]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/Analysis/PHITransAddr.cpp
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / Analysis / PHITransAddr.cpp
1 //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PHITransAddr class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Analysis/PHITransAddr.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Instructions.h"
17 #include "llvm/Analysis/Dominators.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/raw_ostream.h"
22 using namespace llvm;
23
24 static bool CanPHITrans(Instruction *Inst) {
25   if (isa<PHINode>(Inst) ||
26       isa<GetElementPtrInst>(Inst))
27     return true;
28
29   if (isa<CastInst>(Inst) &&
30       Inst->isSafeToSpeculativelyExecute())
31     return true;
32
33   if (Inst->getOpcode() == Instruction::Add &&
34       isa<ConstantInt>(Inst->getOperand(1)))
35     return true;
36
37   //   cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
38   //   if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
39   //     cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
40   return false;
41 }
42
43 void PHITransAddr::dump() const {
44   if (Addr == 0) {
45     dbgs() << "PHITransAddr: null\n";
46     return;
47   }
48   dbgs() << "PHITransAddr: " << *Addr << "\n";
49   for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
50     dbgs() << "  Input #" << i << " is " << *InstInputs[i] << "\n";
51 }
52
53
54 static bool VerifySubExpr(Value *Expr,
55                           SmallVectorImpl<Instruction*> &InstInputs) {
56   // If this is a non-instruction value, there is nothing to do.
57   Instruction *I = dyn_cast<Instruction>(Expr);
58   if (I == 0) return true;
59
60   // If it's an instruction, it is either in Tmp or its operands recursively
61   // are.
62   SmallVectorImpl<Instruction*>::iterator Entry =
63     std::find(InstInputs.begin(), InstInputs.end(), I);
64   if (Entry != InstInputs.end()) {
65     InstInputs.erase(Entry);
66     return true;
67   }
68
69   // If it isn't in the InstInputs list it is a subexpr incorporated into the
70   // address.  Sanity check that it is phi translatable.
71   if (!CanPHITrans(I)) {
72     errs() << "Non phi translatable instruction found in PHITransAddr:\n";
73     errs() << *I << '\n';
74     llvm_unreachable("Either something is missing from InstInputs or "
75                      "CanPHITrans is wrong.");
76     return false;
77   }
78
79   // Validate the operands of the instruction.
80   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
81     if (!VerifySubExpr(I->getOperand(i), InstInputs))
82       return false;
83
84   return true;
85 }
86
87 /// Verify - Check internal consistency of this data structure.  If the
88 /// structure is valid, it returns true.  If invalid, it prints errors and
89 /// returns false.
90 bool PHITransAddr::Verify() const {
91   if (Addr == 0) return true;
92
93   SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end());
94
95   if (!VerifySubExpr(Addr, Tmp))
96     return false;
97
98   if (!Tmp.empty()) {
99     errs() << "PHITransAddr contains extra instructions:\n";
100     for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
101       errs() << "  InstInput #" << i << " is " << *InstInputs[i] << "\n";
102     llvm_unreachable("This is unexpected.");
103     return false;
104   }
105
106   // a-ok.
107   return true;
108 }
109
110
111 /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true
112 /// if we have some hope of doing it.  This should be used as a filter to
113 /// avoid calling PHITranslateValue in hopeless situations.
114 bool PHITransAddr::IsPotentiallyPHITranslatable() const {
115   // If the input value is not an instruction, or if it is not defined in CurBB,
116   // then we don't need to phi translate it.
117   Instruction *Inst = dyn_cast<Instruction>(Addr);
118   return Inst == 0 || CanPHITrans(Inst);
119 }
120
121
122 static void RemoveInstInputs(Value *V,
123                              SmallVectorImpl<Instruction*> &InstInputs) {
124   Instruction *I = dyn_cast<Instruction>(V);
125   if (I == 0) return;
126
127   // If the instruction is in the InstInputs list, remove it.
128   SmallVectorImpl<Instruction*>::iterator Entry =
129     std::find(InstInputs.begin(), InstInputs.end(), I);
130   if (Entry != InstInputs.end()) {
131     InstInputs.erase(Entry);
132     return;
133   }
134
135   assert(!isa<PHINode>(I) && "Error, removing something that isn't an input");
136
137   // Otherwise, it must have instruction inputs itself.  Zap them recursively.
138   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
139     if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
140       RemoveInstInputs(Op, InstInputs);
141   }
142 }
143
144 Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
145                                          BasicBlock *PredBB,
146                                          const DominatorTree *DT) {
147   // If this is a non-instruction value, it can't require PHI translation.
148   Instruction *Inst = dyn_cast<Instruction>(V);
149   if (Inst == 0) return V;
150
151   // Determine whether 'Inst' is an input to our PHI translatable expression.
152   bool isInput = std::count(InstInputs.begin(), InstInputs.end(), Inst);
153
154   // Handle inputs instructions if needed.
155   if (isInput) {
156     if (Inst->getParent() != CurBB) {
157       // If it is an input defined in a different block, then it remains an
158       // input.
159       return Inst;
160     }
161
162     // If 'Inst' is defined in this block and is an input that needs to be phi
163     // translated, we need to incorporate the value into the expression or fail.
164
165     // In either case, the instruction itself isn't an input any longer.
166     InstInputs.erase(std::find(InstInputs.begin(), InstInputs.end(), Inst));
167
168     // If this is a PHI, go ahead and translate it.
169     if (PHINode *PN = dyn_cast<PHINode>(Inst))
170       return AddAsInput(PN->getIncomingValueForBlock(PredBB));
171
172     // If this is a non-phi value, and it is analyzable, we can incorporate it
173     // into the expression by making all instruction operands be inputs.
174     if (!CanPHITrans(Inst))
175       return 0;
176
177     // All instruction operands are now inputs (and of course, they may also be
178     // defined in this block, so they may need to be phi translated themselves.
179     for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
180       if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i)))
181         InstInputs.push_back(Op);
182   }
183
184   // Ok, it must be an intermediate result (either because it started that way
185   // or because we just incorporated it into the expression).  See if its
186   // operands need to be phi translated, and if so, reconstruct it.
187
188   if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
189     if (!Cast->isSafeToSpeculativelyExecute()) return 0;
190     Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT);
191     if (PHIIn == 0) return 0;
192     if (PHIIn == Cast->getOperand(0))
193       return Cast;
194
195     // Find an available version of this cast.
196
197     // Constants are trivial to find.
198     if (Constant *C = dyn_cast<Constant>(PHIIn))
199       return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(),
200                                               C, Cast->getType()));
201
202     // Otherwise we have to see if a casted version of the incoming pointer
203     // is available.  If so, we can use it, otherwise we have to fail.
204     for (Value::use_iterator UI = PHIIn->use_begin(), E = PHIIn->use_end();
205          UI != E; ++UI) {
206       if (CastInst *CastI = dyn_cast<CastInst>(*UI))
207         if (CastI->getOpcode() == Cast->getOpcode() &&
208             CastI->getType() == Cast->getType() &&
209             (!DT || DT->dominates(CastI->getParent(), PredBB)))
210           return CastI;
211     }
212     return 0;
213   }
214
215   // Handle getelementptr with at least one PHI translatable operand.
216   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
217     SmallVector<Value*, 8> GEPOps;
218     bool AnyChanged = false;
219     for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
220       Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT);
221       if (GEPOp == 0) return 0;
222
223       AnyChanged |= GEPOp != GEP->getOperand(i);
224       GEPOps.push_back(GEPOp);
225     }
226
227     if (!AnyChanged)
228       return GEP;
229
230     // Simplify the GEP to handle 'gep x, 0' -> x etc.
231     if (Value *V = SimplifyGEPInst(GEPOps, TD, DT)) {
232       for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
233         RemoveInstInputs(GEPOps[i], InstInputs);
234
235       return AddAsInput(V);
236     }
237
238     // Scan to see if we have this GEP available.
239     Value *APHIOp = GEPOps[0];
240     for (Value::use_iterator UI = APHIOp->use_begin(), E = APHIOp->use_end();
241          UI != E; ++UI) {
242       if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI))
243         if (GEPI->getType() == GEP->getType() &&
244             GEPI->getNumOperands() == GEPOps.size() &&
245             GEPI->getParent()->getParent() == CurBB->getParent() &&
246             (!DT || DT->dominates(GEPI->getParent(), PredBB))) {
247           bool Mismatch = false;
248           for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
249             if (GEPI->getOperand(i) != GEPOps[i]) {
250               Mismatch = true;
251               break;
252             }
253           if (!Mismatch)
254             return GEPI;
255         }
256     }
257     return 0;
258   }
259
260   // Handle add with a constant RHS.
261   if (Inst->getOpcode() == Instruction::Add &&
262       isa<ConstantInt>(Inst->getOperand(1))) {
263     // PHI translate the LHS.
264     Constant *RHS = cast<ConstantInt>(Inst->getOperand(1));
265     bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap();
266     bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();
267
268     Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT);
269     if (LHS == 0) return 0;
270
271     // If the PHI translated LHS is an add of a constant, fold the immediates.
272     if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
273       if (BOp->getOpcode() == Instruction::Add)
274         if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
275           LHS = BOp->getOperand(0);
276           RHS = ConstantExpr::getAdd(RHS, CI);
277           isNSW = isNUW = false;
278
279           // If the old 'LHS' was an input, add the new 'LHS' as an input.
280           if (std::count(InstInputs.begin(), InstInputs.end(), BOp)) {
281             RemoveInstInputs(BOp, InstInputs);
282             AddAsInput(LHS);
283           }
284         }
285
286     // See if the add simplifies away.
287     if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, TD, DT)) {
288       // If we simplified the operands, the LHS is no longer an input, but Res
289       // is.
290       RemoveInstInputs(LHS, InstInputs);
291       return AddAsInput(Res);
292     }
293
294     // If we didn't modify the add, just return it.
295     if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1))
296       return Inst;
297
298     // Otherwise, see if we have this add available somewhere.
299     for (Value::use_iterator UI = LHS->use_begin(), E = LHS->use_end();
300          UI != E; ++UI) {
301       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(*UI))
302         if (BO->getOpcode() == Instruction::Add &&
303             BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
304             BO->getParent()->getParent() == CurBB->getParent() &&
305             (!DT || DT->dominates(BO->getParent(), PredBB)))
306           return BO;
307     }
308
309     return 0;
310   }
311
312   // Otherwise, we failed.
313   return 0;
314 }
315
316
317 /// PHITranslateValue - PHI translate the current address up the CFG from
318 /// CurBB to Pred, updating our state to reflect any needed changes.  If the
319 /// dominator tree DT is non-null, the translated value must dominate
320 /// PredBB.  This returns true on failure and sets Addr to null.
321 bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB,
322                                      const DominatorTree *DT) {
323   assert(Verify() && "Invalid PHITransAddr!");
324   Addr = PHITranslateSubExpr(Addr, CurBB, PredBB, DT);
325   assert(Verify() && "Invalid PHITransAddr!");
326
327   if (DT) {
328     // Make sure the value is live in the predecessor.
329     if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr))
330       if (!DT->dominates(Inst->getParent(), PredBB))
331         Addr = 0;
332   }
333
334   return Addr == 0;
335 }
336
337 /// PHITranslateWithInsertion - PHI translate this value into the specified
338 /// predecessor block, inserting a computation of the value if it is
339 /// unavailable.
340 ///
341 /// All newly created instructions are added to the NewInsts list.  This
342 /// returns null on failure.
343 ///
344 Value *PHITransAddr::
345 PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB,
346                           const DominatorTree &DT,
347                           SmallVectorImpl<Instruction*> &NewInsts) {
348   unsigned NISize = NewInsts.size();
349
350   // Attempt to PHI translate with insertion.
351   Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts);
352
353   // If successful, return the new value.
354   if (Addr) return Addr;
355
356   // If not, destroy any intermediate instructions inserted.
357   while (NewInsts.size() != NISize)
358     NewInsts.pop_back_val()->eraseFromParent();
359   return 0;
360 }
361
362
363 /// InsertPHITranslatedPointer - Insert a computation of the PHI translated
364 /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
365 /// block.  All newly created instructions are added to the NewInsts list.
366 /// This returns null on failure.
367 ///
368 Value *PHITransAddr::
369 InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
370                            BasicBlock *PredBB, const DominatorTree &DT,
371                            SmallVectorImpl<Instruction*> &NewInsts) {
372   // See if we have a version of this value already available and dominating
373   // PredBB.  If so, there is no need to insert a new instance of it.
374   PHITransAddr Tmp(InVal, TD);
375   if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT))
376     return Tmp.getAddr();
377
378   // If we don't have an available version of this value, it must be an
379   // instruction.
380   Instruction *Inst = cast<Instruction>(InVal);
381
382   // Handle cast of PHI translatable value.
383   if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
384     if (!Cast->isSafeToSpeculativelyExecute()) return 0;
385     Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0),
386                                               CurBB, PredBB, DT, NewInsts);
387     if (OpVal == 0) return 0;
388
389     // Otherwise insert a cast at the end of PredBB.
390     CastInst *New = CastInst::Create(Cast->getOpcode(),
391                                      OpVal, InVal->getType(),
392                                      InVal->getName()+".phi.trans.insert",
393                                      PredBB->getTerminator());
394     NewInsts.push_back(New);
395     return New;
396   }
397
398   // Handle getelementptr with at least one PHI operand.
399   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
400     SmallVector<Value*, 8> GEPOps;
401     BasicBlock *CurBB = GEP->getParent();
402     for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
403       Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i),
404                                                 CurBB, PredBB, DT, NewInsts);
405       if (OpVal == 0) return 0;
406       GEPOps.push_back(OpVal);
407     }
408
409     GetElementPtrInst *Result =
410       GetElementPtrInst::Create(GEPOps[0], makeArrayRef(GEPOps).slice(1),
411                                 InVal->getName()+".phi.trans.insert",
412                                 PredBB->getTerminator());
413     Result->setIsInBounds(GEP->isInBounds());
414     NewInsts.push_back(Result);
415     return Result;
416   }
417
418 #if 0
419   // FIXME: This code works, but it is unclear that we actually want to insert
420   // a big chain of computation in order to make a value available in a block.
421   // This needs to be evaluated carefully to consider its cost trade offs.
422
423   // Handle add with a constant RHS.
424   if (Inst->getOpcode() == Instruction::Add &&
425       isa<ConstantInt>(Inst->getOperand(1))) {
426     // PHI translate the LHS.
427     Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0),
428                                               CurBB, PredBB, DT, NewInsts);
429     if (OpVal == 0) return 0;
430
431     BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1),
432                                            InVal->getName()+".phi.trans.insert",
433                                                     PredBB->getTerminator());
434     Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap());
435     Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap());
436     NewInsts.push_back(Res);
437     return Res;
438   }
439 #endif
440
441   return 0;
442 }