]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/Analysis/InstructionSimplify.cpp
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / Analysis / InstructionSimplify.cpp
1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions.  This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
17 //
18 //===----------------------------------------------------------------------===//
19
20 #define DEBUG_TYPE "instsimplify"
21 #include "llvm/Operator.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/Dominators.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Support/ConstantRange.h"
28 #include "llvm/Support/PatternMatch.h"
29 #include "llvm/Support/ValueHandle.h"
30 #include "llvm/Target/TargetData.h"
31 using namespace llvm;
32 using namespace llvm::PatternMatch;
33
34 enum { RecursionLimit = 3 };
35
36 STATISTIC(NumExpand,  "Number of expansions");
37 STATISTIC(NumFactor , "Number of factorizations");
38 STATISTIC(NumReassoc, "Number of reassociations");
39
40 static Value *SimplifyAndInst(Value *, Value *, const TargetData *,
41                               const DominatorTree *, unsigned);
42 static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
43                             const DominatorTree *, unsigned);
44 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
45                               const DominatorTree *, unsigned);
46 static Value *SimplifyOrInst(Value *, Value *, const TargetData *,
47                              const DominatorTree *, unsigned);
48 static Value *SimplifyXorInst(Value *, Value *, const TargetData *,
49                               const DominatorTree *, unsigned);
50
51 /// getFalse - For a boolean type, or a vector of boolean type, return false, or
52 /// a vector with every element false, as appropriate for the type.
53 static Constant *getFalse(Type *Ty) {
54   assert((Ty->isIntegerTy(1) ||
55           (Ty->isVectorTy() &&
56            cast<VectorType>(Ty)->getElementType()->isIntegerTy(1))) &&
57          "Expected i1 type or a vector of i1!");
58   return Constant::getNullValue(Ty);
59 }
60
61 /// getTrue - For a boolean type, or a vector of boolean type, return true, or
62 /// a vector with every element true, as appropriate for the type.
63 static Constant *getTrue(Type *Ty) {
64   assert((Ty->isIntegerTy(1) ||
65           (Ty->isVectorTy() &&
66            cast<VectorType>(Ty)->getElementType()->isIntegerTy(1))) &&
67          "Expected i1 type or a vector of i1!");
68   return Constant::getAllOnesValue(Ty);
69 }
70
71 /// ValueDominatesPHI - Does the given value dominate the specified phi node?
72 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
73   Instruction *I = dyn_cast<Instruction>(V);
74   if (!I)
75     // Arguments and constants dominate all instructions.
76     return true;
77
78   // If we have a DominatorTree then do a precise test.
79   if (DT)
80     return DT->dominates(I, P);
81
82   // Otherwise, if the instruction is in the entry block, and is not an invoke,
83   // then it obviously dominates all phi nodes.
84   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
85       !isa<InvokeInst>(I))
86     return true;
87
88   return false;
89 }
90
91 /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
92 /// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
93 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
94 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
95 /// Returns the simplified value, or null if no simplification was performed.
96 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
97                           unsigned OpcToExpand, const TargetData *TD,
98                           const DominatorTree *DT, unsigned MaxRecurse) {
99   Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
100   // Recursion is always used, so bail out at once if we already hit the limit.
101   if (!MaxRecurse--)
102     return 0;
103
104   // Check whether the expression has the form "(A op' B) op C".
105   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
106     if (Op0->getOpcode() == OpcodeToExpand) {
107       // It does!  Try turning it into "(A op C) op' (B op C)".
108       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
109       // Do "A op C" and "B op C" both simplify?
110       if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse))
111         if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
112           // They do! Return "L op' R" if it simplifies or is already available.
113           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
114           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
115                                      && L == B && R == A)) {
116             ++NumExpand;
117             return LHS;
118           }
119           // Otherwise return "L op' R" if it simplifies.
120           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
121                                        MaxRecurse)) {
122             ++NumExpand;
123             return V;
124           }
125         }
126     }
127
128   // Check whether the expression has the form "A op (B op' C)".
129   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
130     if (Op1->getOpcode() == OpcodeToExpand) {
131       // It does!  Try turning it into "(A op B) op' (A op C)".
132       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
133       // Do "A op B" and "A op C" both simplify?
134       if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse))
135         if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) {
136           // They do! Return "L op' R" if it simplifies or is already available.
137           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
138           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
139                                      && L == C && R == B)) {
140             ++NumExpand;
141             return RHS;
142           }
143           // Otherwise return "L op' R" if it simplifies.
144           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
145                                        MaxRecurse)) {
146             ++NumExpand;
147             return V;
148           }
149         }
150     }
151
152   return 0;
153 }
154
155 /// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
156 /// using the operation OpCodeToExtract.  For example, when Opcode is Add and
157 /// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
158 /// Returns the simplified value, or null if no simplification was performed.
159 static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
160                              unsigned OpcToExtract, const TargetData *TD,
161                              const DominatorTree *DT, unsigned MaxRecurse) {
162   Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
163   // Recursion is always used, so bail out at once if we already hit the limit.
164   if (!MaxRecurse--)
165     return 0;
166
167   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
168   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
169
170   if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
171       !Op1 || Op1->getOpcode() != OpcodeToExtract)
172     return 0;
173
174   // The expression has the form "(A op' B) op (C op' D)".
175   Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
176   Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
177
178   // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
179   // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
180   // commutative case, "(A op' B) op (C op' A)"?
181   if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
182     Value *DD = A == C ? D : C;
183     // Form "A op' (B op DD)" if it simplifies completely.
184     // Does "B op DD" simplify?
185     if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) {
186       // It does!  Return "A op' V" if it simplifies or is already available.
187       // If V equals B then "A op' V" is just the LHS.  If V equals DD then
188       // "A op' V" is just the RHS.
189       if (V == B || V == DD) {
190         ++NumFactor;
191         return V == B ? LHS : RHS;
192       }
193       // Otherwise return "A op' V" if it simplifies.
194       if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) {
195         ++NumFactor;
196         return W;
197       }
198     }
199   }
200
201   // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
202   // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
203   // commutative case, "(A op' B) op (B op' D)"?
204   if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
205     Value *CC = B == D ? C : D;
206     // Form "(A op CC) op' B" if it simplifies completely..
207     // Does "A op CC" simplify?
208     if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) {
209       // It does!  Return "V op' B" if it simplifies or is already available.
210       // If V equals A then "V op' B" is just the LHS.  If V equals CC then
211       // "V op' B" is just the RHS.
212       if (V == A || V == CC) {
213         ++NumFactor;
214         return V == A ? LHS : RHS;
215       }
216       // Otherwise return "V op' B" if it simplifies.
217       if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) {
218         ++NumFactor;
219         return W;
220       }
221     }
222   }
223
224   return 0;
225 }
226
227 /// SimplifyAssociativeBinOp - Generic simplifications for associative binary
228 /// operations.  Returns the simpler value, or null if none was found.
229 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
230                                        const TargetData *TD,
231                                        const DominatorTree *DT,
232                                        unsigned MaxRecurse) {
233   Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
234   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
235
236   // Recursion is always used, so bail out at once if we already hit the limit.
237   if (!MaxRecurse--)
238     return 0;
239
240   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
241   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
242
243   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
244   if (Op0 && Op0->getOpcode() == Opcode) {
245     Value *A = Op0->getOperand(0);
246     Value *B = Op0->getOperand(1);
247     Value *C = RHS;
248
249     // Does "B op C" simplify?
250     if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
251       // It does!  Return "A op V" if it simplifies or is already available.
252       // If V equals B then "A op V" is just the LHS.
253       if (V == B) return LHS;
254       // Otherwise return "A op V" if it simplifies.
255       if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) {
256         ++NumReassoc;
257         return W;
258       }
259     }
260   }
261
262   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
263   if (Op1 && Op1->getOpcode() == Opcode) {
264     Value *A = LHS;
265     Value *B = Op1->getOperand(0);
266     Value *C = Op1->getOperand(1);
267
268     // Does "A op B" simplify?
269     if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) {
270       // It does!  Return "V op C" if it simplifies or is already available.
271       // If V equals B then "V op C" is just the RHS.
272       if (V == B) return RHS;
273       // Otherwise return "V op C" if it simplifies.
274       if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) {
275         ++NumReassoc;
276         return W;
277       }
278     }
279   }
280
281   // The remaining transforms require commutativity as well as associativity.
282   if (!Instruction::isCommutative(Opcode))
283     return 0;
284
285   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
286   if (Op0 && Op0->getOpcode() == Opcode) {
287     Value *A = Op0->getOperand(0);
288     Value *B = Op0->getOperand(1);
289     Value *C = RHS;
290
291     // Does "C op A" simplify?
292     if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
293       // It does!  Return "V op B" if it simplifies or is already available.
294       // If V equals A then "V op B" is just the LHS.
295       if (V == A) return LHS;
296       // Otherwise return "V op B" if it simplifies.
297       if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) {
298         ++NumReassoc;
299         return W;
300       }
301     }
302   }
303
304   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
305   if (Op1 && Op1->getOpcode() == Opcode) {
306     Value *A = LHS;
307     Value *B = Op1->getOperand(0);
308     Value *C = Op1->getOperand(1);
309
310     // Does "C op A" simplify?
311     if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
312       // It does!  Return "B op V" if it simplifies or is already available.
313       // If V equals C then "B op V" is just the RHS.
314       if (V == C) return RHS;
315       // Otherwise return "B op V" if it simplifies.
316       if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) {
317         ++NumReassoc;
318         return W;
319       }
320     }
321   }
322
323   return 0;
324 }
325
326 /// ThreadBinOpOverSelect - In the case of a binary operation with a select
327 /// instruction as an operand, try to simplify the binop by seeing whether
328 /// evaluating it on both branches of the select results in the same value.
329 /// Returns the common value if so, otherwise returns null.
330 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
331                                     const TargetData *TD,
332                                     const DominatorTree *DT,
333                                     unsigned MaxRecurse) {
334   // Recursion is always used, so bail out at once if we already hit the limit.
335   if (!MaxRecurse--)
336     return 0;
337
338   SelectInst *SI;
339   if (isa<SelectInst>(LHS)) {
340     SI = cast<SelectInst>(LHS);
341   } else {
342     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
343     SI = cast<SelectInst>(RHS);
344   }
345
346   // Evaluate the BinOp on the true and false branches of the select.
347   Value *TV;
348   Value *FV;
349   if (SI == LHS) {
350     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse);
351     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse);
352   } else {
353     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse);
354     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse);
355   }
356
357   // If they simplified to the same value, then return the common value.
358   // If they both failed to simplify then return null.
359   if (TV == FV)
360     return TV;
361
362   // If one branch simplified to undef, return the other one.
363   if (TV && isa<UndefValue>(TV))
364     return FV;
365   if (FV && isa<UndefValue>(FV))
366     return TV;
367
368   // If applying the operation did not change the true and false select values,
369   // then the result of the binop is the select itself.
370   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
371     return SI;
372
373   // If one branch simplified and the other did not, and the simplified
374   // value is equal to the unsimplified one, return the simplified value.
375   // For example, select (cond, X, X & Z) & Z -> X & Z.
376   if ((FV && !TV) || (TV && !FV)) {
377     // Check that the simplified value has the form "X op Y" where "op" is the
378     // same as the original operation.
379     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
380     if (Simplified && Simplified->getOpcode() == Opcode) {
381       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
382       // We already know that "op" is the same as for the simplified value.  See
383       // if the operands match too.  If so, return the simplified value.
384       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
385       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
386       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
387       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
388           Simplified->getOperand(1) == UnsimplifiedRHS)
389         return Simplified;
390       if (Simplified->isCommutative() &&
391           Simplified->getOperand(1) == UnsimplifiedLHS &&
392           Simplified->getOperand(0) == UnsimplifiedRHS)
393         return Simplified;
394     }
395   }
396
397   return 0;
398 }
399
400 /// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
401 /// try to simplify the comparison by seeing whether both branches of the select
402 /// result in the same value.  Returns the common value if so, otherwise returns
403 /// null.
404 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
405                                   Value *RHS, const TargetData *TD,
406                                   const DominatorTree *DT,
407                                   unsigned MaxRecurse) {
408   // Recursion is always used, so bail out at once if we already hit the limit.
409   if (!MaxRecurse--)
410     return 0;
411
412   // Make sure the select is on the LHS.
413   if (!isa<SelectInst>(LHS)) {
414     std::swap(LHS, RHS);
415     Pred = CmpInst::getSwappedPredicate(Pred);
416   }
417   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
418   SelectInst *SI = cast<SelectInst>(LHS);
419
420   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
421   // Does "cmp TV, RHS" simplify?
422   if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT,
423                                     MaxRecurse)) {
424     // It does!  Does "cmp FV, RHS" simplify?
425     if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT,
426                                       MaxRecurse)) {
427       // It does!  If they simplified to the same value, then use it as the
428       // result of the original comparison.
429       if (TCmp == FCmp)
430         return TCmp;
431       Value *Cond = SI->getCondition();
432       // If the false value simplified to false, then the result of the compare
433       // is equal to "Cond && TCmp".  This also catches the case when the false
434       // value simplified to false and the true value to true, returning "Cond".
435       if (match(FCmp, m_Zero()))
436         if (Value *V = SimplifyAndInst(Cond, TCmp, TD, DT, MaxRecurse))
437           return V;
438       // If the true value simplified to true, then the result of the compare
439       // is equal to "Cond || FCmp".
440       if (match(TCmp, m_One()))
441         if (Value *V = SimplifyOrInst(Cond, FCmp, TD, DT, MaxRecurse))
442           return V;
443       // Finally, if the false value simplified to true and the true value to
444       // false, then the result of the compare is equal to "!Cond".
445       if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
446         if (Value *V =
447             SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
448                             TD, DT, MaxRecurse))
449           return V;
450     }
451   }
452
453   return 0;
454 }
455
456 /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
457 /// is a PHI instruction, try to simplify the binop by seeing whether evaluating
458 /// it on the incoming phi values yields the same result for every value.  If so
459 /// returns the common value, otherwise returns null.
460 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
461                                  const TargetData *TD, const DominatorTree *DT,
462                                  unsigned MaxRecurse) {
463   // Recursion is always used, so bail out at once if we already hit the limit.
464   if (!MaxRecurse--)
465     return 0;
466
467   PHINode *PI;
468   if (isa<PHINode>(LHS)) {
469     PI = cast<PHINode>(LHS);
470     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
471     if (!ValueDominatesPHI(RHS, PI, DT))
472       return 0;
473   } else {
474     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
475     PI = cast<PHINode>(RHS);
476     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
477     if (!ValueDominatesPHI(LHS, PI, DT))
478       return 0;
479   }
480
481   // Evaluate the BinOp on the incoming phi values.
482   Value *CommonValue = 0;
483   for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
484     Value *Incoming = PI->getIncomingValue(i);
485     // If the incoming value is the phi node itself, it can safely be skipped.
486     if (Incoming == PI) continue;
487     Value *V = PI == LHS ?
488       SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) :
489       SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse);
490     // If the operation failed to simplify, or simplified to a different value
491     // to previously, then give up.
492     if (!V || (CommonValue && V != CommonValue))
493       return 0;
494     CommonValue = V;
495   }
496
497   return CommonValue;
498 }
499
500 /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
501 /// try to simplify the comparison by seeing whether comparing with all of the
502 /// incoming phi values yields the same result every time.  If so returns the
503 /// common result, otherwise returns null.
504 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
505                                const TargetData *TD, const DominatorTree *DT,
506                                unsigned MaxRecurse) {
507   // Recursion is always used, so bail out at once if we already hit the limit.
508   if (!MaxRecurse--)
509     return 0;
510
511   // Make sure the phi is on the LHS.
512   if (!isa<PHINode>(LHS)) {
513     std::swap(LHS, RHS);
514     Pred = CmpInst::getSwappedPredicate(Pred);
515   }
516   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
517   PHINode *PI = cast<PHINode>(LHS);
518
519   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
520   if (!ValueDominatesPHI(RHS, PI, DT))
521     return 0;
522
523   // Evaluate the BinOp on the incoming phi values.
524   Value *CommonValue = 0;
525   for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
526     Value *Incoming = PI->getIncomingValue(i);
527     // If the incoming value is the phi node itself, it can safely be skipped.
528     if (Incoming == PI) continue;
529     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse);
530     // If the operation failed to simplify, or simplified to a different value
531     // to previously, then give up.
532     if (!V || (CommonValue && V != CommonValue))
533       return 0;
534     CommonValue = V;
535   }
536
537   return CommonValue;
538 }
539
540 /// SimplifyAddInst - Given operands for an Add, see if we can
541 /// fold the result.  If not, this returns null.
542 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
543                               const TargetData *TD, const DominatorTree *DT,
544                               unsigned MaxRecurse) {
545   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
546     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
547       Constant *Ops[] = { CLHS, CRHS };
548       return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
549                                       Ops, TD);
550     }
551
552     // Canonicalize the constant to the RHS.
553     std::swap(Op0, Op1);
554   }
555
556   // X + undef -> undef
557   if (match(Op1, m_Undef()))
558     return Op1;
559
560   // X + 0 -> X
561   if (match(Op1, m_Zero()))
562     return Op0;
563
564   // X + (Y - X) -> Y
565   // (Y - X) + X -> Y
566   // Eg: X + -X -> 0
567   Value *Y = 0;
568   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
569       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
570     return Y;
571
572   // X + ~X -> -1   since   ~X = -X-1
573   if (match(Op0, m_Not(m_Specific(Op1))) ||
574       match(Op1, m_Not(m_Specific(Op0))))
575     return Constant::getAllOnesValue(Op0->getType());
576
577   /// i1 add -> xor.
578   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
579     if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
580       return V;
581
582   // Try some generic simplifications for associative operations.
583   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT,
584                                           MaxRecurse))
585     return V;
586
587   // Mul distributes over Add.  Try some generic simplifications based on this.
588   if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
589                                 TD, DT, MaxRecurse))
590     return V;
591
592   // Threading Add over selects and phi nodes is pointless, so don't bother.
593   // Threading over the select in "A + select(cond, B, C)" means evaluating
594   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
595   // only if B and C are equal.  If B and C are equal then (since we assume
596   // that operands have already been simplified) "select(cond, B, C)" should
597   // have been simplified to the common value of B and C already.  Analysing
598   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
599   // for threading over phi nodes.
600
601   return 0;
602 }
603
604 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
605                              const TargetData *TD, const DominatorTree *DT) {
606   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
607 }
608
609 /// SimplifySubInst - Given operands for a Sub, see if we can
610 /// fold the result.  If not, this returns null.
611 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
612                               const TargetData *TD, const DominatorTree *DT,
613                               unsigned MaxRecurse) {
614   if (Constant *CLHS = dyn_cast<Constant>(Op0))
615     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
616       Constant *Ops[] = { CLHS, CRHS };
617       return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
618                                       Ops, TD);
619     }
620
621   // X - undef -> undef
622   // undef - X -> undef
623   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
624     return UndefValue::get(Op0->getType());
625
626   // X - 0 -> X
627   if (match(Op1, m_Zero()))
628     return Op0;
629
630   // X - X -> 0
631   if (Op0 == Op1)
632     return Constant::getNullValue(Op0->getType());
633
634   // (X*2) - X -> X
635   // (X<<1) - X -> X
636   Value *X = 0;
637   if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
638       match(Op0, m_Shl(m_Specific(Op1), m_One())))
639     return Op1;
640
641   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
642   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
643   Value *Y = 0, *Z = Op1;
644   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
645     // See if "V === Y - Z" simplifies.
646     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, TD, DT, MaxRecurse-1))
647       // It does!  Now see if "X + V" simplifies.
648       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, TD, DT,
649                                    MaxRecurse-1)) {
650         // It does, we successfully reassociated!
651         ++NumReassoc;
652         return W;
653       }
654     // See if "V === X - Z" simplifies.
655     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
656       // It does!  Now see if "Y + V" simplifies.
657       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, TD, DT,
658                                    MaxRecurse-1)) {
659         // It does, we successfully reassociated!
660         ++NumReassoc;
661         return W;
662       }
663   }
664
665   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
666   // For example, X - (X + 1) -> -1
667   X = Op0;
668   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
669     // See if "V === X - Y" simplifies.
670     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, TD, DT, MaxRecurse-1))
671       // It does!  Now see if "V - Z" simplifies.
672       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, TD, DT,
673                                    MaxRecurse-1)) {
674         // It does, we successfully reassociated!
675         ++NumReassoc;
676         return W;
677       }
678     // See if "V === X - Z" simplifies.
679     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
680       // It does!  Now see if "V - Y" simplifies.
681       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, TD, DT,
682                                    MaxRecurse-1)) {
683         // It does, we successfully reassociated!
684         ++NumReassoc;
685         return W;
686       }
687   }
688
689   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
690   // For example, X - (X - Y) -> Y.
691   Z = Op0;
692   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
693     // See if "V === Z - X" simplifies.
694     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, TD, DT, MaxRecurse-1))
695       // It does!  Now see if "V + Y" simplifies.
696       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, TD, DT,
697                                    MaxRecurse-1)) {
698         // It does, we successfully reassociated!
699         ++NumReassoc;
700         return W;
701       }
702
703   // Mul distributes over Sub.  Try some generic simplifications based on this.
704   if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
705                                 TD, DT, MaxRecurse))
706     return V;
707
708   // i1 sub -> xor.
709   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
710     if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
711       return V;
712
713   // Threading Sub over selects and phi nodes is pointless, so don't bother.
714   // Threading over the select in "A - select(cond, B, C)" means evaluating
715   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
716   // only if B and C are equal.  If B and C are equal then (since we assume
717   // that operands have already been simplified) "select(cond, B, C)" should
718   // have been simplified to the common value of B and C already.  Analysing
719   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
720   // for threading over phi nodes.
721
722   return 0;
723 }
724
725 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
726                              const TargetData *TD, const DominatorTree *DT) {
727   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
728 }
729
730 /// SimplifyMulInst - Given operands for a Mul, see if we can
731 /// fold the result.  If not, this returns null.
732 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
733                               const DominatorTree *DT, unsigned MaxRecurse) {
734   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
735     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
736       Constant *Ops[] = { CLHS, CRHS };
737       return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
738                                       Ops, TD);
739     }
740
741     // Canonicalize the constant to the RHS.
742     std::swap(Op0, Op1);
743   }
744
745   // X * undef -> 0
746   if (match(Op1, m_Undef()))
747     return Constant::getNullValue(Op0->getType());
748
749   // X * 0 -> 0
750   if (match(Op1, m_Zero()))
751     return Op1;
752
753   // X * 1 -> X
754   if (match(Op1, m_One()))
755     return Op0;
756
757   // (X / Y) * Y -> X if the division is exact.
758   Value *X = 0, *Y = 0;
759   if ((match(Op0, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op1) || // (X / Y) * Y
760       (match(Op1, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op0)) { // Y * (X / Y)
761     BinaryOperator *Div = cast<BinaryOperator>(Y == Op1 ? Op0 : Op1);
762     if (Div->isExact())
763       return X;
764   }
765
766   // i1 mul -> and.
767   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
768     if (Value *V = SimplifyAndInst(Op0, Op1, TD, DT, MaxRecurse-1))
769       return V;
770
771   // Try some generic simplifications for associative operations.
772   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, DT,
773                                           MaxRecurse))
774     return V;
775
776   // Mul distributes over Add.  Try some generic simplifications based on this.
777   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
778                              TD, DT, MaxRecurse))
779     return V;
780
781   // If the operation is with the result of a select instruction, check whether
782   // operating on either branch of the select always yields the same value.
783   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
784     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, DT,
785                                          MaxRecurse))
786       return V;
787
788   // If the operation is with the result of a phi instruction, check whether
789   // operating on all incoming values of the phi always yields the same value.
790   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
791     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, DT,
792                                       MaxRecurse))
793       return V;
794
795   return 0;
796 }
797
798 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
799                              const DominatorTree *DT) {
800   return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit);
801 }
802
803 /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
804 /// fold the result.  If not, this returns null.
805 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
806                           const TargetData *TD, const DominatorTree *DT,
807                           unsigned MaxRecurse) {
808   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
809     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
810       Constant *Ops[] = { C0, C1 };
811       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD);
812     }
813   }
814
815   bool isSigned = Opcode == Instruction::SDiv;
816
817   // X / undef -> undef
818   if (match(Op1, m_Undef()))
819     return Op1;
820
821   // undef / X -> 0
822   if (match(Op0, m_Undef()))
823     return Constant::getNullValue(Op0->getType());
824
825   // 0 / X -> 0, we don't need to preserve faults!
826   if (match(Op0, m_Zero()))
827     return Op0;
828
829   // X / 1 -> X
830   if (match(Op1, m_One()))
831     return Op0;
832
833   if (Op0->getType()->isIntegerTy(1))
834     // It can't be division by zero, hence it must be division by one.
835     return Op0;
836
837   // X / X -> 1
838   if (Op0 == Op1)
839     return ConstantInt::get(Op0->getType(), 1);
840
841   // (X * Y) / Y -> X if the multiplication does not overflow.
842   Value *X = 0, *Y = 0;
843   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
844     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
845     BinaryOperator *Mul = cast<BinaryOperator>(Op0);
846     // If the Mul knows it does not overflow, then we are good to go.
847     if ((isSigned && Mul->hasNoSignedWrap()) ||
848         (!isSigned && Mul->hasNoUnsignedWrap()))
849       return X;
850     // If X has the form X = A / Y then X * Y cannot overflow.
851     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
852       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
853         return X;
854   }
855
856   // (X rem Y) / Y -> 0
857   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
858       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
859     return Constant::getNullValue(Op0->getType());
860
861   // If the operation is with the result of a select instruction, check whether
862   // operating on either branch of the select always yields the same value.
863   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
864     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
865       return V;
866
867   // If the operation is with the result of a phi instruction, check whether
868   // operating on all incoming values of the phi always yields the same value.
869   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
870     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
871       return V;
872
873   return 0;
874 }
875
876 /// SimplifySDivInst - Given operands for an SDiv, see if we can
877 /// fold the result.  If not, this returns null.
878 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
879                                const DominatorTree *DT, unsigned MaxRecurse) {
880   if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, TD, DT, MaxRecurse))
881     return V;
882
883   return 0;
884 }
885
886 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
887                               const DominatorTree *DT) {
888   return ::SimplifySDivInst(Op0, Op1, TD, DT, RecursionLimit);
889 }
890
891 /// SimplifyUDivInst - Given operands for a UDiv, see if we can
892 /// fold the result.  If not, this returns null.
893 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
894                                const DominatorTree *DT, unsigned MaxRecurse) {
895   if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, TD, DT, MaxRecurse))
896     return V;
897
898   return 0;
899 }
900
901 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
902                               const DominatorTree *DT) {
903   return ::SimplifyUDivInst(Op0, Op1, TD, DT, RecursionLimit);
904 }
905
906 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *,
907                                const DominatorTree *, unsigned) {
908   // undef / X -> undef    (the undef could be a snan).
909   if (match(Op0, m_Undef()))
910     return Op0;
911
912   // X / undef -> undef
913   if (match(Op1, m_Undef()))
914     return Op1;
915
916   return 0;
917 }
918
919 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
920                               const DominatorTree *DT) {
921   return ::SimplifyFDivInst(Op0, Op1, TD, DT, RecursionLimit);
922 }
923
924 /// SimplifyRem - Given operands for an SRem or URem, see if we can
925 /// fold the result.  If not, this returns null.
926 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
927                           const TargetData *TD, const DominatorTree *DT,
928                           unsigned MaxRecurse) {
929   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
930     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
931       Constant *Ops[] = { C0, C1 };
932       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD);
933     }
934   }
935
936   // X % undef -> undef
937   if (match(Op1, m_Undef()))
938     return Op1;
939
940   // undef % X -> 0
941   if (match(Op0, m_Undef()))
942     return Constant::getNullValue(Op0->getType());
943
944   // 0 % X -> 0, we don't need to preserve faults!
945   if (match(Op0, m_Zero()))
946     return Op0;
947
948   // X % 0 -> undef, we don't need to preserve faults!
949   if (match(Op1, m_Zero()))
950     return UndefValue::get(Op0->getType());
951
952   // X % 1 -> 0
953   if (match(Op1, m_One()))
954     return Constant::getNullValue(Op0->getType());
955
956   if (Op0->getType()->isIntegerTy(1))
957     // It can't be remainder by zero, hence it must be remainder by one.
958     return Constant::getNullValue(Op0->getType());
959
960   // X % X -> 0
961   if (Op0 == Op1)
962     return Constant::getNullValue(Op0->getType());
963
964   // If the operation is with the result of a select instruction, check whether
965   // operating on either branch of the select always yields the same value.
966   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
967     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
968       return V;
969
970   // If the operation is with the result of a phi instruction, check whether
971   // operating on all incoming values of the phi always yields the same value.
972   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
973     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
974       return V;
975
976   return 0;
977 }
978
979 /// SimplifySRemInst - Given operands for an SRem, see if we can
980 /// fold the result.  If not, this returns null.
981 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
982                                const DominatorTree *DT, unsigned MaxRecurse) {
983   if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, TD, DT, MaxRecurse))
984     return V;
985
986   return 0;
987 }
988
989 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
990                               const DominatorTree *DT) {
991   return ::SimplifySRemInst(Op0, Op1, TD, DT, RecursionLimit);
992 }
993
994 /// SimplifyURemInst - Given operands for a URem, see if we can
995 /// fold the result.  If not, this returns null.
996 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
997                                const DominatorTree *DT, unsigned MaxRecurse) {
998   if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, TD, DT, MaxRecurse))
999     return V;
1000
1001   return 0;
1002 }
1003
1004 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
1005                               const DominatorTree *DT) {
1006   return ::SimplifyURemInst(Op0, Op1, TD, DT, RecursionLimit);
1007 }
1008
1009 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *,
1010                                const DominatorTree *, unsigned) {
1011   // undef % X -> undef    (the undef could be a snan).
1012   if (match(Op0, m_Undef()))
1013     return Op0;
1014
1015   // X % undef -> undef
1016   if (match(Op1, m_Undef()))
1017     return Op1;
1018
1019   return 0;
1020 }
1021
1022 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *TD,
1023                               const DominatorTree *DT) {
1024   return ::SimplifyFRemInst(Op0, Op1, TD, DT, RecursionLimit);
1025 }
1026
1027 /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
1028 /// fold the result.  If not, this returns null.
1029 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1030                             const TargetData *TD, const DominatorTree *DT,
1031                             unsigned MaxRecurse) {
1032   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1033     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1034       Constant *Ops[] = { C0, C1 };
1035       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD);
1036     }
1037   }
1038
1039   // 0 shift by X -> 0
1040   if (match(Op0, m_Zero()))
1041     return Op0;
1042
1043   // X shift by 0 -> X
1044   if (match(Op1, m_Zero()))
1045     return Op0;
1046
1047   // X shift by undef -> undef because it may shift by the bitwidth.
1048   if (match(Op1, m_Undef()))
1049     return Op1;
1050
1051   // Shifting by the bitwidth or more is undefined.
1052   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
1053     if (CI->getValue().getLimitedValue() >=
1054         Op0->getType()->getScalarSizeInBits())
1055       return UndefValue::get(Op0->getType());
1056
1057   // If the operation is with the result of a select instruction, check whether
1058   // operating on either branch of the select always yields the same value.
1059   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1060     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
1061       return V;
1062
1063   // If the operation is with the result of a phi instruction, check whether
1064   // operating on all incoming values of the phi always yields the same value.
1065   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1066     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
1067       return V;
1068
1069   return 0;
1070 }
1071
1072 /// SimplifyShlInst - Given operands for an Shl, see if we can
1073 /// fold the result.  If not, this returns null.
1074 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1075                               const TargetData *TD, const DominatorTree *DT,
1076                               unsigned MaxRecurse) {
1077   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, TD, DT, MaxRecurse))
1078     return V;
1079
1080   // undef << X -> 0
1081   if (match(Op0, m_Undef()))
1082     return Constant::getNullValue(Op0->getType());
1083
1084   // (X >> A) << A -> X
1085   Value *X;
1086   if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1))) &&
1087       cast<PossiblyExactOperator>(Op0)->isExact())
1088     return X;
1089   return 0;
1090 }
1091
1092 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1093                              const TargetData *TD, const DominatorTree *DT) {
1094   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
1095 }
1096
1097 /// SimplifyLShrInst - Given operands for an LShr, see if we can
1098 /// fold the result.  If not, this returns null.
1099 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1100                                const TargetData *TD, const DominatorTree *DT,
1101                                unsigned MaxRecurse) {
1102   if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, TD, DT, MaxRecurse))
1103     return V;
1104
1105   // undef >>l X -> 0
1106   if (match(Op0, m_Undef()))
1107     return Constant::getNullValue(Op0->getType());
1108
1109   // (X << A) >> A -> X
1110   Value *X;
1111   if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1112       cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
1113     return X;
1114
1115   return 0;
1116 }
1117
1118 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1119                               const TargetData *TD, const DominatorTree *DT) {
1120   return ::SimplifyLShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit);
1121 }
1122
1123 /// SimplifyAShrInst - Given operands for an AShr, see if we can
1124 /// fold the result.  If not, this returns null.
1125 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1126                                const TargetData *TD, const DominatorTree *DT,
1127                                unsigned MaxRecurse) {
1128   if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, TD, DT, MaxRecurse))
1129     return V;
1130
1131   // all ones >>a X -> all ones
1132   if (match(Op0, m_AllOnes()))
1133     return Op0;
1134
1135   // undef >>a X -> all ones
1136   if (match(Op0, m_Undef()))
1137     return Constant::getAllOnesValue(Op0->getType());
1138
1139   // (X << A) >> A -> X
1140   Value *X;
1141   if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1142       cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1143     return X;
1144
1145   return 0;
1146 }
1147
1148 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1149                               const TargetData *TD, const DominatorTree *DT) {
1150   return ::SimplifyAShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit);
1151 }
1152
1153 /// SimplifyAndInst - Given operands for an And, see if we can
1154 /// fold the result.  If not, this returns null.
1155 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1156                               const DominatorTree *DT, unsigned MaxRecurse) {
1157   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1158     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1159       Constant *Ops[] = { CLHS, CRHS };
1160       return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
1161                                       Ops, TD);
1162     }
1163
1164     // Canonicalize the constant to the RHS.
1165     std::swap(Op0, Op1);
1166   }
1167
1168   // X & undef -> 0
1169   if (match(Op1, m_Undef()))
1170     return Constant::getNullValue(Op0->getType());
1171
1172   // X & X = X
1173   if (Op0 == Op1)
1174     return Op0;
1175
1176   // X & 0 = 0
1177   if (match(Op1, m_Zero()))
1178     return Op1;
1179
1180   // X & -1 = X
1181   if (match(Op1, m_AllOnes()))
1182     return Op0;
1183
1184   // A & ~A  =  ~A & A  =  0
1185   if (match(Op0, m_Not(m_Specific(Op1))) ||
1186       match(Op1, m_Not(m_Specific(Op0))))
1187     return Constant::getNullValue(Op0->getType());
1188
1189   // (A | ?) & A = A
1190   Value *A = 0, *B = 0;
1191   if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1192       (A == Op1 || B == Op1))
1193     return Op1;
1194
1195   // A & (A | ?) = A
1196   if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1197       (A == Op0 || B == Op0))
1198     return Op0;
1199
1200   // Try some generic simplifications for associative operations.
1201   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT,
1202                                           MaxRecurse))
1203     return V;
1204
1205   // And distributes over Or.  Try some generic simplifications based on this.
1206   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1207                              TD, DT, MaxRecurse))
1208     return V;
1209
1210   // And distributes over Xor.  Try some generic simplifications based on this.
1211   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1212                              TD, DT, MaxRecurse))
1213     return V;
1214
1215   // Or distributes over And.  Try some generic simplifications based on this.
1216   if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1217                                 TD, DT, MaxRecurse))
1218     return V;
1219
1220   // If the operation is with the result of a select instruction, check whether
1221   // operating on either branch of the select always yields the same value.
1222   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1223     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT,
1224                                          MaxRecurse))
1225       return V;
1226
1227   // If the operation is with the result of a phi instruction, check whether
1228   // operating on all incoming values of the phi always yields the same value.
1229   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1230     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT,
1231                                       MaxRecurse))
1232       return V;
1233
1234   return 0;
1235 }
1236
1237 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1238                              const DominatorTree *DT) {
1239   return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit);
1240 }
1241
1242 /// SimplifyOrInst - Given operands for an Or, see if we can
1243 /// fold the result.  If not, this returns null.
1244 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1245                              const DominatorTree *DT, unsigned MaxRecurse) {
1246   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1247     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1248       Constant *Ops[] = { CLHS, CRHS };
1249       return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
1250                                       Ops, TD);
1251     }
1252
1253     // Canonicalize the constant to the RHS.
1254     std::swap(Op0, Op1);
1255   }
1256
1257   // X | undef -> -1
1258   if (match(Op1, m_Undef()))
1259     return Constant::getAllOnesValue(Op0->getType());
1260
1261   // X | X = X
1262   if (Op0 == Op1)
1263     return Op0;
1264
1265   // X | 0 = X
1266   if (match(Op1, m_Zero()))
1267     return Op0;
1268
1269   // X | -1 = -1
1270   if (match(Op1, m_AllOnes()))
1271     return Op1;
1272
1273   // A | ~A  =  ~A | A  =  -1
1274   if (match(Op0, m_Not(m_Specific(Op1))) ||
1275       match(Op1, m_Not(m_Specific(Op0))))
1276     return Constant::getAllOnesValue(Op0->getType());
1277
1278   // (A & ?) | A = A
1279   Value *A = 0, *B = 0;
1280   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1281       (A == Op1 || B == Op1))
1282     return Op1;
1283
1284   // A | (A & ?) = A
1285   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1286       (A == Op0 || B == Op0))
1287     return Op0;
1288
1289   // ~(A & ?) | A = -1
1290   if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1291       (A == Op1 || B == Op1))
1292     return Constant::getAllOnesValue(Op1->getType());
1293
1294   // A | ~(A & ?) = -1
1295   if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1296       (A == Op0 || B == Op0))
1297     return Constant::getAllOnesValue(Op0->getType());
1298
1299   // Try some generic simplifications for associative operations.
1300   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT,
1301                                           MaxRecurse))
1302     return V;
1303
1304   // Or distributes over And.  Try some generic simplifications based on this.
1305   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1306                              TD, DT, MaxRecurse))
1307     return V;
1308
1309   // And distributes over Or.  Try some generic simplifications based on this.
1310   if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1311                                 TD, DT, MaxRecurse))
1312     return V;
1313
1314   // If the operation is with the result of a select instruction, check whether
1315   // operating on either branch of the select always yields the same value.
1316   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1317     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT,
1318                                          MaxRecurse))
1319       return V;
1320
1321   // If the operation is with the result of a phi instruction, check whether
1322   // operating on all incoming values of the phi always yields the same value.
1323   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1324     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT,
1325                                       MaxRecurse))
1326       return V;
1327
1328   return 0;
1329 }
1330
1331 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1332                             const DominatorTree *DT) {
1333   return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit);
1334 }
1335
1336 /// SimplifyXorInst - Given operands for a Xor, see if we can
1337 /// fold the result.  If not, this returns null.
1338 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1339                               const DominatorTree *DT, unsigned MaxRecurse) {
1340   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1341     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1342       Constant *Ops[] = { CLHS, CRHS };
1343       return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1344                                       Ops, TD);
1345     }
1346
1347     // Canonicalize the constant to the RHS.
1348     std::swap(Op0, Op1);
1349   }
1350
1351   // A ^ undef -> undef
1352   if (match(Op1, m_Undef()))
1353     return Op1;
1354
1355   // A ^ 0 = A
1356   if (match(Op1, m_Zero()))
1357     return Op0;
1358
1359   // A ^ A = 0
1360   if (Op0 == Op1)
1361     return Constant::getNullValue(Op0->getType());
1362
1363   // A ^ ~A  =  ~A ^ A  =  -1
1364   if (match(Op0, m_Not(m_Specific(Op1))) ||
1365       match(Op1, m_Not(m_Specific(Op0))))
1366     return Constant::getAllOnesValue(Op0->getType());
1367
1368   // Try some generic simplifications for associative operations.
1369   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT,
1370                                           MaxRecurse))
1371     return V;
1372
1373   // And distributes over Xor.  Try some generic simplifications based on this.
1374   if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
1375                                 TD, DT, MaxRecurse))
1376     return V;
1377
1378   // Threading Xor over selects and phi nodes is pointless, so don't bother.
1379   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1380   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1381   // only if B and C are equal.  If B and C are equal then (since we assume
1382   // that operands have already been simplified) "select(cond, B, C)" should
1383   // have been simplified to the common value of B and C already.  Analysing
1384   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1385   // for threading over phi nodes.
1386
1387   return 0;
1388 }
1389
1390 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1391                              const DominatorTree *DT) {
1392   return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit);
1393 }
1394
1395 static Type *GetCompareTy(Value *Op) {
1396   return CmpInst::makeCmpResultType(Op->getType());
1397 }
1398
1399 /// ExtractEquivalentCondition - Rummage around inside V looking for something
1400 /// equivalent to the comparison "LHS Pred RHS".  Return such a value if found,
1401 /// otherwise return null.  Helper function for analyzing max/min idioms.
1402 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1403                                          Value *LHS, Value *RHS) {
1404   SelectInst *SI = dyn_cast<SelectInst>(V);
1405   if (!SI)
1406     return 0;
1407   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1408   if (!Cmp)
1409     return 0;
1410   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1411   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1412     return Cmp;
1413   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1414       LHS == CmpRHS && RHS == CmpLHS)
1415     return Cmp;
1416   return 0;
1417 }
1418
1419 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1420 /// fold the result.  If not, this returns null.
1421 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1422                                const TargetData *TD, const DominatorTree *DT,
1423                                unsigned MaxRecurse) {
1424   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1425   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
1426
1427   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
1428     if (Constant *CRHS = dyn_cast<Constant>(RHS))
1429       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
1430
1431     // If we have a constant, make sure it is on the RHS.
1432     std::swap(LHS, RHS);
1433     Pred = CmpInst::getSwappedPredicate(Pred);
1434   }
1435
1436   Type *ITy = GetCompareTy(LHS); // The return type.
1437   Type *OpTy = LHS->getType();   // The operand type.
1438
1439   // icmp X, X -> true/false
1440   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
1441   // because X could be 0.
1442   if (LHS == RHS || isa<UndefValue>(RHS))
1443     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
1444
1445   // Special case logic when the operands have i1 type.
1446   if (OpTy->isIntegerTy(1) || (OpTy->isVectorTy() &&
1447        cast<VectorType>(OpTy)->getElementType()->isIntegerTy(1))) {
1448     switch (Pred) {
1449     default: break;
1450     case ICmpInst::ICMP_EQ:
1451       // X == 1 -> X
1452       if (match(RHS, m_One()))
1453         return LHS;
1454       break;
1455     case ICmpInst::ICMP_NE:
1456       // X != 0 -> X
1457       if (match(RHS, m_Zero()))
1458         return LHS;
1459       break;
1460     case ICmpInst::ICMP_UGT:
1461       // X >u 0 -> X
1462       if (match(RHS, m_Zero()))
1463         return LHS;
1464       break;
1465     case ICmpInst::ICMP_UGE:
1466       // X >=u 1 -> X
1467       if (match(RHS, m_One()))
1468         return LHS;
1469       break;
1470     case ICmpInst::ICMP_SLT:
1471       // X <s 0 -> X
1472       if (match(RHS, m_Zero()))
1473         return LHS;
1474       break;
1475     case ICmpInst::ICMP_SLE:
1476       // X <=s -1 -> X
1477       if (match(RHS, m_One()))
1478         return LHS;
1479       break;
1480     }
1481   }
1482
1483   // icmp <alloca*>, <global/alloca*/null> - Different stack variables have
1484   // different addresses, and what's more the address of a stack variable is
1485   // never null or equal to the address of a global.  Note that generalizing
1486   // to the case where LHS is a global variable address or null is pointless,
1487   // since if both LHS and RHS are constants then we already constant folded
1488   // the compare, and if only one of them is then we moved it to RHS already.
1489   if (isa<AllocaInst>(LHS) && (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
1490                                isa<ConstantPointerNull>(RHS)))
1491     // We already know that LHS != RHS.
1492     return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
1493
1494   // If we are comparing with zero then try hard since this is a common case.
1495   if (match(RHS, m_Zero())) {
1496     bool LHSKnownNonNegative, LHSKnownNegative;
1497     switch (Pred) {
1498     default:
1499       assert(false && "Unknown ICmp predicate!");
1500     case ICmpInst::ICMP_ULT:
1501       return getFalse(ITy);
1502     case ICmpInst::ICMP_UGE:
1503       return getTrue(ITy);
1504     case ICmpInst::ICMP_EQ:
1505     case ICmpInst::ICMP_ULE:
1506       if (isKnownNonZero(LHS, TD))
1507         return getFalse(ITy);
1508       break;
1509     case ICmpInst::ICMP_NE:
1510     case ICmpInst::ICMP_UGT:
1511       if (isKnownNonZero(LHS, TD))
1512         return getTrue(ITy);
1513       break;
1514     case ICmpInst::ICMP_SLT:
1515       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1516       if (LHSKnownNegative)
1517         return getTrue(ITy);
1518       if (LHSKnownNonNegative)
1519         return getFalse(ITy);
1520       break;
1521     case ICmpInst::ICMP_SLE:
1522       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1523       if (LHSKnownNegative)
1524         return getTrue(ITy);
1525       if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1526         return getFalse(ITy);
1527       break;
1528     case ICmpInst::ICMP_SGE:
1529       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1530       if (LHSKnownNegative)
1531         return getFalse(ITy);
1532       if (LHSKnownNonNegative)
1533         return getTrue(ITy);
1534       break;
1535     case ICmpInst::ICMP_SGT:
1536       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1537       if (LHSKnownNegative)
1538         return getFalse(ITy);
1539       if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1540         return getTrue(ITy);
1541       break;
1542     }
1543   }
1544
1545   // See if we are doing a comparison with a constant integer.
1546   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1547     // Rule out tautological comparisons (eg., ult 0 or uge 0).
1548     ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
1549     if (RHS_CR.isEmptySet())
1550       return ConstantInt::getFalse(CI->getContext());
1551     if (RHS_CR.isFullSet())
1552       return ConstantInt::getTrue(CI->getContext());
1553
1554     // Many binary operators with constant RHS have easy to compute constant
1555     // range.  Use them to check whether the comparison is a tautology.
1556     uint32_t Width = CI->getBitWidth();
1557     APInt Lower = APInt(Width, 0);
1558     APInt Upper = APInt(Width, 0);
1559     ConstantInt *CI2;
1560     if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
1561       // 'urem x, CI2' produces [0, CI2).
1562       Upper = CI2->getValue();
1563     } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
1564       // 'srem x, CI2' produces (-|CI2|, |CI2|).
1565       Upper = CI2->getValue().abs();
1566       Lower = (-Upper) + 1;
1567     } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
1568       // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1569       APInt NegOne = APInt::getAllOnesValue(Width);
1570       if (!CI2->isZero())
1571         Upper = NegOne.udiv(CI2->getValue()) + 1;
1572     } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
1573       // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
1574       APInt IntMin = APInt::getSignedMinValue(Width);
1575       APInt IntMax = APInt::getSignedMaxValue(Width);
1576       APInt Val = CI2->getValue().abs();
1577       if (!Val.isMinValue()) {
1578         Lower = IntMin.sdiv(Val);
1579         Upper = IntMax.sdiv(Val) + 1;
1580       }
1581     } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
1582       // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
1583       APInt NegOne = APInt::getAllOnesValue(Width);
1584       if (CI2->getValue().ult(Width))
1585         Upper = NegOne.lshr(CI2->getValue()) + 1;
1586     } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
1587       // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
1588       APInt IntMin = APInt::getSignedMinValue(Width);
1589       APInt IntMax = APInt::getSignedMaxValue(Width);
1590       if (CI2->getValue().ult(Width)) {
1591         Lower = IntMin.ashr(CI2->getValue());
1592         Upper = IntMax.ashr(CI2->getValue()) + 1;
1593       }
1594     } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
1595       // 'or x, CI2' produces [CI2, UINT_MAX].
1596       Lower = CI2->getValue();
1597     } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
1598       // 'and x, CI2' produces [0, CI2].
1599       Upper = CI2->getValue() + 1;
1600     }
1601     if (Lower != Upper) {
1602       ConstantRange LHS_CR = ConstantRange(Lower, Upper);
1603       if (RHS_CR.contains(LHS_CR))
1604         return ConstantInt::getTrue(RHS->getContext());
1605       if (RHS_CR.inverse().contains(LHS_CR))
1606         return ConstantInt::getFalse(RHS->getContext());
1607     }
1608   }
1609
1610   // Compare of cast, for example (zext X) != 0 -> X != 0
1611   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
1612     Instruction *LI = cast<CastInst>(LHS);
1613     Value *SrcOp = LI->getOperand(0);
1614     Type *SrcTy = SrcOp->getType();
1615     Type *DstTy = LI->getType();
1616
1617     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
1618     // if the integer type is the same size as the pointer type.
1619     if (MaxRecurse && TD && isa<PtrToIntInst>(LI) &&
1620         TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
1621       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1622         // Transfer the cast to the constant.
1623         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
1624                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
1625                                         TD, DT, MaxRecurse-1))
1626           return V;
1627       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
1628         if (RI->getOperand(0)->getType() == SrcTy)
1629           // Compare without the cast.
1630           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1631                                           TD, DT, MaxRecurse-1))
1632             return V;
1633       }
1634     }
1635
1636     if (isa<ZExtInst>(LHS)) {
1637       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
1638       // same type.
1639       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
1640         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1641           // Compare X and Y.  Note that signed predicates become unsigned.
1642           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1643                                           SrcOp, RI->getOperand(0), TD, DT,
1644                                           MaxRecurse-1))
1645             return V;
1646       }
1647       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
1648       // too.  If not, then try to deduce the result of the comparison.
1649       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1650         // Compute the constant that would happen if we truncated to SrcTy then
1651         // reextended to DstTy.
1652         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1653         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
1654
1655         // If the re-extended constant didn't change then this is effectively
1656         // also a case of comparing two zero-extended values.
1657         if (RExt == CI && MaxRecurse)
1658           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1659                                           SrcOp, Trunc, TD, DT, MaxRecurse-1))
1660             return V;
1661
1662         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
1663         // there.  Use this to work out the result of the comparison.
1664         if (RExt != CI) {
1665           switch (Pred) {
1666           default:
1667             assert(false && "Unknown ICmp predicate!");
1668           // LHS <u RHS.
1669           case ICmpInst::ICMP_EQ:
1670           case ICmpInst::ICMP_UGT:
1671           case ICmpInst::ICMP_UGE:
1672             return ConstantInt::getFalse(CI->getContext());
1673
1674           case ICmpInst::ICMP_NE:
1675           case ICmpInst::ICMP_ULT:
1676           case ICmpInst::ICMP_ULE:
1677             return ConstantInt::getTrue(CI->getContext());
1678
1679           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
1680           // is non-negative then LHS <s RHS.
1681           case ICmpInst::ICMP_SGT:
1682           case ICmpInst::ICMP_SGE:
1683             return CI->getValue().isNegative() ?
1684               ConstantInt::getTrue(CI->getContext()) :
1685               ConstantInt::getFalse(CI->getContext());
1686
1687           case ICmpInst::ICMP_SLT:
1688           case ICmpInst::ICMP_SLE:
1689             return CI->getValue().isNegative() ?
1690               ConstantInt::getFalse(CI->getContext()) :
1691               ConstantInt::getTrue(CI->getContext());
1692           }
1693         }
1694       }
1695     }
1696
1697     if (isa<SExtInst>(LHS)) {
1698       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
1699       // same type.
1700       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
1701         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1702           // Compare X and Y.  Note that the predicate does not change.
1703           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1704                                           TD, DT, MaxRecurse-1))
1705             return V;
1706       }
1707       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
1708       // too.  If not, then try to deduce the result of the comparison.
1709       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1710         // Compute the constant that would happen if we truncated to SrcTy then
1711         // reextended to DstTy.
1712         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1713         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
1714
1715         // If the re-extended constant didn't change then this is effectively
1716         // also a case of comparing two sign-extended values.
1717         if (RExt == CI && MaxRecurse)
1718           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, TD, DT,
1719                                           MaxRecurse-1))
1720             return V;
1721
1722         // Otherwise the upper bits of LHS are all equal, while RHS has varying
1723         // bits there.  Use this to work out the result of the comparison.
1724         if (RExt != CI) {
1725           switch (Pred) {
1726           default:
1727             assert(false && "Unknown ICmp predicate!");
1728           case ICmpInst::ICMP_EQ:
1729             return ConstantInt::getFalse(CI->getContext());
1730           case ICmpInst::ICMP_NE:
1731             return ConstantInt::getTrue(CI->getContext());
1732
1733           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
1734           // LHS >s RHS.
1735           case ICmpInst::ICMP_SGT:
1736           case ICmpInst::ICMP_SGE:
1737             return CI->getValue().isNegative() ?
1738               ConstantInt::getTrue(CI->getContext()) :
1739               ConstantInt::getFalse(CI->getContext());
1740           case ICmpInst::ICMP_SLT:
1741           case ICmpInst::ICMP_SLE:
1742             return CI->getValue().isNegative() ?
1743               ConstantInt::getFalse(CI->getContext()) :
1744               ConstantInt::getTrue(CI->getContext());
1745
1746           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
1747           // LHS >u RHS.
1748           case ICmpInst::ICMP_UGT:
1749           case ICmpInst::ICMP_UGE:
1750             // Comparison is true iff the LHS <s 0.
1751             if (MaxRecurse)
1752               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
1753                                               Constant::getNullValue(SrcTy),
1754                                               TD, DT, MaxRecurse-1))
1755                 return V;
1756             break;
1757           case ICmpInst::ICMP_ULT:
1758           case ICmpInst::ICMP_ULE:
1759             // Comparison is true iff the LHS >=s 0.
1760             if (MaxRecurse)
1761               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
1762                                               Constant::getNullValue(SrcTy),
1763                                               TD, DT, MaxRecurse-1))
1764                 return V;
1765             break;
1766           }
1767         }
1768       }
1769     }
1770   }
1771
1772   // Special logic for binary operators.
1773   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
1774   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
1775   if (MaxRecurse && (LBO || RBO)) {
1776     // Analyze the case when either LHS or RHS is an add instruction.
1777     Value *A = 0, *B = 0, *C = 0, *D = 0;
1778     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
1779     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
1780     if (LBO && LBO->getOpcode() == Instruction::Add) {
1781       A = LBO->getOperand(0); B = LBO->getOperand(1);
1782       NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
1783         (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
1784         (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
1785     }
1786     if (RBO && RBO->getOpcode() == Instruction::Add) {
1787       C = RBO->getOperand(0); D = RBO->getOperand(1);
1788       NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
1789         (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
1790         (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
1791     }
1792
1793     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
1794     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
1795       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
1796                                       Constant::getNullValue(RHS->getType()),
1797                                       TD, DT, MaxRecurse-1))
1798         return V;
1799
1800     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
1801     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
1802       if (Value *V = SimplifyICmpInst(Pred,
1803                                       Constant::getNullValue(LHS->getType()),
1804                                       C == LHS ? D : C, TD, DT, MaxRecurse-1))
1805         return V;
1806
1807     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
1808     if (A && C && (A == C || A == D || B == C || B == D) &&
1809         NoLHSWrapProblem && NoRHSWrapProblem) {
1810       // Determine Y and Z in the form icmp (X+Y), (X+Z).
1811       Value *Y = (A == C || A == D) ? B : A;
1812       Value *Z = (C == A || C == B) ? D : C;
1813       if (Value *V = SimplifyICmpInst(Pred, Y, Z, TD, DT, MaxRecurse-1))
1814         return V;
1815     }
1816   }
1817
1818   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
1819     bool KnownNonNegative, KnownNegative;
1820     switch (Pred) {
1821     default:
1822       break;
1823     case ICmpInst::ICMP_SGT:
1824     case ICmpInst::ICMP_SGE:
1825       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD);
1826       if (!KnownNonNegative)
1827         break;
1828       // fall-through
1829     case ICmpInst::ICMP_EQ:
1830     case ICmpInst::ICMP_UGT:
1831     case ICmpInst::ICMP_UGE:
1832       return getFalse(ITy);
1833     case ICmpInst::ICMP_SLT:
1834     case ICmpInst::ICMP_SLE:
1835       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD);
1836       if (!KnownNonNegative)
1837         break;
1838       // fall-through
1839     case ICmpInst::ICMP_NE:
1840     case ICmpInst::ICMP_ULT:
1841     case ICmpInst::ICMP_ULE:
1842       return getTrue(ITy);
1843     }
1844   }
1845   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
1846     bool KnownNonNegative, KnownNegative;
1847     switch (Pred) {
1848     default:
1849       break;
1850     case ICmpInst::ICMP_SGT:
1851     case ICmpInst::ICMP_SGE:
1852       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD);
1853       if (!KnownNonNegative)
1854         break;
1855       // fall-through
1856     case ICmpInst::ICMP_NE:
1857     case ICmpInst::ICMP_UGT:
1858     case ICmpInst::ICMP_UGE:
1859       return getTrue(ITy);
1860     case ICmpInst::ICMP_SLT:
1861     case ICmpInst::ICMP_SLE:
1862       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD);
1863       if (!KnownNonNegative)
1864         break;
1865       // fall-through
1866     case ICmpInst::ICMP_EQ:
1867     case ICmpInst::ICMP_ULT:
1868     case ICmpInst::ICMP_ULE:
1869       return getFalse(ITy);
1870     }
1871   }
1872
1873   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
1874       LBO->getOperand(1) == RBO->getOperand(1)) {
1875     switch (LBO->getOpcode()) {
1876     default: break;
1877     case Instruction::UDiv:
1878     case Instruction::LShr:
1879       if (ICmpInst::isSigned(Pred))
1880         break;
1881       // fall-through
1882     case Instruction::SDiv:
1883     case Instruction::AShr:
1884       if (!LBO->isExact() || !RBO->isExact())
1885         break;
1886       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
1887                                       RBO->getOperand(0), TD, DT, MaxRecurse-1))
1888         return V;
1889       break;
1890     case Instruction::Shl: {
1891       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
1892       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
1893       if (!NUW && !NSW)
1894         break;
1895       if (!NSW && ICmpInst::isSigned(Pred))
1896         break;
1897       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
1898                                       RBO->getOperand(0), TD, DT, MaxRecurse-1))
1899         return V;
1900       break;
1901     }
1902     }
1903   }
1904
1905   // Simplify comparisons involving max/min.
1906   Value *A, *B;
1907   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
1908   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
1909
1910   // Signed variants on "max(a,b)>=a -> true".
1911   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
1912     if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
1913     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
1914     // We analyze this as smax(A, B) pred A.
1915     P = Pred;
1916   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
1917              (A == LHS || B == LHS)) {
1918     if (A != LHS) std::swap(A, B); // A pred smax(A, B).
1919     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
1920     // We analyze this as smax(A, B) swapped-pred A.
1921     P = CmpInst::getSwappedPredicate(Pred);
1922   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
1923              (A == RHS || B == RHS)) {
1924     if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
1925     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
1926     // We analyze this as smax(-A, -B) swapped-pred -A.
1927     // Note that we do not need to actually form -A or -B thanks to EqP.
1928     P = CmpInst::getSwappedPredicate(Pred);
1929   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
1930              (A == LHS || B == LHS)) {
1931     if (A != LHS) std::swap(A, B); // A pred smin(A, B).
1932     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
1933     // We analyze this as smax(-A, -B) pred -A.
1934     // Note that we do not need to actually form -A or -B thanks to EqP.
1935     P = Pred;
1936   }
1937   if (P != CmpInst::BAD_ICMP_PREDICATE) {
1938     // Cases correspond to "max(A, B) p A".
1939     switch (P) {
1940     default:
1941       break;
1942     case CmpInst::ICMP_EQ:
1943     case CmpInst::ICMP_SLE:
1944       // Equivalent to "A EqP B".  This may be the same as the condition tested
1945       // in the max/min; if so, we can just return that.
1946       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
1947         return V;
1948       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
1949         return V;
1950       // Otherwise, see if "A EqP B" simplifies.
1951       if (MaxRecurse)
1952         if (Value *V = SimplifyICmpInst(EqP, A, B, TD, DT, MaxRecurse-1))
1953           return V;
1954       break;
1955     case CmpInst::ICMP_NE:
1956     case CmpInst::ICMP_SGT: {
1957       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
1958       // Equivalent to "A InvEqP B".  This may be the same as the condition
1959       // tested in the max/min; if so, we can just return that.
1960       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
1961         return V;
1962       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
1963         return V;
1964       // Otherwise, see if "A InvEqP B" simplifies.
1965       if (MaxRecurse)
1966         if (Value *V = SimplifyICmpInst(InvEqP, A, B, TD, DT, MaxRecurse-1))
1967           return V;
1968       break;
1969     }
1970     case CmpInst::ICMP_SGE:
1971       // Always true.
1972       return getTrue(ITy);
1973     case CmpInst::ICMP_SLT:
1974       // Always false.
1975       return getFalse(ITy);
1976     }
1977   }
1978
1979   // Unsigned variants on "max(a,b)>=a -> true".
1980   P = CmpInst::BAD_ICMP_PREDICATE;
1981   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
1982     if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
1983     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
1984     // We analyze this as umax(A, B) pred A.
1985     P = Pred;
1986   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
1987              (A == LHS || B == LHS)) {
1988     if (A != LHS) std::swap(A, B); // A pred umax(A, B).
1989     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
1990     // We analyze this as umax(A, B) swapped-pred A.
1991     P = CmpInst::getSwappedPredicate(Pred);
1992   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
1993              (A == RHS || B == RHS)) {
1994     if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
1995     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
1996     // We analyze this as umax(-A, -B) swapped-pred -A.
1997     // Note that we do not need to actually form -A or -B thanks to EqP.
1998     P = CmpInst::getSwappedPredicate(Pred);
1999   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2000              (A == LHS || B == LHS)) {
2001     if (A != LHS) std::swap(A, B); // A pred umin(A, B).
2002     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2003     // We analyze this as umax(-A, -B) pred -A.
2004     // Note that we do not need to actually form -A or -B thanks to EqP.
2005     P = Pred;
2006   }
2007   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2008     // Cases correspond to "max(A, B) p A".
2009     switch (P) {
2010     default:
2011       break;
2012     case CmpInst::ICMP_EQ:
2013     case CmpInst::ICMP_ULE:
2014       // Equivalent to "A EqP B".  This may be the same as the condition tested
2015       // in the max/min; if so, we can just return that.
2016       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2017         return V;
2018       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2019         return V;
2020       // Otherwise, see if "A EqP B" simplifies.
2021       if (MaxRecurse)
2022         if (Value *V = SimplifyICmpInst(EqP, A, B, TD, DT, MaxRecurse-1))
2023           return V;
2024       break;
2025     case CmpInst::ICMP_NE:
2026     case CmpInst::ICMP_UGT: {
2027       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2028       // Equivalent to "A InvEqP B".  This may be the same as the condition
2029       // tested in the max/min; if so, we can just return that.
2030       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2031         return V;
2032       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2033         return V;
2034       // Otherwise, see if "A InvEqP B" simplifies.
2035       if (MaxRecurse)
2036         if (Value *V = SimplifyICmpInst(InvEqP, A, B, TD, DT, MaxRecurse-1))
2037           return V;
2038       break;
2039     }
2040     case CmpInst::ICMP_UGE:
2041       // Always true.
2042       return getTrue(ITy);
2043     case CmpInst::ICMP_ULT:
2044       // Always false.
2045       return getFalse(ITy);
2046     }
2047   }
2048
2049   // Variants on "max(x,y) >= min(x,z)".
2050   Value *C, *D;
2051   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2052       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2053       (A == C || A == D || B == C || B == D)) {
2054     // max(x, ?) pred min(x, ?).
2055     if (Pred == CmpInst::ICMP_SGE)
2056       // Always true.
2057       return getTrue(ITy);
2058     if (Pred == CmpInst::ICMP_SLT)
2059       // Always false.
2060       return getFalse(ITy);
2061   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2062              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2063              (A == C || A == D || B == C || B == D)) {
2064     // min(x, ?) pred max(x, ?).
2065     if (Pred == CmpInst::ICMP_SLE)
2066       // Always true.
2067       return getTrue(ITy);
2068     if (Pred == CmpInst::ICMP_SGT)
2069       // Always false.
2070       return getFalse(ITy);
2071   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2072              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2073              (A == C || A == D || B == C || B == D)) {
2074     // max(x, ?) pred min(x, ?).
2075     if (Pred == CmpInst::ICMP_UGE)
2076       // Always true.
2077       return getTrue(ITy);
2078     if (Pred == CmpInst::ICMP_ULT)
2079       // Always false.
2080       return getFalse(ITy);
2081   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2082              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2083              (A == C || A == D || B == C || B == D)) {
2084     // min(x, ?) pred max(x, ?).
2085     if (Pred == CmpInst::ICMP_ULE)
2086       // Always true.
2087       return getTrue(ITy);
2088     if (Pred == CmpInst::ICMP_UGT)
2089       // Always false.
2090       return getFalse(ITy);
2091   }
2092
2093   // If the comparison is with the result of a select instruction, check whether
2094   // comparing with either branch of the select always yields the same value.
2095   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2096     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
2097       return V;
2098
2099   // If the comparison is with the result of a phi instruction, check whether
2100   // doing the compare with each incoming phi value yields a common result.
2101   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2102     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
2103       return V;
2104
2105   return 0;
2106 }
2107
2108 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2109                               const TargetData *TD, const DominatorTree *DT) {
2110   return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
2111 }
2112
2113 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2114 /// fold the result.  If not, this returns null.
2115 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2116                                const TargetData *TD, const DominatorTree *DT,
2117                                unsigned MaxRecurse) {
2118   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2119   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
2120
2121   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2122     if (Constant *CRHS = dyn_cast<Constant>(RHS))
2123       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
2124
2125     // If we have a constant, make sure it is on the RHS.
2126     std::swap(LHS, RHS);
2127     Pred = CmpInst::getSwappedPredicate(Pred);
2128   }
2129
2130   // Fold trivial predicates.
2131   if (Pred == FCmpInst::FCMP_FALSE)
2132     return ConstantInt::get(GetCompareTy(LHS), 0);
2133   if (Pred == FCmpInst::FCMP_TRUE)
2134     return ConstantInt::get(GetCompareTy(LHS), 1);
2135
2136   if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
2137     return UndefValue::get(GetCompareTy(LHS));
2138
2139   // fcmp x,x -> true/false.  Not all compares are foldable.
2140   if (LHS == RHS) {
2141     if (CmpInst::isTrueWhenEqual(Pred))
2142       return ConstantInt::get(GetCompareTy(LHS), 1);
2143     if (CmpInst::isFalseWhenEqual(Pred))
2144       return ConstantInt::get(GetCompareTy(LHS), 0);
2145   }
2146
2147   // Handle fcmp with constant RHS
2148   if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2149     // If the constant is a nan, see if we can fold the comparison based on it.
2150     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2151       if (CFP->getValueAPF().isNaN()) {
2152         if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
2153           return ConstantInt::getFalse(CFP->getContext());
2154         assert(FCmpInst::isUnordered(Pred) &&
2155                "Comparison must be either ordered or unordered!");
2156         // True if unordered.
2157         return ConstantInt::getTrue(CFP->getContext());
2158       }
2159       // Check whether the constant is an infinity.
2160       if (CFP->getValueAPF().isInfinity()) {
2161         if (CFP->getValueAPF().isNegative()) {
2162           switch (Pred) {
2163           case FCmpInst::FCMP_OLT:
2164             // No value is ordered and less than negative infinity.
2165             return ConstantInt::getFalse(CFP->getContext());
2166           case FCmpInst::FCMP_UGE:
2167             // All values are unordered with or at least negative infinity.
2168             return ConstantInt::getTrue(CFP->getContext());
2169           default:
2170             break;
2171           }
2172         } else {
2173           switch (Pred) {
2174           case FCmpInst::FCMP_OGT:
2175             // No value is ordered and greater than infinity.
2176             return ConstantInt::getFalse(CFP->getContext());
2177           case FCmpInst::FCMP_ULE:
2178             // All values are unordered with and at most infinity.
2179             return ConstantInt::getTrue(CFP->getContext());
2180           default:
2181             break;
2182           }
2183         }
2184       }
2185     }
2186   }
2187
2188   // If the comparison is with the result of a select instruction, check whether
2189   // comparing with either branch of the select always yields the same value.
2190   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2191     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
2192       return V;
2193
2194   // If the comparison is with the result of a phi instruction, check whether
2195   // doing the compare with each incoming phi value yields a common result.
2196   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2197     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
2198       return V;
2199
2200   return 0;
2201 }
2202
2203 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2204                               const TargetData *TD, const DominatorTree *DT) {
2205   return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
2206 }
2207
2208 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2209 /// the result.  If not, this returns null.
2210 Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
2211                                 const TargetData *TD, const DominatorTree *) {
2212   // select true, X, Y  -> X
2213   // select false, X, Y -> Y
2214   if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
2215     return CB->getZExtValue() ? TrueVal : FalseVal;
2216
2217   // select C, X, X -> X
2218   if (TrueVal == FalseVal)
2219     return TrueVal;
2220
2221   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
2222     if (isa<Constant>(TrueVal))
2223       return TrueVal;
2224     return FalseVal;
2225   }
2226   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
2227     return FalseVal;
2228   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
2229     return TrueVal;
2230
2231   return 0;
2232 }
2233
2234 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2235 /// fold the result.  If not, this returns null.
2236 Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops,
2237                              const TargetData *TD, const DominatorTree *) {
2238   // The type of the GEP pointer operand.
2239   PointerType *PtrTy = cast<PointerType>(Ops[0]->getType());
2240
2241   // getelementptr P -> P.
2242   if (Ops.size() == 1)
2243     return Ops[0];
2244
2245   if (isa<UndefValue>(Ops[0])) {
2246     // Compute the (pointer) type returned by the GEP instruction.
2247     Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
2248     Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
2249     return UndefValue::get(GEPTy);
2250   }
2251
2252   if (Ops.size() == 2) {
2253     // getelementptr P, 0 -> P.
2254     if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
2255       if (C->isZero())
2256         return Ops[0];
2257     // getelementptr P, N -> P if P points to a type of zero size.
2258     if (TD) {
2259       Type *Ty = PtrTy->getElementType();
2260       if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0)
2261         return Ops[0];
2262     }
2263   }
2264
2265   // Check to see if this is constant foldable.
2266   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2267     if (!isa<Constant>(Ops[i]))
2268       return 0;
2269
2270   return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
2271 }
2272
2273 /// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
2274 /// can fold the result.  If not, this returns null.
2275 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
2276                                      ArrayRef<unsigned> Idxs,
2277                                      const TargetData *,
2278                                      const DominatorTree *) {
2279   if (Constant *CAgg = dyn_cast<Constant>(Agg))
2280     if (Constant *CVal = dyn_cast<Constant>(Val))
2281       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
2282
2283   // insertvalue x, undef, n -> x
2284   if (match(Val, m_Undef()))
2285     return Agg;
2286
2287   // insertvalue x, (extractvalue y, n), n
2288   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
2289     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
2290         EV->getIndices() == Idxs) {
2291       // insertvalue undef, (extractvalue y, n), n -> y
2292       if (match(Agg, m_Undef()))
2293         return EV->getAggregateOperand();
2294
2295       // insertvalue y, (extractvalue y, n), n -> y
2296       if (Agg == EV->getAggregateOperand())
2297         return Agg;
2298     }
2299
2300   return 0;
2301 }
2302
2303 /// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
2304 static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
2305   // If all of the PHI's incoming values are the same then replace the PHI node
2306   // with the common value.
2307   Value *CommonValue = 0;
2308   bool HasUndefInput = false;
2309   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2310     Value *Incoming = PN->getIncomingValue(i);
2311     // If the incoming value is the phi node itself, it can safely be skipped.
2312     if (Incoming == PN) continue;
2313     if (isa<UndefValue>(Incoming)) {
2314       // Remember that we saw an undef value, but otherwise ignore them.
2315       HasUndefInput = true;
2316       continue;
2317     }
2318     if (CommonValue && Incoming != CommonValue)
2319       return 0;  // Not the same, bail out.
2320     CommonValue = Incoming;
2321   }
2322
2323   // If CommonValue is null then all of the incoming values were either undef or
2324   // equal to the phi node itself.
2325   if (!CommonValue)
2326     return UndefValue::get(PN->getType());
2327
2328   // If we have a PHI node like phi(X, undef, X), where X is defined by some
2329   // instruction, we cannot return X as the result of the PHI node unless it
2330   // dominates the PHI block.
2331   if (HasUndefInput)
2332     return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;
2333
2334   return CommonValue;
2335 }
2336
2337
2338 //=== Helper functions for higher up the class hierarchy.
2339
2340 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2341 /// fold the result.  If not, this returns null.
2342 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2343                             const TargetData *TD, const DominatorTree *DT,
2344                             unsigned MaxRecurse) {
2345   switch (Opcode) {
2346   case Instruction::Add:
2347     return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2348                            TD, DT, MaxRecurse);
2349   case Instruction::Sub:
2350     return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2351                            TD, DT, MaxRecurse);
2352   case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, TD, DT, MaxRecurse);
2353   case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, TD, DT, MaxRecurse);
2354   case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, TD, DT, MaxRecurse);
2355   case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, TD, DT, MaxRecurse);
2356   case Instruction::SRem: return SimplifySRemInst(LHS, RHS, TD, DT, MaxRecurse);
2357   case Instruction::URem: return SimplifyURemInst(LHS, RHS, TD, DT, MaxRecurse);
2358   case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, TD, DT, MaxRecurse);
2359   case Instruction::Shl:
2360     return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2361                            TD, DT, MaxRecurse);
2362   case Instruction::LShr:
2363     return SimplifyLShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse);
2364   case Instruction::AShr:
2365     return SimplifyAShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse);
2366   case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse);
2367   case Instruction::Or:  return SimplifyOrInst (LHS, RHS, TD, DT, MaxRecurse);
2368   case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, DT, MaxRecurse);
2369   default:
2370     if (Constant *CLHS = dyn_cast<Constant>(LHS))
2371       if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
2372         Constant *COps[] = {CLHS, CRHS};
2373         return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, TD);
2374       }
2375
2376     // If the operation is associative, try some generic simplifications.
2377     if (Instruction::isAssociative(Opcode))
2378       if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT,
2379                                               MaxRecurse))
2380         return V;
2381
2382     // If the operation is with the result of a select instruction, check whether
2383     // operating on either branch of the select always yields the same value.
2384     if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2385       if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT,
2386                                            MaxRecurse))
2387         return V;
2388
2389     // If the operation is with the result of a phi instruction, check whether
2390     // operating on all incoming values of the phi always yields the same value.
2391     if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2392       if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse))
2393         return V;
2394
2395     return 0;
2396   }
2397 }
2398
2399 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2400                            const TargetData *TD, const DominatorTree *DT) {
2401   return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit);
2402 }
2403
2404 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2405 /// fold the result.
2406 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2407                               const TargetData *TD, const DominatorTree *DT,
2408                               unsigned MaxRecurse) {
2409   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
2410     return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
2411   return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
2412 }
2413
2414 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2415                              const TargetData *TD, const DominatorTree *DT) {
2416   return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
2417 }
2418
2419 /// SimplifyInstruction - See if we can compute a simplified version of this
2420 /// instruction.  If not, this returns null.
2421 Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
2422                                  const DominatorTree *DT) {
2423   Value *Result;
2424
2425   switch (I->getOpcode()) {
2426   default:
2427     Result = ConstantFoldInstruction(I, TD);
2428     break;
2429   case Instruction::Add:
2430     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
2431                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
2432                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2433                              TD, DT);
2434     break;
2435   case Instruction::Sub:
2436     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
2437                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
2438                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2439                              TD, DT);
2440     break;
2441   case Instruction::Mul:
2442     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT);
2443     break;
2444   case Instruction::SDiv:
2445     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
2446     break;
2447   case Instruction::UDiv:
2448     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
2449     break;
2450   case Instruction::FDiv:
2451     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
2452     break;
2453   case Instruction::SRem:
2454     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, DT);
2455     break;
2456   case Instruction::URem:
2457     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, DT);
2458     break;
2459   case Instruction::FRem:
2460     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, DT);
2461     break;
2462   case Instruction::Shl:
2463     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
2464                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
2465                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2466                              TD, DT);
2467     break;
2468   case Instruction::LShr:
2469     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
2470                               cast<BinaryOperator>(I)->isExact(),
2471                               TD, DT);
2472     break;
2473   case Instruction::AShr:
2474     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
2475                               cast<BinaryOperator>(I)->isExact(),
2476                               TD, DT);
2477     break;
2478   case Instruction::And:
2479     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT);
2480     break;
2481   case Instruction::Or:
2482     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT);
2483     break;
2484   case Instruction::Xor:
2485     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT);
2486     break;
2487   case Instruction::ICmp:
2488     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
2489                               I->getOperand(0), I->getOperand(1), TD, DT);
2490     break;
2491   case Instruction::FCmp:
2492     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
2493                               I->getOperand(0), I->getOperand(1), TD, DT);
2494     break;
2495   case Instruction::Select:
2496     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
2497                                 I->getOperand(2), TD, DT);
2498     break;
2499   case Instruction::GetElementPtr: {
2500     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
2501     Result = SimplifyGEPInst(Ops, TD, DT);
2502     break;
2503   }
2504   case Instruction::InsertValue: {
2505     InsertValueInst *IV = cast<InsertValueInst>(I);
2506     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
2507                                      IV->getInsertedValueOperand(),
2508                                      IV->getIndices(), TD, DT);
2509     break;
2510   }
2511   case Instruction::PHI:
2512     Result = SimplifyPHINode(cast<PHINode>(I), DT);
2513     break;
2514   }
2515
2516   /// If called on unreachable code, the above logic may report that the
2517   /// instruction simplified to itself.  Make life easier for users by
2518   /// detecting that case here, returning a safe value instead.
2519   return Result == I ? UndefValue::get(I->getType()) : Result;
2520 }
2521
2522 /// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
2523 /// delete the From instruction.  In addition to a basic RAUW, this does a
2524 /// recursive simplification of the newly formed instructions.  This catches
2525 /// things where one simplification exposes other opportunities.  This only
2526 /// simplifies and deletes scalar operations, it does not change the CFG.
2527 ///
2528 void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
2529                                      const TargetData *TD,
2530                                      const DominatorTree *DT) {
2531   assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
2532
2533   // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
2534   // we can know if it gets deleted out from under us or replaced in a
2535   // recursive simplification.
2536   WeakVH FromHandle(From);
2537   WeakVH ToHandle(To);
2538
2539   while (!From->use_empty()) {
2540     // Update the instruction to use the new value.
2541     Use &TheUse = From->use_begin().getUse();
2542     Instruction *User = cast<Instruction>(TheUse.getUser());
2543     TheUse = To;
2544
2545     // Check to see if the instruction can be folded due to the operand
2546     // replacement.  For example changing (or X, Y) into (or X, -1) can replace
2547     // the 'or' with -1.
2548     Value *SimplifiedVal;
2549     {
2550       // Sanity check to make sure 'User' doesn't dangle across
2551       // SimplifyInstruction.
2552       AssertingVH<> UserHandle(User);
2553
2554       SimplifiedVal = SimplifyInstruction(User, TD, DT);
2555       if (SimplifiedVal == 0) continue;
2556     }
2557
2558     // Recursively simplify this user to the new value.
2559     ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT);
2560     From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
2561     To = ToHandle;
2562
2563     assert(ToHandle && "To value deleted by recursive simplification?");
2564
2565     // If the recursive simplification ended up revisiting and deleting
2566     // 'From' then we're done.
2567     if (From == 0)
2568       return;
2569   }
2570
2571   // If 'From' has value handles referring to it, do a real RAUW to update them.
2572   From->replaceAllUsesWith(To);
2573
2574   From->eraseFromParent();
2575 }