]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/CodeGen/MachineVerifier.cpp
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / CodeGen / MachineVerifier.cpp
1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25
26 #include "llvm/Instructions.h"
27 #include "llvm/Function.h"
28 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
29 #include "llvm/CodeGen/LiveVariables.h"
30 #include "llvm/CodeGen/LiveStackAnalysis.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/MC/MCAsmInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Target/TargetRegisterInfo.h"
39 #include "llvm/Target/TargetInstrInfo.h"
40 #include "llvm/ADT/DenseSet.h"
41 #include "llvm/ADT/SetOperations.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 using namespace llvm;
47
48 namespace {
49   struct MachineVerifier {
50
51     MachineVerifier(Pass *pass, const char *b) :
52       PASS(pass),
53       Banner(b),
54       OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
55       {}
56
57     bool runOnMachineFunction(MachineFunction &MF);
58
59     Pass *const PASS;
60     const char *Banner;
61     const char *const OutFileName;
62     raw_ostream *OS;
63     const MachineFunction *MF;
64     const TargetMachine *TM;
65     const TargetInstrInfo *TII;
66     const TargetRegisterInfo *TRI;
67     const MachineRegisterInfo *MRI;
68
69     unsigned foundErrors;
70
71     typedef SmallVector<unsigned, 16> RegVector;
72     typedef DenseSet<unsigned> RegSet;
73     typedef DenseMap<unsigned, const MachineInstr*> RegMap;
74
75     const MachineInstr *FirstTerminator;
76
77     BitVector regsReserved;
78     RegSet regsLive;
79     RegVector regsDefined, regsDead, regsKilled;
80     RegSet regsLiveInButUnused;
81
82     SlotIndex lastIndex;
83
84     // Add Reg and any sub-registers to RV
85     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
86       RV.push_back(Reg);
87       if (TargetRegisterInfo::isPhysicalRegister(Reg))
88         for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++)
89           RV.push_back(*R);
90     }
91
92     struct BBInfo {
93       // Is this MBB reachable from the MF entry point?
94       bool reachable;
95
96       // Vregs that must be live in because they are used without being
97       // defined. Map value is the user.
98       RegMap vregsLiveIn;
99
100       // Regs killed in MBB. They may be defined again, and will then be in both
101       // regsKilled and regsLiveOut.
102       RegSet regsKilled;
103
104       // Regs defined in MBB and live out. Note that vregs passing through may
105       // be live out without being mentioned here.
106       RegSet regsLiveOut;
107
108       // Vregs that pass through MBB untouched. This set is disjoint from
109       // regsKilled and regsLiveOut.
110       RegSet vregsPassed;
111
112       // Vregs that must pass through MBB because they are needed by a successor
113       // block. This set is disjoint from regsLiveOut.
114       RegSet vregsRequired;
115
116       BBInfo() : reachable(false) {}
117
118       // Add register to vregsPassed if it belongs there. Return true if
119       // anything changed.
120       bool addPassed(unsigned Reg) {
121         if (!TargetRegisterInfo::isVirtualRegister(Reg))
122           return false;
123         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
124           return false;
125         return vregsPassed.insert(Reg).second;
126       }
127
128       // Same for a full set.
129       bool addPassed(const RegSet &RS) {
130         bool changed = false;
131         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
132           if (addPassed(*I))
133             changed = true;
134         return changed;
135       }
136
137       // Add register to vregsRequired if it belongs there. Return true if
138       // anything changed.
139       bool addRequired(unsigned Reg) {
140         if (!TargetRegisterInfo::isVirtualRegister(Reg))
141           return false;
142         if (regsLiveOut.count(Reg))
143           return false;
144         return vregsRequired.insert(Reg).second;
145       }
146
147       // Same for a full set.
148       bool addRequired(const RegSet &RS) {
149         bool changed = false;
150         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
151           if (addRequired(*I))
152             changed = true;
153         return changed;
154       }
155
156       // Same for a full map.
157       bool addRequired(const RegMap &RM) {
158         bool changed = false;
159         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
160           if (addRequired(I->first))
161             changed = true;
162         return changed;
163       }
164
165       // Live-out registers are either in regsLiveOut or vregsPassed.
166       bool isLiveOut(unsigned Reg) const {
167         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
168       }
169     };
170
171     // Extra register info per MBB.
172     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
173
174     bool isReserved(unsigned Reg) {
175       return Reg < regsReserved.size() && regsReserved.test(Reg);
176     }
177
178     // Analysis information if available
179     LiveVariables *LiveVars;
180     LiveIntervals *LiveInts;
181     LiveStacks *LiveStks;
182     SlotIndexes *Indexes;
183
184     void visitMachineFunctionBefore();
185     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
186     void visitMachineInstrBefore(const MachineInstr *MI);
187     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
188     void visitMachineInstrAfter(const MachineInstr *MI);
189     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
190     void visitMachineFunctionAfter();
191
192     void report(const char *msg, const MachineFunction *MF);
193     void report(const char *msg, const MachineBasicBlock *MBB);
194     void report(const char *msg, const MachineInstr *MI);
195     void report(const char *msg, const MachineOperand *MO, unsigned MONum);
196
197     void markReachable(const MachineBasicBlock *MBB);
198     void calcRegsPassed();
199     void checkPHIOps(const MachineBasicBlock *MBB);
200
201     void calcRegsRequired();
202     void verifyLiveVariables();
203     void verifyLiveIntervals();
204   };
205
206   struct MachineVerifierPass : public MachineFunctionPass {
207     static char ID; // Pass ID, replacement for typeid
208     const char *const Banner;
209
210     MachineVerifierPass(const char *b = 0)
211       : MachineFunctionPass(ID), Banner(b) {
212         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
213       }
214
215     void getAnalysisUsage(AnalysisUsage &AU) const {
216       AU.setPreservesAll();
217       MachineFunctionPass::getAnalysisUsage(AU);
218     }
219
220     bool runOnMachineFunction(MachineFunction &MF) {
221       MF.verify(this, Banner);
222       return false;
223     }
224   };
225
226 }
227
228 char MachineVerifierPass::ID = 0;
229 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
230                 "Verify generated machine code", false, false)
231
232 FunctionPass *llvm::createMachineVerifierPass(const char *Banner) {
233   return new MachineVerifierPass(Banner);
234 }
235
236 void MachineFunction::verify(Pass *p, const char *Banner) const {
237   MachineVerifier(p, Banner)
238     .runOnMachineFunction(const_cast<MachineFunction&>(*this));
239 }
240
241 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
242   raw_ostream *OutFile = 0;
243   if (OutFileName) {
244     std::string ErrorInfo;
245     OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
246                                  raw_fd_ostream::F_Append);
247     if (!ErrorInfo.empty()) {
248       errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
249       exit(1);
250     }
251
252     OS = OutFile;
253   } else {
254     OS = &errs();
255   }
256
257   foundErrors = 0;
258
259   this->MF = &MF;
260   TM = &MF.getTarget();
261   TII = TM->getInstrInfo();
262   TRI = TM->getRegisterInfo();
263   MRI = &MF.getRegInfo();
264
265   LiveVars = NULL;
266   LiveInts = NULL;
267   LiveStks = NULL;
268   Indexes = NULL;
269   if (PASS) {
270     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
271     // We don't want to verify LiveVariables if LiveIntervals is available.
272     if (!LiveInts)
273       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
274     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
275     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
276   }
277
278   visitMachineFunctionBefore();
279   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
280        MFI!=MFE; ++MFI) {
281     visitMachineBasicBlockBefore(MFI);
282     for (MachineBasicBlock::const_iterator MBBI = MFI->begin(),
283            MBBE = MFI->end(); MBBI != MBBE; ++MBBI) {
284       if (MBBI->getParent() != MFI) {
285         report("Bad instruction parent pointer", MFI);
286         *OS << "Instruction: " << *MBBI;
287         continue;
288       }
289       visitMachineInstrBefore(MBBI);
290       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
291         visitMachineOperand(&MBBI->getOperand(I), I);
292       visitMachineInstrAfter(MBBI);
293     }
294     visitMachineBasicBlockAfter(MFI);
295   }
296   visitMachineFunctionAfter();
297
298   if (OutFile)
299     delete OutFile;
300   else if (foundErrors)
301     report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
302
303   // Clean up.
304   regsLive.clear();
305   regsDefined.clear();
306   regsDead.clear();
307   regsKilled.clear();
308   regsLiveInButUnused.clear();
309   MBBInfoMap.clear();
310
311   return false;                 // no changes
312 }
313
314 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
315   assert(MF);
316   *OS << '\n';
317   if (!foundErrors++) {
318     if (Banner)
319       *OS << "# " << Banner << '\n';
320     MF->print(*OS, Indexes);
321   }
322   *OS << "*** Bad machine code: " << msg << " ***\n"
323       << "- function:    " << MF->getFunction()->getNameStr() << "\n";
324 }
325
326 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
327   assert(MBB);
328   report(msg, MBB->getParent());
329   *OS << "- basic block: " << MBB->getName()
330       << " " << (void*)MBB
331       << " (BB#" << MBB->getNumber() << ")";
332   if (Indexes)
333     *OS << " [" << Indexes->getMBBStartIdx(MBB)
334         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
335   *OS << '\n';
336 }
337
338 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
339   assert(MI);
340   report(msg, MI->getParent());
341   *OS << "- instruction: ";
342   if (Indexes && Indexes->hasIndex(MI))
343     *OS << Indexes->getInstructionIndex(MI) << '\t';
344   MI->print(*OS, TM);
345 }
346
347 void MachineVerifier::report(const char *msg,
348                              const MachineOperand *MO, unsigned MONum) {
349   assert(MO);
350   report(msg, MO->getParent());
351   *OS << "- operand " << MONum << ":   ";
352   MO->print(*OS, TM);
353   *OS << "\n";
354 }
355
356 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
357   BBInfo &MInfo = MBBInfoMap[MBB];
358   if (!MInfo.reachable) {
359     MInfo.reachable = true;
360     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
361            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
362       markReachable(*SuI);
363   }
364 }
365
366 void MachineVerifier::visitMachineFunctionBefore() {
367   lastIndex = SlotIndex();
368   regsReserved = TRI->getReservedRegs(*MF);
369
370   // A sub-register of a reserved register is also reserved
371   for (int Reg = regsReserved.find_first(); Reg>=0;
372        Reg = regsReserved.find_next(Reg)) {
373     for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) {
374       // FIXME: This should probably be:
375       // assert(regsReserved.test(*Sub) && "Non-reserved sub-register");
376       regsReserved.set(*Sub);
377     }
378   }
379   markReachable(&MF->front());
380 }
381
382 // Does iterator point to a and b as the first two elements?
383 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
384                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
385   if (*i == a)
386     return *++i == b;
387   if (*i == b)
388     return *++i == a;
389   return false;
390 }
391
392 void
393 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
394   FirstTerminator = 0;
395
396   // Count the number of landing pad successors.
397   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
398   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
399        E = MBB->succ_end(); I != E; ++I) {
400     if ((*I)->isLandingPad())
401       LandingPadSuccs.insert(*I);
402   }
403
404   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
405   const BasicBlock *BB = MBB->getBasicBlock();
406   if (LandingPadSuccs.size() > 1 &&
407       !(AsmInfo &&
408         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
409         BB && isa<SwitchInst>(BB->getTerminator())))
410     report("MBB has more than one landing pad successor", MBB);
411
412   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
413   MachineBasicBlock *TBB = 0, *FBB = 0;
414   SmallVector<MachineOperand, 4> Cond;
415   if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
416                           TBB, FBB, Cond)) {
417     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
418     // check whether its answers match up with reality.
419     if (!TBB && !FBB) {
420       // Block falls through to its successor.
421       MachineFunction::const_iterator MBBI = MBB;
422       ++MBBI;
423       if (MBBI == MF->end()) {
424         // It's possible that the block legitimately ends with a noreturn
425         // call or an unreachable, in which case it won't actually fall
426         // out the bottom of the function.
427       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
428         // It's possible that the block legitimately ends with a noreturn
429         // call or an unreachable, in which case it won't actuall fall
430         // out of the block.
431       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
432         report("MBB exits via unconditional fall-through but doesn't have "
433                "exactly one CFG successor!", MBB);
434       } else if (!MBB->isSuccessor(MBBI)) {
435         report("MBB exits via unconditional fall-through but its successor "
436                "differs from its CFG successor!", MBB);
437       }
438       if (!MBB->empty() && MBB->back().getDesc().isBarrier() &&
439           !TII->isPredicated(&MBB->back())) {
440         report("MBB exits via unconditional fall-through but ends with a "
441                "barrier instruction!", MBB);
442       }
443       if (!Cond.empty()) {
444         report("MBB exits via unconditional fall-through but has a condition!",
445                MBB);
446       }
447     } else if (TBB && !FBB && Cond.empty()) {
448       // Block unconditionally branches somewhere.
449       if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
450         report("MBB exits via unconditional branch but doesn't have "
451                "exactly one CFG successor!", MBB);
452       } else if (!MBB->isSuccessor(TBB)) {
453         report("MBB exits via unconditional branch but the CFG "
454                "successor doesn't match the actual successor!", MBB);
455       }
456       if (MBB->empty()) {
457         report("MBB exits via unconditional branch but doesn't contain "
458                "any instructions!", MBB);
459       } else if (!MBB->back().getDesc().isBarrier()) {
460         report("MBB exits via unconditional branch but doesn't end with a "
461                "barrier instruction!", MBB);
462       } else if (!MBB->back().getDesc().isTerminator()) {
463         report("MBB exits via unconditional branch but the branch isn't a "
464                "terminator instruction!", MBB);
465       }
466     } else if (TBB && !FBB && !Cond.empty()) {
467       // Block conditionally branches somewhere, otherwise falls through.
468       MachineFunction::const_iterator MBBI = MBB;
469       ++MBBI;
470       if (MBBI == MF->end()) {
471         report("MBB conditionally falls through out of function!", MBB);
472       } if (MBB->succ_size() != 2) {
473         report("MBB exits via conditional branch/fall-through but doesn't have "
474                "exactly two CFG successors!", MBB);
475       } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
476         report("MBB exits via conditional branch/fall-through but the CFG "
477                "successors don't match the actual successors!", MBB);
478       }
479       if (MBB->empty()) {
480         report("MBB exits via conditional branch/fall-through but doesn't "
481                "contain any instructions!", MBB);
482       } else if (MBB->back().getDesc().isBarrier()) {
483         report("MBB exits via conditional branch/fall-through but ends with a "
484                "barrier instruction!", MBB);
485       } else if (!MBB->back().getDesc().isTerminator()) {
486         report("MBB exits via conditional branch/fall-through but the branch "
487                "isn't a terminator instruction!", MBB);
488       }
489     } else if (TBB && FBB) {
490       // Block conditionally branches somewhere, otherwise branches
491       // somewhere else.
492       if (MBB->succ_size() != 2) {
493         report("MBB exits via conditional branch/branch but doesn't have "
494                "exactly two CFG successors!", MBB);
495       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
496         report("MBB exits via conditional branch/branch but the CFG "
497                "successors don't match the actual successors!", MBB);
498       }
499       if (MBB->empty()) {
500         report("MBB exits via conditional branch/branch but doesn't "
501                "contain any instructions!", MBB);
502       } else if (!MBB->back().getDesc().isBarrier()) {
503         report("MBB exits via conditional branch/branch but doesn't end with a "
504                "barrier instruction!", MBB);
505       } else if (!MBB->back().getDesc().isTerminator()) {
506         report("MBB exits via conditional branch/branch but the branch "
507                "isn't a terminator instruction!", MBB);
508       }
509       if (Cond.empty()) {
510         report("MBB exits via conditinal branch/branch but there's no "
511                "condition!", MBB);
512       }
513     } else {
514       report("AnalyzeBranch returned invalid data!", MBB);
515     }
516   }
517
518   regsLive.clear();
519   for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
520          E = MBB->livein_end(); I != E; ++I) {
521     if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
522       report("MBB live-in list contains non-physical register", MBB);
523       continue;
524     }
525     regsLive.insert(*I);
526     for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++)
527       regsLive.insert(*R);
528   }
529   regsLiveInButUnused = regsLive;
530
531   const MachineFrameInfo *MFI = MF->getFrameInfo();
532   assert(MFI && "Function has no frame info");
533   BitVector PR = MFI->getPristineRegs(MBB);
534   for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
535     regsLive.insert(I);
536     for (const unsigned *R = TRI->getSubRegisters(I); *R; R++)
537       regsLive.insert(*R);
538   }
539
540   regsKilled.clear();
541   regsDefined.clear();
542
543   if (Indexes)
544     lastIndex = Indexes->getMBBStartIdx(MBB);
545 }
546
547 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
548   const MCInstrDesc &MCID = MI->getDesc();
549   if (MI->getNumOperands() < MCID.getNumOperands()) {
550     report("Too few operands", MI);
551     *OS << MCID.getNumOperands() << " operands expected, but "
552         << MI->getNumExplicitOperands() << " given.\n";
553   }
554
555   // Check the MachineMemOperands for basic consistency.
556   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
557        E = MI->memoperands_end(); I != E; ++I) {
558     if ((*I)->isLoad() && !MCID.mayLoad())
559       report("Missing mayLoad flag", MI);
560     if ((*I)->isStore() && !MCID.mayStore())
561       report("Missing mayStore flag", MI);
562   }
563
564   // Debug values must not have a slot index.
565   // Other instructions must have one.
566   if (LiveInts) {
567     bool mapped = !LiveInts->isNotInMIMap(MI);
568     if (MI->isDebugValue()) {
569       if (mapped)
570         report("Debug instruction has a slot index", MI);
571     } else {
572       if (!mapped)
573         report("Missing slot index", MI);
574     }
575   }
576
577   // Ensure non-terminators don't follow terminators.
578   if (MCID.isTerminator()) {
579     if (!FirstTerminator)
580       FirstTerminator = MI;
581   } else if (FirstTerminator) {
582     report("Non-terminator instruction after the first terminator", MI);
583     *OS << "First terminator was:\t" << *FirstTerminator;
584   }
585
586   StringRef ErrorInfo;
587   if (!TII->verifyInstruction(MI, ErrorInfo))
588     report(ErrorInfo.data(), MI);
589 }
590
591 void
592 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
593   const MachineInstr *MI = MO->getParent();
594   const MCInstrDesc &MCID = MI->getDesc();
595   const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
596
597   // The first MCID.NumDefs operands must be explicit register defines
598   if (MONum < MCID.getNumDefs()) {
599     if (!MO->isReg())
600       report("Explicit definition must be a register", MO, MONum);
601     else if (!MO->isDef())
602       report("Explicit definition marked as use", MO, MONum);
603     else if (MO->isImplicit())
604       report("Explicit definition marked as implicit", MO, MONum);
605   } else if (MONum < MCID.getNumOperands()) {
606     // Don't check if it's the last operand in a variadic instruction. See,
607     // e.g., LDM_RET in the arm back end.
608     if (MO->isReg() &&
609         !(MCID.isVariadic() && MONum == MCID.getNumOperands()-1)) {
610       if (MO->isDef() && !MCOI.isOptionalDef())
611           report("Explicit operand marked as def", MO, MONum);
612       if (MO->isImplicit())
613         report("Explicit operand marked as implicit", MO, MONum);
614     }
615   } else {
616     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
617     if (MO->isReg() && !MO->isImplicit() && !MCID.isVariadic() && MO->getReg())
618       report("Extra explicit operand on non-variadic instruction", MO, MONum);
619   }
620
621   switch (MO->getType()) {
622   case MachineOperand::MO_Register: {
623     const unsigned Reg = MO->getReg();
624     if (!Reg)
625       return;
626
627     // Check Live Variables.
628     if (MI->isDebugValue()) {
629       // Liveness checks are not valid for debug values.
630     } else if (MO->isUse() && !MO->isUndef()) {
631       regsLiveInButUnused.erase(Reg);
632
633       bool isKill = false;
634       unsigned defIdx;
635       if (MI->isRegTiedToDefOperand(MONum, &defIdx)) {
636         // A two-addr use counts as a kill if use and def are the same.
637         unsigned DefReg = MI->getOperand(defIdx).getReg();
638         if (Reg == DefReg)
639           isKill = true;
640         else if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
641           report("Two-address instruction operands must be identical",
642                  MO, MONum);
643         }
644       } else
645         isKill = MO->isKill();
646
647       if (isKill)
648         addRegWithSubRegs(regsKilled, Reg);
649
650       // Check that LiveVars knows this kill.
651       if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
652           MO->isKill()) {
653         LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
654         if (std::find(VI.Kills.begin(),
655                       VI.Kills.end(), MI) == VI.Kills.end())
656           report("Kill missing from LiveVariables", MO, MONum);
657       }
658
659       // Check LiveInts liveness and kill.
660       if (TargetRegisterInfo::isVirtualRegister(Reg) &&
661           LiveInts && !LiveInts->isNotInMIMap(MI)) {
662         SlotIndex UseIdx = LiveInts->getInstructionIndex(MI).getUseIndex();
663         if (LiveInts->hasInterval(Reg)) {
664           const LiveInterval &LI = LiveInts->getInterval(Reg);
665           if (!LI.liveAt(UseIdx)) {
666             report("No live range at use", MO, MONum);
667             *OS << UseIdx << " is not live in " << LI << '\n';
668           }
669           // Check for extra kill flags.
670           // Note that we allow missing kill flags for now.
671           if (MO->isKill() && !LI.killedAt(UseIdx.getDefIndex())) {
672             report("Live range continues after kill flag", MO, MONum);
673             *OS << "Live range: " << LI << '\n';
674           }
675         } else {
676           report("Virtual register has no Live interval", MO, MONum);
677         }
678       }
679
680       // Use of a dead register.
681       if (!regsLive.count(Reg)) {
682         if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
683           // Reserved registers may be used even when 'dead'.
684           if (!isReserved(Reg))
685             report("Using an undefined physical register", MO, MONum);
686         } else {
687           BBInfo &MInfo = MBBInfoMap[MI->getParent()];
688           // We don't know which virtual registers are live in, so only complain
689           // if vreg was killed in this MBB. Otherwise keep track of vregs that
690           // must be live in. PHI instructions are handled separately.
691           if (MInfo.regsKilled.count(Reg))
692             report("Using a killed virtual register", MO, MONum);
693           else if (!MI->isPHI())
694             MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
695         }
696       }
697     } else if (MO->isDef()) {
698       // Register defined.
699       // TODO: verify that earlyclobber ops are not used.
700       if (MO->isDead())
701         addRegWithSubRegs(regsDead, Reg);
702       else
703         addRegWithSubRegs(regsDefined, Reg);
704
705       // Verify SSA form.
706       if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
707           llvm::next(MRI->def_begin(Reg)) != MRI->def_end())
708         report("Multiple virtual register defs in SSA form", MO, MONum);
709
710       // Check LiveInts for a live range, but only for virtual registers.
711       if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
712           !LiveInts->isNotInMIMap(MI)) {
713         SlotIndex DefIdx = LiveInts->getInstructionIndex(MI).getDefIndex();
714         if (LiveInts->hasInterval(Reg)) {
715           const LiveInterval &LI = LiveInts->getInterval(Reg);
716           if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
717             assert(VNI && "NULL valno is not allowed");
718             if (VNI->def != DefIdx && !MO->isEarlyClobber()) {
719               report("Inconsistent valno->def", MO, MONum);
720               *OS << "Valno " << VNI->id << " is not defined at "
721                   << DefIdx << " in " << LI << '\n';
722             }
723           } else {
724             report("No live range at def", MO, MONum);
725             *OS << DefIdx << " is not live in " << LI << '\n';
726           }
727         } else {
728           report("Virtual register has no Live interval", MO, MONum);
729         }
730       }
731     }
732
733     // Check register classes.
734     if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
735       unsigned SubIdx = MO->getSubReg();
736
737       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
738         if (SubIdx) {
739           report("Illegal subregister index for physical register", MO, MONum);
740           return;
741         }
742         if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) {
743           if (!DRC->contains(Reg)) {
744             report("Illegal physical register for instruction", MO, MONum);
745             *OS << TRI->getName(Reg) << " is not a "
746                 << DRC->getName() << " register.\n";
747           }
748         }
749       } else {
750         // Virtual register.
751         const TargetRegisterClass *RC = MRI->getRegClass(Reg);
752         if (SubIdx) {
753           const TargetRegisterClass *SRC =
754             TRI->getSubClassWithSubReg(RC, SubIdx);
755           if (!SRC) {
756             report("Invalid subregister index for virtual register", MO, MONum);
757             *OS << "Register class " << RC->getName()
758                 << " does not support subreg index " << SubIdx << "\n";
759             return;
760           }
761           if (RC != SRC) {
762             report("Invalid register class for subregister index", MO, MONum);
763             *OS << "Register class " << RC->getName()
764                 << " does not fully support subreg index " << SubIdx << "\n";
765             return;
766           }
767         }
768         if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) {
769           if (SubIdx) {
770             const TargetRegisterClass *SuperRC =
771               TRI->getLargestLegalSuperClass(RC);
772             if (!SuperRC) {
773               report("No largest legal super class exists.", MO, MONum);
774               return;
775             }
776             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
777             if (!DRC) {
778               report("No matching super-reg register class.", MO, MONum);
779               return;
780             }
781           }
782           if (!RC->hasSuperClassEq(DRC)) {
783             report("Illegal virtual register for instruction", MO, MONum);
784             *OS << "Expected a " << DRC->getName() << " register, but got a "
785                 << RC->getName() << " register\n";
786           }
787         }
788       }
789     }
790     break;
791   }
792
793   case MachineOperand::MO_MachineBasicBlock:
794     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
795       report("PHI operand is not in the CFG", MO, MONum);
796     break;
797
798   case MachineOperand::MO_FrameIndex:
799     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
800         LiveInts && !LiveInts->isNotInMIMap(MI)) {
801       LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
802       SlotIndex Idx = LiveInts->getInstructionIndex(MI);
803       if (MCID.mayLoad() && !LI.liveAt(Idx.getUseIndex())) {
804         report("Instruction loads from dead spill slot", MO, MONum);
805         *OS << "Live stack: " << LI << '\n';
806       }
807       if (MCID.mayStore() && !LI.liveAt(Idx.getDefIndex())) {
808         report("Instruction stores to dead spill slot", MO, MONum);
809         *OS << "Live stack: " << LI << '\n';
810       }
811     }
812     break;
813
814   default:
815     break;
816   }
817 }
818
819 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
820   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
821   set_union(MInfo.regsKilled, regsKilled);
822   set_subtract(regsLive, regsKilled); regsKilled.clear();
823   set_subtract(regsLive, regsDead);   regsDead.clear();
824   set_union(regsLive, regsDefined);   regsDefined.clear();
825
826   if (Indexes && Indexes->hasIndex(MI)) {
827     SlotIndex idx = Indexes->getInstructionIndex(MI);
828     if (!(idx > lastIndex)) {
829       report("Instruction index out of order", MI);
830       *OS << "Last instruction was at " << lastIndex << '\n';
831     }
832     lastIndex = idx;
833   }
834 }
835
836 void
837 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
838   MBBInfoMap[MBB].regsLiveOut = regsLive;
839   regsLive.clear();
840
841   if (Indexes) {
842     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
843     if (!(stop > lastIndex)) {
844       report("Block ends before last instruction index", MBB);
845       *OS << "Block ends at " << stop
846           << " last instruction was at " << lastIndex << '\n';
847     }
848     lastIndex = stop;
849   }
850 }
851
852 // Calculate the largest possible vregsPassed sets. These are the registers that
853 // can pass through an MBB live, but may not be live every time. It is assumed
854 // that all vregsPassed sets are empty before the call.
855 void MachineVerifier::calcRegsPassed() {
856   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
857   // have any vregsPassed.
858   DenseSet<const MachineBasicBlock*> todo;
859   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
860        MFI != MFE; ++MFI) {
861     const MachineBasicBlock &MBB(*MFI);
862     BBInfo &MInfo = MBBInfoMap[&MBB];
863     if (!MInfo.reachable)
864       continue;
865     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
866            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
867       BBInfo &SInfo = MBBInfoMap[*SuI];
868       if (SInfo.addPassed(MInfo.regsLiveOut))
869         todo.insert(*SuI);
870     }
871   }
872
873   // Iteratively push vregsPassed to successors. This will converge to the same
874   // final state regardless of DenseSet iteration order.
875   while (!todo.empty()) {
876     const MachineBasicBlock *MBB = *todo.begin();
877     todo.erase(MBB);
878     BBInfo &MInfo = MBBInfoMap[MBB];
879     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
880            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
881       if (*SuI == MBB)
882         continue;
883       BBInfo &SInfo = MBBInfoMap[*SuI];
884       if (SInfo.addPassed(MInfo.vregsPassed))
885         todo.insert(*SuI);
886     }
887   }
888 }
889
890 // Calculate the set of virtual registers that must be passed through each basic
891 // block in order to satisfy the requirements of successor blocks. This is very
892 // similar to calcRegsPassed, only backwards.
893 void MachineVerifier::calcRegsRequired() {
894   // First push live-in regs to predecessors' vregsRequired.
895   DenseSet<const MachineBasicBlock*> todo;
896   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
897        MFI != MFE; ++MFI) {
898     const MachineBasicBlock &MBB(*MFI);
899     BBInfo &MInfo = MBBInfoMap[&MBB];
900     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
901            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
902       BBInfo &PInfo = MBBInfoMap[*PrI];
903       if (PInfo.addRequired(MInfo.vregsLiveIn))
904         todo.insert(*PrI);
905     }
906   }
907
908   // Iteratively push vregsRequired to predecessors. This will converge to the
909   // same final state regardless of DenseSet iteration order.
910   while (!todo.empty()) {
911     const MachineBasicBlock *MBB = *todo.begin();
912     todo.erase(MBB);
913     BBInfo &MInfo = MBBInfoMap[MBB];
914     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
915            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
916       if (*PrI == MBB)
917         continue;
918       BBInfo &SInfo = MBBInfoMap[*PrI];
919       if (SInfo.addRequired(MInfo.vregsRequired))
920         todo.insert(*PrI);
921     }
922   }
923 }
924
925 // Check PHI instructions at the beginning of MBB. It is assumed that
926 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
927 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
928   for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
929        BBI != BBE && BBI->isPHI(); ++BBI) {
930     DenseSet<const MachineBasicBlock*> seen;
931
932     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
933       unsigned Reg = BBI->getOperand(i).getReg();
934       const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
935       if (!Pre->isSuccessor(MBB))
936         continue;
937       seen.insert(Pre);
938       BBInfo &PrInfo = MBBInfoMap[Pre];
939       if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
940         report("PHI operand is not live-out from predecessor",
941                &BBI->getOperand(i), i);
942     }
943
944     // Did we see all predecessors?
945     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
946            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
947       if (!seen.count(*PrI)) {
948         report("Missing PHI operand", BBI);
949         *OS << "BB#" << (*PrI)->getNumber()
950             << " is a predecessor according to the CFG.\n";
951       }
952     }
953   }
954 }
955
956 void MachineVerifier::visitMachineFunctionAfter() {
957   calcRegsPassed();
958
959   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
960        MFI != MFE; ++MFI) {
961     BBInfo &MInfo = MBBInfoMap[MFI];
962
963     // Skip unreachable MBBs.
964     if (!MInfo.reachable)
965       continue;
966
967     checkPHIOps(MFI);
968   }
969
970   // Now check liveness info if available
971   if (LiveVars || LiveInts)
972     calcRegsRequired();
973   if (LiveVars)
974     verifyLiveVariables();
975   if (LiveInts)
976     verifyLiveIntervals();
977 }
978
979 void MachineVerifier::verifyLiveVariables() {
980   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
981   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
982     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
983     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
984     for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
985          MFI != MFE; ++MFI) {
986       BBInfo &MInfo = MBBInfoMap[MFI];
987
988       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
989       if (MInfo.vregsRequired.count(Reg)) {
990         if (!VI.AliveBlocks.test(MFI->getNumber())) {
991           report("LiveVariables: Block missing from AliveBlocks", MFI);
992           *OS << "Virtual register " << PrintReg(Reg)
993               << " must be live through the block.\n";
994         }
995       } else {
996         if (VI.AliveBlocks.test(MFI->getNumber())) {
997           report("LiveVariables: Block should not be in AliveBlocks", MFI);
998           *OS << "Virtual register " << PrintReg(Reg)
999               << " is not needed live through the block.\n";
1000         }
1001       }
1002     }
1003   }
1004 }
1005
1006 void MachineVerifier::verifyLiveIntervals() {
1007   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1008   for (LiveIntervals::const_iterator LVI = LiveInts->begin(),
1009        LVE = LiveInts->end(); LVI != LVE; ++LVI) {
1010     const LiveInterval &LI = *LVI->second;
1011
1012     // Spilling and splitting may leave unused registers around. Skip them.
1013     if (MRI->use_empty(LI.reg))
1014       continue;
1015
1016     // Physical registers have much weirdness going on, mostly from coalescing.
1017     // We should probably fix it, but for now just ignore them.
1018     if (TargetRegisterInfo::isPhysicalRegister(LI.reg))
1019       continue;
1020
1021     assert(LVI->first == LI.reg && "Invalid reg to interval mapping");
1022
1023     for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
1024          I!=E; ++I) {
1025       VNInfo *VNI = *I;
1026       const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def);
1027
1028       if (!DefVNI) {
1029         if (!VNI->isUnused()) {
1030           report("Valno not live at def and not marked unused", MF);
1031           *OS << "Valno #" << VNI->id << " in " << LI << '\n';
1032         }
1033         continue;
1034       }
1035
1036       if (VNI->isUnused())
1037         continue;
1038
1039       if (DefVNI != VNI) {
1040         report("Live range at def has different valno", MF);
1041         *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1042             << " where valno #" << DefVNI->id << " is live in " << LI << '\n';
1043         continue;
1044       }
1045
1046       const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1047       if (!MBB) {
1048         report("Invalid definition index", MF);
1049         *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1050             << " in " << LI << '\n';
1051         continue;
1052       }
1053
1054       if (VNI->isPHIDef()) {
1055         if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1056           report("PHIDef value is not defined at MBB start", MF);
1057           *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1058               << ", not at the beginning of BB#" << MBB->getNumber()
1059               << " in " << LI << '\n';
1060         }
1061       } else {
1062         // Non-PHI def.
1063         const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1064         if (!MI) {
1065           report("No instruction at def index", MF);
1066           *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1067               << " in " << LI << '\n';
1068         } else if (!MI->modifiesRegister(LI.reg, TRI)) {
1069           report("Defining instruction does not modify register", MI);
1070           *OS << "Valno #" << VNI->id << " in " << LI << '\n';
1071         }
1072
1073         bool isEarlyClobber = false;
1074         if (MI) {
1075           for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
1076                MOE = MI->operands_end(); MOI != MOE; ++MOI) {
1077             if (MOI->isReg() && MOI->getReg() == LI.reg && MOI->isDef() &&
1078                 MOI->isEarlyClobber()) {
1079               isEarlyClobber = true;
1080               break;
1081             }
1082           }
1083         }
1084
1085         // Early clobber defs begin at USE slots, but other defs must begin at
1086         // DEF slots.
1087         if (isEarlyClobber) {
1088           if (!VNI->def.isUse()) {
1089             report("Early clobber def must be at a USE slot", MF);
1090             *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1091                 << " in " << LI << '\n';
1092           }
1093         } else if (!VNI->def.isDef()) {
1094           report("Non-PHI, non-early clobber def must be at a DEF slot", MF);
1095           *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1096               << " in " << LI << '\n';
1097         }
1098       }
1099     }
1100
1101     for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I) {
1102       const VNInfo *VNI = I->valno;
1103       assert(VNI && "Live range has no valno");
1104
1105       if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) {
1106         report("Foreign valno in live range", MF);
1107         I->print(*OS);
1108         *OS << " has a valno not in " << LI << '\n';
1109       }
1110
1111       if (VNI->isUnused()) {
1112         report("Live range valno is marked unused", MF);
1113         I->print(*OS);
1114         *OS << " in " << LI << '\n';
1115       }
1116
1117       const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start);
1118       if (!MBB) {
1119         report("Bad start of live segment, no basic block", MF);
1120         I->print(*OS);
1121         *OS << " in " << LI << '\n';
1122         continue;
1123       }
1124       SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1125       if (I->start != MBBStartIdx && I->start != VNI->def) {
1126         report("Live segment must begin at MBB entry or valno def", MBB);
1127         I->print(*OS);
1128         *OS << " in " << LI << '\n' << "Basic block starts at "
1129             << MBBStartIdx << '\n';
1130       }
1131
1132       const MachineBasicBlock *EndMBB =
1133                                 LiveInts->getMBBFromIndex(I->end.getPrevSlot());
1134       if (!EndMBB) {
1135         report("Bad end of live segment, no basic block", MF);
1136         I->print(*OS);
1137         *OS << " in " << LI << '\n';
1138         continue;
1139       }
1140       if (I->end != LiveInts->getMBBEndIdx(EndMBB)) {
1141         // The live segment is ending inside EndMBB
1142         const MachineInstr *MI =
1143                         LiveInts->getInstructionFromIndex(I->end.getPrevSlot());
1144         if (!MI) {
1145           report("Live segment doesn't end at a valid instruction", EndMBB);
1146         I->print(*OS);
1147         *OS << " in " << LI << '\n' << "Basic block starts at "
1148             << MBBStartIdx << '\n';
1149         } else if (TargetRegisterInfo::isVirtualRegister(LI.reg) &&
1150                    !MI->readsVirtualRegister(LI.reg)) {
1151           // A live range can end with either a redefinition, a kill flag on a
1152           // use, or a dead flag on a def.
1153           // FIXME: Should we check for each of these?
1154           bool hasDeadDef = false;
1155           for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
1156                MOE = MI->operands_end(); MOI != MOE; ++MOI) {
1157             if (MOI->isReg() && MOI->getReg() == LI.reg && MOI->isDef() && MOI->isDead()) {
1158               hasDeadDef = true;
1159               break;
1160             }
1161           }
1162
1163           if (!hasDeadDef) {
1164             report("Instruction killing live segment neither defines nor reads "
1165                    "register", MI);
1166             I->print(*OS);
1167             *OS << " in " << LI << '\n';
1168           }
1169         }
1170       }
1171
1172       // Now check all the basic blocks in this live segment.
1173       MachineFunction::const_iterator MFI = MBB;
1174       // Is this live range the beginning of a non-PHIDef VN?
1175       if (I->start == VNI->def && !VNI->isPHIDef()) {
1176         // Not live-in to any blocks.
1177         if (MBB == EndMBB)
1178           continue;
1179         // Skip this block.
1180         ++MFI;
1181       }
1182       for (;;) {
1183         assert(LiveInts->isLiveInToMBB(LI, MFI));
1184         // We don't know how to track physregs into a landing pad.
1185         if (TargetRegisterInfo::isPhysicalRegister(LI.reg) &&
1186             MFI->isLandingPad()) {
1187           if (&*MFI == EndMBB)
1188             break;
1189           ++MFI;
1190           continue;
1191         }
1192         // Check that VNI is live-out of all predecessors.
1193         for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
1194              PE = MFI->pred_end(); PI != PE; ++PI) {
1195           SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI).getPrevSlot();
1196           const VNInfo *PVNI = LI.getVNInfoAt(PEnd);
1197
1198           if (VNI->isPHIDef() && VNI->def == LiveInts->getMBBStartIdx(MFI))
1199             continue;
1200
1201           if (!PVNI) {
1202             report("Register not marked live out of predecessor", *PI);
1203             *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
1204                 << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live at "
1205                 << PEnd << " in " << LI << '\n';
1206             continue;
1207           }
1208
1209           if (PVNI != VNI) {
1210             report("Different value live out of predecessor", *PI);
1211             *OS << "Valno #" << PVNI->id << " live out of BB#"
1212                 << (*PI)->getNumber() << '@' << PEnd
1213                 << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
1214                 << '@' << LiveInts->getMBBStartIdx(MFI) << " in " << LI << '\n';
1215           }
1216         }
1217         if (&*MFI == EndMBB)
1218           break;
1219         ++MFI;
1220       }
1221     }
1222
1223     // Check the LI only has one connected component.
1224     if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
1225       ConnectedVNInfoEqClasses ConEQ(*LiveInts);
1226       unsigned NumComp = ConEQ.Classify(&LI);
1227       if (NumComp > 1) {
1228         report("Multiple connected components in live interval", MF);
1229         *OS << NumComp << " components in " << LI << '\n';
1230         for (unsigned comp = 0; comp != NumComp; ++comp) {
1231           *OS << comp << ": valnos";
1232           for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
1233                E = LI.vni_end(); I!=E; ++I)
1234             if (comp == ConEQ.getEqClass(*I))
1235               *OS << ' ' << (*I)->id;
1236           *OS << '\n';
1237         }
1238       }
1239     }
1240   }
1241 }
1242