
1756   TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1757   unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1758   EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1759
1760   /// RepRegClassForVT - This indicates the "representative" register class to
1761   /// use for each ValueType the target supports natively. This information is
1762   /// used by the scheduler to track register pressure. By default, the
1763   /// representative register class is the largest legal super-reg register
1764   /// class of the register class of the specified type. e.g. On x86, i8, i16,
1765   /// and i32's representative class would be GR32.
1766   const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1767
1768   /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1769   /// register class for each ValueType. The cost is used by the scheduler to
1770   /// approximate register pressure.
1771   uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1772
1773   /// TransformToType - For any value types we are promoting or expanding, this
1774   /// contains the value type that we are changing to.  For Expanded types, this
1775   /// contains one step of the expand (e.g. i64 -> i32), even if there are
1776   /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1777   /// by the system, this holds the same type (e.g. i32 -> i32).
1778   EVT TransformToType[MVT::LAST_VALUETYPE];
1779
1780   /// OpActions - For each operation and each value type, keep a LegalizeAction
1781   /// that indicates how instruction selection should deal with the operation.
1782   /// Most operations are Legal (aka, supported natively by the target), but
1783   /// operations that are not should be described.  Note that operations on
1784   /// non-legal value types are not described here.
1785   uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1786
1787   /// LoadExtActions - For each load extension type and each value type,
1788   /// keep a LegalizeAction that indicates how instruction selection should deal
1789   /// with a load of a specific value type and extension type.
1790   uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1791
1792   /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1793   /// indicates whether a truncating store of a specific value type and
1794   /// truncating type is legal.
1795   uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1796
1797   /// IndexedModeActions - For each indexed mode and each value type,
1798   /// keep a pair of LegalizeAction that indicates how instruction
1799   /// selection should deal with the load / store.  The first dimension is the
1800   /// value_type for the reference. The second dimension represents the various
1801   /// modes for load store.
1802   uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1803
1804   /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1805   /// LegalizeAction that indicates how instruction selection should
1806   /// deal with the condition code.
1807   uint64_t CondCodeActions[ISD::SETCC_INVALID];
1808
1809   ValueTypeActionImpl ValueTypeActions;
1810
1811   typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
1812
1813   LegalizeKind
1814   getTypeConversion(LLVMContext &Context, EVT VT) const {
1815     // If this is a simple type, use the ComputeRegisterProp mechanism.
1816     if (VT.isSimple()) {
1817       assert((unsigned)VT.getSimpleVT().SimpleTy <
1818              array_lengthof(TransformToType));
1819       EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
1820       LegalizeTypeAction LA = ValueTypeActions.getTypeAction(VT.getSimpleVT());
1821
1822       assert(
1823         (!(NVT.isSimple() && LA != TypeLegal) ||
1824          ValueTypeActions.getTypeAction(NVT.getSimpleVT()) != TypePromoteInteger)
1825          && "Promote may not follow Expand or Promote");
1826
1827       return LegalizeKind(LA, NVT);
1828     }
1829
1830     // Handle Extended Scalar Types.
1831     if (!VT.isVector()) {
1832       assert(VT.isInteger() && "Float types must be simple");
1833       unsigned BitSize = VT.getSizeInBits();
1834       // First promote to a power-of-two size, then expand if necessary.
1835       if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1836         EVT NVT = VT.getRoundIntegerType(Context);
1837         assert(NVT != VT && "Unable to round integer VT");
1838         LegalizeKind NextStep = getTypeConversion(Context, NVT);
1839         // Avoid multi-step promotion.
1840         if (NextStep.first == TypePromoteInteger) return NextStep;
1841         // Return rounded integer type.
1842         return LegalizeKind(TypePromoteInteger, NVT);
1843       }
1844
1845       return LegalizeKind(TypeExpandInteger,
1846                           EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
1847     }
1848
1849     // Handle vector types.
1850     unsigned NumElts = VT.getVectorNumElements();
1851     EVT EltVT = VT.getVectorElementType();
1852
1853     // Vectors with only one element are always scalarized.
1854     if (NumElts == 1)
1855       return LegalizeKind(TypeScalarizeVector, EltVT);
1856
1857     // If we allow the promotion of vector elements using a flag,
1858     // then try to widen vector elements until a legal type is found.
1859     if (mayPromoteElements && EltVT.isInteger()) {
1860       // Vectors with a number of elements that is not a power of two are always
1861       // widened, for example <3 x float> -> <4 x float>.
1862       if (!VT.isPow2VectorType()) {
1863         NumElts = (unsigned)NextPowerOf2(NumElts);
1864         EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1865         return LegalizeKind(TypeWidenVector, NVT);
1866       }
1867
1868       // Examine the element type.
1869       LegalizeKind LK = getTypeConversion(Context, EltVT);
1870
1871       // If type is to be expanded, split the vector.
1872       //  <4 x i140> -> <2 x i140>
1873       if (LK.first == TypeExpandInteger)
1874         return LegalizeKind(TypeSplitVector,
1875                             EVT::getVectorVT(Context, EltVT, NumElts / 2));
1876
1877       // Promote the integer element types until a legal vector type is found
1878       // or until the element integer type is too big. If a legal type was not
1879       // found, fallback to the usual mechanism of widening/splitting the
1880       // vector.
1881       while (1) {
1882         // Increase the bitwidth of the element to the next pow-of-two
1883         // (which is greater than 8 bits).
1884         EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
1885                                  ).getRoundIntegerType(Context);
1886
1887         // Stop trying when getting a non-simple element type.
1888         // Note that vector elements may be greater than legal vector element
1889         // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
1890         if (!EltVT.isSimple()) break;
1891
1892         // Build a new vector type and check if it is legal.
1893         MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1894         // Found a legal promoted vector type.
1895         if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1896           return LegalizeKind(TypePromoteInteger,
1897                               EVT::getVectorVT(Context, EltVT, NumElts));
1898       }
1899     }
1900
1901     // Try to widen the vector until a legal type is found.
1902     // If there is no wider legal type, split the vector.
1903     while (1) {
1904       // Round up to the next power of 2.
1905       NumElts = (unsigned)NextPowerOf2(NumElts);
1906
1907       // If there is no simple vector type with this many elements then there
1908       // cannot be a larger legal vector type.  Note that this assumes that
1909       // there are no skipped intermediate vector types in the simple types.
1910       if (!EltVT.isSimple()) break;
1911       MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1912       if (LargerVector == MVT()) break;
1913
1914       // If this type is legal then widen the vector.
1915       if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1916         return LegalizeKind(TypeWidenVector, LargerVector);
1917     }
1918
1919     // Widen odd vectors to next power of two.
1920     if (!VT.isPow2VectorType()) {
1921       EVT NVT = VT.getPow2VectorType(Context);
1922       return LegalizeKind(TypeWidenVector, NVT);
1923     }
1924
1925     // Vectors with illegal element types are expanded.
1926     EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
1927     return LegalizeKind(TypeSplitVector, NVT);
1928
1929     assert(false && "Unable to handle this kind of vector type");
1930     return LegalizeKind(TypeLegal, VT);
1931   }
1932
1933   std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1934
1935   /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1936   /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1937   /// which sets a bit in this array.
1938   unsigned char
1939   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1940
1941   /// PromoteToType - For operations that must be promoted to a specific type,
1942   /// this holds the destination type.  This map should be sparse, so don't hold
1943   /// it as an array.
1944   ///
1945   /// Targets add entries to this map with AddPromotedToType(..), clients access
1946   /// this with getTypeToPromoteTo(..).
1947   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1948     PromoteToType;
1949
1950   /// LibcallRoutineNames - Stores the name each libcall.
1951   ///
1952   const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1953
1954   /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1955   /// of each of the comparison libcall against zero.
1956   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1957
1958   /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1959   /// libcall.
1960   CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1961
1962 protected:
1963   /// When lowering \@llvm.memset this field specifies the maximum number of
1964   /// store operations that may be substituted for the call to memset. Targets
1965   /// must set this value based on the cost threshold for that target. Targets
1966   /// should assume that the memset will be done using as many of the largest
1967   /// store operations first, followed by smaller ones, if necessary, per
1968   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1969   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1970   /// store.  This only applies to setting a constant array of a constant size.
1971   /// @brief Specify maximum number of store instructions per memset call.
1972   unsigned maxStoresPerMemset;
1973
1974   /// Maximum number of stores operations that may be substituted for the call
1975   /// to memset, used for functions with OptSize attribute.
1976   unsigned maxStoresPerMemsetOptSize;
1977
1978   /// When lowering \@llvm.memcpy this field specifies the maximum number of
1979   /// store operations that may be substituted for a call to memcpy. Targets
1980   /// must set this value based on the cost threshold for that target. Targets
1981   /// should assume that the memcpy will be done using as many of the largest
1982   /// store operations first, followed by smaller ones, if necessary, per
1983   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1984   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1985   /// and one 1-byte store. This only applies to copying a constant array of
1986   /// constant size.
1987   /// @brief Specify maximum bytes of store instructions per memcpy call.
1988   unsigned maxStoresPerMemcpy;
1989
1990   /// Maximum number of store operations that may be substituted for a call
1991   /// to memcpy, used for functions with OptSize attribute.
1992   unsigned maxStoresPerMemcpyOptSize;
1993
1994   /// When lowering \@llvm.memmove this field specifies the maximum number of
1995   /// store instructions that may be substituted for a call to memmove. Targets
1996   /// must set this value based on the cost threshold for that target. Targets
1997   /// should assume that the memmove will be done using as many of the largest
1998   /// store operations first, followed by smaller ones, if necessary, per
1999   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
2000   /// with 8-bit alignment would result in nine 1-byte stores.  This only
2001   /// applies to copying a constant array of constant size.
2002   /// @brief Specify maximum bytes of store instructions per memmove call.
2003   unsigned maxStoresPerMemmove;
2004
2005   /// Maximum number of store instructions that may be substituted for a call
2006   /// to memmove, used for functions with OpSize attribute.
2007   unsigned maxStoresPerMemmoveOptSize;
2008
2009   /// This field specifies whether the target can benefit from code placement
2010   /// optimization.
2011   bool benefitFromCodePlacementOpt;
2012
2013 private:
2014   /// isLegalRC - Return true if the value types that can be represented by the
2015   /// specified register class are all legal.
2016   bool isLegalRC(const TargetRegisterClass *RC) const;
2017
2018   /// hasLegalSuperRegRegClasses - Return true if the specified register class
2019   /// has one or more super-reg register classes that are legal.
2020   bool hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const;
2021 };
2022
2023 /// GetReturnInfo - Given an LLVM IR type and return type attributes,
2024 /// compute the return value EVTs and flags, and optionally also
2025 /// the offsets, if the return value is being lowered to memory.
2026 void GetReturnInfo(Type* ReturnType, Attributes attr,
2027                    SmallVectorImpl<ISD::OutputArg> &Outs,
2028                    const TargetLowering &TLI,
2029                    SmallVectorImpl<uint64_t> *Offsets = 0);
2030
2031 } // end llvm namespace
2032
2033 #endif